1
|
Lusk S, Memos NK, Rauschmayer A, Ray RS. The microbiome is dispensable for normal respiratory function and chemoreflexes in mice. Front Physiol 2024; 15:1481394. [PMID: 39712189 PMCID: PMC11659286 DOI: 10.3389/fphys.2024.1481394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/21/2024] [Indexed: 12/24/2024] Open
Abstract
Increasing evidence indicates an association between microbiome composition and respiratory homeostasis and disease, particularly disordered breathing, such as obstructive sleep apnea. Previous work showing respiratory disruption is limited by the methodology employed to disrupt, eliminate, or remove the microbiome by antibiotic depletion. Our work utilized germ-free mice born without a microbiome and described respiratory alterations. We used whole-body flow through barometric plethysmography to assay conscious and unrestrained C57BL/6J germ-free (GF, n = 24) and specific-pathogen-free (SPF, n = 28) adult mice (with an intact microbiome) in normoxic (21% O2,79% N2) conditions and during challenges in hypercapnic (5% CO2, 21% O2, 74% N2) and hypoxic (10% O2, 90% N2) environments. Following initial plethysmography analysis, we performed fecal transplants to test the ability of gut microbiome establishment to rescue any observed phenotypes. Data were comprehensively analyzed using our newly published respiratory analysis software, Breathe Easy, to identify alterations in respiratory parameters, including ventilatory frequency, tidal volume, ventilation, apnea frequency, and sigh frequency. We also considered possible metabolic changes by analyzing oxygen consumption, carbon dioxide production, and ventilatory equivalents of oxygen. We also assayed GF and SPF neonates in an autoresuscitation assay to understand the effects of the microbiome on cardiorespiratory stressors in early development. We found several differences in baseline and recovery cardiorespiratory parameters in the neonates and differences in body weight at both ages studied. However, there was no difference in the overall survival of the neonates, and in contrast to prior studies utilizing gut microbial depletion, we found no consequential respiratory alterations in GF versus SPF adult mice at baseline or following fecal transplant in any groups. Interestingly, we did see alterations in oxygen consumption in the GF adult mice, which suggests an altered metabolic demand. Results from this study suggest that microbiome alteration in mice may not play as large a role in respiratory outcomes when a less severe methodology to eliminate the microbiome is utilized.
Collapse
Affiliation(s)
- Savannah Lusk
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Nicoletta K. Memos
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Andrea Rauschmayer
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Russell S. Ray
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Baylor College of Medicine, McNair Medical Institute, Houston, TX, United States
| |
Collapse
|
2
|
Cummings KJ, Leiter JC, Trachtenberg FL, Okaty BW, Darnall RA, Haas EA, Harper RM, Nattie EE, Krous HF, Mena OJ, Richerson GB, Dymecki SM, Kinney HC, Haynes RL. Altered 5-HT2A/C receptor binding in the medulla oblongata in the sudden infant death syndrome (SIDS): Part II. Age-associated alterations in serotonin receptor binding profiles within medullary nuclei supporting cardiorespiratory homeostasis. J Neuropathol Exp Neurol 2024; 83:144-160. [PMID: 38323418 PMCID: PMC10880067 DOI: 10.1093/jnen/nlae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024] Open
Abstract
The failure of chemoreflexes, arousal, and/or autoresuscitation to asphyxia may underlie some sudden infant death syndrome (SIDS) cases. In Part I, we showed that some SIDS infants had altered 5-hydroxytryptamine (5-HT)2A/C receptor binding in medullary nuclei supporting chemoreflexes, arousal, and autoresuscitation. Here, using the same dataset, we tested the hypotheses that the prevalence of low 5-HT1A and/or 5-HT2A/C receptor binding (defined as levels below the 95% confidence interval of controls-a new approach), and the percentages of nuclei affected are greater in SIDS versus controls, and that the distribution of low binding varied with age of death. The prevalence and percentage of nuclei with low 5-HT1A and 5-HT2A/C binding in SIDS were twice that of controls. The percentage of nuclei with low 5-HT2A/C binding was greater in older SIDS infants. In >80% of older SIDS infants, low 5-HT2A/C binding characterized the hypoglossal nucleus, vagal dorsal nucleus, nucleus of solitary tract, and nuclei of the olivocerebellar subnetwork (important for blood pressure regulation). Together, our findings from SIDS infants and from animal models of serotonergic dysfunction suggest that some SIDS cases represent a serotonopathy. We present new hypotheses, yet to be tested, about how defects within serotonergic subnetworks may lead to SIDS.
Collapse
Affiliation(s)
- Kevin J Cummings
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - James C Leiter
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | | | - Benjamin W Okaty
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert A Darnall
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Elisabeth A Haas
- Department of Research, Rady’s Children’s Hospital, San Diego, California, USA
| | - Ronald M Harper
- Department of Neurobiology and the Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Eugene E Nattie
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Henry F Krous
- Department of Pediatrics, University of California San Diego, San Diego, California, USA
- Departments of Pathology and Pediatrics, Rady Children’s Hospital, San Diego, California, USA
| | - Othon J Mena
- San Diego County Medical Examiner Office, San Diego, California, USA
| | - George B Richerson
- Departments of Neurology and Molecular Physiology & Biophysics, University of Iowa, Iowa City, Iowa, USA
| | - Susan M Dymecki
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Hannah C Kinney
- Department of Pathology, CJ Murphy Laboratory for SIDS Research, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Robin L Haynes
- Department of Pathology, CJ Murphy Laboratory for SIDS Research, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Haynes RL, Trachtenberg F, Darnall R, Haas EA, Goldstein RD, Mena OJ, Krous HF, Kinney HC. Altered 5-HT2A/C receptor binding in the medulla oblongata in the sudden infant death syndrome (SIDS): Part I. Tissue-based evidence for serotonin receptor signaling abnormalities in cardiorespiratory- and arousal-related circuits. J Neuropathol Exp Neurol 2023; 82:467-482. [PMID: 37226597 PMCID: PMC10209647 DOI: 10.1093/jnen/nlad030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023] Open
Abstract
The sudden infant death syndrome (SIDS), the leading cause of postneonatal infant mortality in the United States, is typically associated with a sleep period. Previously, we showed evidence of serotonergic abnormalities in the medulla (e.g. altered serotonin (5-HT)1A receptor binding), in SIDS cases. In rodents, 5-HT2A/C receptor signaling contributes to arousal and autoresuscitation, protecting brain oxygen status during sleep. Nonetheless, the role of 5-HT2A/C receptors in the pathophysiology of SIDS is unclear. We hypothesize that in SIDS, 5-HT2A/C receptor binding is altered in medullary nuclei that are key for arousal and autoresuscitation. Here, we report altered 5-HT2A/C binding in several key medullary nuclei in SIDS cases (n = 58) compared to controls (n = 12). In some nuclei the reduced 5-HT2A/C and 5-HT1A binding overlapped, suggesting abnormal 5-HT receptor interactions. The data presented here (Part 1) suggest that a subset of SIDS is due in part to abnormal 5-HT2A/C and 5-HT1A signaling across multiple medullary nuclei vital for arousal and autoresuscitation. In Part II to follow, we highlight 8 medullary subnetworks with altered 5-HT receptor binding in SIDS. We propose the existence of an integrative brainstem network that fails to facilitate arousal and/or autoresuscitation in SIDS cases.
Collapse
Affiliation(s)
- Robin L Haynes
- CJ Murphy Laboratory for SIDS Research, Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Robert’s Program on Sudden Unexpected Death in Pediatrics, Division of General Pediatrics, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts, USA
| | | | - Ryan Darnall
- CJ Murphy Laboratory for SIDS Research, Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Elisabeth A Haas
- Department of Research, Rady Children’s Hospital, San Diego, California, USA
| | - Richard D Goldstein
- Robert’s Program on Sudden Unexpected Death in Pediatrics, Division of General Pediatrics, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Othon J Mena
- San Diego County Medical Examiner Office, San Diego, California, USA
| | - Henry F Krous
- University of California, San Diego, San Diego, California, USA
- Rady Children’s Hospital, San Diego, California, USA
| | - Hannah C Kinney
- CJ Murphy Laboratory for SIDS Research, Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Robert’s Program on Sudden Unexpected Death in Pediatrics, Division of General Pediatrics, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Xu F, Zhao L, Zhuang J, Gao X. Peripheral Neuroplasticity of Respiratory Chemoreflexes, Induced by Prenatal Nicotinic Exposure: Implication for SIDS. Respir Physiol Neurobiol 2023; 313:104053. [PMID: 37019251 DOI: 10.1016/j.resp.2023.104053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/23/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023]
Abstract
Sudden Infant Death Syndrome (SIDS) occurs during sleep in seemingly healthy infants. Maternal cigarette smoking and hypoxemia during sleep are assumed to be the major causal factors. Depressed hypoxic ventilatory response (dHVR) is observed in infants with high risk of SIDS, and apneas (lethal ventilatory arrest) appear during the fatal episode of SIDS. Disturbance of the respiratory center has been proposed to be involved, but the pathogenesis of SIDS is still not fully understood. Peripherally, the carotid body is critical to generate HVR, and bronchopulmonary and superior laryngeal C-fibers (PCFs and SLCFs) are important for triggering central apneas; however, their roles in the pathogenesis of SIDS have not been explored until recently. There are three lines of recently accumulated evidence to show the disorders of peripheral sensory afferent-mediated respiratory chemoreflexes in rat pups with prenatal nicotinic exposure (a SIDS model) in which acute severe hypoxia leads to dHVR followed by lethal apneas. (1) The carotid body-mediated HVR is suppressed with a reduction of the number and sensitivity of glomus cells. (2) PCF-mediated apneic response is largely prolonged via increased PCF density, pulmonary IL-1β and serotonin (5-hydroxytryptamine, 5-HT) release, along with the enhanced expression of TRPV1, NK1R, IL1RI and 5-HT3R in pulmonary C-neurons to strengthen these neural responses to capsaicin, a selective stimulant to C-fibers. (3) SLCF-mediated apnea and capsaicin-induced currents in superior laryngeal C-neurons are augmented by upregulation of TRPV1 expression in these neurons. These results, along with hypoxic sensitization/stimulation of PCFs, gain insight into the mechanisms of prenatal nicotinic exposure-induced peripheral neuroplasticity responsible for dHVR and long-lasting apnea during hypoxia in rat pups. Therefore, in addition to the disturbance in the respiratory center, the disorders of peripheral sensory afferent-mediated chemoreflexes may also be involved in respiratory failure and death denoted in SIDS victims.
Collapse
|
5
|
Abstract
The rhythmicity of breath is vital for normal physiology. Even so, breathing is enriched with multifunctionality. External signals constantly change breathing, stopping it when under water or deepening it during exertion. Internal cues utilize breath to express emotions such as sighs of frustration and yawns of boredom. Breathing harmonizes with other actions that use our mouth and throat, including speech, chewing, and swallowing. In addition, our perception of breathing intensity can dictate how we feel, such as during the slow breathing of calming meditation and anxiety-inducing hyperventilation. Heartbeat originates from a peripheral pacemaker in the heart, but the automation of breathing arises from neural clusters within the brainstem, enabling interaction with other brain areas and thus multifunctionality. Here, we document how the recent transformation of cellular and molecular tools has contributed to our appreciation of the diversity of neuronal types in the breathing control circuit and how they confer the multifunctionality of breathing.
Collapse
Affiliation(s)
- Kevin Yackle
- Department of Physiology, University of California, San Francisco, California, USA;
| |
Collapse
|
6
|
Genes involved in paediatric apnoea and death based on knockout animal models: Implications for sudden infant death syndrome (SIDS). Paediatr Respir Rev 2022; 44:53-60. [PMID: 34750067 DOI: 10.1016/j.prrv.2021.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022]
Abstract
The mechanism of death in Sudden infant death syndrome (SIDS) remains unknown but it is hypothesised that cardiorespiratory failure of brainstem origin results in early post-natal death. For a subset of SIDS infants, an underlying genetic cause may be present, and genetic abnormalities affecting brainstem respiratory control may result in abnormalities that are detectable before death. Genetic knockout mice models were developed in the 1990s and have since helped to elucidate the physiological roles of a number of genes. This systematic review aimed to identify which genes, when knocked out, result in the phenotypes of abnormal cardiorespiratory control and/or early post-natal death. Three major genes were identified: Pet1- a serotonin transcription factor, the neurotrophin pituitary adenylate cyclase activating polypeptide (PACAP) and its receptor (PAC1). Knockouts targeting these genes had blunted hypercapnic and/or hypoxic responses and early post-natal death. The hypothesis that these genes have a role in SIDS is supported by their being identified as abnormal in SIDS cohorts. Future research in SIDS cohorts will be important to determine whether these genetic abnormalities coexist and their potential applicability as biomarkers.
Collapse
|
7
|
Mouradian GC, Kilby M, Alvarez S, Kaplan K, Hodges MR. Mortality and ventilatory effects of central serotonin deficiency during postnatal development depend on age but not sex. Physiol Rep 2021; 9:e14946. [PMID: 34228894 PMCID: PMC8259800 DOI: 10.14814/phy2.14946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 11/24/2022] Open
Abstract
Serotonin (5-HT) influences brain development and has predominantly excitatory neuromodulatory effects on the neural respiratory control circuitry. Infants that succumb to sudden infant death syndrome (SIDS) have reduced brainstem 5-HT levels and Tryptophan hydroxylase 2 (Tph2). Furthermore, there are age- and sex-dependent risk factors associated with SIDS. Here we utilized our established Dark Agouti transgenic rat lacking central serotonin KO to test the hypotheses that CNS 5-HT deficiency leads to: (1) high mortality in a sex-independent manner, (2) age-dependent alterations in other CNS aminergic systems, and (3) age-dependent impairment of chemoreflexes during post-natal development. KO rat pups showed high neonatal mortality but not in a sex-dependent manner and did not show altered hypoxic or hypercapnic ventilatory chemoreflexes. However, KO rat pups had increased apnea-related metrics during a specific developmental age (P12-16), which were preceded by transient increases in dopaminergic system activity (P7-8). These results support and extend the concept that 5-HT per se is a critical factor in supporting respiratory control during post-natal development.
Collapse
Affiliation(s)
- Gary C. Mouradian
- Department of PhysiologyMedical College of WisconsinMilwaukeeWIUSA
- Neuroscience Research CenterMedical College of WisconsinMilwaukeeWIUSA
| | - Madeline Kilby
- Department of PhysiologyMedical College of WisconsinMilwaukeeWIUSA
| | - Santiago Alvarez
- Department of PhysiologyMedical College of WisconsinMilwaukeeWIUSA
| | - Kara Kaplan
- Department of PhysiologyMedical College of WisconsinMilwaukeeWIUSA
| | - Matthew R. Hodges
- Department of PhysiologyMedical College of WisconsinMilwaukeeWIUSA
- Neuroscience Research CenterMedical College of WisconsinMilwaukeeWIUSA
| |
Collapse
|
8
|
Cummings KJ. Eupnea and gasping in vivo are facilitated by the activation of 5-HT 2A receptors. J Neurophysiol 2021; 125:1543-1551. [PMID: 33760672 DOI: 10.1152/jn.00088.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Eupnea and gasping in infancy depend on central nervous system (CNS) serotonin (5-hydroxytryptamine; 5-HT). Although previous in vitro preparations have provided some evidence that 5-HT acts through type 2 A receptors (5-HT2A) to facilitate eupnea and gasping, here the hypothesis addressed is that 5-HT2A receptor activation is necessary for eupnea and the proper generation of gasping in vivo. To test this, we administered 2,5-dimethoxy-4-iodoamphetamine (DOI; 0.25 mg/kg i.p.), a 5-HT2A agonist, 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT; 0.25 mg/kg i.p.), a 5-HT1A agonist, or vehicle (saline) to 7-9-day-old tryptophan hydroxylase 2 knockout (TPH2-/-) mice. A second experiment assessed the effect of MDL-11,939 (MDL; 10 mg/kg i.p.), the specific 5-HT2A antagonist, or vehicle (DMSO) on the gasping of wild-type (TPH2+/+) animals. Drugs were given 15 min prior to five episodes of severe hypoxia that elicited gasping. TPH2-/- breathed more slowly but had the same V̇e and V̇e/V̇o2 compared with TPH2+/+. As previously reported, the gasping of TPH2-/- was significantly delayed (P < 0.001) and occurred at a significantly lower frequency compared with TPH2+/+ (P = 0.04). For both genotypes, DOI hastened eupneic frequency but had no effect on V̇e or V̇e/V̇o2. The gasping of TPH2-/-, although unaffected by 8-OH-DPAT, was indistinguishable from the gasping of TPH2+/+ following DOI. In TPH2+/+, application of MDL led to hypoventilation (P = 0.01), a delay in the appearance of gasping (P = 0.005), and reduced gasp frequency (P = 0.05). These data show that, in vivo, 5-HT2A receptors facilitate both eupnea and gasping. As has been shown in vitro, 5-HT2A probably promotes gasping by exciting hypoxia-resistant pacemaker neurons.NEW & NOTEWORTHY Previous in vitro studies suggest that 5-HT2A receptors contribute to eupnea and are necessary for fictive gasping. The current study shows that the impaired gasping displayed by neonatal TPH2-/- mice, deficient in CNS serotonin, is restored by 5-HT2A receptor activation. Following 5-HT2A blockade, wild-type mice hypoventilated and their gasping resembled that of TPH2-/- mice. This study shows that both eupnea and gasping in vivo rely on the activation of 5-HT2A receptors.
Collapse
Affiliation(s)
- Kevin J Cummings
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
9
|
Singer D. [Surviving the Lack: Natural Adaptations in Newborns]. Z Geburtshilfe Neonatol 2020; 225:203-215. [PMID: 33285584 DOI: 10.1055/a-1019-6007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Newborns are equipped with a number of natural adaptation mechanisms preventing them from impaired energy supply, despite their elevated (size-related) metabolic rate. These include the diving response known from aquatic mammals, which - being composed of apnea, bradycardia, and vasoconstriction - ensures an economical use of O2 reserves and results in a subsequent influx of lactate out of peripheral tissues. From a metabolic point of view, mammalian fetuses behave "like an organ of the mother" and thus exhibit a hibernation-like deviation from the overall metabolic size relationship that adapts them to the limited intrauterine O2/substrate availability. In case of lacking supply, they can reduce their energy demands even further by foregoing growth, with the placenta acting as a gatekeeper. Postnatal hypoxia does not only result in the suppression of non-shivering thermogenesis, but also in a hypoxic hypometabolism that otherwise has only been known from poikilothermic animals. After prolonged apnea, gasps do occur that maintain a rudimentary heart action through short elevations in pO2 (autoresuscitation). Overall, these mechanisms postpone a critical O2 deficit and thereby provide a "resistance" rather than a "tolerance" to hypoxia. As they are based on an (active) reduction in energy demand, they are not easy to distinguish from the (passive) breakdown of metabolism resulting from hypoxia.
Collapse
|
10
|
Cummings KJ, Leiter JC. Take a deep breath and wake up: The protean role of serotonin preventing sudden death in infancy. Exp Neurol 2020; 326:113165. [PMID: 31887304 PMCID: PMC6956249 DOI: 10.1016/j.expneurol.2019.113165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/14/2019] [Accepted: 12/26/2019] [Indexed: 01/24/2023]
Abstract
Recordings from infants who died suddenly and unexpectedly demonstrate the occurrence of recurring apneas, ineffective gasping, and finally, failure to restore eupnea and arouse prior to death. Immunohistochemical and autoradiographic data demonstrate a constellation of serotonergic defects in the caudal raphe nuclei in infants who died of Sudden Infant Death Syndrome (SIDS). The purpose of this review is to synthesize what is known about adaptive responses of the infant to severely hypoxic conditions, which unleash a flood of neuromodulators that inhibit cardiorespiratory function, thermogenesis, and arousal and the emerging role of serotonin, which combats this cardiorespiratory inhibition to foster autoresuscitation, eupnea, and arousal to ensure survival following an hypoxic episode. The laryngeal and carotid body chemoreflexes are potent in newborns and infants, and both reflexes can induce apnea and bradycardia, which may be adaptive initially, but must be terminated if an infant is to survive. Serotonin has a unique ability to touch on each of the processes that may be required to recover from hypoxic reflex apnea: gasping, the restoration of heart rate and blood pressure, termination of apneas and, eventually, stimulation of eupnea and arousal. Recurrent apneic events, bradycardia, ineffective gasping and a failure to terminate apneas and restore eupnea are observed in animals harboring defects in the caudal serotonergic system models - all of these phenotypes are reminiscent of and compatible with the cardiorespiratory recordings made in infants who subsequently died of SIDS. The caudal serotonergic system provides an organized, multi-pronged defense against reflex cardiorespiratory inhibition and the hypoxia that accompanies prolonged apnea, bradycardia and hypotension, and any deficiency of caudal serotonergic function will increase the propensity for sudden unexplained infant death.
Collapse
Affiliation(s)
- Kevin J Cummings
- Department of Biomedical Sciences, University of Missouri-Columbia, Dalton Cardiovascular Research Center, 134 Research Park Drive, Columbia, MO 65203, USA
| | - James C Leiter
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, One Rope Ferry Road, Hanover, NH 03755, USA.
| |
Collapse
|
11
|
Donnelly WT, Haynes RL, Commons KG, Erickson DJ, Panzini CM, Xia L, Han QJ, Leiter JC. Prenatal intermittent hypoxia sensitizes the laryngeal chemoreflex, blocks serotoninergic shortening of the reflex, and reduces 5-HT 3 receptor binding in the NTS in anesthetized rat pups. Exp Neurol 2020; 326:113166. [PMID: 31887303 PMCID: PMC7028519 DOI: 10.1016/j.expneurol.2019.113166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/14/2019] [Accepted: 12/26/2019] [Indexed: 10/25/2022]
Abstract
We tested the hypothesis that exposure to intermittent hypoxia (IH) during pregnancy would prolong the laryngeal chemoreflex (LCR) and diminish the capacity of serotonin (5-hydroxytryptamine; 5-HT) to terminate the LCR. Prenatal exposure to IH was associated with significant prolongation of the LCR in younger, anesthetized, postnatal day (P) rat pups age P8 to P16 compared to control, room air (RA)-exposed rat pups of the same age. Serotonin microinjected into the NTS shortened the LCR in rat pups exposed to RA during gestation, but 5-HT failed to shorten the LCR in rat pups exposed to prenatal IH. Given these observations, we tested the hypothesis that prenatal hypoxia would decrease binding to 5-HT3 receptors in the nucleus of the solitary tract (NTS) where 5-HT acts to shorten the LCR. Serotonin 3 receptor binding was reduced in younger rat pups exposed to IH compared to control, RA-exposed rat pups in the age range P8 to P12. Serotonin 3 receptor binding was similar in older animals (P18-P24) regardless of gas exposure during gestation. The failure of the 5-HT injected into the NTS to shorten the LCR was correlated with a developmental decrease in 5-HT3 receptor binding in the NTS associated with exposure to prenatal IH. In summary, prenatal IH sensitized reflex apnea and blunted processes that terminate reflex apneas in neonatal rat pups, processes that are essential to prevent death following apneas such as those seen in babies who died of SIDS.
Collapse
Affiliation(s)
- William T Donnelly
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, One Rope Ferry Road, Hanover, NH 03755, United States of America
| | - Robin L Haynes
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, United States of America
| | - Kathryn G Commons
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital and Harvard Medical School, United States of America
| | - Drexel J Erickson
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, United States of America
| | - Chris M Panzini
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital and Harvard Medical School, United States of America
| | - Luxi Xia
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, One Rope Ferry Road, Hanover, NH 03755, United States of America
| | - Q Joyce Han
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, One Rope Ferry Road, Hanover, NH 03755, United States of America
| | - J C Leiter
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, One Rope Ferry Road, Hanover, NH 03755, United States of America.
| |
Collapse
|
12
|
Erickson JT. Central serotonin and autoresuscitation capability in mammalian neonates. Exp Neurol 2020; 326:113162. [DOI: 10.1016/j.expneurol.2019.113162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/04/2019] [Accepted: 12/23/2019] [Indexed: 01/08/2023]
|
13
|
Garcia AJ, Viemari JC, Khuu MA. Respiratory rhythm generation, hypoxia, and oxidative stress-Implications for development. Respir Physiol Neurobiol 2019; 270:103259. [PMID: 31369874 DOI: 10.1016/j.resp.2019.103259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/15/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023]
Abstract
Encountered in a number of clinical conditions, repeated hypoxia/reoxygenation during the neonatal period can pose both a threat to immediate survival as well as a diminished quality of living later in life. This review focuses on our current understanding of central respiratory rhythm generation and the role that hypoxia and reoxygenation play in influencing rhythmogenesis. Here, we examine the stereotypical response of the inspiratory rhythm from the preBötzinger complex (preBötC), basic neuronal mechanisms that support rhythm generation during the peri-hypoxic interval, and the physiological consequences of inspiratory network responsivity to hypoxia and reoxygenation, acute and chronic intermittent hypoxia, and oxidative stress. These topics are examined in the context of Sudden Infant Death Syndrome, apneas of prematurity, and neonatal abstinence syndrome.
Collapse
Affiliation(s)
- Alfredo J Garcia
- Institute for Integrative Physiology, Section of Emergency Medicine, The University of Chicago, Chicago, 60637, IL, United States
| | - Jean Charles Viemari
- Institut de Neurosciences de la Timone, P3M team, UMR7289 CNRS & AMU, Faculté de Médecine de la Timone, 27 Bd Jean Moulin, Marseille, 13005, France
| | - Maggie A Khuu
- Institute for Integrative Physiology, Section of Emergency Medicine, The University of Chicago, Chicago, 60637, IL, United States
| |
Collapse
|
14
|
Cummings KJ, Hodges MR. The serotonergic system and the control of breathing during development. Respir Physiol Neurobiol 2019; 270:103255. [PMID: 31362064 DOI: 10.1016/j.resp.2019.103255] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/28/2019] [Accepted: 07/12/2019] [Indexed: 01/26/2023]
Abstract
Serotonin (5-hydroxytryptamine 5-HT) was first discovered in the late 1940's as an endogenous bioactive amine capable of inducing vasoconstriction, and in the mid-1950's was found in the brain. It was in these early years that some of the first demonstrations were made regarding a role for brain 5-HT in neurological function and behavior, including data implicating reduced brain levels of 5-HT in clinical depression. Since that time, advances in molecular biology and physiological approaches in basic science research have intensely focused on 5-HT in the brain, and the many facets of its role during embryonic development, post-natal maturation, and neural function in adulthood continues to be established. This review focuses on what is known about the developmental roles for the 5-HT system, which we define as the neurons producing 5-HT along with pre-and post-synaptic receptors, in a vital homeostatic motor behavior - the control of breathing. We will cover what is known about the embryonic origins and fate specification of 5-HT neurons, and how the 5-HT system influences pre- and post-natal maturation of the ventilatory control system. In addition, we will focus on the role of the 5-HT system in specific respiratory behaviors during fetal, neonatal and postnatal development, and the relevance of dysfunction in this system in respiratory-related human pathologies including Sudden Infant Death Syndrome (SIDS).
Collapse
Affiliation(s)
- Kevin J Cummings
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA.
| | - Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
15
|
Haney MM, Sinnott J, Osman KL, Deninger I, Andel E, Caywood V, Mok A, Ballenger B, Cummings K, Thombs L, Lever TE. Mice Lacking Brain-Derived Serotonin Have Altered Swallowing Function. Otolaryngol Head Neck Surg 2019; 161:468-471. [PMID: 31035861 DOI: 10.1177/0194599819846109] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The intricate sensorimotor neural circuits that control swallowing are heavily reliant on serotonin (5-hydroxytryptamine [5-HT]); however, the impact of 5-HT deficiency on swallow function remains largely unexplored. We investigated this using mice deficient in tryptophan-hydroxylase-2 (TPH2), the enzyme catalyzing the rate-limiting step in 5-HT synthesis. Videofluoroscopy was utilized to characterize the swallowing function of TPH2 knockout (TPH2-/-) mice as compared with littermate controls (TPH2+/+). Results showed that 5-HT deficiency altered all 3 stages of swallowing. As compared with controls, TPH2-/- mice had significantly slower lick and swallow rates and faster esophageal transit times. Future studies with this model are necessary to determine if 5-HT replacement may rescue abnormal swallowing function. If so, supplemental 5-HT therapy may have vast applications for a large population of patients with a variety of neurologic disorders resulting in life-diminishing dysphagia, particularly amyotrophic lateral sclerosis and Parkinson's disease, for which 5-HT deficiency is implicated in the disease pathogenesis.
Collapse
Affiliation(s)
- Megan M Haney
- 1 Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Joseph Sinnott
- 2 Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Kate L Osman
- 2 Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Ian Deninger
- 2 Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Ellyn Andel
- 2 Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Victoria Caywood
- 2 Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Alexis Mok
- 2 Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Brayton Ballenger
- 2 Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Kevin Cummings
- 3 Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Lori Thombs
- 4 Department of Statistics, College of Arts and Sciences, University of Missouri, Columbia, Missouri, USA
| | - Teresa E Lever
- 2 Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, Missouri, USA.,3 Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
16
|
Funk GD, Biancardi V. Commentary: Acute perturbation of Pet1-neuron activity in neonatal mice impairs cardiorespiratory homeostatic recovery. Front Physiol 2019; 10:232. [PMID: 30949061 PMCID: PMC6436076 DOI: 10.3389/fphys.2019.00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/21/2019] [Indexed: 11/26/2022] Open
Affiliation(s)
- Gregory D Funk
- Department of Physiology, Faculty of Medicine and Dentistry, Neuroscience and Mental Health Institute, Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Vivian Biancardi
- Department of Physiology, Faculty of Medicine and Dentistry, Neuroscience and Mental Health Institute, Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
17
|
Iovino L, Mutolo D, Cinelli E, Contini M, Pantaleo T, Bongianni F. Breathing stimulation mediated by 5-HT1A and 5-HT3 receptors within the preBötzinger complex of the adult rabbit. Brain Res 2019; 1704:26-39. [DOI: 10.1016/j.brainres.2018.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/10/2018] [Accepted: 09/18/2018] [Indexed: 02/06/2023]
|
18
|
Dosumu-Johnson RT, Cocoran AE, Chang Y, Nattie E, Dymecki SM. Acute perturbation of Pet1-neuron activity in neonatal mice impairs cardiorespiratory homeostatic recovery. eLife 2018; 7:37857. [PMID: 30350781 PMCID: PMC6199134 DOI: 10.7554/elife.37857] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/09/2018] [Indexed: 12/02/2022] Open
Abstract
Cardiorespiratory recovery from apneas requires dynamic responses of brainstem circuitry. One implicated component is the raphe system of Pet1-expressing (largely serotonergic) neurons, however their precise requirement neonatally for homeostasis is unclear, yet central toward understanding newborn cardiorespiratory control and dysfunction. Here we show that acute in vivo perturbation of Pet1-neuron activity, via triggering cell-autonomously the synthetic inhibitory receptor hM4Di, resulted in altered baseline cardiorespiratory properties and diminished apnea survival. Respiratory more than heart rate recovery was impaired, uncoupling their normal linear relationship. Disordered gasp recovery from the initial apnea distinguished mice that would go on to die during subsequent apneas. Further, the risk likelihood of apnea-related mortality associated with suppression of Pet1 neurons was higher for animals with baseline elevated ventilatory equivalents for oxygen. These findings establish that Pet1 neurons play an active role in neonatal cardiorespiratory homeostasis and provide mechanistic plausibility for the serotonergic abnormalities associated with SIDS. Our survival depends on our heart and lungs working together to supply our cells with oxygen and remove carbon dioxide waste. The brain coordinates this process by controlling the activity of the heart and lungs. Yet sometimes a person may experience an event called an apnea and briefly stop breathing. If this happens, oxygen levels in the body fall while carbon dioxide levels rise. This in turn triggers a recovery process called autoresuscitation, which includes a series of large breaths or gasps, and each gasp is accompanied by increased heart rate due to specialized parts of the nervous system. This response usually restores normal breathing. Failure of autoresuscitation may underlie many cases of sudden infant death syndrome, or SIDS (also known as “cot death” or “crib death”). SIDS is the leading cause of death in young infants in the western world, and many infants who die from SIDS show abnormalities in the brain cells that produce a chemical called serotonin. Evidence suggests that serotonin helps control breathing. This raised the question: does the autoresuscitation recovery response rely on serotonin-producing neurons? To find out, Dosumu-Johnson et al. used one-week-old mouse pups that had been genetically engineered to respond to an injected drug by rapidly inhibiting their serotonin neurons. These animals are about the same age in mouse terms as infants at greatest risk for SIDS (~2-4 months of age). Inhibiting serotonin neurons made it harder for the mouse pups to recover from artificially induced apneas. Although their heart rate showed largely normal recovery – at least at first – their breathing did not. They took fewer gasps, and were more likely to die following such episodes. These findings shed new light on how young animals control their breathing and heart rate when mounting an autoresuscitation recovery from an apnea. The observed uncoupling of breathing and heart rate recovery responses suggests that different brain cells and circuits control the two. The results also suggest that abnormalities in the activity of serotonin neurons may make infants more susceptible to SIDS. As well as offering a possible explanation to families who have lost a child to SIDS, these findings could be used to develop screening tools to identify other infants at risk. They also point to potential cellular targets for drugs that could ultimately help prevent further cases.
Collapse
Affiliation(s)
| | - Andrea E Cocoran
- Department of Molecular & Systems Biology, The Geisel School of Medicine at Dartmouth, Hanover, United States
| | - YoonJeung Chang
- Department of Genetics, Harvard Medical School, Boston, United States
| | - Eugene Nattie
- Department of Molecular & Systems Biology, The Geisel School of Medicine at Dartmouth, Hanover, United States
| | - Susan M Dymecki
- Department of Genetics, Harvard Medical School, Boston, United States
| |
Collapse
|
19
|
Lee SY, Sirieix CM, Nattie E, Li A. Pre- and early postnatal nicotine exposure exacerbates autoresuscitation failure in serotonin-deficient rat neonates. J Physiol 2018; 596:5977-5991. [PMID: 30008184 DOI: 10.1113/jp275885] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/22/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Sudden infant death syndrome (SIDS) is one of the leading causes of death during the first year of life and abnormalities linked to serotonin (5-HT) have been identified in many SIDS cases. Cigarette smoking and associated exogenous stressors, e.g. developmental nicotine exposure, may compound these serotonergic defects and any associated defects in cardiorespiratory function. Using neonatal rodent pups subjected to medullary 5-HT deficiency and perinatal nicotine exposure, we examined the impact of this interplay of factors on the neonates' ability to autoresuscitate at specific ages. In perinatal nicotine-exposed 5-HT deficient pups, impaired autoresuscitation along with significantly delayed post-anoxic recovery of normal breathing and heart rate was observed at postnatal day 10 (P10). We found that the interaction between 5-HT deficiency and perinatal nicotine exposure can significantly increase pups' vulnerability to environmental stressors and exacerbate defects in cardiorespiratory protective reflexes to repetitive anoxia during the development period. ABSTRACT Cigarette smoking during pregnancy increases the risk of sudden infant death syndrome (SIDS), and nicotine replacements, a key ingredient of cigarettes, have been recently prescribed to women who wish to quit smoking during their pregnancy. Serotonin (5-HT) abnormalities have been consistently identified in many SIDS cases. Here we investigated the effects of perinatal nicotine exposure in mild 5-HT deficiency rat neonates on autoresuscitation, a protective cardiorespiratory reflex. The mild 5-HT deficiency was induced by a maternal tryptophan-deficient diet, and nicotine was delivered from embryonic day (E) 4 to postnatal day (P) 10 at 6 mg kg-1 day-1 through an osmotic pump. In P10 rats, nicotine exposure exacerbates autoresuscitation failure (mortality) in mildly 5-HT-deficient rats to a greater extent than in controls (P = 0.029). The recovery of eupnoea and heart rate to baseline values following repetitive anoxic events (which elicit an apnoea accompanied by a bradycardia) is significantly delayed in 5-HT-deficient rats treated with nicotine, making them more susceptible to failure of autoresuscitation (eupnoea recovery: P = 0.0053; heart rate recovery: P = < 0.0001). Neither 5-HT deficiency nor nicotine exposure alone appears to affect the ability to autoresuscitate significantly when compared among the four treatments. The increased vulnerability to environmental stressors, e.g. severe hypoxia, asphyxia, or anoxia, in these nicotine-exposed 5-HT-deficient neonates during postnatal developmental period is evident.
Collapse
Affiliation(s)
- Stella Y Lee
- Department of Physiology and Neurobiology, Geisel school of Medicine at Dartmouth, Lebanon, NH, 03756, USA
| | - Chrystelle M Sirieix
- Department of Physiology and Neurobiology, Geisel school of Medicine at Dartmouth, Lebanon, NH, 03756, USA
| | - Eugene Nattie
- Department of Physiology and Neurobiology, Geisel school of Medicine at Dartmouth, Lebanon, NH, 03756, USA
| | - Aihua Li
- Department of Physiology and Neurobiology, Geisel school of Medicine at Dartmouth, Lebanon, NH, 03756, USA.,Department of Molecular and Systems Biology, Geisel school of Medicine at Dartmouth, Lebanon, NH, 03756, USA
| |
Collapse
|
20
|
Baertsch NA, Baertsch HC, Ramirez JM. The interdependence of excitation and inhibition for the control of dynamic breathing rhythms. Nat Commun 2018; 9:843. [PMID: 29483589 PMCID: PMC5827754 DOI: 10.1038/s41467-018-03223-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/26/2018] [Indexed: 11/09/2022] Open
Abstract
The preBötzinger Complex (preBötC), a medullary network critical for breathing, relies on excitatory interneurons to generate the inspiratory rhythm. Yet, half of preBötC neurons are inhibitory, and the role of inhibition in rhythmogenesis remains controversial. Using optogenetics and electrophysiology in vitro and in vivo, we demonstrate that the intrinsic excitability of excitatory neurons is reduced following large depolarizing inspiratory bursts. This refractory period limits the preBötC to very slow breathing frequencies. Inhibition integrated within the network is required to prevent overexcitation of preBötC neurons, thereby regulating the refractory period and allowing rapid breathing. In vivo, sensory feedback inhibition also regulates the refractory period, and in slowly breathing mice with sensory feedback removed, activity of inhibitory, but not excitatory, neurons restores breathing to physiological frequencies. We conclude that excitation and inhibition are interdependent for the breathing rhythm, because inhibition permits physiological preBötC bursting by controlling refractory properties of excitatory neurons.
Collapse
Affiliation(s)
- Nathan Andrew Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Avenue JMB10, Seattle, WA, 98101, USA
| | - Hans Christopher Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Avenue JMB10, Seattle, WA, 98101, USA
| | - Jan Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Avenue JMB10, Seattle, WA, 98101, USA.
- Department of Neurological Surgery, University of Washington, 1900 9th Avenue, JMB10, Seattle, WA, 98101, USA.
- Department of Pediatrics, University of Washington, 1900 9th Avenue, JMB10, Seattle, WA, 98101, USA.
| |
Collapse
|
21
|
Donnelly WT, Xia L, Bartlett D, Leiter JC. Activation of serotonergic neurons in the medullary caudal raphe shortens the laryngeal chemoreflex in anaesthetized neonatal rats. Exp Physiol 2017; 102:1007-1018. [PMID: 28675564 DOI: 10.1113/ep086082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 05/25/2017] [Indexed: 12/29/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does activation of serotonergic neurons in the caudal medullary raphe, some of which project to the nucleus of the solitary tract, shorten the laryngeal chemoreflex? What is the main finding and its importance? We found that serotonin originating from neurons in the caudal raphe acts through a 5-HT3 receptor located in the nucleus of the solitary tract to terminate reflex apnoea. Failure or deficiency of this arousal-related process is likely to be relevant to the pathogenesis of sudden infant death syndrome. Failure to terminate apnoea and arouse is likely to contribute to sudden infant death syndrome (SIDS). Serotonin is deficient in the brainstems of babies who have died of SIDS. We tested the hypothesis that activation of serotoninergic neurons in the caudal medullary raphe, some of which project to the nucleus of the solitary tract (NTS), would shorten the laryngeal chemoreflex (LCR). We studied anaesthetized neonatal rat pups between postnatal days 9 and 17. We injected 5-40 μl of water into the larynx to elicit the LCR and measured the duration of respiratory disruption. Microinjection of 50 nl of 100 μm AMPA into the caudal medullary raphe shortened the apnoeas (P < 0.001) and respiratory inhibition (P < 0.005) associated with the LCR. When 50 nl of 30 mm ondansetron, a 5-HT3 antagonist, was microinjected bilaterally into the NTS, AMPA microinjected into the caudal raphe no longer shortened the LCR. After bilateral microinjection of vehicle into the NTS, AMPA microinjection into the caudal raphe significantly shortened the LCR. AMPA, a glutamate receptor agonist, may activate many neurons within the caudal raphe, but blocking the 5-HT3 receptor-dependent responses in the NTS prevented the shortening of the LCR associated with AMPA microinjections into the caudal raphe. Thus, serotonin originating from neurons in the caudal raphe acts through a 5-HT3 receptor located in the NTS to terminate or shorten the LCR. Serotonin is deficient in the brainstems of babies who have died of SIDS, and deficient serotonergic termination of apnoea is likely to be relevant to the pathogenesis of SIDS.
Collapse
Affiliation(s)
- William T Donnelly
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Luxi Xia
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Donald Bartlett
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - J C Leiter
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
22
|
Partial Raphe Dysfunction in Neurotransmission Is Sufficient to Increase Mortality after Anoxic Exposures in Mice at a Critical Period in Postnatal Development. J Neurosci 2016; 36:3943-53. [PMID: 27053202 DOI: 10.1523/jneurosci.1796-15.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 02/26/2016] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Sudden infant death syndrome (SIDS) cases often have abnormalities of the brainstem raphe serotonergic (5-HT) system. We hypothesize that raphe dysfunction contributes to a failure to autoresuscitate from multiple hypoxic events, leading to SIDS. We studied autoresuscitation in two transgenic mouse models in which exocytic neurotransmitter release was impaired via conditional expression of the light chain from tetanus toxin (tox) in raphe neurons expressing serotonergic bacterial artificial chromosome drivers Pet1 or Slc6a4. These used recombinase drivers targeted different portions of medullary raphe serotonergic, tryptophan hydroxylase 2 (Tph2)(+) neurons by postnatal day (P) 5 through P12: approximately one-third in triple transgenic Pet1::Flpe, hβactin::cre, RC::PFtox mice; approximately three-fourths inSlc6a4::cre, RC::Ptox mice; with the first model capturing a near equal number of Pet1(+),Tph2(+) versus Pet1(+),Tph2(low or negative) raphe cells. At P5, P8, and P12, "silenced" mice and controls were exposed to five, ∼37 s bouts of anoxia. Mortality was 5-10 times greater in "silenced" pups compared with controls at P5 and P8 (p = 0.001) but not P12, with cumulative survival not differing between experimental transgenic models. "Silenced" pups that eventually died took longer to initiate gasping (p = 0.0001), recover heart rate (p = 0.0001), and recover eupneic breathing (p = 0.011) during the initial anoxic challenges. Variability indices for baseline breathing distinguished "silenced" from controls but did not predict mortality. We conclude that dysfunction of even a portion of the raphe, as observed in many SIDS cases, can impair ability to autoresuscitate at critical periods in postnatal development and that baseline indices of breathing variability can identify mice at risk. SIGNIFICANCE STATEMENT Many sudden infant death syndrome (SIDS) cases exhibit a partial (∼26%) brainstem serotonin deficiency. Using recombinase drivers, we targeted different fractions of serotonergic and raphe neurons in mice for tetanus toxin light chain expression, which prevented vesicular neurotransmitter release. In one model, approximately one-third of medullary Tph2(+) neurons are silenced by postnatal (P) days 5 and 12, along with some Pet1(+),Tph2(low or negative) raphe cells; in the other, approximately three-fourths of medullary Tph2(+) neurons, also with some Tph2(low or negative) cells. Both models demonstrated excessive mortality to anoxia (a postulated SIDS stressor) at P5 and P8. We demonstrated fatal vulnerability to anoxic stress at a specific time in postnatal life induced by a partial defect in raphe function. This models features of SIDS.
Collapse
|
23
|
Donnelly WT, Bartlett D, Leiter JC. Serotonin in the solitary tract nucleus shortens the laryngeal chemoreflex in anaesthetized neonatal rats. Exp Physiol 2016; 101:946-61. [PMID: 27121960 DOI: 10.1113/ep085716] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/08/2016] [Indexed: 11/08/2022]
Abstract
What is the central question of this study? Failure to terminate apnoea and arouse is likely to contribute to sudden infant death syndrome (SIDS). Serotonin is deficient in the brainstems of babies who died of SIDS. Therefore, we tested the hypothesis that serotonin in the nucleus of the solitary tract (NTS) would shorten reflex apnoea. What is the main finding and its importance? Serotonin microinjected into the NTS shortened the apnoea and respiratory inhibition associated with the laryngeal chemoreflex. Moreover, this effect was achieved through a 5-HT3 receptor. This is a new insight that is likely to be relevant to the pathogenesis of SIDS. The laryngeal chemoreflex (LCR), an airway-protective reflex that causes apnoea and bradycardia, has long been suspected as an initiating event in the sudden infant death syndrome. Serotonin (5-HT) and 5-HT receptors may be deficient in the brainstems of babies who die of sudden infant death syndrome, and 5-HT seems to be important in terminating apnoeas directly or in causing arousals or as part of the process of autoresuscitation. We hypothesized that 5-HT in the brainstem would limit the duration of the LCR. We studied anaesthetized rat pups between 7 and 21 days of age and made microinjections into the cisterna magna or into the nucleus of the solitary tract (NTS). Focal, bilateral microinjections of 5-HT into the caudal NTS significantly shortened the LCR. The 5-HT1a receptor antagonist, WAY 100635, did not affect the LCR consistently, nor did a 5-HT2 receptor antagonist, ketanserin, alter the duration of the LCR. The 5-HT3 specific agonist, 1-(3-chlorophenyl)-biguanide, microinjected bilaterally into the caudal NTS significantly shortened the LCR. Thus, endogenous 5-HT released within the NTS may curtail the respiratory depression that is part of the LCR, and serotonergic shortening of the LCR may be attributed to activation of 5-HT3 receptors within the NTS. 5-HT3 receptors are expressed presynaptically on C fibre afferents of the superior laryngeal nerve, and serotonergic shortening of the LCR may be mediated presynaptically by enhanced activation of inhibitory interneurons within the NTS.
Collapse
Affiliation(s)
- William T Donnelly
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA
| | - Donald Bartlett
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA
| | - J C Leiter
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA
| |
Collapse
|
24
|
Givan SA, Cummings KJ. Intermittent severe hypoxia induces plasticity within serotonergic and catecholaminergic neurons in the neonatal rat ventrolateral medulla. J Appl Physiol (1985) 2016; 120:1277-87. [PMID: 26968026 PMCID: PMC11960812 DOI: 10.1152/japplphysiol.00048.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/09/2016] [Indexed: 11/22/2022] Open
Abstract
5-HT neurons contribute to autoresuscitation and survival during intermittent severe hypoxia (IsH). In adults, catecholaminergic neurons in the ventrolateral medulla (VLM) contribute to the autonomic response to hypoxia. We hypothesized that 1) catecholaminergic neurons in the neonatal VLM are activated following IsH, 2) this activation is compromised following an acute loss of brain stem 5-HT, and 3) IsH induces cellular and/or transcriptomic plasticity within catecholaminergic and serotonergic neurons that are within or project to the VLM, respectively. To test these hypotheses, we treated rat pups with 6-fluorotryptophan, a tryptophan hydroxylase (TPH) inhibitor, and then exposed treated and vehicle controls to IsH or air. Along with immunohistochemistry to detect tyrosine hydroxylase (TH)- or Fos-positive neurons, we used RNA sequencing to resolve the effects of IsH and 5-HT deficiency on the expression of serotonergic and catecholaminergic system genes in the VLM. 5-HT deficiency compromised autoresuscitation and survival. IsH significantly increased the number of identifiable TH-positive VLM neurons, an effect enhanced by 5-HT deficiency (P = 0.003). Contrary to our hypothesis, 5-HT-deficient pups had significantly more Fos-positive neurons following IsH (P = 0.008) and more activated TH-positive neurons following IsH or air (P = 0.04). In both groups the expression of the 5-HT transporter and TPH2 was increased following IsH. In 5-HT-deficient pups, the expression of the inhibitory 5-HT1A receptor was decreased following IsH, while the expression of DOPA decarboxylase was increased. These data show that the serotonergic and catecholaminergic systems in the VLM of the neonatal rat are dynamically upregulated by IsH, potentially adapting cardiorespiratory responses to severe hypoxia.
Collapse
Affiliation(s)
- Scott A Givan
- Department of Molecular Microbiology and Immunology, Informatics Research Core Facility, University of Missouri, Columbia, Missouri; and
| | - Kevin J Cummings
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| |
Collapse
|
25
|
Yang HT, Cummings KJ. Brain stem serotonin protects blood pressure in neonatal rats exposed to episodic anoxia. J Appl Physiol (1985) 2013; 115:1733-41. [PMID: 24136109 DOI: 10.1152/japplphysiol.00970.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In neonatal rodents, a loss of brain stem serotonin [5-hydroxytryptamine (5-HT)] in utero or at birth compromises anoxia-induced gasping and the recovery of heart rate (HR) and breathing with reoxygenation (i.e., autoresuscitation). How mean arterial pressure (MAP) is influenced after an acute loss of brain stem 5-HT content is unknown. We hypothesized that a loss of 5-HT for ∼1 day would compromise MAP during episodic anoxia. We injected 6-fluorotryptophan (20 mg/kg ip) into rat pups (postnatal days 9-10 or 11-13, n = 22 treated, 24 control), causing a ∼70% loss of brain stem 5-HT. Pups were exposed to a maximum of 15 anoxic episodes, separated by 5 min of room air to allow autoresuscitation. In younger pups, we measured breathing frequency and tidal volume using "head-out" plethysmography and HR from the electrocardiogram. In older pups, we used whole body plethysmography to detect gasping, while monitoring MAP. Gasp latency and the time required for respiratory, HR, and MAP recovery following each episode were determined. Despite normal gasp latency, breathing frequency and a larger tidal volume (P < 0.001), 5-HT-deficient pups survived one-half the number of episodes as controls (P < 0.001). The anoxia-induced decrease in MAP experienced by 5-HT-deficient pups was double that of controls (P = 0.017), despite the same drop in HR (P = 0.48). MAP recovery was delayed ∼10 s by 5-HT deficiency (P = 0.001). Our data suggest a loss of brain stem 5-HT leads to a pronounced, premature loss of MAP in response to episodic anoxia. These data may help explain why some sudden infant death syndrome cases die from what appears to be cardiovascular collapse during apparent severe hypoxia.
Collapse
Affiliation(s)
- Hsiao T Yang
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | | |
Collapse
|