1
|
Babicheva A, Elmadbouh I, Song S, Thompson M, Powers R, Jain PP, Izadi A, Chen J, Yung L, Parmisano S, Paquin C, Wang WT, Chen Y, Wang T, Alotaibi M, Shyy JYJ, Thistlethwaite PA, Wang J, Makino A, Prakash YS, Pabelick CM, Yuan JXJ. Store-operated Ca 2+ entry is involved in endothelium-to-mesenchymal transition in lung vascular endothelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627034. [PMID: 39677696 PMCID: PMC11643270 DOI: 10.1101/2024.12.06.627034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Endothelial-to-mesenchymal transition (EndMT) is a biological process that converts endothelial cells to mesenchymal cells with increased proliferative and migrative abilities. EndMT has been implicated in the development of pulmonary vascular remodeling in pulmonary arterial hypertension (PAH), a fatal and progressive lung vascular disease. Transforming growth factor β 1 (TGF-β 1 ), an inflammatory cytokine, is known to induce EndMT in many types of endothelial cells including lung vascular endothelial cells (LVEC). An increase in cytosolic free Ca 2+ concentration ([Ca 2+ ] cyt ) is a major stimulus for cellular proliferation and phenotypic transition, but it is unknown whether Ca 2+ signaling is involved in EndMT. In this study we tested the hypothesis that TGF-β 1 -induced EndMT in human LVEC is Ca 2+ -dependent. Treatment of LVEC with TGF-β 1 for 5-7 days resulted in increase in SNAI1/2 expression, induction of EndMT, upregulation of STIM/Orai1 and enhancement of store-operated Ca 2+ entry (SOCE). Removal (or chelation) of extracellular or intracellular Ca 2+ with EGTA or BAPTA-AM respectively abolished EndMT in response to TGF-β 1 . Moreover, EGTA diminished TGF-β 1 -induced increase in SNAI in a dose-dependent manner. Knockdown of either STIM1 or Orai1 was sufficient to prevent TGF-β-mediated increase in SNAI1/2 and EndMT, but did not rescue the continuous adherent junctions. Blockade of Orai1 channels by AnCoA4 inhibited TGF-β-mediated EndMT and restored PECAM1-positive continuous adherent junctions. In conclusion, intracellular Ca 2+ signaling plays a critical role in TGF-β-associated EndMT through enhanced SOCE and STIM1-Orai1 interaction. Thus, targeting Ca 2+ signaling pathways regulating EndMT may be a novel therapeutic approach to treat PAH and other forms of pre-capillary pulmonary hypertension. New & Noteworthy EndMT has been reported to contribute to the pathogenesis of PH. In this study we aimed to determine the role of Ca 2+ signaling in the development of EndMT in human lung vascular endothelial cells. Our data suggest that TGF-β 1 requires store-operated Ca 2+ entry through STIM1/Orai channels to induce SNAI-mediated EndMT. For the first time we demonstrated that TGF-β 1 -induced EndMT is Ca 2+ -dependent event while inhibition of STIM1/Orai interaction attenuated EndMT in response to TGF-β 1 .
Collapse
|
2
|
Li XQ, Zheng YM, Reyes-García J, Wang YX. Diversity of ryanodine receptor 1-mediated Ca 2+ signaling in systemic and pulmonary artery smooth muscle cells. Life Sci 2021; 270:119016. [PMID: 33515564 DOI: 10.1016/j.lfs.2021.119016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/26/2020] [Accepted: 01/03/2021] [Indexed: 11/26/2022]
Abstract
AIMS Ryanodine receptor-1 (RyR1) is essential for skeletal muscle cell functions. However, its roles in vascular smooth muscle cells (SMCs) are well recognized. This study aims to determine the potential physiological importance and difference in systemic and pulmonary artery SMCs (SASMCs and PASMCs). METHODS Local and global Ca2+ release were measured using a laser scanning confocal microscope and wide-field fluorescence microscope; membrane currents were recorded using a patch clamp recording; muscle contraction was determined using an organ bath system; RyR protein expression was assessed using immunofluorescence staining. Homozygous and heterozygous RyR1 gene knockout (RyR1-/- and RyR1+/-) mice were used to determine its specific functions. KEY FINDINGS Ca2+ sparks were more prominently decreased in RyR1-/- ASMCs than in PASMCs. Caffeine induced a smaller increase in [Ca2+]i in both RyR1+/+ and RyR1-/- ASMCs than in PASMCs. High K+ produced a reduced [Ca2+]i increase in RyR1-/- PASMCs and ASMCs as well as a reduced contraction in RyR1+/- pulmonary artery and aortic tissues. ATP elicited a smaller increase in [Ca2+]i in RyR1-/- ASMCs and PASMCs with a greater inhibition in ASMCs. Norepinephrine-elicited muscle contraction was reduced in RyR1+/- aortic and pulmonary arteries. IP3 dialysis-induced Ca2+ release was much smaller in RyR1+/- ASMCs and PASMCs. Hypoxia-induced large Ca2+ and contractile responses were inhibited in RyR1+/- PASMCs. However, hypoxic exposure did not evoke a notable increase in [Ca2+]i in ASMCs. SIGNIFICANCE Our findings for the first time provide clear genetic evidence for the functional importance and difference of RyR1 in systemic and pulmonary artery SMCs.
Collapse
Affiliation(s)
- Xiao-Qiang Li
- Albany Medical College, Department of Molecular & Cellular Physiology (MC-8), 47 New Scotland Avenue, Albany, NY 12208, United States of America
| | - Yun-Min Zheng
- Albany Medical College, Department of Molecular & Cellular Physiology (MC-8), 47 New Scotland Avenue, Albany, NY 12208, United States of America
| | - Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, México
| | - Yong-Xiao Wang
- Albany Medical College, Department of Molecular & Cellular Physiology (MC-8), 47 New Scotland Avenue, Albany, NY 12208, United States of America.
| |
Collapse
|
3
|
Evans AM. On a Magical Mystery Tour with 8-Bromo-Cyclic ADP-Ribose: From All-or-None Block to Nanojunctions and the Cell-Wide Web. Molecules 2020; 25:E4768. [PMID: 33081414 PMCID: PMC7587525 DOI: 10.3390/molecules25204768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/08/2020] [Indexed: 11/16/2022] Open
Abstract
A plethora of cellular functions are controlled by calcium signals, that are greatly coordinated by calcium release from intracellular stores, the principal component of which is the sarco/endooplasmic reticulum (S/ER). In 1997 it was generally accepted that activation of various G protein-coupled receptors facilitated inositol-1,4,5-trisphosphate (IP3) production, activation of IP3 receptors and thus calcium release from S/ER. Adding to this, it was evident that S/ER resident ryanodine receptors (RyRs) could support two opposing cellular functions by delivering either highly localised calcium signals, such as calcium sparks, or by carrying propagating, global calcium waves. Coincidentally, it was reported that RyRs in mammalian cardiac myocytes might be regulated by a novel calcium mobilising messenger, cyclic adenosine diphosphate-ribose (cADPR), that had recently been discovered by HC Lee in sea urchin eggs. A reputedly selective and competitive cADPR antagonist, 8-bromo-cADPR, had been developed and was made available to us. We used 8-bromo-cADPR to further explore our observation that S/ER calcium release via RyRs could mediate two opposing functions, namely pulmonary artery dilation and constriction, in a manner seemingly independent of IP3Rs or calcium influx pathways. Importantly, the work of others had shown that, unlike skeletal and cardiac muscles, smooth muscles might express all three RyR subtypes. If this were the case in our experimental system and cADPR played a role, then 8-bromo-cADPR would surely block one of the opposing RyR-dependent functions identified, or the other, but certainly not both. The latter seemingly implausible scenario was confirmed. How could this be, do cells hold multiple, segregated SR stores that incorporate different RyR subtypes in receipt of spatially segregated signals carried by cADPR? The pharmacological profile of 8-bromo-cADPR action supported not only this, but also indicated that intracellular calcium signals were delivered across intracellular junctions formed by the S/ER. Not just one, at least two. This article retraces the steps along this journey, from the curious pharmacological profile of 8-bromo-cADPR to the discovery of the cell-wide web, a diverse network of cytoplasmic nanocourses demarcated by S/ER nanojunctions, which direct site-specific calcium flux and may thus coordinate the full panoply of cellular processes.
Collapse
Grants
- 01/A/S/07453 Biotechnology and Biological Sciences Research Council
- WT046374 , WT056423, WT070772, WT074434, WT081195AIA, WT212923, WT093147 Wellcome Trust
- PG/10/95/28657 British Heart Foundation
- FS/03/033/15432, FS/05/050, PG/05/128/19884, RG/12/14/29885, PG/10/95/28657 British Heart Foundation
- RG/12/14/29885 British Heart Foundation
Collapse
Affiliation(s)
- A Mark Evans
- Centre for Discovery Brain Sciences and Cardiovascular Science, Edinburgh Medical School, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK
| |
Collapse
|
4
|
Bopp C, Auger C, Mebazaa A, Joshi GP, Schini-Kerth VB, Diemunsch P. Urapidil, but not dihydropyridine calcium channel inhibitors, preserves the hypoxic pulmonary vasoconstriction: an experimental study in pig arteries. Fundam Clin Pharmacol 2019; 33:527-534. [PMID: 30811659 DOI: 10.1111/fcp.12457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 02/05/2019] [Accepted: 02/25/2019] [Indexed: 11/28/2022]
Abstract
Hypoxic pulmonary vasoconstriction (HPV) is a protective mechanism maintaining blood oxygenation by redirecting blood flow from poorly ventilated to well-ventilated areas in the lung. Such a beneficial effect is blunted by antihypertensive treatment with dihydropyridine calcium channel inhibitors. The aim of the present study was to evaluate the effect of urapidil, an antihypertensive agent acting as an α1 adrenergic antagonist and a partial 5-HT1A agonist, on HPV in porcine proximal and distal pulmonary artery rings, and to characterize underlying mechanisms. Rings from proximal and distal porcine pulmonary artery were suspended in organ chambers and aerated with a 95% O2 + 5% CO2 gas mixture. HPV was induced by changing the gas to a 95% N2 + 5% CO2 mixture following a low level of pre-contraction with U46619. Hypoxia induced a contractile response in both proximal and distal pulmonary artery rings. This effect is observed in the presence of a functional endothelium and is inhibited by a soluble guanylyl cyclase inhibitor (ODQ), a NO scavenger (carboxy-PTIO), and by catalase in proximal pulmonary artery rings. The endothelium-dependent HPV is prevented by nicardipine and clevidipine but remained unaffected by urapidil in both proximal and distal pulmonary artery rings. These findings indicate that urapidil, in contrast to nicardipine and clevidipine, preserves the hypoxia-triggered vasoconstriction in isolated pulmonary arteries. They further indicate the involvement of the NO-guanylyl cyclase pathway and H2 O2 in HPV. Further research is warranted to determine the potential clinical relevance of the preserved hypoxia-induced pulmonary vasoconstriction by urapidil.
Collapse
Affiliation(s)
- Claire Bopp
- Faculty of Pharmacy, UMR CNRS 7213, University of Strasbourg, Illkirch, France.,Department of Anesthesia and Critical Care, Hautepierre University Hospitals, Avenue Molière, Strasbourg, France
| | - Cyril Auger
- Faculty of Pharmacy, UMR CNRS 7213, University of Strasbourg, Illkirch, France
| | - Alexandre Mebazaa
- Department of Anesthesia, Burn and Critical Care, Saint Louis and Lariboisière University Hospitals, UMRS-942 INSERM, University Paris Diderot, Paris, France
| | - Girish P Joshi
- Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical School, Dallas, TX, USA
| | | | - Pierre Diemunsch
- Department of Anesthesia and Critical Care, Hautepierre University Hospitals, Avenue Molière, Strasbourg, France
| |
Collapse
|
5
|
Strielkov I, Pak O, Sommer N, Weissmann N. Recent advances in oxygen sensing and signal transduction in hypoxic pulmonary vasoconstriction. J Appl Physiol (1985) 2017; 123:1647-1656. [PMID: 28751366 DOI: 10.1152/japplphysiol.00103.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypoxic pulmonary vasoconstriction (HPV) is a physiological reaction, which adapts lung perfusion to regional ventilation and optimizes gas exchange. Impaired HPV may cause systemic hypoxemia, while generalized HPV contributes to the development of pulmonary hypertension. The triggering mechanisms underlying HPV are still not fully elucidated. Several hypotheses are currently under debate, including a possible decrease as well as an increase in reactive oxygen species as a triggering event. Recent findings suggest an increase in the production of reactive oxygen species in pulmonary artery smooth muscle cells by complex III of the mitochondrial electron transport chain and occurrence of oxygen sensing at complex IV. Other essential components are voltage-dependent potassium and possibly L-type, transient receptor potential channel 6, and transient receptor potential vanilloid 4 channels. The release of arachidonic acid metabolites appears also to be involved in HPV regulation. Further investigation of the HPV mechanisms will facilitate the development of novel therapeutic strategies for the treatment of HPV-related disorders.
Collapse
Affiliation(s)
- Ievgen Strielkov
- Excellence Cluster Cardiopulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University, Giessen , Germany
| | - Oleg Pak
- Excellence Cluster Cardiopulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University, Giessen , Germany
| | - Natasha Sommer
- Excellence Cluster Cardiopulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University, Giessen , Germany
| | - Norbert Weissmann
- Excellence Cluster Cardiopulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University, Giessen , Germany
| |
Collapse
|
6
|
Evans AM. Nanojunctions of the Sarcoplasmic Reticulum Deliver Site- and Function-Specific Calcium Signaling in Vascular Smooth Muscles. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:1-47. [PMID: 28212795 DOI: 10.1016/bs.apha.2016.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Vasoactive agents may induce myocyte contraction, dilation, and the switch from a contractile to a migratory-proliferative phenotype(s), which requires changes in gene expression. These processes are directed, in part, by Ca2+ signals, but how different Ca2+ signals are generated to select each function is enigmatic. We have previously proposed that the strategic positioning of Ca2+ pumps and release channels at membrane-membrane junctions of the sarcoplasmic reticulum (SR) demarcates cytoplasmic nanodomains, within which site- and function-specific Ca2+ signals arise. This chapter will describe how nanojunctions of the SR may: (1) define cytoplasmic nanospaces about the plasma membrane, mitochondria, contractile myofilaments, lysosomes, and the nucleus; (2) provide for functional segregation by restricting passive diffusion and by coordinating active ion transfer within a given nanospace via resident Ca2+ pumps and release channels; (3) select for contraction, relaxation, and/or changes in gene expression; and (4) facilitate the switch in myocyte phenotype through junctional reorganization. This should serve to highlight the need for further exploration of cellular nanojunctions and the mechanisms by which they operate, that will undoubtedly open up new therapeutic horizons.
Collapse
Affiliation(s)
- A M Evans
- Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
7
|
From contraction to gene expression: nanojunctions of the sarco/endoplasmic reticulum deliver site- and function-specific calcium signals. SCIENCE CHINA-LIFE SCIENCES 2016; 59:749-63. [PMID: 27376531 DOI: 10.1007/s11427-016-5071-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/07/2016] [Indexed: 10/21/2022]
Abstract
Calcium signals determine, for example, smooth muscle contraction and changes in gene expression. How calcium signals select for these processes is enigmatic. We build on the "panjunctional sarcoplasmic reticulum" hypothesis, describing our view that different calcium pumps and release channels, with different kinetics and affinities for calcium, are strategically positioned within nanojunctions of the SR and help demarcate their respective cytoplasmic nanodomains. SERCA2b and RyR1 are preferentially targeted to the sarcoplasmic reticulum (SR) proximal to the plasma membrane (PM), i.e., to the superficial buffer barrier formed by PM-SR nanojunctions, and support vasodilation. In marked contrast, SERCA2a may be entirely restricted to the deep, perinuclear SR and may supply calcium to this sub-compartment in support of vasoconstriction. RyR3 is also preferentially targeted to the perinuclear SR, where its clusters associate with lysosome-SR nanojunctions. The distribution of RyR2 is more widespread and extends from this region to the wider cell. Therefore, perinuclear RyR3s most likely support the initiation of global calcium waves at L-SR junctions, which subsequently propagate by calcium-induced calcium release via RyR2 in order to elicit contraction. Data also suggest that unique SERCA and RyR are preferentially targeted to invaginations of the nuclear membrane. Site- and function-specific calcium signals may thus arise to modulate stimulus-response coupling and transcriptional cascades.
Collapse
|
8
|
Lin AHY, Sun H, Paudel O, Lin MJ, Sham JSK. Conformation of ryanodine receptor-2 gates store-operated calcium entry in rat pulmonary arterial myocytes. Cardiovasc Res 2016; 111:94-104. [PMID: 27013634 DOI: 10.1093/cvr/cvw067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 03/18/2016] [Indexed: 12/31/2022] Open
Abstract
AIMS Store-operated Ca(2+) entry (SOCE) contributes to a multitude of physiological and pathophysiological functions in pulmonary vasculatures. SOCE attributable to inositol 1,4,5-trisphosphate receptor (InsP3R)-gated Ca(2+) store has been studied extensively, but the role of ryanodine receptor (RyR)-gated store in SOCE remains unclear. The present study aims to delineate the relationship between RyR-gated Ca(2+) stores and SOCE, and characterize the properties of RyR-gated Ca(2+) entry in pulmonary artery smooth muscle cells (PASMCs). METHODS AND RESULTS PASMCs were isolated from intralobar pulmonary arteries of male Wister rats. Application of the RyR1/2 agonist 4-chloro-m-cresol (4-CmC) activated robust Ca(2+) entry in PASMCs. It was blocked by Gd(3+) and the RyR2 modulator K201 but was unaffected by the RyR1/3 antagonist dantrolene and the InsP3R inhibitor xestospongin C, suggesting RyR2 is mainly involved in the process. siRNA knockdown of STIM1, TRPC1, and Orai1, or interruption of STIM1 translocation with ML-9 significantly attenuated the 4-CmC-induced SOCE, similar to SOCE induced by thapsigargin. However, depletion of RyR-gated store with caffeine failed to activate Ca(2+) entry. Inclusion of ryanodine, which itself did not cause Ca(2+) entry, uncovered caffeine-induced SOCE in a concentration-dependent manner, suggesting binding of ryanodine to RyR is permissive for the process. This Ca(2+) entry had the same molecular and pharmacological properties of 4-CmC-induced SOCE, and it persisted once activated even after caffeine washout. Measurement of Ca(2+) in sarcoplasmic reticulum (SR) showed that 4-CmC and caffeine application with or without ryanodine reduced SR Ca(2+) to similar extent, suggesting store-depletion was not the cause of the discrepancy. Moreover, caffeine/ryanodine and 4-CmC failed to initiate SOCE in cells transfected with the ryanodine-binding deficient mutant RyR2-I4827T. CONCLUSIONS RyR2-gated Ca(2+) store contributes to SOCE in PASMCs; however, store-depletion alone is insufficient but requires a specific RyR conformation modifiable by ryanodine binding to activate Ca(2+) entry.
Collapse
Affiliation(s)
- Amanda H Y Lin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| | - Hui Sun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| | - Omkar Paudel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| | - Mo-Jun Lin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - James S K Sham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| |
Collapse
|
9
|
Sommer N, Strielkov I, Pak O, Weissmann N. Oxygen sensing and signal transduction in hypoxic pulmonary vasoconstriction. Eur Respir J 2015; 47:288-303. [PMID: 26493804 DOI: 10.1183/13993003.00945-2015] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/24/2015] [Indexed: 01/17/2023]
Abstract
Hypoxic pulmonary vasoconstriction (HPV), also known as the von Euler-Liljestrand mechanism, is an essential response of the pulmonary vasculature to acute and sustained alveolar hypoxia. During local alveolar hypoxia, HPV matches perfusion to ventilation to maintain optimal arterial oxygenation. In contrast, during global alveolar hypoxia, HPV leads to pulmonary hypertension. The oxygen sensing and signal transduction machinery is located in the pulmonary arterial smooth muscle cells (PASMCs) of the pre-capillary vessels, albeit the physiological response may be modulated in vivo by the endothelium. While factors such as nitric oxide modulate HPV, reactive oxygen species (ROS) have been suggested to act as essential mediators in HPV. ROS may originate from mitochondria and/or NADPH oxidases but the exact oxygen sensing mechanisms, as well as the question of whether increased or decreased ROS cause HPV, are under debate. ROS may induce intracellular calcium increase and subsequent contraction of PASMCs via direct or indirect interactions with protein kinases, phospholipases, sarcoplasmic calcium channels, transient receptor potential channels, voltage-dependent potassium channels and L-type calcium channels, whose relevance may vary under different experimental conditions. Successful identification of factors regulating HPV may allow development of novel therapeutic approaches for conditions of disturbed HPV.
Collapse
Affiliation(s)
- Natascha Sommer
- Excellence Cluster Cardiopulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Ievgen Strielkov
- Excellence Cluster Cardiopulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Oleg Pak
- Excellence Cluster Cardiopulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Norbert Weissmann
- Excellence Cluster Cardiopulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
10
|
Abstract
BACKGROUND Hypoxic pulmonary vasoconstriction (HPV) is critically important in regionally heterogeneous lung diseases by directing blood toward better-oxygenated lung units, yet the molecular mechanism of HPV remains unknown. Transient receptor potential (TRP) channels are a large cation channel family that has been implicated in HPV, specifically in the pulmonary artery smooth muscle cell (PASMC) Ca and contractile response to hypoxia. In this study, the authors probed the role of the TRP family member, TRPV4, in HPV. METHODS HPV was assessed by using isolated perfused mouse lungs or by intravital microscopy to directly visualize pulmonary arterioles in mice. In vitro experiments were performed in primary human PASMC. RESULTS The hypoxia-induced pulmonary artery pressure increase seen in wild-type mice (5.6 ± 0.6 mmHg; mean ± SEM) was attenuated both by inhibition of TRPV4 (2.8 ± 0.5 mmHg), or in lungs from TRPV4-deficient mice (Trpv4) (3.4 ± 0.5 mmHg; n = 7 each). Functionally, Trpv4 mice displayed an exaggerated hypoxemia after regional airway occlusion (paO2 71% of baseline ± 2 vs. 85 ± 2%; n = 5). Direct visualization of pulmonary arterioles by intravital microscopy revealed a 66% reduction in HPV in Trpv4 mice. In human PASMC, inhibition of TRPV4 blocked the hypoxia-induced Ca influx and myosin light chain phosphorylation. TRPV4 may form a heteromeric channel with TRPC6 as the two channels coimmunoprecipitate from PASMC and as there is no additive effect of TRPC and TRPV4 inhibition on Ca influx in response to the agonist, 11,12-epoxyeicosatrienoic acid. CONCLUSION TRPV4 plays a critical role in HPV, potentially via cooperation with TRPC6.
Collapse
|
11
|
Abstract
SIGNIFICANCE The pulmonary circulation is a low-pressure, low-resistance, highly compliant vasculature. In contrast to the systemic circulation, it is not primarily regulated by a central nervous control mechanism. The regulation of resting membrane potential due to ion channels is of integral importance in the physiology and pathophysiology of the pulmonary vasculature. RECENT ADVANCES Redox-driven ion conductance changes initiated by direct oxidation, nitration, and S-nitrosylation of the cysteine thiols and indirect phosphorylation of the threonine and serine residues directly affect pulmonary vascular tone. CRITICAL ISSUES Molecular mechanisms of changes in ion channel conductance, especially the identification of the sites of action, are still not fully elucidated. FUTURE DIRECTIONS Further investigation of the interaction between redox status and ion channel gating, especially the physiological significance of S-glutathionylation and S-nitrosylation, could result in a better understanding of the physiological and pathophysiological importance of these mediators in general and the implications of such modifications in cellular functions and related diseases and their importance for targeted treatment strategies.
Collapse
Affiliation(s)
- Andrea Olschewski
- 1 Ludwig Boltzmann Institute for Lung Vascular Research , Graz, Austria
| | | |
Collapse
|
12
|
Kuriyama S, Morio Y, Toba M, Nagaoka T, Takahashi F, Iwakami SI, Seyama K, Takahashi K. Genistein attenuates hypoxic pulmonary hypertension via enhanced nitric oxide signaling and the erythropoietin system. Am J Physiol Lung Cell Mol Physiol 2014; 306:L996-L1005. [PMID: 24705719 DOI: 10.1152/ajplung.00276.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Upregulation of the erythropoietin (EPO)/EPO receptor (EPOR) system plays a protective role against chronic hypoxia-induced pulmonary hypertension (hypoxic PH) through enhancement of endothelial nitric oxide (NO)-mediated signaling. Genistein (Gen), a phytoestrogen, is considered to ameliorate NO-mediated signaling. We hypothesized that Gen attenuates and prevents hypoxic PH. In vivo, Sprague-Dawley rats raised in a hypobaric chamber were treated with Gen (60 mkg/kg) for 21 days. Pulmonary hemodynamics and vascular remodeling were ameliorated in Gen-treated hypoxic PH rats. Gen also restored cGMP levels and phosphorylated endothelial NO synthase (p-eNOS) at Ser(1177) and p-Akt at Ser(473) expression in the lungs. Additionally, Gen potentiated plasma EPO concentration and EPOR-positive endothelial cell counts. In experiments with hypoxic PH rats' isolated perfused lungs, Gen caused NO- and phosphatidylinositol 3-kinase (PI3K)/Akt-dependent vasodilation that reversed abnormal vasoconstriction. In vitro, a combination of EPO and Gen increased the p-eNOS and the EPOR expression in human umbilical vein endothelial cells under a hypoxic environment. Moreover, Gen potentiated the hypoxic increase in EPO production from human hepatoma cells. We conclude that Gen may be effective for the prevention of hypoxic PH through the improvement of PI3K/Akt-dependent, NO-mediated signaling in association with enhancement of the EPO/EPOR system.
Collapse
Affiliation(s)
- Sachiko Kuriyama
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshiteru Morio
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Michie Toba
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tetsutaro Nagaoka
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Fumiyuki Takahashi
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shin-Ichiro Iwakami
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kuniaki Seyama
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
13
|
Waypa GB, Osborne SW, Marks JD, Berkelhamer SK, Kondapalli J, Schumacker PT. Sirtuin 3 deficiency does not augment hypoxia-induced pulmonary hypertension. Am J Respir Cell Mol Biol 2014; 49:885-91. [PMID: 24047466 DOI: 10.1165/rcmb.2013-0191oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Alveolar hypoxia elicits increases in mitochondrial reactive oxygen species (ROS) signaling in pulmonary arterial (PA) smooth muscle cells (PASMCs), triggering hypoxic pulmonary vasoconstriction. Mice deficient in sirtuin (Sirt) 3, a nicotinamide adenine dinucleotide-dependent mitochondrial deacetylase, demonstrate enhanced left ventricular hypertrophy after aortic banding, whereas cells from these mice reportedly exhibit augmented hypoxia-induced ROS signaling and hypoxia-inducible factor (HIF)-1 activation. We therefore tested whether deletion of Sirt3 would augment hypoxia-induced ROS signaling in PASMCs, thereby exacerbating the development of pulmonary hypertension (PH) and right ventricular hypertrophy. In PASMCs from Sirt3 knockout (Sirt3(-/-)) mice in the C57BL/6 background, we observed that acute hypoxia (1.5% O2; 30 min)-induced changes in ROS signaling, detected using targeted redox-sensitive, ratiometric fluorescent protein sensors (roGFP) in the mitochondrial matrix, intermembrane space, and the cytosol, were indistinguishable from Sirt3(+/+) cells. Acute hypoxia-induced cytosolic calcium signaling in Sirt3(-/-) PASMCs was also indistinguishable from Sirt3(+/+) cells. During sustained hypoxia (1.5% O2; 16 h), Sirt3 deletion augmented mitochondrial matrix oxidant stress, but this did not correspond to an augmentation of intermembrane space or cytosolic oxidant signaling. Sirt3 deletion did not affect HIF-1α stabilization under normoxia, nor did it augment HIF-1α stabilization during sustained hypoxia (1.5% O2; 4 h). Sirt3(-/-) mice housed in chronic hypoxia (10% O2; 30 d) developed PH, PA wall remodeling, and right ventricular hypertrophy that was indistinguishable from Sirt3(+/+) littermates. Thus, Sirt3 deletion does not augment hypoxia-induced ROS signaling or its consequences in the cytosol of PASMCs, or the development of PH. These findings suggest that Sirt3 responses may be cell type specific, or restricted to certain genetic backgrounds.
Collapse
Affiliation(s)
- Gregory B Waypa
- Department of Pediatrics, Division of Neonatology 1 , Northwestern University Feinberg School of Medicine, Chicago, Illinois; and
| | | | | | | | | | | |
Collapse
|
14
|
Moreno L, Moral-Sanz J, Morales-Cano D, Barreira B, Moreno E, Ferrarini A, Pandolfi R, Ruperez FJ, Cortijo J, Sanchez-Luna M, Villamor E, Perez-Vizcaino F, Cogolludo A. Ceramide mediates acute oxygen sensing in vascular tissues. Antioxid Redox Signal 2014; 20:1-14. [PMID: 23725018 PMCID: PMC3880904 DOI: 10.1089/ars.2012.4752] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIMS A variety of vessels, such as resistance pulmonary arteries (PA) and fetoplacental arteries and the ductus arteriosus (DA) are specialized in sensing and responding to changes in oxygen tension. Despite opposite stimuli, normoxic DA contraction and hypoxic fetoplacental and PA vasoconstriction share some mechanistic features. Activation of neutral sphingomyelinase (nSMase) and subsequent ceramide production has been involved in hypoxic pulmonary vasoconstriction (HPV). Herein we aimed to study the possible role of nSMase-derived ceramide as a common factor in the acute oxygen-sensing function of specialized vascular tissues. RESULTS The nSMase inhibitor GW4869 and an anticeramide antibody reduced the hypoxic vasoconstriction in chicken PA and chorioallantoic arteries (CA) and the normoxic contraction of chicken DA. Incubation with interference RNA targeted to SMPD3 also inhibited HPV. Moreover, ceramide and reactive oxygen species production were increased by hypoxia in PA and by normoxia in DA. Either bacterial sphingomyelinase or ceramide mimicked the contractile responses of hypoxia in PA and CA and those of normoxia in the DA. Furthermore, ceramide inhibited voltage-gated potassium currents present in smooth muscle cells from PA and DA. Finally, the role of nSMase in acute oxygen sensing was also observed in human PA and DA. INNOVATION These data provide evidence for the proposal that nSMase-derived ceramide is a critical player in acute oxygen-sensing in specialized vascular tissues. CONCLUSION Our results indicate that an increase in ceramide generation is involved in the vasoconstrictor responses induced by two opposite stimuli, such as hypoxia (in PA and CA) and normoxia (in DA).
Collapse
Affiliation(s)
- Laura Moreno
- 1 Department of Pharmacology, School of Medicine, Universidad Complutense Madrid , Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Connolly MJ, Prieto-Lloret J, Becker S, Ward JPT, Aaronson PI. Hypoxic pulmonary vasoconstriction in the absence of pretone: essential role for intracellular Ca2+ release. J Physiol 2013; 591:4473-98. [PMID: 23774281 DOI: 10.1113/jphysiol.2013.253682] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hypoxic pulmonary vasoconstriction (HPV) maintains blood oxygenation during acute hypoxia but contributes to pulmonary hypertension during chronic hypoxia. The mechanisms of HPV remain controversial, in part because HPV is usually studied in the presence of agonist-induced preconstriction ('pretone'). This potentiates HPV but may obscure and distort its underlying mechanisms. We therefore carried out an extensive assessment of proposed mechanisms contributing to HPV in isolated intrapulmonary arteries (IPAs) in the absence of pretone by using a conventional small vessel myograph. Hypoxia elicited a biphasic constriction consisting of a small transient (phase 1) superimposed upon a sustained (phase 2) component. Neither phase was affected by the L-type Ca2+ channel antagonists diltiazem (10 and 30 μm) or nifedipine (3 μm). Application of the store-operated Ca2+ entry (SOCE) blockers BTP2 (10 μm) or SKF96365 (50 μm) attenuated phase 2 but not phase 1, whereas a lengthy (30 min) incubation in Ca2+-free physiological saline solution similarly reduced phase 2 but abolished phase 1. No further effect of inhibition of HPV was observed if the sarco/endoplasmic reticulum Ca2+-ATPase inhibitor cyclopiazonic acid (30 μm) was also applied during the 30 min incubation in Ca2+-free physiological saline solution. Pretreatment with 10 μm ryanodine and 15 mm caffeine abolished both phases, whereas treatment with 100 μm ryanodine attenuated both phases. The two-pore channel blocker NED-19 (1 μm) and the nicotinic acid adenine dinucleotide phosphate (NAADP) antagonist BZ194 (200 μm) had no effect on either phase of HPV. The lysosomal Ca2+-depleting agent concanamycin (1 μm) enhanced HPV if applied during hypoxia, but had no effect on HPV during a subsequent hypoxic challenge. The cyclic ADP ribose antagonist 8-bromo-cyclic ADP ribose (30 μm) had no effect on either phase of HPV. Neither the Ca2+-sensing receptor (CaSR) blocker NPS2390 (0.1 and 10 μm) nor FK506 (10 μm), a drug which displaces FKBP12.6 from ryanodine receptor 2 (RyR2), had any effect on HPV. HPV was virtually abolished by the rho kinase blocker Y-27632 (1 μm) and attenuated by the protein kinase C inhibitor Gö6983 (3 μm). Hypoxia for 45 min caused a significant increase in the ratio of oxidised to reduced glutathione (GSSG/GSH). HPV was unaffected by the NADPH oxidase inhibitor VAS2870 (10 μm), whereas phase 2 was inhibited but phase 1 was unaffected by the antioxidants ebselen (100 μm) and TEMPOL (3 mm). We conclude that both phases of HPV in this model are mainly dependent on [Ca2+]i release from the sarcoplasmic reticulum. Neither phase of HPV requires voltage-gated Ca2+ entry, but SOCE contributes to phase 2. We can detect no requirement for cyclic ADP ribose, NAADP-dependent lysosomal Ca2+ release, activation of the CaSR, or displacement of FKBP12.6 from RyR2 for either phase of HPV. Sustained HPV is associated with an oxidising shift in the GSSG/GSH redox potential and is inhibited by the antioxidants ebselen and TEMPOL, consistent with the concept that it requires an oxidising shift in the cell redox state or the generation of reactive oxygen species.
Collapse
Affiliation(s)
- Michelle J Connolly
- P. I. Aaronson: Room 1.19, Henriette Raphael House, Guy's Campus, King's College London, London SE1 9HN, UK.
| | | | | | | | | |
Collapse
|
16
|
Waypa GB, Marks JD, Guzy RD, Mungai PT, Schriewer JM, Dokic D, Ball MK, Schumacker PT. Superoxide generated at mitochondrial complex III triggers acute responses to hypoxia in the pulmonary circulation. Am J Respir Crit Care Med 2013; 187:424-32. [PMID: 23328522 DOI: 10.1164/rccm.201207-1294oc] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RATIONALE The role of reactive oxygen species (ROS) signaling in the O(2) sensing mechanism underlying acute hypoxic pulmonary vasoconstriction (HPV) has been controversial. Although mitochondria are important sources of ROS, studies using chemical inhibitors have yielded conflicting results, whereas cellular models using genetic suppression have precluded in vivo confirmation. Hence, genetic animal models are required to test mechanistic hypotheses. OBJECTIVES We tested whether mitochondrial Complex III is required for the ROS signaling and vasoconstriction responses to acute hypoxia in pulmonary arteries (PA). METHODS A mouse permitting Cre-mediated conditional deletion of the Rieske iron-sulfur protein (RISP) of Complex III was generated. Adenoviral Cre recombinase was used to delete RISP from isolated PA vessels or smooth muscle cells (PASMC). MEASUREMENTS AND MAIN RESULTS In PASMC, RISP depletion abolished hypoxia-induced increases in ROS signaling in the mitochondrial intermembrane space and cytosol, and it abrogated hypoxia-induced increases in [Ca(2+)](i). In isolated PA vessels, RISP depletion abolished hypoxia-induced ROS signaling in the cytosol. Breeding the RISP mice with transgenic mice expressing tamoxifen-activated Cre in smooth muscle permitted the depletion of RISP in PASMC in vivo. Precision-cut lung slices from those mice revealed that RISP depletion abolished hypoxia-induced increases in [Ca(2+)](i) of the PA. In vivo RISP depletion in smooth muscle attenuated the acute hypoxia-induced increase in right ventricular systolic pressure in anesthetized mice. CONCLUSIONS Acute hypoxia induces superoxide release from Complex III of smooth muscle cells. These oxidant signals diffuse into the cytosol and trigger increases in [Ca(2+)](i) that cause acute hypoxic pulmonary vasoconstriction.
Collapse
Affiliation(s)
- Gregory B Waypa
- Department of Pediatrics, Division of Neonatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Ng LC, O'Neill KG, French D, Airey JA, Singer CA, Tian H, Shen XM, Hume JR. TRPC1 and Orai1 interact with STIM1 and mediate capacitative Ca2+ entry caused by acute hypoxia in mouse pulmonary arterial smooth muscle cells. Am J Physiol Cell Physiol 2012; 303:C1156-72. [DOI: 10.1152/ajpcell.00065.2012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Previous studies in pulmonary artery smooth muscle cells (PASMCs) showed that acute hypoxia activates capacitative Ca2+ entry (CCE) but the molecular candidate(s) mediating CCE caused by acute hypoxia remain unclear. The present study aimed to determine if transient receptor potential canonical 1 (TRPC1) and Orai1 interact with stromal interacting molecule 1 (STIM1) and mediate CCE caused by acute hypoxia in mouse PASMCs. In primary cultured PASMCs loaded with fura-2, acute hypoxia caused a transient followed by a sustained rise in intracellular Ca2+ concentration ([Ca2+]i). The transient but not sustained rise in [Ca2+]i was partially inhibited by nifedipine. Acute hypoxia also increased the rate of Mn2+ quench of fura-2 fluorescence that was inhibited by SKF 96365, Ni2+, La3+, and Gd3+, exhibiting pharmacological properties characteristic of CCE. The nifedipine-insensitive rise in [Ca2+]i and the increase in Mn2+ quench rate were both inhibited in cells treated with TRPC1 antibody or TRPC1 small interfering (si)RNA, in STIM1 siRNA-transfected cells and in Orai1 siRNA-transfected cells. Moreover, overexpression of STIM1 resulted in a marked increase in [Ca2+]i and Mn2+ quench rate caused by acute hypoxia, and they were reduced in cells treated with TRPC1 antibody and in cells transfected with Orai1 siRNA. Furthermore, TRPC1 and Orai1 coimmunoprecipitated with STIM1 and the precipitation levels of TRPC1 and Orai1 were increased in cells exposed to acute hypoxia. Immunostaining showed colocalizations of TRPC1-STIM1 and Orai1-STIM1, and the colocalizations of these proteins were more apparent in acute hypoxia. These data provide direct evidence that TRPC1 and Orai1 channels mediate CCE through activation of STIM1 in acute hypoxic mouse PASMCs.
Collapse
Affiliation(s)
- Lih Chyuan Ng
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada; and
| | - Kathryn G. O'Neill
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada; and
| | - Dominique French
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada; and
| | - Judith A. Airey
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada; and
| | - Cherie A. Singer
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada; and
| | - Honglin Tian
- Department of Pathology, University of Nevada School of Medicine, Reno, Nevada
| | - Xiao-Ming Shen
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada; and
| | - Joseph R. Hume
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada; and
| |
Collapse
|
18
|
Prabhakar NR, Semenza GL. Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol Rev 2012; 92:967-1003. [PMID: 22811423 DOI: 10.1152/physrev.00030.2011] [Citation(s) in RCA: 476] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hypoxia is a fundamental stimulus that impacts cells, tissues, organs, and physiological systems. The discovery of hypoxia-inducible factor-1 (HIF-1) and subsequent identification of other members of the HIF family of transcriptional activators has provided insight into the molecular underpinnings of oxygen homeostasis. This review focuses on the mechanisms of HIF activation and their roles in physiological and pathophysiological responses to hypoxia, with an emphasis on the cardiorespiratory systems. HIFs are heterodimers comprised of an O(2)-regulated HIF-1α or HIF-2α subunit and a constitutively expressed HIF-1β subunit. Induction of HIF activity under conditions of reduced O(2) availability requires stabilization of HIF-1α and HIF-2α due to reduced prolyl hydroxylation, dimerization with HIF-1β, and interaction with coactivators due to decreased asparaginyl hydroxylation. Stimuli other than hypoxia, such as nitric oxide and reactive oxygen species, can also activate HIFs. HIF-1 and HIF-2 are essential for acute O(2) sensing by the carotid body, and their coordinated transcriptional activation is critical for physiological adaptations to chronic hypoxia including erythropoiesis, vascularization, metabolic reprogramming, and ventilatory acclimatization. In contrast, intermittent hypoxia, which occurs in association with sleep-disordered breathing, results in an imbalance between HIF-1α and HIF-2α that causes oxidative stress, leading to cardiorespiratory pathology.
Collapse
Affiliation(s)
- Nanduri R Prabhakar
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, Biological Sciences Division, University of Chicago, Chicago, Illinois, USA.
| | | |
Collapse
|
19
|
Wang J, Shimoda LA, Sylvester JT. Ca2+ responses of pulmonary arterial myocytes to acute hypoxia require release from ryanodine and inositol trisphosphate receptors in sarcoplasmic reticulum. Am J Physiol Lung Cell Mol Physiol 2012; 303:L161-8. [PMID: 22582116 DOI: 10.1152/ajplung.00348.2011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In pulmonary arterial smooth muscle cells (PASMC), acute hypoxia increases intracellular Ca(2+) concentration ([Ca(2+)](i)) by inducing Ca(2+) release from the sarcoplasmic reticulum (SR) and Ca(2+) influx through store- and voltage-operated Ca(2+) channels in sarcolemma. To evaluate the mechanisms of hypoxic Ca(2+) release, we measured [Ca(2+)](i) with fluorescent microscopy in primary cultures of rat distal PASMC. In cells perfused with Ca(2+)-free Krebs Ringer bicarbonate solution (KRBS), brief exposures to caffeine (30 mM) and norepinephrine (300 μM), which activate SR ryanodine and inositol trisphosphate receptors (RyR, IP(3)R), respectively, or 4% O(2) caused rapid transient increases in [Ca(2+)](i), indicating intracellular Ca(2+) release. Preexposure of these cells to caffeine, norepinephrine, or the SR Ca(2+)-ATPase inhibitor cyclopiazonic acid (CPA; 10 μM) blocked subsequent Ca(2+) release to caffeine, norepinephrine, and hypoxia. The RyR antagonist ryanodine (10 μM) blocked Ca(2+) release to caffeine and hypoxia but not norepinephrine. The IP(3)R antagonist xestospongin C (XeC, 0.1 μM) blocked Ca(2+) release to norepinephrine and hypoxia but not caffeine. In PASMC perfused with normal KRBS, acute hypoxia caused a sustained increase in [Ca(2+)](i) that was abolished by ryanodine or XeC. These results suggest that in rat distal PASMC 1) the initial increase in [Ca(2+)](i) induced by hypoxia, as well as the subsequent Ca(2+) influx that sustained this increase, required release of Ca(2+) from both RyR and IP(3)R, and 2) the SR Ca(2+) stores accessed by RyR, IP(3)R, and hypoxia functioned as a common store, which was replenished by a CPA-inhibitable Ca(2+)-ATPase.
Collapse
Affiliation(s)
- Jian Wang
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
20
|
Abstract
It has been known for more than 60 years, and suspected for over 100, that alveolar hypoxia causes pulmonary vasoconstriction by means of mechanisms local to the lung. For the last 20 years, it has been clear that the essential sensor, transduction, and effector mechanisms responsible for hypoxic pulmonary vasoconstriction (HPV) reside in the pulmonary arterial smooth muscle cell. The main focus of this review is the cellular and molecular work performed to clarify these intrinsic mechanisms and to determine how they are facilitated and inhibited by the extrinsic influences of other cells. Because the interaction of intrinsic and extrinsic mechanisms is likely to shape expression of HPV in vivo, we relate results obtained in cells to HPV in more intact preparations, such as intact and isolated lungs and isolated pulmonary vessels. Finally, we evaluate evidence regarding the contribution of HPV to the physiological and pathophysiological processes involved in the transition from fetal to neonatal life, pulmonary gas exchange, high-altitude pulmonary edema, and pulmonary hypertension. Although understanding of HPV has advanced significantly, major areas of ignorance and uncertainty await resolution.
Collapse
Affiliation(s)
- J T Sylvester
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, The Johns Hopkins University School ofMedicine, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|
21
|
Stable EET urea agonist and soluble epoxide hydrolase inhibitor regulate rat pulmonary arteries through TRPCs. Hypertens Res 2011; 34:630-9. [PMID: 21307870 DOI: 10.1038/hr.2011.5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Epoxyeicosatrienoic acids (EETs), cytochrome P450-derived metabolites of arachidonic acid, have been reported to increase intracellular calcium concentration in aortic vascular smooth muscle cells (SMCs). As EETs are labile, we synthesized a new stable urea EET analog with agonist and soluble epoxide hydrolase (sEH) inhibitor properties. We refer to this analog, 12-(3-hexylureido)dodec-8-enoic acid, as 8-HUDE. Measuring tension of vascular rings, intracellular calcium signaling by confocal laser scanning microscopy and gene expression by reverse-transcription-PCR and western blots, we examined the effects of 8-HUDE on pulmonary vascular tone and calcium signaling in rat pulmonary artery (PA) SMCs (PASMCs). 8-HUDE increased the tension of rat PAs to 145% baseline, whereas it had no effect on the tension of mesenteric arteries (MAs). The 8-HUDE-induced increase in vascular tone was abolished by removal of extracellular Ca(2+) or by pretreatment with either La(3+) or SKF96365, which are inhibitors of canonical transient receptor potential channels (TRPCs). Furthermore, 8-HUDE-evoked increases in [Ca(2+)](i) in PASMCs could be blunted by inhibition of TRPC with SKF96365, removal of extracellular calcium or depletion of intracellular calcium stores with caffeine, cyclopiazonic acid or 2-aminoethoxydiphenyl borate, but not by the voltage-activated calcium channel blocker nifedipine. In addition to immediate effects on calcium signaling, 8-HUDE upregulated the expression of TRPC1 and TRPC6 at both mRNA and protein levels in rat PASMCs, whereas it suppressed the expression of sEH. Our observations suggest that 8-HUDE increases PA vascular tone through increased release of calcium from intracellular stores, enhanced [Ca(2+)](i) influx in PASMCs through store-operated Ca(2+) channels and modulated the expression of TRPC and sEH proteins in a proconstrictive manner.
Collapse
|
22
|
Evans AM, Hardie DG, Peers C, Mahmoud A. Hypoxic pulmonary vasoconstriction: mechanisms of oxygen-sensing. Curr Opin Anaesthesiol 2011; 24:13-20. [PMID: 21157304 PMCID: PMC3154643 DOI: 10.1097/aco.0b013e3283421201] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Hypoxic pulmonary vasoconstriction (HPV) is driven by the intrinsic response to hypoxia of pulmonary arterial smooth muscle and endothelial cells. These are representatives of a group of specialized O2-sensing cells, defined by their acute sensitivity to relatively small changes in pO2, which have evolved to modulate respiratory and circulatory function in order to maintain O2 supply within physiological limits. The aim of this article is to discuss recent investigations into the mechanism(s) of hypoxia-response coupling and, in light of these, provide a critical assessment of current working hypotheses. RECENT FINDINGS Upon exposure to hypoxia state-of-the-art technologies have now confirmed that mitochondrial oxidative phosphorylation is inhibited in all O2-sensing cells, including pulmonary arterial smooth muscle cells. Thereafter, evidence has been presented to indicate a role as principal effector for the 'gasotransmitters' carbon monoxide and hydrogen sulphide, reactive oxygen species or, in marked contrast, reduced cellular redox couples. Considering recent evidence in favour and against these proposals we suggest that an alternative mechanism may be key, namely the activation of adenosine monophosphate-activated protein kinase consequent to inhibition of mitochondrial oxidative phosphorylation. SUMMARY HPV supports ventilation-perfusion matching in the lung by diverting blood flow away from oxygen-deprived areas towards regions rich in O2. However, in diseases such as emphysema and cystic fibrosis, widespread HPV leads to hypoxic pulmonary hypertension and ultimately right heart failure. Determining the precise mechanism(s) that underpins hypoxia-response coupling will therefore advance understanding of the fundamental processes contributing to related pathophysiology and provide for improved therapeutics.
Collapse
Affiliation(s)
- A Mark Evans
- Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK.
| | | | | | | |
Collapse
|
23
|
Liao B, Zheng YM, Yadav VR, Korde AS, Wang YX. Hypoxia induces intracellular Ca2+ release by causing reactive oxygen species-mediated dissociation of FK506-binding protein 12.6 from ryanodine receptor 2 in pulmonary artery myocytes. Antioxid Redox Signal 2011; 14:37-47. [PMID: 20518593 PMCID: PMC3000638 DOI: 10.1089/ars.2009.3047] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 05/08/2010] [Accepted: 06/02/2010] [Indexed: 11/12/2022]
Abstract
Here we attempted to test a novel hypothesis that hypoxia may induce Ca(2+) release through reactive oxygen species (ROS)-mediated dissociation of FK506-binding protein 12.6 (FKBP12.6) from ryanodine receptors (RyRs) on the sarcoplasmic reticulum (SR) in pulmonary artery smooth muscle cells (PASMCs). The results reveal that hypoxic exposure significantly decreased the amount of FKBP12.6 on the SR of PAs and increased FKBP12.6 in the cytosol. The colocalization of FKBP12.6 with RyRs was decreased in intact PASMCs. Pharmacological and genetic inhibition of intracellular ROS generation prevented hypoxia from decreasing FKBP12.6 on the SR and increasing FKBP12.6 in the cytosol. Exogenous ROS (H(2)O(2)) reduced FKBP12.6 on the SR and augmented FKBP12.6 in the cytosol. Oxidized FKBP12.6 was absent on the SR from PAs pretreated with and without hypoxia, but it was present with a higher amount in the cytosol from PAs pretreated with than without hypoxia. Hypoxia and H(2)O(2) diminished the association of FKBP12.6 from type 2 RyRs (RyR2). The activity of RyRs was increased in PAs pretreated with hypoxia or H(2)O(2). FKBP12.6 removal enhanced, whereas RyR2 gene deletion blocked the hypoxic increase in [Ca(2+)](i) in PASMCs. Collectively, we conclude that hypoxia may induce Ca(2+) release by causing ROS-mediated dissociation of FKBP12.6 from RyR2 in PASMCs.
Collapse
Affiliation(s)
- Bo Liao
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA
| | | | | | | | | |
Collapse
|
24
|
Connolly MJ, Aaronson PI. Cell redox state and hypoxic pulmonary vasoconstriction: recent evidence and possible mechanisms. Respir Physiol Neurobiol 2010; 174:165-74. [PMID: 20801239 DOI: 10.1016/j.resp.2010.08.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 08/18/2010] [Accepted: 08/20/2010] [Indexed: 10/24/2022]
Abstract
During alveolar hypoxia, hypoxic pulmonary vasoconstriction (HPV) maintains blood oxygenation near optimum via incompletely defined mechanisms. It is proposed that a hypoxia-induced rise in the intracellular concentration of reactive oxygen species (ROS) or an oxidising shift in the cytoplasmic redox state provides the signal which initiates the constriction of pulmonary arteries (PA), although this is controversial. Here, we review recent investigations demonstrating that hypoxia causes a rise in [ROS] in PA smooth muscle, and that ROS and antioxidants have effects on PA which would be predicted if cell oxidation causes contraction. We argue that intracellular Ca2+ release and Ca2+-sensitisation are the key effector mechanisms causing HPV, and discuss evidence that both processes are promoted by ROS or oxidative protein modifications. We conclude that while it is plausible that an increase in cytoplasmic [ROS] activates HPV effector mechanisms, proving this link will require the determination of whether hypoxia causes oxidative modifications of proteins involved in Ca2+ homeostasis and sensitisation.
Collapse
Affiliation(s)
- Michelle J Connolly
- Division of Asthma, Allergy and Lung Biology, King's College London, United Kingdom
| | | |
Collapse
|
25
|
Interactions between calcium and reactive oxygen species in pulmonary arterial smooth muscle responses to hypoxia. Respir Physiol Neurobiol 2010; 174:221-9. [PMID: 20801238 DOI: 10.1016/j.resp.2010.08.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/18/2010] [Accepted: 08/20/2010] [Indexed: 02/07/2023]
Abstract
In contrast to the systemic vasculature, where hypoxia causes vasodilation, pulmonary arteries constrict in response to hypoxia. The mechanisms underlying this unique response have been the subject of investigation for over 50 years, and still remain a topic of great debate. Over the last 20 years, there has emerged a general consensus that both increases in intracellular calcium concentration and changes in reactive oxygen species (ROS) generation play key roles in the pulmonary vascular response to hypoxia. Controversy exists, however, regarding whether ROS increase or decrease during hypoxia, the source of ROS, and the mechanisms by which changes in ROS might impact intracellular calcium, and vice versa. This review will discuss the mechanisms regulating [Ca2+]i and ROS in PASMCs, and the interaction between ROS and Ca2+ signaling during exposure to acute hypoxia.
Collapse
|
26
|
Wang YX, Zheng YM. Role of ROS signaling in differential hypoxic Ca2+ and contractile responses in pulmonary and systemic vascular smooth muscle cells. Respir Physiol Neurobiol 2010; 174:192-200. [PMID: 20713188 DOI: 10.1016/j.resp.2010.08.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Revised: 08/06/2010] [Accepted: 08/09/2010] [Indexed: 01/25/2023]
Abstract
Hypoxia causes a large increase in [Ca2+]i and attendant contraction in pulmonary artery smooth muscle cells (PASMCs), but not in systemic artery SMCs. The different responses meet the respective functional needs in these two distinct vascular myocytes; however, the underlying molecular mechanisms are not well known. We and other investigators have provided extensive evidence to reveal that voltage-dependent K+ (KV) channels, canonical transient receptor potential (TRPC) channels, ryanodine receptor Ca2+ release channels (RyRs), cyclic adenosine diphosphate-ribose, FK506 binding protein 12.6, protein kinase C, NADPH oxidase and reactive oxygen species (ROS) are the essential effectors and signaling intermediates in the hypoxic increase in [Ca2+]i in PASMCs and HPV, but they may not primarily underlie the diverse cellular responses in pulmonary and systemic vascular myocytes. Hypoxia significantly increases mitochondrial ROS generation in PASMCs, which can induce intracellular Ca2+ release by opening RyRs, and may also cause extracellular Ca2+ influx by inhibiting KV channels and activating TRPC channels, leading to a large increase in [Ca2+]i in PASMCs and HPV. In contrast, hypoxia has no or a minor effect on mitochondrial ROS generation in systemic SMCs, thereby causing no change or a negligible increase in [Ca2+]i and contraction. Further preliminary work indicates that Rieske iron-sulfur protein in the mitochondrial complex III may perhaps serve as a key initial molecular determinant for the hypoxic increase in [Ca2+]i in PASMCs and HPV, suggesting its potential important role in different cellular changes to respond to hypoxic stimulation in pulmonary and systemic artery myocytes. All these findings have greatly improved our understanding of the molecular processes for the differential hypoxic Ca2+ and contractile responses in vascular SMCs from distinct pulmonary and systemic circulation systems.
Collapse
Affiliation(s)
- Yong-Xiao Wang
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA.
| | | |
Collapse
|
27
|
Waypa GB, Schumacker PT. Hypoxia-induced changes in pulmonary and systemic vascular resistance: where is the O2 sensor? Respir Physiol Neurobiol 2010; 174:201-11. [PMID: 20713189 DOI: 10.1016/j.resp.2010.08.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 08/05/2010] [Accepted: 08/06/2010] [Indexed: 01/06/2023]
Abstract
Pulmonary arteries (PA) constrict in response to alveolar hypoxia, whereas systemic arteries (SA) undergo dilation. These physiological responses reflect the need to improve gas exchange in the lung, and to enhance the delivery of blood to hypoxic systemic tissues. An important unresolved question relates to the underlying mechanism by which the vascular cells detect a decrease in oxygen tension and translate that into a signal that triggers the functional response. A growing body of work implicates the mitochondria, which appear to function as O2 sensors by initiating a redox-signaling pathway that leads to the activation of downstream effectors that regulate vascular tone. However, the direction of this redox signal has been the subject of controversy. Part of the problem has been the lack of appropriate tools to assess redox signaling in live cells. Recent advancements in the development of redox sensors have led to studies that help to clarify the nature of the hypoxia-induced redox signaling by reactive oxygen species (ROS). Moreover, these studies provide valuable insight regarding the basis for discrepancies in earlier studies of the hypoxia-induced mechanism of redox signaling. Based on recent work, it appears that the O2 sensing mechanism in both the PA and SA are identical, that mitochondria function as the site of O2 sensing, and that increased ROS release from these organelles leads to the activation of cell-specific, downstream vascular responses.
Collapse
Affiliation(s)
- Gregory B Waypa
- Department of Pediatrics, Division of Neonatology, Northwestern University, Morton Building 4-685, 310 East Superior St, Chicago, IL 60611, USA.
| | | |
Collapse
|
28
|
Wang YX, Zheng YM. ROS-dependent signaling mechanisms for hypoxic Ca(2+) responses in pulmonary artery myocytes. Antioxid Redox Signal 2010; 12:611-23. [PMID: 19764882 PMCID: PMC2861542 DOI: 10.1089/ars.2009.2877] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hypoxic exposure causes pulmonary vasoconstriction, which serves as a critical physiologic process that ensures regional alveolar ventilation and pulmonary perfusion in the lungs, but may become an essential pathologic factor leading to pulmonary hypertension. Although the molecular mechanisms underlying hypoxic pulmonary vasoconstriction and associated pulmonary hypertension are uncertain, increasing evidence indicates that hypoxia can result in a significant increase in intracellular reactive oxygen species concentration ([ROS](i)) through the mitochondrial electron-transport chain in pulmonary artery smooth muscle cells (PASMCs). The increased mitochondrial ROS subsequently activate protein kinase C-epsilon (PKCepsilon) and NADPH oxidase (Nox), providing positive mechanisms that further increase [ROS](i). ROS may directly cause extracellular Ca(2+) influx by inhibiting voltage-dependent K(+) (K(V)) channels and opening of store-operated Ca(2+) (SOC) channels, as well as intracellular Ca(2+) release by activating ryanodine receptors (RyRs), leading to an increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) and associated contraction. In concert with ROS, PKCepsilon may also affect K(V) channels, SOC channels, and RyRs, contributing to hypoxic Ca(2+) and contractile responses in PASMCs.
Collapse
Affiliation(s)
- Yong-Xiao Wang
- Center for Cardiovascular Sciences, Albany Medical College, New York 12208, USA.
| | | |
Collapse
|
29
|
The role of intracellular ion channels in regulating cytoplasmic calciumin pulmonary arterial mmooth muscle: which store and where? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 661:57-76. [PMID: 20204723 DOI: 10.1007/978-1-60761-500-2_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The mobilisation of intracellular Ca(2+) stores plays a pivotal role in the regulation of arterial smooth muscle function, paradoxically during both contraction and relaxation. Moreover, different spatiotemporal Ca(2+) signalling patterns may trigger differential gene expression while mediating the same functional response. These facts alone serve to highlight the importance of the growing body of evidence in support of the view that different Ca(2+) storing organelles may be selected by the discrete or co-ordinated actions of multiple Ca(2+) mobilising messengers. In this respect, it is generally accepted that sarcoplasmic reticulum stores may be mobilised by the ubiquitous messenger inositol 1,4,5 trisphosphate. However, relatively little attention has been paid to the role of Ca(2+) mobilising pyridine nucleotides in arterial smooth muscle, namely cyclic adenosine diphosphate-ribose and nicotinic acid adenine dinucleotide phosphate. This review will, therefore, focus on the role of these novel Ca(2+) mobilising messengers in pulmonary arterial smooth muscle, with particular reference to hypoxic pulmonary vasoconstriction.
Collapse
|
30
|
Waypa GB, Marks JD, Guzy R, Mungai PT, Schriewer J, Dokic D, Schumacker PT. Hypoxia triggers subcellular compartmental redox signaling in vascular smooth muscle cells. Circ Res 2009; 106:526-35. [PMID: 20019331 DOI: 10.1161/circresaha.109.206334] [Citation(s) in RCA: 285] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
RATIONALE Recent studies have implicated mitochondrial reactive oxygen species (ROS) in regulating hypoxic pulmonary vasoconstriction (HPV), but controversy exists regarding whether hypoxia increases or decreases ROS generation. OBJECTIVE This study tested the hypothesis that hypoxia induces redox changes that differ among subcellular compartments in pulmonary (PASMCs) and systemic (SASMCs) smooth muscle cells. METHODS AND RESULTS We used a novel, redox-sensitive, ratiometric fluorescent protein sensor (RoGFP) to assess the effects of hypoxia on redox signaling in cultured PASMCs and SASMCs. Using genetic targeting sequences, RoGFP was expressed in the cytosol (Cyto-RoGFP), the mitochondrial matrix (Mito-RoGFP), or the mitochondrial intermembrane space (IMS-RoGFP), allowing assessment of oxidant signaling in distinct intracellular compartments. Superfusion of PASMCs or SASMCs with hypoxic media increased oxidation of both Cyto-RoGFP and IMS-RoGFP. However, hypoxia decreased oxidation of Mito-RoGFP in both cell types. The hypoxia-induced oxidation of Cyto-RoGFP was attenuated through the overexpression of cytosolic catalase in PASMCs. CONCLUSIONS These results indicate that hypoxia causes a decrease in nonspecific ROS generation in the matrix compartment, whereas it increases regulated ROS production in the IMS, which diffuses to the cytosol of both PASMCs and SASMCs.
Collapse
Affiliation(s)
- Gregory B Waypa
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Osorio-Fuentealba C, Valdés JA, Riquelme D, Hidalgo J, Hidalgo C, Carrasco MA. Hypoxia stimulates via separate pathways ERK phosphorylation and NF-κB activation in skeletal muscle cells in primary culture. J Appl Physiol (1985) 2009; 106:1301-10. [DOI: 10.1152/japplphysiol.91224.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mammalian cells sense oxygen levels and respond to hypoxic conditions through the regulation of multiple signaling pathways and transcription factors. Here, we investigated the effects of hypoxia on the activity of two transcriptional regulators, ERK1/2 and NF-κB, in skeletal muscle cells in primary culture. We found that hypoxia significantly enhanced ERK1/2 phosphorylation and that it stimulated NF-κB-dependent gene transcription as well as nuclear translocation of a green fluorescent protein-labeled p65 NF-κB isoform. Phosphorylation of ERK1/2- and NF-κB-dependent transcription by hypoxia required calcium entry through L-type calcium channels. Calcium release from ryanodine-sensitive stores was also necessary for ERK1/2 activation but not for NF-κB-dependent-transcription. N-acetylcysteine, a general scavenger of reactive oxygen species, blocked hypoxia-induced ROS generation but did not affect the stimulation of ERK1/2 phosphorylation induced by hypoxia. In contrast, NF-κB activation was significantly inhibited by N-acetylcysteine and did not depend on ERK1/2 stimulation, as shown by the lack of effect of the upstream ERK inhibitor U-0126. These separate pathways of activation of ERK1/2 and NF-κB by hypoxia may contribute to muscle adaptation in response to hypoxic conditions.
Collapse
|
32
|
Zheng X, Li Q, Tang X, Liang S, Chen L, Zhang S, Wang Z, Guo L, Zhang R, Zhu D. Source of the elevation Ca2+ evoked by 15-HETE in pulmonary arterial myocytes. Eur J Pharmacol 2008; 601:16-22. [DOI: 10.1016/j.ejphar.2008.10.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 10/01/2008] [Accepted: 10/13/2008] [Indexed: 12/01/2022]
|
33
|
Weir EK, Obreztchikova M, Vargese A, Cabrera JA, Peterson DA, Hong Z. Mechanisms of oxygen sensing: a key to therapy of pulmonary hypertension and patent ductus arteriosus. Br J Pharmacol 2008; 155:300-7. [PMID: 18641675 PMCID: PMC2567893 DOI: 10.1038/bjp.2008.291] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Accepted: 06/23/2008] [Indexed: 11/08/2022] Open
Abstract
Specialized tissues that sense acute changes in the local oxygen tension include type 1 cells of the carotid body, neuroepithelial bodies in the lungs, and smooth muscle cells of the resistance pulmonary arteries and the ductus arteriosus (DA). Hypoxia inhibits outward potassium current in carotid body type 1 cells, leading to depolarization and calcium entry through L-type calcium channels. Increased intracellular calcium concentration ([Ca+ +]i) leads to exocytosis of neurotransmitters, thus stimulating the carotid sinus nerve and respiration. The same K+ channel inhibition occurs with hypoxia in pulmonary artery smooth muscle cells (PASMCs), causing contraction and providing part of the mechanism of hypoxic pulmonary vasoconstriction (HPV). In the SMCs of the DA, the mechanism works in reverse. It is the shift from hypoxia to normoxia that inhibits K+ channels and causes normoxic ductal contraction. In both PA and DA, the contraction is augmented by release of Ca+ + from the sarcoplasmic reticulum, entry of Ca+ + through store-operated channels (SOC) and by Ca+ + sensitization. The same three 'executive' mechanisms are partly responsible for idiopathic pulmonary arterial hypertension (IPAH). While vasoconstrictor mediators constrict both PA and DA and vasodilators dilate both vessels, only redox changes mimic oxygen by having directly opposite effects on the K+ channels, membrane potential, [Ca(++)]i and tone in the PA and DA. There are several different hypotheses as to how redox might alter tone, which remain to be resolved. However, understanding the mechanism will facilitate drug development for pulmonary hypertension and patent DA.
Collapse
Affiliation(s)
- E K Weir
- Department of Medicine, VA Medical Center and University of Minnesota, Minneapolis, MN 55417, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Li XQ, Zheng YM, Rathore R, Ma J, Takeshima H, Wang YX. Genetic evidence for functional role of ryanodine receptor 1 in pulmonary artery smooth muscle cells. Pflugers Arch 2008; 457:771-83. [PMID: 18663468 DOI: 10.1007/s00424-008-0556-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2008] [Revised: 07/08/2008] [Accepted: 07/09/2008] [Indexed: 11/24/2022]
Abstract
Ryanodine receptor 1 (RyR1) is well-known to be expressed in systemic and pulmonary vascular smooth muscle cells (SMCs); however, its functional roles remain largely unknown. In the present study, we attempted to determine the potential importance of RyR1 in membrane depolarization-, neurotransmitter-, and hypoxia-induced Ca2+ release and contraction in pulmonary artery SMCs (PASMCs) using RyR1 homozygous and heterozygous gene deletion (RyR1-/- and RyR1+/-) mice. Our results indicate that spontaneous local Ca2+ release and caffeine-induced global Ca2+ release are significantly reduced in embryonic RyR1-/- and adult RyR+/- cells. An increase in [Ca2+]i following membrane depolarization with high K+ is markedly attenuated in RyR1-/- and RyR1+/- PASMCs in normal Ca2+ or Ca2+-free extracellular solution. Similarly, muscle contraction evoked by membrane depolarization is reduced in RyR1+/- pulmonary arteries in the presence or absence of extracellular Ca2+. Neurotransmitter receptor agonists and inositol 1,4,5-triphosphate elicit a much smaller increase in [Ca2+]i in both RyR1-/- and RyR1+/- cells. We have also found that neurotransmitter-evoked muscle contraction is significantly inhibited in RyR1+/- pulmonary arteries. Hypoxia-induced increase in [Ca2+]i and contraction are largely blocked in RyR1-/- and/or RyR1+/- PASMCs. Collectively, our findings provide genetic evidence for the functional importance of RyR1 in spontaneous local Ca2+ release, and membrane depolarization-, neurotransmitter-, as well as hypoxia-induced global Ca2+ release and attendant contraction in PASMCs.
Collapse
Affiliation(s)
- Xiao-Qiang Li
- Center for Cardiovascular Sciences (MC-8), Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | | | | | | | | | | |
Collapse
|
35
|
Endothelin-1 and serotonin are involved in activation of RhoA/Rho kinase signaling in the chronically hypoxic hypertensive rat pulmonary circulation. J Cardiovasc Pharmacol 2008; 50:697-702. [PMID: 18091588 DOI: 10.1097/fjc.0b013e3181593774] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have previously reported that vasoconstrictor sensitivity to KCl (a receptor-independent and voltage-gated Ca influx-mediated vasoconstrictor) is augmented in the chronically hypoxic hypertensive rat pulmonary circulation probably through increased Rho kinase-mediated Ca sensitization. However, the upstream mechanism by which the RhoA/Rho kinase signaling pathway is activated is unknown. This study examined if endogenous endothelin-1 (ET-1) and serotonin (5-HT) play roles in the Rho kinase-mediated augmented vasoconstrictor response to KCl and the activation of RhoA in chronically hypoxic hypertensive rat pulmonary arteries. The augmented KCl vasoconstriction in hypertensive lungs was reduced by the ETA receptor antagonist BQ123, while a dual ETA/B antagonist had no further effects. A combination of BQ123 and a 5-HT1B/1D receptor antagonist, GR127935, was more effective than either agent alone. The combined antagonists also reduced augmented contractile sensitivity to KCl in hypertensive intrapulmonary arteries. Membrane-to-cytosol ratio of RhoA expression in hypertensive arteries was greater than that in normotensive arteries and was reduced by BQ123 and GR127935. These results suggest that stimulation of ETA and 5-HT1B/1D receptors by endogenous ET-1 and 5-HT, respectively, is involved in RhoA/Rho kinase-mediated increased Ca sensitization in the chronically hypoxic hypertensive rat pulmonary circulation.
Collapse
|
36
|
Waypa GB, Schumacker PT. Oxygen sensing in hypoxic pulmonary vasoconstriction: using new tools to answer an age-old question. Exp Physiol 2007; 93:133-8. [PMID: 17993507 DOI: 10.1113/expphysiol.2007.041236] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hypoxic pulmonary vasoconstriction (HPV) becomes activated in response to alveolar hypoxia and, although the characteristics of HPV have been well described, the underlying mechanism of O(2) sensing which initiates the HPV response has not been fully established. Mitochondria have long been considered as a putative site of oxygen sensing because they consume O(2) and therefore represent the intracellular site with the lowest oxygen tension. However, two opposing theories have emerged regarding mitochondria-dependent O(2) sensing during hypoxia. One model suggests that there is a decrease in mitochondrial reactive oxygen species (ROS) levels during the transition from normoxia to hypoxia, resulting in the shift in cytosolic redox to a more reduced state. An alternative model proposes that hypoxia paradoxically increases mitochondrial ROS signalling in pulmonary arterial smooth muscle. Experimental resolution of the question of whether the mitochondrial ROS levels increase or decrease during hypoxia has been problematic owing to the technical limitations of the tools used to assess oxidant stress as well as the pharmacological agents used to inhibit the mitochondrial electron transport chain. However, recent developments in genetic techniques and redox-sensitive probes may allow us eventually to reach a consensus concerning the O(2) sensing mechanism underlying HPV.
Collapse
Affiliation(s)
- Gregory B Waypa
- Department of Pediatrics, North-western University, Ward Building 12-191, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | | |
Collapse
|
37
|
Abstract
HPV (hypoxic pulmonary vasoconstriction) is the critical and distinguishing characteristic of the arteries that feed the lung. In marked contrast, systemic arteries dilate in response to hypoxia to meet the metabolic demands of the tissues they supply. Physiologically, HPV contributes to ventilation-perfusion matching in the lung by diverting blood flow to oxygen-rich areas. However, when alveolar hypoxia is global, as in diseases such as emphysema and cystic fibrosis, HPV leads to HPH (hypoxic pulmonary hypertension) and right heart failure. HPV is driven by the intrinsic response to hypoxia of two different cell types, namely the pulmonary arterial smooth muscle and endothelial cells. These are representatives of a group of specialized cells, commonly referred to as oxygen-sensing cells, which are defined by their acute sensitivity to relatively small changes in PO(2) and have evolved to monitor oxygen supply and alter respiratory and circulatory function, as well as the capacity of the blood to transport oxygen. Upon exposure to hypoxia, mitochondrial oxidative phosphorylation is inhibited in all such cells and this, in part, mediates cell activation. In the case of pulmonary arteries, constriction is triggered via: (i) calcium release from the smooth muscle sarcoplasmic reticulum and consequent store-depletion-activated calcium entry into the smooth muscle cells and, (ii) the modulation of transmitter release from the pulmonary artery endothelium, which leads to further constriction of the smooth muscle by increasing the sensitivity of the contractile apparatus to calcium.
Collapse
Affiliation(s)
- Evans A Mark
- School of Biology, Bute Building, University of St Andrews, St Andrews, Fife KY16 9TS, U.K.
| |
Collapse
|
38
|
Lin MJ, Yang XR, Cao YN, Sham JSK. Hydrogen peroxide-induced Ca2+ mobilization in pulmonary arterial smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2007; 292:L1598-608. [PMID: 17369291 DOI: 10.1152/ajplung.00323.2006] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Reactive oxygen species (ROS) generated from NADPH oxidases and mitochondria have been implicated as key messengers for pulmonary vasoconstriction and vascular remodeling induced by agonists and hypoxia. Since Ca2+ mobilization is essential for vasoconstriction and cell proliferation, we sought to characterize the Ca2+ response and to delineate the Ca2+ pathways activated by hydrogen peroxide (H2O2) in rat intralobar pulmonary arterial smooth muscle cells (PASMCs). Exogenous application of 10 μM to 1 mM H2O2 elicited concentration-dependent increase in intracellular Ca2+ concentration in PASMCs, with an initial rise followed by a plateau or slow secondary increase. The initial phase was related to intracellular release. It was attenuated by the inositol trisphosphate (IP3) receptor antagonist 2-aminoethyl diphenylborate, ryanodine, or thapsigargin, but was unaffected by the removal of Ca2+ in external solution. The secondary phase was dependent on extracellular Ca2+ influx. It was unaffected by the voltage-gated Ca2+ channel blocker nifedipine or the nonselective cation channel blockers SKF-96365 and La3+, but inhibited concentration dependently by millimolar Ni2+, and potentiated by the Na+/Ca2+ exchange inhibitor KB-R 7943. H2O2 did not alter the rate of Mn2+ quenching of fura 2, suggesting store- and receptor-operated Ca2+ channels were not involved. By contrast, H2O2 elicited a sustained inward current carried by Na+ at −70 mV, and the current was inhibited by Ni2+. These results suggest that H2O2 mobilizes intracellular Ca2+ through multiple pathways, including the IP3- and ryanodine receptor-gated Ca2+ stores, and Ni2+-sensitive cation channels. Activation of these Ca2+ pathways may play important roles in ROS signaling in PASMCs.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Cells, Cultured
- Fluorescent Dyes
- Fura-2
- Hydrogen Peroxide/pharmacology
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Male
- Manganese/pharmacokinetics
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/physiology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Oxidants/pharmacology
- Patch-Clamp Techniques
- Pulmonary Artery/cytology
- Pulmonary Artery/physiology
- Rats
- Rats, Wistar
- Reactive Oxygen Species/metabolism
- Ryanodine Receptor Calcium Release Channel/metabolism
- Sodium/metabolism
- Sodium-Calcium Exchanger/physiology
Collapse
Affiliation(s)
- Mo-Jun Lin
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland 21224, USA
| | | | | | | |
Collapse
|
39
|
Platoshyn O, Yu Y, Ko EA, Remillard CV, Yuan JXJ. Heterogeneity of hypoxia-mediated decrease in I(K(V)) and increase in [Ca2+](cyt) in pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2007; 293:L402-16. [PMID: 17526598 DOI: 10.1152/ajplung.00391.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Hypoxic pulmonary vasoconstriction is caused by a rise in cytosolic Ca(2+) ([Ca(2+)](cyt)) in pulmonary artery smooth muscle cells (PASMC) via multiple mechanisms. PASMC consist of heterogeneous phenotypes defined by contractility, proliferation, and apoptosis as well as by differences in expression and function of various genes. In rat PASMC, hypoxia-mediated decrease in voltage-gated K(+) (Kv) currents (I(K(V))) and increase in [Ca(2+)](cyt) were not uniformly distributed in all PASMC tested. Acute hypoxia decreased I(K(V)) and increased [Ca(2+)](cyt) in approximately 46% and approximately 53% of PASMC, respectively. Using combined techniques of single-cell RT-PCR and patch clamp, we show here that mRNA expression level of Kv1.5 in hypoxia-sensitive PASMC (in which hypoxia reduced I(K(V))) was much greater than in hypoxia-insensitive cells (in which hypoxia negligibly affected I(K(V))). These results demonstrate that 1) different PASMC express different Kv channel alpha- and beta-subunits, and 2) the sensitivity of a PASMC to acute hypoxia partially depends on the expression level of Kv1.5 channels; hypoxia reduces whole-cell I(K(V)) only in PASMC that express high level of Kv1.5. In addition, the acute hypoxia-mediated changes in [Ca(2+)](cyt) also vary in different PASMC. Hypoxia increases [Ca(2+)](cyt) only in 34% of cells tested, and the different sensitivity of [Ca(2+)](cyt) to hypoxia was not related to the resting [Ca(2+)](cyt). An intrinsic mechanism within each individual cell may be involved in the heterogeneity of hypoxia-mediated effect on [Ca(2+)](cyt) in PASMC. These data suggest that the heterogeneity of PASMC may partially be related to different expression levels and functional sensitivity of Kv channels to hypoxia and to differences in intrinsic mechanisms involved in regulating [Ca(2+)](cyt).
Collapse
Affiliation(s)
- Oleksandr Platoshyn
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0725, USA
| | | | | | | | | |
Collapse
|
40
|
Morio Y, Homma N, Takahashi H, Yamamoto A, Nagaoka T, Sato K, Muramatsu M, Fukuchi Y. Activity of endothelium-derived hyperpolarizing factor is augmented in monocrotaline-induced pulmonary hypertension of rat lungs. J Vasc Res 2007; 44:325-35. [PMID: 17438361 DOI: 10.1159/000101778] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Accepted: 02/18/2007] [Indexed: 11/19/2022] Open
Abstract
The mechanism of endothelium-dependent vasodilator signaling involves three components such as nitric oxide, prostacyclin, and endothelium-derived hyperpolarizing factor (EDHF). Although EDHF is distinct from nitric oxide and prostacyclin, it requires activation of Ca(2+)-sensitive K(+) channels (K(Ca)) and cytochrome P(450) metabolites. However, the physiological role of EDHF in the pulmonary circulation is unclear. Thus, we tested if EDHF would regulate vascular tone in rat lungs of control and monocrotaline (MCT)-induced pulmonary hypertension. Inhibition of EDHF with a combination of K(Ca) blockers, charybdotoxin (50 nM) plus apamin (50 nM), increased baseline vascular tone in MCT-induced hypertensive lungs. Thapsigargin (TG; 100 nM), an inhibitor of Ca-ATPase, caused greater EDHF-mediated vasodilation in MCT-induced hypertensive lungs. TG-induced vasodilation was abolished with the charybdotoxin-apamin combination. Sulfaphenazole (10 muM), a cytochrome P(450) inhibitor, reduced the TG-induced vasodilation in MCT-induced hypertensive lungs. RT-PCR analysis exhibited an increase in K(Ca) mRNA in MCT-treated lungs. These results indicate the augmentation of tonic EDHF activity, at least in part, through the alteration in cytochrome P(450) metabolites and the upregulation of K(Ca) expression in MCT-induced pulmonary hypertension.
Collapse
MESH Headings
- Animals
- Anti-Infective Agents/pharmacology
- Apamin/pharmacology
- Biological Factors/metabolism
- Charybdotoxin/pharmacology
- Cyclic GMP/metabolism
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Enzyme Inhibitors/pharmacology
- Epoprostenol/metabolism
- Hypertension, Pulmonary/chemically induced
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertrophy, Right Ventricular/chemically induced
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/pathology
- Male
- Monocrotaline/toxicity
- Neurotoxins/pharmacology
- Nitric Oxide/metabolism
- Nitric Oxide Synthase/metabolism
- Potassium Channels, Calcium-Activated/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Sulfaphenazole/pharmacology
- Thapsigargin/pharmacology
- Vascular Cell Adhesion Molecule-1/metabolism
- Vasodilation/drug effects
- Vasodilation/physiology
Collapse
Affiliation(s)
- Yoshiteru Morio
- Department of Respiratory Medicine, Juntendo University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Zhao G, Adebiyi A, Xi Q, Jaggar JH. Hypoxia reduces KCa channel activity by inducing Ca2+ spark uncoupling in cerebral artery smooth muscle cells. Am J Physiol Cell Physiol 2007; 292:C2122-8. [PMID: 17314264 PMCID: PMC2241735 DOI: 10.1152/ajpcell.00629.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Arterial smooth muscle cell large-conductance Ca(2+)-activated potassium (K(Ca)) channels have been implicated in modulating hypoxic dilation of systemic arteries, although this is controversial. K(Ca) channel activity in arterial smooth muscle cells is controlled by localized intracellular Ca(2+) transients, termed Ca(2+) sparks, but hypoxic regulation of Ca(2+) sparks and K(Ca) channel activation by Ca(2+) sparks has not been investigated. We report here that in voltage-clamped (-40 mV) cerebral artery smooth muscle cells, a reduction in dissolved O(2) partial pressure from 150 to 15 mmHg reversibly decreased Ca(2+) spark-induced transient K(Ca) current frequency and amplitude to 61% and 76% of control, respectively. In contrast, hypoxia did not alter Ca(2+) spark frequency, amplitude, global intracellular Ca(2+) concentration, or sarcoplasmic reticulum Ca(2+) load. Hypoxia reduced transient K(Ca) current frequency by decreasing the percentage of Ca(2+) sparks that activated a transient K(Ca) current from 89% to 63%. Hypoxia reduced transient K(Ca) current amplitude by attenuating the amplitude relationship between Ca(2+) sparks that remained coupled and the evoked transient K(Ca) currents. Consistent with these data, in inside-out patches at -40 mV hypoxia reduced K(Ca) channel apparent Ca(2+) sensitivity and increased the K(d) for Ca(2+) from approximately 17 to 32 microM, but did not alter single-channel amplitude. In summary, data indicate that hypoxia reduces K(Ca) channel apparent Ca(2+) sensitivity via a mechanism that is independent of cytosolic signaling messengers, and this leads to uncoupling of K(Ca) channels from Ca(2+) sparks. Transient K(Ca) current inhibition due to uncoupling would oppose hypoxic cerebrovascular dilation.
Collapse
Affiliation(s)
- Guiling Zhao
- Dept. of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | |
Collapse
|
42
|
Waypa GB, Guzy R, Mungai PT, Mack MM, Marks JD, Roe MW, Schumacker PT. Increases in mitochondrial reactive oxygen species trigger hypoxia-induced calcium responses in pulmonary artery smooth muscle cells. Circ Res 2006; 99:970-8. [PMID: 17008601 DOI: 10.1161/01.res.0000247068.75808.3f] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mitochondria have been implicated as a potential site of O(2) sensing underlying hypoxic pulmonary vasoconstriction (HPV), but 2 disparate models have been proposed to explain their reaction to hypoxia. One model proposes that hypoxia-induced increases in mitochondrial reactive oxygen species (ROS) generation activate HPV through an oxidant-signaling pathway, whereas the other proposes that HPV is a result of decreased oxidant signaling. In an attempt to resolve this debate, we use a novel, ratiometric, redox-sensitive fluorescence resonance energy transfer (HSP-FRET) probe, in concert with measurements of reduced/oxidized glutathione (GSH/GSSG), to assess cytosolic redox responses in cultured pulmonary artery smooth muscle cells (PASMCs). Superfusion of PASMCs with hypoxic media increases the HSP-FRET ratio and decreases GSH/GSSG, indicating an increase in oxidant stress. The antioxidants pyrrolidinedithiocarbamate and N-acetyl-l-cysteine attenuated this response, as well as the hypoxia-induced increases in cytosolic calcium ([Ca(2+)](i)), assessed by the Ca(2+)-sensitive FRET sensor YC2.3. Adenoviral overexpression of glutathione peroxidase or cytosolic or mitochondrial catalase attenuated the hypoxia-induced increase in ROS signaling and [Ca(2+)](i). Adenoviral overexpression of cytosolic Cu, Zn-superoxide dismutase (SOD-I) had no effect on the hypoxia-induced increase in ROS signaling and [Ca(2+)](i), whereas mitochondrial matrix-targeted Mn-SOD (SOD-II) augmented [Ca(2+)](i). The mitochondrial inhibitor myxothiazol attenuated the hypoxia-induced changes in the ROS signaling and [Ca(2+)](i), whereas cyanide augmented the increase in [Ca(2+)](i). Finally, simultaneous measurement of ROS and Ca(2+) signaling in the same cell revealed that the initial increase in these 2 signals could not be distinguished temporally. These results demonstrate that hypoxia triggers increases in PASMC [Ca(2+)](i) by augmenting ROS signaling from the mitochondria.
Collapse
Affiliation(s)
- Gregory B Waypa
- Department of Pediatrics, Division of Neonatology, Northwestern University, Chicago, IL 60611, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Du W, McMahon TJ, Zhang ZS, Stiber JA, Meissner G, Eu JP. Excitation-contraction coupling in airway smooth muscle. J Biol Chem 2006; 281:30143-51. [PMID: 16891657 DOI: 10.1074/jbc.m606541200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Excitation-contraction (EC) coupling in striated muscles is mediated by the cardiac or skeletal muscle isoform of voltage-dependent L-type Ca(2+) channel (Ca(v)1.2 and Ca(v)1.1, respectively) that senses a depolarization of the cell membrane, and in response, activates its corresponding isoform of intracellular Ca(2+) release channel/ryanodine receptor (RyR) to release stored Ca(2+), thereby initiating muscle contraction. Specifically, in cardiac muscle following cell membrane depolarization, Ca(v)1.2 activates cardiac RyR (RyR2) through an influx of extracellular Ca(2+). In contrast, in skeletal muscle, Ca(v)1.1 activates skeletal muscle RyR (RyR1) through a direct physical coupling that negates the need for extracellular Ca(2+). Since airway smooth muscle (ASM) expresses Ca(v)1.2 and all three RyR isoforms, we examined whether a cardiac muscle type of EC coupling also mediates contraction in this tissue. We found that the sustained contractions of rat ASM preparations induced by depolarization with KCl were indeed partially reversed ( approximately 40%) by 200 mum ryanodine, thus indicating a functional coupling of L-type channels and RyRs in ASM. However, KCl still caused transient ASM contractions and stored Ca(2+) release in cultured ASM cells without extracellular Ca(2+). Further analyses of rat ASM indicated that this tissue expresses as many as four L-type channel isoforms, including Ca(v)1.1. Moreover, Ca(v)1.1 and RyR1 in rat ASM cells have a similar distribution near the cell membrane in rat ASM cells and thus may be directly coupled as in skeletal muscle. Collectively, our data implicate that EC-coupling mechanisms in striated muscles may also broadly transduce diverse smooth muscle functions.
Collapse
Affiliation(s)
- Wanglei Du
- Division of Pulmonary, Allergy and Critical Care Medicine, Duke University, Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
All cells respond to metabolic stress. However, a variety of specialized cells, commonly referred to as O2-sensing cells, are acutely sensitive to relatively small changes in PO2. Within a variety of organisms such O2-sensing cells have evolved as vital homeostatic mechanisms that monitor O2 supply and alter respiratory and circulatory function, as well as the capacity of the blood to transport O2. Thereby, arterial PO2 may be maintained within physiological limits. In mammals, for example, two key tissues that contribute to this process are the pulmonary arteries and the carotid bodies. Constriction of pulmonary arteries by hypoxia optimizes ventilation-perfusion matching in the lung, whilst carotid body excitation by hypoxia initiates corrective changes in breathing patterns via increased sensory afferent discharge to the brain stem. Despite extensive investigation, the precise mechanism(s) by which hypoxia mediates these responses has remained elusive. It is clear, however, that hypoxia inhibits mitochondrial function in O2-sensing cells over a range of PO2 that has no such effect on other cell types. This raised the possibility that AMP-activated protein kinase might function to couple mitochondrial oxidative phosphorylation to Ca2+ signalling mechanisms in O2-sensing cells and thereby underpin pulmonary artery constriction and carotid body excitation by hypoxia. Our recent investigations have provided significant evidence in support of this view.
Collapse
Affiliation(s)
- A Mark Evans
- Division of Biomedical Sciences, School of Biology, Bute Building, University of St Andrews, St Andrews, Fife KY16 9TS, UK.
| |
Collapse
|
45
|
Jakoubek V, Bíbová J, Hampl V. Voltage-gated calcium channels mediate hypoxic vasoconstriction in the human placenta. Placenta 2005; 27:1030-3. [PMID: 16368136 DOI: 10.1016/j.placenta.2005.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Revised: 09/30/2005] [Accepted: 10/17/2005] [Indexed: 11/26/2022]
Abstract
Unlike all vascular beds with the exception of the pulmonary circulation, fetoplacental vessels respond to acute hypoxia with vasoconstriction. While this hypoxic fetoplacental vasoconstriction (HFPV) is considered essential in the pathogenesis of intrauterine growth retardation, its mechanism is largely unknown. Hypoxia inhibits potassium channels and thus causes depolarization in fetoplacental vascular smooth muscle. We propose that this hypoxia-induced depolarization leads to vasoconstriction by activating voltage-dependent calcium (Ca) channels and Ca influx. We compared HFPV between isolated perfused human cotyledons treated with an inhibitor of L-type channels, nifedipine, and preparations receiving only vehicle. While the solvent (diluted DMSO) had no inhibitory effect on HFPV, the hypoxic responses were completely abolished even by a relatively low dose of nifedipine (1 nM). We conclude that activation of L-type Ca channels is an essential part of HFPV.
Collapse
Affiliation(s)
- V Jakoubek
- Department of Physiology, Charles University Second Medical School, Prague, Czech Republic
| | | | | |
Collapse
|
46
|
Du W, Frazier M, McMahon TJ, Eu JP. Redox Activation of Intracellular Calcium Release Channels (Ryanodine Receptors) in the Sustained Phase of Hypoxia-Induced Pulmonary Vasoconstriction. Chest 2005; 128:556S-558S. [PMID: 16373824 DOI: 10.1378/chest.128.6_suppl.556s] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Hypoxia-induced pulmonary vasoconstriction (HPV) is an important adaptive process that remains incompletely understood. In preconstricted rat pulmonary arteries (inner diameter, 250 to 400 microm), hypoxia (pO2 approximately 10 mm Hg) induces an initial transient phase and a more slowly developing sustained phase of vasoconstriction. Since the release of calcium ions (Ca2+) from intracellular stores by redox-sensitive intracellular Ca2+ release channels known as ryanodine receptors (RyRs) in pulmonary arterial smooth-muscle cells (PASMCs) may play a role in HPV, and considerable evidence now supports that levels of reactive oxygen species (ROS) are paradoxically increased in PASMC under hypoxia, we investigated whether redox activation of RyRs by ROS may transduce HPV. By reverse transcriptase-polymerase chain reaction, we found that all three RyR isoforms are expressed in rat pulmonary arteries and in PASMCs. The sustained phase, but not the transient phase, of HPV can be prevented by pretreating pulmonary arteries with RyR inhibitors ryanodine (200 micromol/L) or dantrolene (50 micromol/L). The addition of dantrolene, ryanodine or the thiol-reducing agent dithiothreitol (1 mmol/L) during the sustained phase of HPV reversed the hypoxic vasoconstriction. In contrast, the superoxide scavenger nitroblue tetrazolium (500 nmol/L) prevented further hypoxic pulmonary vasoconstriction during the sustained phase of HPV but did not reverse it. Taken together, our data suggest that redox activation of RyRs by ROS has an important role in transducing the sustained contraction of pulmonary arteries under hypoxia.
Collapse
Affiliation(s)
- Wanglei Du
- Division of Pulmonary, Allergy and Critical Care Medicine, PO Box 3168, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
47
|
Affiliation(s)
- E Kenneth Weir
- Department of Medicine, Minneapolis Veterans Affairs Medical Center and University of Minnesota, Minneapolis 55417, USA.
| | | | | | | |
Collapse
|
48
|
Aaronson PI, Robertson TP, Knock GA, Becker S, Lewis TH, Snetkov V, Ward JPT. Hypoxic pulmonary vasoconstriction: mechanisms and controversies. J Physiol 2005; 570:53-8. [PMID: 16254010 PMCID: PMC1464287 DOI: 10.1113/jphysiol.2005.098855] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The pulmonary circulation differs from the systemic in several important aspects, the most important being that pulmonary arteries constrict to moderate physiological (20-60 mmHg PO2) hypoxia, whereas systemic arteries vasodilate. This phenomenon is called hypoxic pulmonary vasoconstriction (HPV), and is responsible for maintaining the ventilation-perfusion ratio during localized alveolar hypoxia. In disease, however, global hypoxia results in a detrimental increase in total pulmonary vascular resistance, and increased load on the right heart. Despite many years of study, the precise mechanisms underlying HPV remain unresolved. However, as we argue below, there is now overwhelming evidence that hypoxia can stimulate several pathways leading to a rise in the intracellular Ca2+ concentration ([Ca2+]i) in pulmonary artery smooth muscle cells (PASMC). This rise in [Ca2+]i is consistently found to be relatively small, and HPV seems also to require rho kinase-mediated Ca2+ sensitization. There is good evidence that HPV also has an as yet unexplained endothelium dependency. In this brief review, we highlight selected recent findings and ongoing controversies which continue to animate the study of this remarkable and unique response of the pulmonary vasculature to hypoxia.
Collapse
Affiliation(s)
- Philip I Aaronson
- Department of Asthma, Allergy and Respiratory Science, New Hunt's House, Guy's Hospital Campus, King's College London, London SE1 1UL, UK.
| | | | | | | | | | | | | |
Collapse
|
49
|
Wolin MS, Ahmad M, Gupte SA. Oxidant and redox signaling in vascular oxygen sensing mechanisms: basic concepts, current controversies, and potential importance of cytosolic NADPH. Am J Physiol Lung Cell Mol Physiol 2005; 289:L159-73. [PMID: 16002998 DOI: 10.1152/ajplung.00060.2005] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vascular smooth muscle (VSM) derived from pulmonary arteries generally contract to hypoxia, whereas VSM from systemic arteries usually relax, indicating the presence of basic oxygen-sensing mechanisms in VSM that are adapted to the environment from which they are derived. This review considers how fundamental processes associated with the generation of reactive oxygen species (ROS) by oxidase enzymes, the metabolic control of cytosolic NADH, NADPH and glutathione redox systems, and mitochondrial function interact with signaling systems regulating vascular force in a manner that is potentially adapted to be involved in Po2 sensing. Evidence for opposing hypotheses of hypoxia, either decreasing or increasing mitochondrial ROS, is considered together with the Po2 dependence of ROS production by Nox oxidases as sensors potentially contributing to hypoxic pulmonary vasoconstriction. Processes through which ROS and NAD(P)H redox changes potentially control interactive signaling systems, including soluble guanylate cyclase, potassium channels, and intracellular calcium are discussed together with the data supporting their regulation by redox in responses to hypoxia. Evidence for hypothesized potential differences between systemic and pulmonary arteries originating from properties of mitochondrial ROS generation and the redox sensitivity of potassium channels is compared with a new hypothesis in which differences in the control of cytosolic NADPH redox by the pentose phosphate pathway results in increased NADPH and Nox oxidase-derived ROS in pulmonary arteries, whereas lower levels of glucose-6-phosphate dehydrogenase in coronary arteries may permit hypoxia to activate a vasodilator mechanism controlled by oxidation of cytosolic NADPH.
Collapse
Affiliation(s)
- Michael S Wolin
- Dept. of Physiology, Basic Science Bldg., Rm. 604, New York Medical College, Valhalla, NY 10595, USA.
| | | | | |
Collapse
|
50
|
Zheng YM, Wang QS, Rathore R, Zhang WH, Mazurkiewicz JE, Sorrentino V, Singer HA, Kotlikoff MI, Wang YX. Type-3 ryanodine receptors mediate hypoxia-, but not neurotransmitter-induced calcium release and contraction in pulmonary artery smooth muscle cells. ACTA ACUST UNITED AC 2005; 125:427-40. [PMID: 15795312 PMCID: PMC2217508 DOI: 10.1085/jgp.200409232] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study we examined the expression of RyR subtypes and the role of RyRs in neurotransmitter- and hypoxia-induced Ca2+ release and contraction in pulmonary artery smooth muscle cells (PASMCs). Under perforated patch clamp conditions, maximal activation of RyRs with caffeine or inositol triphosphate receptors (IP3Rs) with noradrenaline induced equivalent increases in [Ca2+]i and Ca2+-activated Cl− currents in freshly isolated rat PASMCs. Following maximal IP3-induced Ca2+ release, neither caffeine nor chloro-m-cresol induced a response, whereas prior application of caffeine or chloro-m-cresol blocked IP3-induced Ca2+ release. In cultured human PASMCs, which lack functional expression of RyRs, caffeine failed to affect ATP-induced increases in [Ca2+]i in the presence and absence of extracellular Ca2+. The RyR antagonists ruthenium red, ryanodine, tetracaine, and dantrolene greatly inhibited submaximal noradrenaline– and hypoxia-induced Ca2+ release and contraction in freshly isolated rat PASMCs, but did not affect ATP-induced Ca2+ release in cultured human PASMCs. Real-time quantitative RT-PCR and immunofluorescence staining indicated similar expression of all three RyR subtypes (RyR1, RyR2, and RyR3) in freshly isolated rat PASMCs. In freshly isolated PASMCs from RyR3 knockout (RyR3−/−) mice, hypoxia-induced, but not submaximal noradrenaline–induced, Ca2+ release and contraction were significantly reduced. Ruthenium red and tetracaine can further inhibit hypoxic increase in [Ca2+]i in RyR3−/− mouse PASMCs. Collectively, our data suggest that (a) RyRs play an important role in submaximal noradrenaline– and hypoxia-induced Ca2+ release and contraction; (b) all three subtype RyRs are expressed; and (c) RyR3 gene knockout significantly inhibits hypoxia-, but not submaximal noradrenaline–induced Ca2+ and contractile responses in PASMCs.
Collapse
Affiliation(s)
- Yun-Min Zheng
- Center for Cardiovascular Sciences, Neuroscience, and Neuropharmacology, Albany Medical College, NY 12208, USA
| | | | | | | | | | | | | | | | | |
Collapse
|