1
|
Wang Y, Saccenti E, Goselink R, Burgers E, Gross J, Bruckmaier R, Kemp B, van Knegsel A. Investigating the relationship between dairy dam preconception and gestation characteristics and heifer offspring variables from birth to lactation. J Dairy Sci 2025:S0022-0302(25)00277-2. [PMID: 40306426 DOI: 10.3168/jds.2024-26138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/27/2025] [Indexed: 05/02/2025]
Abstract
Little is known about effects of maternal characteristics around gestation in cows on their female offspring in early and later life. The objective of the current study was to investigate the relationship between cow characteristics during the preconception and gestation period, and the BW, energy metabolism, hormones, immune function, liver enzymes, and milk variables of their female offspring from birth until the first 100 d after their first calving. Holstein-Friesian dairy cows (n = 154) were blocked according to parity, milk yield, and SCC, and randomly assigned to a voluntary waiting period (VWP) of 50, 125, or 200 d. Female offspring (n = 62) from those cows were monitored from birth until the first 100 DIM of the offspring's first lactation. Not all dams were inseminated successfully soon after the planned VWP, resulting in differences between the planned VWP and intended calving interval (CInt) and the actual CInt. Dam-offspring pairs were regrouped according to the dam's actual CInt (CInt_1: 324 - 408 d; CInt_2: 409 - 468 d; CInt_3: 469 - 586 d). For data analysis, the dam variables were divided into 4 stages: 4 wk before conception, and the 3 trimesters of gestation. Similarly, the heifer calf variables were divided into 3 stages: calves from birth to weaning, heifers from weaning to calving, and lactating offspring during first 100 DIM after calving. To analyze the effects of preconception and gestation characteristics in dams on female offspring, each dam variable from 4 wk before conception until calving was included separately in a regression model, with fixed effects for dam's CInt, parity, offspring's age, and their 2-way interactions, with an repeated effect of time with female offspring as the repeated subject. Higher milk lactose in dams during the preconception period and the first 2 trimesters of gestation was related to higher BW in heifers from weaning to calving. Heavier dams during the preconception period and gestation had heifers with higher levels of plasma antikeyhole limpet hemocyanin IgG and IgM from weaning to calving. Higher plasma IGF-І concentration in dams in all stages was related to higher plasma IGF-І and insulin concentrations in heifers from weaning to calving, with increasing effect size over dam's stages. Higher milk yield of dams across all stages was associated with lower milk fat content, lower plasma nonesterified fatty acids, and higher glucose concentrations of lactating offspring during the first 100 DIM of their first lactation. Greater milk lactose and lower milk fat content in dams before conception and in the first 2 trimesters of gestation were related to greater BW in lactating offspring. In conclusion, some associations between dam in different stages and female offspring variables were present for all dam periods, but some disappeared over the course of gestation. Moreover, the greatest percentage of associations (16.56%, 159 out of 960 associations with a P-value <0.05) was present when the lactation periods of dams and their female offspring were compared, that is, when dam and offspring were in a similar life stage, compared with earlier life stages of the offspring during weaning (6.17%, 37 out of 600 associations with a P-value <0.05) and rearing (11.67%, 70 out of 600 associations with a P-value <0.05).
Collapse
Affiliation(s)
- Yapin Wang
- Adaptation Physiology Group, Wageningen University & Research, 6708 WD Wageningen, the Netherlands
| | - Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, 6708 WE Wageningen, the Netherlands
| | - Roselinde Goselink
- Wageningen Livestock Research, Wageningen University & Research, 6708 WD Wageningen, the Netherlands
| | - Eline Burgers
- Adaptation Physiology Group, Wageningen University & Research, 6708 WD Wageningen, the Netherlands; Wageningen Livestock Research, Wageningen University & Research, 6708 WD Wageningen, the Netherlands
| | - Josef Gross
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
| | - Rupert Bruckmaier
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
| | - Bas Kemp
- Adaptation Physiology Group, Wageningen University & Research, 6708 WD Wageningen, the Netherlands
| | - Ariette van Knegsel
- Adaptation Physiology Group, Wageningen University & Research, 6708 WD Wageningen, the Netherlands.
| |
Collapse
|
2
|
Yeater TD, Kawarai Y, Lee S, Belani KG, Beebe DS, Sheyn D, Pinto MR, Stone LS. Investigating the epigenetic landscape of symptomatic disk degeneration: a case study. Pain Rep 2025; 10:e1237. [PMID: 39995491 PMCID: PMC11850048 DOI: 10.1097/pr9.0000000000001237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/15/2024] [Accepted: 11/13/2024] [Indexed: 02/26/2025] Open
Abstract
Introduction This study investigates the epigenetic landscape underlying painful intervertebral disk (IVD) degeneration in a single subject with a history of low back pain (LBP). Intervertebral disk degeneration is associated with LBP in some individuals; however, there is often a discrepancy between degeneration and pain. We hypothesize that DNA methylation, an epigenetic mechanism previously linked to discogenic LBP, is dysregulated in symptomatic vs asymptomatic IVDs. Objectives Identify differentially methylated genes and pathways in symptomatic vs asymptomatic IVDs. Methods Three lumbar IVDs with similar degeneration severity were tested prior to surgery by discography to identify symptomatic IVDs. Methylation analysis was performed on ∼935,000 cytosine guanine dinucleotide sites on nucleus pulposus DNA. We explored differential methylation and pathway enrichment on cytosine guanine dinucleotide sites located within the promoter regions of genes. Results Two IVDs (L3/L4 and L4/L5) evoked pain ratings of 10/10 and 8/10, one IVD (L5/S1) scored 0/10. DNA methylation differed between symptomatic and asymptomatic IVDs. Several identified genes have roles in extracellular matrix remodeling. Other differentially methylated genes were related to immunomodulation and ion channel function. Finally, several long noncoding RNA genes were identified, encouraging further exploration into these regulatory molecules. Enriched pathways were associated with immune response, hormonal regulation, nervous system development, and musculoskeletal development and remodeling. Conclusion This case study provides a promising list of candidate genes for therapeutic development for discogenic LBP and suggests a role for DNA methylation in the development of symptomatic vs asymptomatic IVD degeneration, calling for further research to validate and expand these findings.
Collapse
Affiliation(s)
- Taylor D. Yeater
- Department of Anesthesiology, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Yuya Kawarai
- Department of Orthopedic Surgery, Chiba University, Chiba, Japan
| | - Seunghwan Lee
- Department of Anesthesiology, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Kumar G. Belani
- Department of Anesthesiology, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - David S. Beebe
- Department of Anesthesiology, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Dmitriy Sheyn
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Laura S. Stone
- Department of Anesthesiology, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
3
|
Han Z, Li X, Hu F, Yang J. Meta-analysis of the Impact of Kangaroo Care on Physical Growth and Neurobehavioral Development in Premature Infants. Adv Neonatal Care 2025; 25:162-172. [PMID: 40085958 DOI: 10.1097/anc.0000000000001254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
BACKGROUND Kangaroo mother care (KMC) is recognized as an effective intervention for promoting growth and neurodevelopment in preterm infants, particularly in resource-limited settings. It addresses critical neonatal care needs by facilitating skin-to-skin contact and breastfeeding. PURPOSE This meta-analysis evaluates the impact of KMC on growth parameters and neurobehavioral development in preterm infants, while considering evidence quality. DATA SOURCES Six databases were searched for studies published in English, covering studies up to the year 2024. Additionally, citation tracking was used to identify relevant studies. STUDY SELECTION Out of 953 studies initially identified, 17 studies met the inclusion criteria and were reviewed for the meta-analysis. DATA EXTRACTION Data were abstracted and assessed for quality and validity using standardized guidelines, applied independently by multiple observers. RESULTS KMC significantly improved the weight, head circumference, and body length of preterm infants. Gestational age was found to influence outcomes: with increasing gestational age, head circumference growth slowed, while body length showed more rapid gains. KMC also demonstrated positive effects on neurodevelopmental and brain growth indicators. IMPLICATIONS FOR PRACTICE AND RESEARCH Clinically, nurses can support parents in initiating and maintaining kangaroo care, helping to enhance parental involvement during the NICU stay. While its benefits for health and neurodevelopment are well-established, further research is needed to explore its application at home. Higher-quality evidence is required to validate these findings and support broader clinical adoption in various healthcare settings.
Collapse
Affiliation(s)
- Zimin Han
- Author Affiliations: Department of Neonatology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (Ms Han, Ms Li, and Ms Hu); Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, Zhejiang, China (Dr Yang); and Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China (Yang)
| | | | | | | |
Collapse
|
4
|
Park MN, Choi J, Maharub Hossain Fahim M, Asevedo EA, Nurkolis F, Ribeiro RIMA, Kang HN, Kang S, Syahputra RA, Kim B. Phytochemical synergies in BK002: advanced molecular docking insights for targeted prostate cancer therapy. Front Pharmacol 2025; 16:1504618. [PMID: 40034825 PMCID: PMC11872924 DOI: 10.3389/fphar.2025.1504618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/20/2025] [Indexed: 03/05/2025] Open
Abstract
Achyranthes japonica (Miq.) Nakai (AJN) and Melandrium firmum (Siebold and Zucc.) Rohrb. (MFR) are medicinal plants recognized for their bioactive phytochemicals, including ecdysteroids, anthraquinones, and flavonoids. This study investigates the anticancer properties of key constituents of these plants, focusing on the BK002 formulation, a novel combination of AJN and MFR. Specifically, the research employs advanced molecular docking and in silico analyses to assess the interactions of bioactive compounds ecdysterone, inokosterone, and 20-hydroxyecdysone (20-HE) with key prostate cancer-related network proteins, including 5α-reductase, CYP17, DNMT1, Dicer, PD-1, and PD-L1. Molecular docking techniques were applied to evaluate the binding affinities contributions of the bioactive compounds in BK002 against prostate cancer-hub network targets. The primary focus was on enzymes like 5α-reductase and CYP17, which are central to androgen biosynthesis, as well as on cancer-related proteins such as DNA methyltransferase 1 (DNMT1), Dicer, programmed death-1 (PD-1), and programmed death ligand-1 (PD-L1). Based on data from prostate cancer patients, key target networks were identified, followed by in silico analysis of the primary bioactive components of BK002.In silico assessments were conducted to evaluate the safety profiles of these compounds, providing insights into their therapeutic potential. The docking studies revealed that ecdysterone, inokosterone, and 20-hydroxyecdysonec demonstrated strong binding affinities to the critical prostate cancer-related enzymes 5α-reductase and CYP17, contributing to a potential reduction in androgenic activity. These compounds also exhibited significant inhibitory interactions with DNMT1, Dicer, PD-1, and PD-L1, suggesting a capacity to interfere with key oncogenic and immune evasion pathways. Ecdysterone, inokosterone, and 20-hydroxyecdysone have demonstrated the ability to target key oncogenic pathways, and their favorable binding affinity profiles further underscore their potential as novel therapeutic agents for prostate cancer. These findings provide a strong rationale for further preclinical and clinical investigations, supporting the integration of BK002 into therapeutic regimens aimed at modulating tumor progression and immune responses.
Collapse
Affiliation(s)
- Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jinwon Choi
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | | | - Estéfani Alves Asevedo
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Experimental Pathology Laboratory, Midwest Campus, Federal University of São João del-Rei, Divinópolis, Brazil
| | - Fahrul Nurkolis
- Department of Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta, Indonesia
| | | | - Han Na Kang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Sojin Kang
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Rony Abdi Syahputra
- Department of Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta, Indonesia
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Rroji O, Mucignat C. Factors influencing brain recovery from stroke via possible epigenetic changes. Future Sci OA 2024; 10:2409609. [PMID: 39429231 PMCID: PMC11497982 DOI: 10.1080/20565623.2024.2409609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024] Open
Abstract
Aim: To examine epigenetic changes leading to functional repair after damage to the central motor system.Data sources: A literature search was conducted using medical and health science electronic databases (PubMed, MEDLINE, Scopus) up to July 2023.Study selection: Data were summarized for type of intervention, study design, findings including human and animal studies.Data extraction: Data were extracted and double-checked independently for methodological quality. By means of the influence of environmental (calorie restriction or physical exercise) and other factors, epigenetic instructions were found to increase levels of BDNF and enhance synaptic neurotransmission, possibly leading to larger scale changes in structural and functional assets, which may end up to cognitive and motor repair after stroke.
Collapse
Affiliation(s)
- Orjon Rroji
- Department of Radiology & Imaging techniques, European University of Tirana, Albania
| | - Carla Mucignat
- Department of Molecular Medicine, University of Padova, Italy
- National Institute for Biostructures & Biosystems, Rome, Italy
| |
Collapse
|
6
|
Qi X, Ullah A, Yu W, Jin X, Liu H. Estimating the Genetic Risk of First-Degree Relatives for Chronic Diseases Using the Short Tandem Repeat Score as Model of Polygenic Inheritance. Biochem Genet 2024:10.1007/s10528-024-11003-0. [PMID: 39733222 DOI: 10.1007/s10528-024-11003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 12/10/2024] [Indexed: 12/30/2024]
Abstract
This study aims to establish a genetic risk assessment model based on a score of short tandem repeats (STRs) of polygenic inheritance. A total of 396 children and their biological parents were collected for STR genotyping. The numbers of tandem repeats of two alleles in one STR locus were assumed to be a quantitative genetic strength for disease incidence. The sums of 19 STR loci were considered a quantitative genetic strength per individual. Various thresholds of the STRs between paternal, maternal, and childhood data were recorded. As an exemplar, for thresholds of 25%, the first quarter = 1. All other samples = 0. The consistency rate for heredity (CH) was calculated from the difference in the morbidity of children between parents with and without disease groups. The ratio of observed CH to expected CH was defined as the heredity index (HI). Actual Pedigree data (finger-crossing test) confirmed the accuracy of the STR score. The genetic risk of first-degree relatives could be estimated using easily acquired data (incidence in an unrelated population). Our findings can provide a polygenic genetic model for estimating the incidence and genetic risk of chronic disease in first-degree relatives.
Collapse
Affiliation(s)
- Xia Qi
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Anwar Ullah
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Weijian Yu
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Xiaojun Jin
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Hui Liu
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, People's Republic of China.
| |
Collapse
|
7
|
Abidha CA, Meeks KAC, Chilunga FP, Venema A, Schindlmayr R, Hayfron-Benjamin C, Klipstein-Grobusch K, Mockenhaupt FP, Agyemang C, Henneman P, Danquah I. A comprehensive lifestyle index and its associations with DNA methylation and type 2 diabetes among Ghanaian adults: the rodam study. Clin Epigenetics 2024; 16:143. [PMID: 39415250 PMCID: PMC11481717 DOI: 10.1186/s13148-024-01758-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND A series of modifiable lifestyle factors, such as diet quality, physical activity, alcohol intake, and smoking, may drive the rising burden of type 2 diabetes (T2DM) among sub-Saharan Africans globally. It is unclear whether epigenetic changes play a mediatory role in the associations between these lifestyle factors and T2DM. We assessed the associations between a comprehensive lifestyle index, DNA methylation and T2DM among Ghanaian adults. METHODS We used whole-blood Illumina 450 k DNA methylation data from 713 Ghanaians from the Research on Obesity and Diabetes among African Migrants (RODAM) study. We constructed a comprehensive lifestyle index based on established cut-offs for diet quality, physical activity, alcohol intake, and smoking status. In the T2DM-free discovery cohort (n = 457), linear models were fitted to identify differentially methylated positions (DMPs) and differentially methylated regions (DMRs) associated with the lifestyle index after adjustment for age, sex, body mass index (BMI), and technical covariates. Associations between the identified DMPs and the primary outcome (T2DM), as well as secondary outcomes (fasting blood glucose (FBG) and HbA1c), were determined via logistic and linear regression models, respectively. RESULTS In the present study population (mean age: 52 ± 10 years; male: 42.6%), the comprehensive lifestyle index showed a significant association with one DMP annotated to an intergenic region on chromosome 7 (false discovery rate (FDR) = 0.024). Others were annotated to ADCY7, SMARCE1, AHRR, LOXL2, and PTBP1 genes. One DMR was identified and annotated to the GFPT2 gene (familywise error rate (FWER) from bumphunter bootstrap = 0.036). None of the DMPs showed significant associations with T2DM; directions of effect were positive for the DMP in the AHRR and inverse for all the other DMPs. Higher methylation of the ADCY7 DMP was associated with higher FBG (p = 0.024); LOXL2 DMP was associated with lower FBG (p = 0.023) and HbA1c (p = 0.049); and PTBP1 DMP was associated with lower HbA1c (p = 0.002). CONCLUSIONS In this explorative epigenome-wide association study among Ghanaians, we identified one DMP and DMR associated with a comprehensive lifestyle index not previously associated with individual lifestyle factors. Based on our findings, we infer that lifestyle factors in combination, affect DNA methylation, thereby influencing the risk of T2DM among Ghanaian adults living in different contexts.
Collapse
Affiliation(s)
- C A Abidha
- Faculty of Medicine and University Hospital, Heidelberg Institute of Global Health (HIGH), Heidelberg University, Heidelberg, Germany.
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.
| | - K A C Meeks
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, USA
| | - F P Chilunga
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - A Venema
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - R Schindlmayr
- Faculty of Medicine and University Hospital, Heidelberg Institute of Global Health (HIGH), Heidelberg University, Heidelberg, Germany
| | - C Hayfron-Benjamin
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Department of Physiology, University of Ghana Medical School, Accra, Ghana
| | - Kerstin Klipstein-Grobusch
- Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, Julius Global Health, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Division of Epidemiology and Biostatistics, School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Frank P Mockenhaupt
- Institute of Tropical Medicine and International Health, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin and Humboldt-Universitaet Zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - C Agyemang
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - P Henneman
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - I Danquah
- Faculty of Medicine and University Hospital, Heidelberg Institute of Global Health (HIGH), Heidelberg University, Heidelberg, Germany.
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany.
| |
Collapse
|
8
|
Balard A, Baltazar-Soares M, Eizaguirre C, Heckwolf MJ. An epigenetic toolbox for conservation biologists. Evol Appl 2024; 17:e13699. [PMID: 38832081 PMCID: PMC11146150 DOI: 10.1111/eva.13699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 06/05/2024] Open
Abstract
Ongoing climatic shifts and increasing anthropogenic pressures demand an efficient delineation of conservation units and accurate predictions of populations' resilience and adaptive potential. Molecular tools involving DNA sequencing are nowadays routinely used for these purposes. Yet, most of the existing tools focusing on sequence-level information have shortcomings in detecting signals of short-term ecological relevance. Epigenetic modifications carry valuable information to better link individuals, populations, and species to their environment. Here, we discuss a series of epigenetic monitoring tools that can be directly applied to various conservation contexts, complementing already existing molecular monitoring frameworks. Focusing on DNA sequence-based methods (e.g. DNA methylation, for which the applications are readily available), we demonstrate how (a) the identification of epi-biomarkers associated with age or infection can facilitate the determination of an individual's health status in wild populations; (b) whole epigenome analyses can identify signatures of selection linked to environmental conditions and facilitate estimating the adaptive potential of populations; and (c) epi-eDNA (epigenetic environmental DNA), an epigenetic-based conservation tool, presents a non-invasive sampling method to monitor biological information beyond the mere presence of individuals. Overall, our framework refines conservation strategies, ensuring a comprehensive understanding of species' adaptive potential and persistence on ecologically relevant timescales.
Collapse
Affiliation(s)
- Alice Balard
- School of Biological and Behavioural Sciences Queen Mary University of London London UK
| | | | - Christophe Eizaguirre
- School of Biological and Behavioural Sciences Queen Mary University of London London UK
| | - Melanie J Heckwolf
- Department of Ecology Leibniz Centre for Tropical Marine Research Bremen Germany
| |
Collapse
|
9
|
Zheng CY, Yu YX, Cao SY, Bai X. Epigenetics of inflammation in hypothalamus pituitary gonadal and neuroendocrine disorders. Semin Cell Dev Biol 2024; 154:340-345. [PMID: 37142487 DOI: 10.1016/j.semcdb.2023.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/01/2023] [Accepted: 04/01/2023] [Indexed: 05/06/2023]
Abstract
The hormone producing hypothalamus, pituitary and gonadal are arranged in hierarchy to form the hypothalamic-pituitary-gonadal axis (HPG axis). The axis is neuroendocrine in nature and releases hormones in response to the inputs from nervous systems. The axis maintains homeostasis and ensures smooth body functions, particularly those related to growth and reproduction. A deregulated HPG axis, such as observed under inflammation and other conditions, is therefore associated with several disorders such as polycystic ovary syndrome, functional hypothalamic amenorrhea etc. Several factors, both genetic as well as environmental, in addition to aging, obesity etc. affect HPG axis with resulting effects on puberty, sexual maturation and reproductive health. More research is now indicative of a role of epigenetics in mediating these HPG-affecting factors. Hypothalamus-secreted gonadotropin-releasing hormone is important for eventual release of sex hormones and it is subjected to several neuronal and epigenetic regulations. Gene promoter methylation as well as histone methylations and acetylations form the backbone of epigenetic regulation of HPG-axis, as the incoming reports suggest. Epigenetic events also mediate several feedback mechanisms within HPG axis and between HPG axis and the central nervous system. In addition, data is emerging for a role of non-coding RNAs, particularly the miRNAs, in regulation and normal functioning of HPG axis. Thus, the epigenetic interactions need better understanding to understand the functioning and regulation of HPG axis.
Collapse
Affiliation(s)
- Chun-Yang Zheng
- Embryo Laboratory, Jinghua Hospital of Shenyang, No. 83, Zhongshan Road, Heping District, Shenyang 110000, Liaoning Province, China
| | - Yue-Xin Yu
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, No. 5, Guangrong Street, Heping District, Shenyang 110000, Liaoning Province, China
| | - Shi-Yue Cao
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, No. 5, Guangrong Street, Heping District, Shenyang 110000, Liaoning Province, China
| | - Xue Bai
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, No. 5, Guangrong Street, Heping District, Shenyang 110000, Liaoning Province, China.
| |
Collapse
|
10
|
Wikumpriya GC, Prabhatha MWS, Lee J, Kim CH. Epigenetic Modulations for Prevention of Infectious Diseases in Shrimp Aquaculture. Genes (Basel) 2023; 14:1682. [PMID: 37761822 PMCID: PMC10531180 DOI: 10.3390/genes14091682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Aquaculture assumes a pivotal role in meeting the escalating global food demand, and shrimp farming, in particular, holds a significant role in the global economy and food security, providing a rich source of nutrients for human consumption. Nonetheless, the industry faces formidable challenges, primarily attributed to disease outbreaks and the diminishing efficacy of conventional disease management approaches, such as antibiotic usage. Consequently, there is an urgent imperative to explore alternative strategies to ensure the sustainability of the industry. In this context, the field of epigenetics emerges as a promising avenue for combating infectious diseases in shrimp aquaculture. Epigenetic modulations entail chemical alterations in DNA and proteins, orchestrating gene expression patterns without modifying the underlying DNA sequence through DNA methylation, histone modifications, and non-coding RNA molecules. Utilizing epigenetic mechanisms presents an opportunity to enhance immune gene expression and bolster disease resistance in shrimp, thereby contributing to disease management strategies and optimizing shrimp health and productivity. Additionally, the concept of epigenetic inheritability in marine animals holds immense potential for the future of the shrimp farming industry. To this end, this comprehensive review thoroughly explores the dynamics of epigenetic modulations in shrimp aquaculture, with a particular emphasis on its pivotal role in disease management. It conveys the significance of harnessing advantageous epigenetic changes to ensure the long-term viability of shrimp farming while deliberating on the potential consequences of these interventions. Overall, this appraisal highlights the promising trajectory of epigenetic applications, propelling the field toward strengthening sustainability in shrimp aquaculture.
Collapse
Affiliation(s)
| | | | | | - Chan-Hee Kim
- Division of Fisheries Life Science, Pukyong National University, Busan 48513, Republic of Korea (M.W.S.P.); (J.L.)
| |
Collapse
|
11
|
Kuehner JN, Walia NR, Seong R, Li Y, Martinez-Feduchi P, Yao B. Social defeat stress induces genome-wide 5mC and 5hmC alterations in the mouse brain. G3 (BETHESDA, MD.) 2023; 13:jkad114. [PMID: 37228107 PMCID: PMC10411578 DOI: 10.1093/g3journal/jkad114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/13/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Stress is adverse experience that require constant adaptation to reduce the emotional and physiological burden, or "allostatic load", of an individual. Despite their everyday occurrence, a subpopulation of individuals is more susceptible to stressors, while others remain resilient with unknown molecular signatures. In this study, we investigated the contribution of the DNA modifications, 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC), underlying the individual differences in stress susceptibility and resilience. Genome-wide 5mC and 5hmC profiles from 3- and 6-month adult male mice that underwent various durations of social defeat were generated. In 3-month animals, 5mC and 5hmC work in parallel and do not distinguish between stress-susceptible and resilient phenotypes, while in 6-month animals, 5mC and 5hmC show distinct enrichment patterns. Acute stress responses may epigenetically "prime" the animals to either increase or decrease their predisposition to depression susceptibility. In support of this, re-exposure studies reveal that the enduring effects of social defeat affect differential biological processes between susceptible and resilient animals. Finally, the stress-induced 5mC and 5hmC fluctuations across the acute-chronic-longitudinal time course demonstrate that the negative outcomes of chronic stress do not discriminate between susceptible and resilient animals. However, resilience is more associated with neuroprotective processes while susceptibility is linked to neurodegenerative processes. Furthermore, 5mC appears to be responsible for acute stress response, whereas 5hmC may function as a persistent and stable modification in response to stress. Our study broadens the scope of previous research offering a comprehensive analysis of the role of DNA modifications in stress-induced depression.
Collapse
Affiliation(s)
- Janise N Kuehner
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | - Nevin R Walia
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | - Rachel Seong
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | - Yangping Li
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | - Paula Martinez-Feduchi
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| |
Collapse
|
12
|
Heredia-Mendez AJ, Sánchez-Sánchez G, López-Camarillo C. Reprogramming of the Genome-Wide DNA Methylation Landscape in Three-Dimensional Cancer Cell Cultures. Cancers (Basel) 2023; 15:1991. [PMID: 37046652 PMCID: PMC10093594 DOI: 10.3390/cancers15071991] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 03/29/2023] Open
Abstract
During the last century, 2D cell cultures have been the tool most widely used to study cancer biology, drug discovery, genomics, and the regulation of gene expression at genetic/epigenetic levels. However, this experimental approach has limitations in faithfully recreating the microenvironment and cellular processes occurring in tumors. For these reasons, 3D cell cultures have recently been implemented to optimize the conditions that better recreate the biological and molecular features of tumors, including cell-cell and cell-extracellular matrix (ECM) interactions, growth kinetics, metabolic activities, and the development of gradients in the cellular microenvironment affecting the availability of oxygen and nutrients. In this sense, tumor cells receive stimuli from the local environment, resulting in significant changes in their signaling pathways, gene expression, and transcriptional and epigenetic patterns. In this review, we discuss how different types of 3D cell culture models can be applied to characterize the epigenetic footprints of cancer cell lines, emphasizing that DNA methylation patterns play an essential role in the emergence and development of cancer. However, how 3D cancer cell cultures remodel the epigenetic programs is poorly understood, with very few studies in this emerging topic. Here, we have summarized the studies on the reprogramming of the epigenetic landscape of DNA methylation during tumorigenesis and discuss how it may be affected by microenvironmental factors, specifically in 3D cell cultures.
Collapse
Affiliation(s)
| | | | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, San Lorenzo 290, Colonia del Valle Sur, Ciudad de Mexico 03100, Mexico
| |
Collapse
|
13
|
Holladay SD. Environmental contaminants, endocrine disruption, and transgender: Can "born that way" in some cases be toxicologically real? Hum Exp Toxicol 2023; 42:9603271231203382. [PMID: 37751728 DOI: 10.1177/09603271231203382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Gender is viewed by many as strictly binary based on a collection of body traits typical of a female or male phenotype, presence of a genotype that includes at least one copy of a Y chromosome, or ability to produce either egg or sperm cells. A growing non-binary view is that these descriptors, while compelling, may nonetheless fail to accurately capture an individual's true gender. The position of the American Psychological Association (APA) agrees with this view and is that transgender people are a defendable and real part of the human population. The considerable diversity of transgender expression then argues against any unitary or simple explanations, however, prenatal hormone levels, genetic influences, and early and later life experiences have been suggested as playing roles in development of transgender identities. The present review considers existing and emerging toxicologic data that may also support an environmental chemical contribution to some transgender identities, and suggest the possibility of a growing nonbinary brain gender continuum in the human population.
Collapse
Affiliation(s)
- Steven David Holladay
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
14
|
Raval M, Mishra S, Tiwari AK. Epigenetic regulons in Alzheimer's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 198:185-247. [DOI: 10.1016/bs.pmbts.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
15
|
Lai CQ, Parnell LD, Lee YC, Zeng H, Smith CE, McKeown NM, Arnett DK, Ordovás JM. The impact of alcoholic drinks and dietary factors on epigenetic markers associated with triglyceride levels. Front Genet 2023; 14:1117778. [PMID: 36873949 PMCID: PMC9975169 DOI: 10.3389/fgene.2023.1117778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Background: Many epigenetic loci have been associated with plasma triglyceride (TG) levels, but epigenetic connections between those loci and dietary exposures are largely unknown. This study aimed to characterize the epigenetic links between diet, lifestyle, and TG. Methods: We first conducted an epigenome-wide association study (EWAS) for TG in the Framingham Heart Study Offspring population (FHS, n = 2,264). We then examined relationships between dietary and lifestyle-related variables, collected four times in 13 years, and differential DNA methylation sites (DMSs) associated with the last TG measures. Third, we conducted a mediation analysis to evaluate the causal relationships between diet-related variables and TG. Finally, we replicated three steps to validate identified DMSs associated with alcohol and carbohydrate intake in the Genetics of Lipid-Lowering Drugs and Diet Network (GOLDN) study (n = 993). Results: In the FHS, the EWAS revealed 28 TG-associated DMSs at 19 gene regions. We identified 102 unique associations between these DMSs and one or more dietary and lifestyle-related variables. Alcohol and carbohydrate intake showed the most significant and consistent associations with 11 TG-associated DMSs. Mediation analyses demonstrated that alcohol and carbohydrate intake independently affect TG via DMSs as mediators. Higher alcohol intake was associated with lower methylation at seven DMSs and higher TG. In contrast, increased carbohydrate intake was associated with higher DNA methylation at two DMSs (CPT1A and SLC7A11) and lower TG. Validation in the GOLDN further supports the findings. Conclusion: Our findings imply that TG-associated DMSs reflect dietary intakes, particularly alcoholic drinks, which could affect the current cardiometabolic risk via epigenetic changes. This study illustrates a new method to map epigenetic signatures of environmental factors for disease risk. Identification of epigenetic markers of dietary intake can provide insight into an individual's risk of cardiovascular disease and support the application of precision nutrition. Clinical Trial Registration: www.ClinicalTrials.gov, the Framingham Heart Study (FHS), NCT00005121; the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN), NCT01023750.
Collapse
Affiliation(s)
- Chao-Qiang Lai
- USDA ARS, Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Laurence D Parnell
- USDA ARS, Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Yu-Chi Lee
- USDA ARS, Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Haihan Zeng
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Caren E Smith
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Nicola M McKeown
- Programs of Nutrition, Department of Health Sciences, Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, MA, United States.,Nutrition Epidemiology and Data Science Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States
| | - Donna K Arnett
- Office of the Provost, University of South Carolina, Columbia, SC, United States
| | - José M Ordovás
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States.,IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| |
Collapse
|
16
|
Thomas JM, Sasankan D, Abraham M, Surendran S, Kartha CC, Rajavelu A. DNA methylation signatures on vascular differentiation genes are aberrant in vessels of human cerebral arteriovenous malformation nidus. Clin Epigenetics 2022; 14:127. [PMID: 36229855 PMCID: PMC9563124 DOI: 10.1186/s13148-022-01346-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 10/02/2022] [Indexed: 12/04/2022] Open
Abstract
Arteriovenous malformation (AVM) is a tangle of arteries and veins, rupture of which can result in catastrophic hemorrhage in vulnerable sites such as the brain. Cerebral AVM is associated with a high mortality rate in humans. The causative factor or the stimulus at the artery-venous junction and the molecular basis of the development and progression of cerebral AVM remain unknown. While it is known that aberrant hemodynamic forces in the artery-vein junction contribute to the development of AVMs, the mechanistic pathways are unclear. Given that various environmental stimuli modulate epigenetic modifications on the chromatin of cells, we speculated that misregulated DNA methylome could lead to cerebral AVM development. To identify the aberrant epigenetic signatures, we used AVM nidus tissues and analyzed the global DNA methylome using the Infinium DNA methylome array. We observed significant alterations of DNA methylation in the genes associated with the vascular developmental pathway. Further, we validated the DNA hypermethylation by DNA bisulfite sequencing analysis of selected genes from human cerebral AVM nidus. Taken together, we provide the first experimental evidence for aberrant epigenetic signatures on the genes of vascular development pathway, in human cerebral AVM nidus.
Collapse
Affiliation(s)
- Jaya Mary Thomas
- Cardio Vascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud, Thiruvananthapuram, Kerala, India, 695014
| | - Dhakshmi Sasankan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Chennai, Tamil Nadu, 600036, India
| | - Mathew Abraham
- Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India, 695011
| | - Sumi Surendran
- Cardio Vascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thycaud, Thiruvananthapuram, Kerala, India, 695014
| | - Chandrasekharan C Kartha
- Department of Neurology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India.
| | - Arumugam Rajavelu
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Chennai, Tamil Nadu, 600036, India.
| |
Collapse
|
17
|
Alva R, Mirza M, Baiton A, Lazuran L, Samokysh L, Bobinski A, Cowan C, Jaimon A, Obioru D, Al Makhoul T, Stuart JA. Oxygen toxicity: cellular mechanisms in normobaric hyperoxia. Cell Biol Toxicol 2022; 39:111-143. [PMID: 36112262 PMCID: PMC9483325 DOI: 10.1007/s10565-022-09773-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/07/2022] [Indexed: 12/15/2022]
Abstract
In clinical settings, oxygen therapy is administered to preterm neonates and to adults with acute and chronic conditions such as COVID-19, pulmonary fibrosis, sepsis, cardiac arrest, carbon monoxide poisoning, and acute heart failure. In non-clinical settings, divers and astronauts may also receive supplemental oxygen. In addition, under current standard cell culture practices, cells are maintained in atmospheric oxygen, which is several times higher than what most cells experience in vivo. In all the above scenarios, the elevated oxygen levels (hyperoxia) can lead to increased production of reactive oxygen species from mitochondria, NADPH oxidases, and other sources. This can cause cell dysfunction or death. Acute hyperoxia injury impairs various cellular functions, manifesting ultimately as physiological deficits. Chronic hyperoxia, particularly in the neonate, can disrupt development, leading to permanent deficiencies. In this review, we discuss the cellular activities and pathways affected by hyperoxia, as well as strategies that have been developed to ameliorate injury.
Collapse
Affiliation(s)
- Ricardo Alva
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Maha Mirza
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Adam Baiton
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Lucas Lazuran
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Lyuda Samokysh
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Ava Bobinski
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Cale Cowan
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Alvin Jaimon
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Dede Obioru
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Tala Al Makhoul
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Jeffrey A Stuart
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
18
|
JMJD family proteins in cancer and inflammation. Signal Transduct Target Ther 2022; 7:304. [PMID: 36050314 PMCID: PMC9434538 DOI: 10.1038/s41392-022-01145-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/22/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
The occurrence of cancer entails a series of genetic mutations that favor uncontrollable tumor growth. It is believed that various factors collectively contribute to cancer, and there is no one single explanation for tumorigenesis. Epigenetic changes such as the dysregulation of enzymes modifying DNA or histones are actively involved in oncogenesis and inflammatory response. The methylation of lysine residues on histone proteins represents a class of post-translational modifications. The human Jumonji C domain-containing (JMJD) protein family consists of more than 30 members. The JMJD proteins have long been identified with histone lysine demethylases (KDM) and histone arginine demethylases activities and thus could function as epigenetic modulators in physiological processes and diseases. Importantly, growing evidence has demonstrated the aberrant expression of JMJD proteins in cancer and inflammatory diseases, which might serve as an underlying mechanism for the initiation and progression of such diseases. Here, we discuss the role of key JMJD proteins in cancer and inflammation, including the intensively studied histone lysine demethylases, as well as the understudied group of JMJD members. In particular, we focused on epigenetic changes induced by each JMJD member and summarized recent research progress evaluating their therapeutic potential for the treatment of cancer and inflammatory diseases.
Collapse
|
19
|
Schaffner SL, Kobor MS. DNA methylation as a mediator of genetic and environmental influences on Parkinson's disease susceptibility: Impacts of alpha-Synuclein, physical activity, and pesticide exposure on the epigenome. Front Genet 2022; 13:971298. [PMID: 36061205 PMCID: PMC9437223 DOI: 10.3389/fgene.2022.971298] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder with a complex etiology and increasing prevalence worldwide. As PD is influenced by a combination of genetic and environment/lifestyle factors in approximately 90% of cases, there is increasing interest in identification of the interindividual mechanisms underlying the development of PD as well as actionable lifestyle factors that can influence risk. This narrative review presents an outline of the genetic and environmental factors contributing to PD risk and explores the possible roles of cytosine methylation and hydroxymethylation in the etiology and/or as early-stage biomarkers of PD, with an emphasis on epigenome-wide association studies (EWAS) of PD conducted over the past decade. Specifically, we focused on variants in the SNCA gene, exposure to pesticides, and physical activity as key contributors to PD risk. Current research indicates that these factors individually impact the epigenome, particularly at the level of CpG methylation. There is also emerging evidence for interaction effects between genetic and environmental contributions to PD risk, possibly acting across multiple omics layers. We speculated that this may be one reason for the poor replicability of the results of EWAS for PD reported to date. Our goal is to provide direction for future epigenetics studies of PD to build upon existing foundations and leverage large datasets, new technologies, and relevant statistical approaches to further elucidate the etiology of this disease.
Collapse
Affiliation(s)
- Samantha L. Schaffner
- Edwin S. H. Leong Healthy Aging Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Michael S. Kobor
- Edwin S. H. Leong Healthy Aging Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
20
|
Vieujean S, Caron B, Haghnejad V, Jouzeau JY, Netter P, Heba AC, Ndiaye NC, Moulin D, Barreto G, Danese S, Peyrin-Biroulet L. Impact of the Exposome on the Epigenome in Inflammatory Bowel Disease Patients and Animal Models. Int J Mol Sci 2022; 23:7611. [PMID: 35886959 PMCID: PMC9321337 DOI: 10.3390/ijms23147611] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory disorders of the gastrointestinal tract that encompass two main phenotypes, namely Crohn's disease and ulcerative colitis. These conditions occur in genetically predisposed individuals in response to environmental factors. Epigenetics, acting by DNA methylation, post-translational histones modifications or by non-coding RNAs, could explain how the exposome (or all environmental influences over the life course, from conception to death) could influence the gene expression to contribute to intestinal inflammation. We performed a scoping search using Medline to identify all the elements of the exposome that may play a role in intestinal inflammation through epigenetic modifications, as well as the underlying mechanisms. The environmental factors epigenetically influencing the occurrence of intestinal inflammation are the maternal lifestyle (mainly diet, the occurrence of infection during pregnancy and smoking); breastfeeding; microbiota; diet (including a low-fiber diet, high-fat diet and deficiency in micronutrients); smoking habits, vitamin D and drugs (e.g., IBD treatments, antibiotics and probiotics). Influenced by both microbiota and diet, short-chain fatty acids are gut microbiota-derived metabolites resulting from the anaerobic fermentation of non-digestible dietary fibers, playing an epigenetically mediated role in the integrity of the epithelial barrier and in the defense against invading microorganisms. Although the impact of some environmental factors has been identified, the exposome-induced epimutations in IBD remain a largely underexplored field. How these environmental exposures induce epigenetic modifications (in terms of duration, frequency and the timing at which they occur) and how other environmental factors associated with IBD modulate epigenetics deserve to be further investigated.
Collapse
Affiliation(s)
- Sophie Vieujean
- Hepato-Gastroenterology and Digestive Oncology, University Hospital CHU of Liège, 4000 Liege, Belgium;
| | - Bénédicte Caron
- Department of Gastroenterology NGERE (INSERM U1256), Nancy University Hospital, University of Lorraine, Vandœuvre-lès-Nancy, F-54052 Nancy, France; (B.C.); (V.H.)
| | - Vincent Haghnejad
- Department of Gastroenterology NGERE (INSERM U1256), Nancy University Hospital, University of Lorraine, Vandœuvre-lès-Nancy, F-54052 Nancy, France; (B.C.); (V.H.)
| | - Jean-Yves Jouzeau
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
| | - Patrick Netter
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
| | - Anne-Charlotte Heba
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), National Institute of Health and Medical Research, University of Lorraine, F-54000 Nancy, France; (A.-C.H.); (N.C.N.)
| | - Ndeye Coumba Ndiaye
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), National Institute of Health and Medical Research, University of Lorraine, F-54000 Nancy, France; (A.-C.H.); (N.C.N.)
| | - David Moulin
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
| | - Guillermo Barreto
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Universidad de la Salud del Estado de Puebla, Puebla 72000, Mexico
| | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and University Vita-Salute San Raffaele, 20132 Milan, Italy;
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology NGERE (INSERM U1256), Nancy University Hospital, University of Lorraine, Vandœuvre-lès-Nancy, F-54052 Nancy, France; (B.C.); (V.H.)
| |
Collapse
|
21
|
Ding L, Schmitt LT, Brux M, Sürün D, Augsburg M, Lansing F, Mircetic J, Theis M, Buchholz F. DNA methylation-independent long-term epigenetic silencing with dCRISPR/Cas9 fusion proteins. Life Sci Alliance 2022; 5:e202101321. [PMID: 35288457 PMCID: PMC8921183 DOI: 10.26508/lsa.202101321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 01/03/2023] Open
Abstract
The programmable CRISPR/Cas9 DNA nuclease is a versatile genome editing tool, but it requires the host cell DNA repair machinery to alter genomic sequences. This fact leads to unpredictable changes of the genome at the cut sites. Genome editing tools that can alter the genome without causing DNA double-strand breaks are therefore in high demand. Here, we show that expression of promoter-associated short guide (sg)RNAs together with dead Cas9 (dCas9) fused to a Krüppel-associated box domains (KRABd) in combination with the transcription repression domain of methyl CpG-binding protein 2 (MeCP2) can lead to persistent gene silencing in mouse embryonic stem cells and in human embryonic kidney (HEK) 293 cells. Surprisingly, this effect is achievable and even enhanced in DNA (cytosine-5)-methyltransferase 3A and 3B (Dnmt3A-/-, Dnmt3b-/-) depleted cells. Our results suggest that dCas9-KRABd-MeCP2 fusions are useful for long-term epigenetic gene silencing with utility in cell biology and potentially in therapeutical settings.
Collapse
Affiliation(s)
- Li Ding
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Lukas Theo Schmitt
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Melanie Brux
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC) Dresden, German Cancer Research Center (DKFZ), University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Duran Sürün
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Martina Augsburg
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Felix Lansing
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Jovan Mircetic
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
- Mildred Scheel Early Career Center, National Center for Tumor Diseases Dresden (NCT/UCC), Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Mirko Theis
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC) Dresden, German Cancer Research Center (DKFZ), University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Frank Buchholz
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC) Dresden, German Cancer Research Center (DKFZ), University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Site Dresden, Dresden, Germany
| |
Collapse
|
22
|
Sanchez A, Penault-Llorca F, Bignon YJ, Guy L, Bernard-Gallon D. Effects of GSK-J4 on JMJD3 Histone Demethylase in Mouse Prostate Cancer Xenografts. Cancer Genomics Proteomics 2022; 19:339-349. [PMID: 35430567 DOI: 10.21873/cgp.20324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/04/2022] [Accepted: 02/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND/AIM Histone methylation status is required to control gene expression. H3K27me3 is an epigenetic tri-methylation modification to histone H3 controlled by the demethylase JMJD3. JMJD3 is dysregulated in a wide range of cancers and has been shown to control the expression of a specific growth-modulatory gene signature, making it an interesting candidate to better understand prostate tumor progression in vivo. This study aimed to identify the impact of JMJD3 inhibition by its inhibitor, GSK4, on prostate tumor growth in vivo. MATERIALS AND METHODS Prostate cancer cell lines were implanted into Balb/c nude male mice. The effects of the selective JMJD3 inhibitor GSK-J4 on tumor growth were analyzed by bioluminescence assays and H3K27me3-regulated changes in gene expression were analyzed by ChIP-qPCR and RT-qPCR. RESULTS JMJD3 inhibition contributed to an increase in tumor growth in androgen-independent (AR-) xenografts and a decrease in androgen-dependent (AR+). GSK-J4 treatment modulated H3K27me3 enrichment on the gene panel in DU-145-luc xenografts while it had little effect on PC3-luc and no effect on LNCaP-luc. Effects of JMJD3 inhibition affected the panel gene expression. CONCLUSION JMJD3 has a differential effect in prostate tumor progression according to AR status. Our results suggest that JMJD3 is able to play a role independently of its demethylase function in androgen-independent prostate cancer. The effects of GSK-J4 on AR+ prostate xenografts led to a decrease in tumor growth.
Collapse
Affiliation(s)
- Anna Sanchez
- Department of Oncogenetics, Centre Jean Perrin, Clermont-Ferrand, France.,INSERM U 1240 Molecular Imagery and Theranostic Strategies (IMoST), Clermont-Ferrand, France
| | - Frédérique Penault-Llorca
- INSERM U 1240 Molecular Imagery and Theranostic Strategies (IMoST), Clermont-Ferrand, France.,Department of Biopathology, Centre Jean Perrin, Clermont-Ferrand, France
| | - Yves-Jean Bignon
- Department of Oncogenetics, Centre Jean Perrin, Clermont-Ferrand, France.,INSERM U 1240 Molecular Imagery and Theranostic Strategies (IMoST), Clermont-Ferrand, France
| | - Laurent Guy
- INSERM U 1240 Molecular Imagery and Theranostic Strategies (IMoST), Clermont-Ferrand, France.,Department of Urology, Gabriel Montpied Hospital, Clermont-Ferrand, France
| | - Dominique Bernard-Gallon
- Department of Oncogenetics, Centre Jean Perrin, Clermont-Ferrand, France; .,INSERM U 1240 Molecular Imagery and Theranostic Strategies (IMoST), Clermont-Ferrand, France
| |
Collapse
|
23
|
Ambrosini S, Gorica E, Mohammed SA, Costantino S, Ruschitzka F, Paneni F. Epigenetic remodeling in heart failure with preserved ejection fraction. Curr Opin Cardiol 2022; 37:219-226. [PMID: 35275888 PMCID: PMC9415220 DOI: 10.1097/hco.0000000000000961] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW In this review, we critically address the role of epigenetic processing and its therapeutic modulation in heart failure with preserved ejection fraction (HFpEF). RECENT FINDINGS HFpEF associates with a poor prognosis and the identification of novel molecular targets and therapeutic approaches are in high demand. Emerging evidence indicates a key involvement of epigenetic signals in the regulation of transcriptional programs underpinning features of HFpEF. The growing understanding of chromatin dynamics has led to the development of selective epigenetic drugs able to reset transcriptional changes thus delaying or preventing the progression toward HFpEF. Epigenetic information in the setting of HFpEF can be employed to: (i) dissect novel epigenetic networks and chromatin marks contributing to HFpEF; (ii) unveil circulating and cell-specific epigenetic biomarkers; (iii) build predictive models by using computational epigenetics and deep machine learning; (iv) develop new chromatin modifying drugs for personalized management of HFpEF. SUMMARY Acquired epigenetic signatures during the lifetime can contribute to derail molecular pathways involved in HFpEF. A scrutiny investigation of the individual epigenetic landscape will offer opportunities to develop personalized epigenetic biomarkers and therapies to fight HFpEF in the decades to come.
Collapse
Affiliation(s)
- Samuele Ambrosini
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Era Gorica
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Sarah Costantino
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | | | - Francesco Paneni
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
- University Heart Center, Cardiology
- Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
24
|
Lorenzo PM, Izquierdo AG, Rodriguez-Carnero G, Fernández-Pombo A, Iglesias A, Carreira MC, Tejera C, Bellido D, Martinez-Olmos MA, Leis R, Casanueva FF, Crujeiras AB. Epigenetic Effects of Healthy Foods and Lifestyle Habits from the Southern European Atlantic Diet Pattern: A Narrative Review. Adv Nutr 2022; 13:1725-1747. [PMID: 35421213 PMCID: PMC9526853 DOI: 10.1093/advances/nmac038] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/21/2022] [Indexed: 01/28/2023] Open
Abstract
Recent scientific evidence has shown the importance of diet and lifestyle habits for the proper functioning of the human body. A balanced and healthy diet, physical activity, and psychological well-being have a direct beneficial effect on health and can have a crucial role in the development and prognosis of certain diseases. The Southern European Atlantic diet, also named the Atlantic diet, is a unique dietary pattern that occurs in regions that present higher life expectancy, suggesting that this specific dietary pattern is associated with positive health effects. In fact, it is enriched with nutrients of high biological value, which, together with its cooking methods, physical activity promotion, reduction in carbon footprint, and promoting of family meals, promote these positive effects on health. The latest scientific advances in the field of nutri-epigenetics have revealed that epigenetic markers associated with food or nutrients and environmental factors modulate gene expression and, therefore, are involved with both health and disease. Thus, in this review, we evaluated the main aspects that define the Southern European Atlantic diet and the potential epigenetic changes associated with them based on recent studies regarding the main components of these dietary patterns. In conclusion, based on the information existing in the literature, we postulate that the Southern European Atlantic diet could promote healthy aging by means of epigenetic mechanisms. This review highlights the necessity of performing longitudinal studies to demonstrate this proposal.
Collapse
Affiliation(s)
- Paula M Lorenzo
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain
| | - Andrea G Izquierdo
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain
| | - Gemma Rodriguez-Carnero
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain,Endocrinology and Nutrition Division, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Antía Fernández-Pombo
- Endocrinology and Nutrition Division, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Alba Iglesias
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Marcos C Carreira
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain,Molecular and Cellular Endocrinology Group. Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain
| | - Cristina Tejera
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain,Endocrinology and Nutrition Unit, Complejo Hospitalario Universitario de Ferrol (CHUF/SERGAS), Ferrol, Spain
| | - Diego Bellido
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain,Endocrinology and Nutrition Unit, Complejo Hospitalario Universitario de Ferrol (CHUF/SERGAS), Ferrol, Spain
| | - Miguel A Martinez-Olmos
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain,Endocrinology and Nutrition Division, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Rosaura Leis
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain,Department of Pediatrics, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS); Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain,Fundacion Dieta Atlántica, Santiago de Compostela, Spain
| | - Felipe F Casanueva
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain,Molecular and Cellular Endocrinology Group. Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain,Fundacion Dieta Atlántica, Santiago de Compostela, Spain
| | | |
Collapse
|
25
|
Raboanatahiry N, Chao H, He J, Li H, Yin Y, Li M. Construction of a Quantitative Genomic Map, Identification and Expression Analysis of Candidate Genes for Agronomic and Disease-Related Traits in Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:862363. [PMID: 35360294 PMCID: PMC8963808 DOI: 10.3389/fpls.2022.862363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/15/2022] [Indexed: 06/12/2023]
Abstract
Rapeseed is the second most important oil crop in the world. Improving seed yield and seed oil content are the two main highlights of the research. Unfortunately, rapeseed development is frequently affected by different diseases. Extensive research has been made through many years to develop elite cultivars with high oil, high yield, and/or disease resistance. Quantitative trait locus (QTL) analysis has been one of the most important strategies in the genetic deciphering of agronomic characteristics. To comprehend the distribution of these QTLs and to uncover the key regions that could simultaneously control multiple traits, 4,555 QTLs that have been identified during the last 25 years were aligned in one unique map, and a quantitative genomic map which involved 128 traits from 79 populations developed in 12 countries was constructed. The present study revealed 517 regions of overlapping QTLs which harbored 2,744 candidate genes and might affect multiple traits, simultaneously. They could be selected to customize super-rapeseed cultivars. The gene ontology and the interaction network of those candidates revealed genes that highly interacted with the other genes and might have a strong influence on them. The expression and structure of these candidate genes were compared in eight rapeseed accessions and revealed genes of similar structures which were expressed differently. The present study enriches our knowledge of rapeseed genome characteristics and diversity, and it also provided indications for rapeseed molecular breeding improvement in the future.
Collapse
Affiliation(s)
- Nadia Raboanatahiry
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo Chao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jianjie He
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Huaixin Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yongtai Yin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Pardo JC, Ruiz de Porras V, Gil J, Font A, Puig-Domingo M, Jordà M. Lipid Metabolism and Epigenetics Crosstalk in Prostate Cancer. Nutrients 2022; 14:851. [PMID: 35215499 PMCID: PMC8874497 DOI: 10.3390/nu14040851] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/27/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PCa) is the most commonly diagnosed malignant neoplasm in men in the Western world. Localized low-risk PCa has an excellent prognosis thanks to effective local treatments; however, despite the incorporation of new therapeutic strategies, metastatic PCa remains incurable mainly due to disease heterogeneity and the development of resistance to therapy. The mechanisms underlying PCa progression and therapy resistance are multiple and include metabolic reprogramming, especially in relation to lipid metabolism, as well as epigenetic remodelling, both of which enable cancer cells to adapt to dynamic changes in the tumour. Interestingly, metabolism and epigenetics are interconnected. Metabolism can regulate epigenetics through the direct influence of metabolites on epigenetic processes, while epigenetics can control metabolism by directly or indirectly regulating the expression of metabolic genes. Moreover, epidemiological studies suggest an association between a high-fat diet, which can alter the availability of metabolites, and PCa progression. Here, we review the alterations of lipid metabolism and epigenetics in PCa, before focusing on the mechanisms that connect them. We also discuss the influence of diet in this scenario. This information may help to identify prognostic and predictive biomarkers as well as targetable vulnerabilities.
Collapse
Affiliation(s)
- Juan C. Pardo
- Department of Medical Oncology, Catalan Institute of Oncology, University Hospital Germans Trias i Pujol, Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.C.P.); (A.F.)
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain;
| | - Vicenç Ruiz de Porras
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain;
- Germans Trias i Pujol Research Institute (IGTP), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.G.); (M.P.-D.)
| | - Joan Gil
- Germans Trias i Pujol Research Institute (IGTP), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.G.); (M.P.-D.)
- Department of Endocrinology and Medicine, CIBERER U747, ISCIII, Research Center for Pituitary Diseases, Hospital Sant Pau, IIB-SPau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Albert Font
- Department of Medical Oncology, Catalan Institute of Oncology, University Hospital Germans Trias i Pujol, Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.C.P.); (A.F.)
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain;
| | - Manel Puig-Domingo
- Germans Trias i Pujol Research Institute (IGTP), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.G.); (M.P.-D.)
- Department of Endocrinology and Nutrition, University Germans Trias i Pujol Hospital, Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain
- Department of Medicine, Autonomous University of Barcelona (UAB), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain
| | - Mireia Jordà
- Germans Trias i Pujol Research Institute (IGTP), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.G.); (M.P.-D.)
| |
Collapse
|
27
|
Levy G, Levin B. An Evolution-Based Model of Causation for Aging-Related Diseases and Intrinsic Mortality: Explanatory Properties and Implications for Healthy Aging. Front Public Health 2022; 10:774668. [PMID: 35252084 PMCID: PMC8894190 DOI: 10.3389/fpubh.2022.774668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 01/10/2022] [Indexed: 01/07/2023] Open
Abstract
Aging-related diseases are the most prevalent diseases in advanced countries nowadays, accounting for a substantial proportion of mortality. We describe the explanatory properties of an evolution-based model of causation (EBMC) applicable to aging-related diseases and intrinsic mortality. The EBMC takes the sufficient and component causes model of causation as a starting point and develops it using evolutionary and statistical theories. Genetic component causes are classified as “early-onset” or “late-onset” and environmental component causes as “evolutionarily conserved” or “evolutionarily recent.” Genetic and environmental component causes are considered to occur as random events following time-to-event distributions, and sufficient causes are classified according to whether or not their time-to-event distributions are “molded” by the declining force of natural selection with increasing age. We obtain for each of these two groups different time-to-event distributions for disease incidence or intrinsic mortality asymptotically (i.e., for a large number of sufficient causes). The EBMC provides explanations for observations about aging-related diseases concerning the penetrance of genetic risk variants, the age of onset of monogenic vs. sporadic forms, the meaning of “age as a risk factor,” the relation between frequency and age of onset, and the emergence of diseases associated with the modern Western lifestyle. The EBMC also provides an explanation of the Gompertz mortality model at the fundamental level of genetic causes and involving evolutionary biology. Implications for healthy aging are examined under the scenarios of health promotion and postponed aging. Most importantly from a public health standpoint, the EBMC implies that primary prevention through changes in lifestyle and reduction of environmental exposures is paramount in promoting healthy aging.
Collapse
Affiliation(s)
- Gilberto Levy
- Independent Researcher, Rio de Janeiro, Brazil
- *Correspondence: Gilberto Levy
| | - Bruce Levin
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, United States
| |
Collapse
|
28
|
Sirbe C, Simu G, Szabo I, Grama A, Pop TL. Pathogenesis of Autoimmune Hepatitis-Cellular and Molecular Mechanisms. Int J Mol Sci 2021; 22:13578. [PMID: 34948375 PMCID: PMC8703580 DOI: 10.3390/ijms222413578] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 02/05/2023] Open
Abstract
Pediatric autoimmune liver disorders include autoimmune hepatitis (AIH), autoimmune sclerosing cholangitis (ASC), and de novo AIH after liver transplantation. AIH is an idiopathic disease characterized by immune-mediated hepatocyte injury associated with the destruction of liver cells, causing inflammation, liver failure, and fibrosis, typically associated with autoantibodies. The etiology of AIH is not entirely unraveled, but evidence supports an intricate interaction among genetic variants, environmental factors, and epigenetic modifications. The pathogenesis of AIH comprises the interaction between specific genetic traits and molecular mimicry for disease development, impaired immunoregulatory mechanisms, including CD4+ T cell population and Treg cells, alongside other contributory roles played by CD8+ cytotoxicity and autoantibody production by B cells. These findings delineate an intricate pathway that includes gene to gene and gene to environment interactions with various drugs, viral infections, and the complex microbiome. Epigenetics emphasizes gene expression through hereditary and reversible modifications of the chromatin architecture without interfering with the DNA sequence. These alterations comprise DNA methylation, histone transformations, and non-coding small (miRNA) and long (lncRNA) RNA transcriptions. The current first-line therapy comprises prednisolone plus azathioprine to induce clinical and biochemical remission. Further understanding of the cellular and molecular mechanisms encountered in AIH may depict their impact on clinical aspects, detect biomarkers, and guide toward novel, effective, and better-targeted therapies with fewer side effects.
Collapse
Affiliation(s)
- Claudia Sirbe
- 2nd Pediatric Discipline, Department of Mother and Child, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.S.); (T.L.P.)
- 2nd Pediatric Clinic, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| | - Gelu Simu
- Cardiology Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
- Cardiology Department, Rehabilitation Hospital, 400066 Cluj-Napoca, Romania
| | - Iulia Szabo
- Department of Rheumatology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Alina Grama
- 2nd Pediatric Discipline, Department of Mother and Child, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.S.); (T.L.P.)
- 2nd Pediatric Clinic, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| | - Tudor Lucian Pop
- 2nd Pediatric Discipline, Department of Mother and Child, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.S.); (T.L.P.)
- 2nd Pediatric Clinic, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| |
Collapse
|
29
|
Šrut M. Ecotoxicological epigenetics in invertebrates: Emerging tool for the evaluation of present and past pollution burden. CHEMOSPHERE 2021; 282:131026. [PMID: 34111635 DOI: 10.1016/j.chemosphere.2021.131026] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
The effect of environmental pollution on epigenetic changes and their heredity in affected organisms is of major concern as such changes can play a significant role in adaptation to changing environmental conditions. Changes of epigenetic marks including DNA methylation, histone modifications, and non-coding RNA's can induce changes in gene transcription leading to physiological long-term changes or even transgenerational inheritance. Such mechanisms have until recently been scarcely studied in invertebrate organisms, mainly focusing on model species including Caenorhabditis elegans and Daphnia magna. However, more data are becoming available, particularly focused on DNA methylation changes caused by anthropogenic pollutants in a wide range of invertebrates. This review examines the literature from field and laboratory studies utilising invertebrate species exposed to environmental pollutants and their effect on DNA methylation. Possible mechanisms of epigenetic modifications and their role on physiology and adaptation as well as the incidence of intergenerational and transgenerational inheritance are discussed. Furthermore, critical research challenges are defined and the way forward is proposed. Future studies should focus on the use of next generation sequencing tools to define invertebrate methylomes under environmental stress in higher resolution, those data should further be linked to gene expression patterns and phenotypes and detailed studies focusing on transgenerational effects are encouraged. Moreover, studies of other epigenetic mechanisms in various invertebrate species, apart from DNA methylation would provide better understanding of interconnected cross-talk between epigenetic marks. Taken together incorporating epigenetic studies in ecotoxicology context presents a promising tool for development of sensitive biomarkers for environmental stress assessment.
Collapse
Affiliation(s)
- Maja Šrut
- University of Innsbruck, Institute of Zoology, Technikerstraße 25, 6020, Innsbruck, Austria.
| |
Collapse
|
30
|
Szabo I, Muntean L, Crisan T, Rednic V, Sirbe C, Rednic S. Novel Concepts in Systemic Sclerosis Pathogenesis: Role for miRNAs. Biomedicines 2021; 9:biomedicines9101471. [PMID: 34680587 PMCID: PMC8533248 DOI: 10.3390/biomedicines9101471] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/03/2021] [Accepted: 10/08/2021] [Indexed: 02/06/2023] Open
Abstract
Systemic sclerosis (SSc) is a rare connective tissue disease with heterogeneous clinical phenotypes. It is characterized by the pathogenic triad: microangiopathy, immune dysfunction, and fibrosis. Epigenetic mechanisms modulate gene expression without interfering with the DNA sequence. Epigenetic marks may be reversible and their differential response to external stimuli could explain the protean clinical manifestations of SSc while offering the opportunity of targeted drug development. Small, non-coding RNA sequences (miRNAs) have demonstrated complex interactions between vasculature, immune activation, and extracellular matrices. Distinct miRNA profiles were identified in SSc skin specimens and blood samples containing a wide variety of dysregulated miRNAs. Their target genes are mainly involved in profibrotic pathways, but new lines of evidence also confirm their participation in impaired angiogenesis and aberrant immune responses. Research approaches focusing on earlier stages of the disease and on differential miRNA expression in various tissues could bring novel insights into SSc pathogenesis and validate the clinical utility of miRNAs as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Iulia Szabo
- Department of Rheumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania; (I.S.); (C.S.); (S.R.)
| | - Laura Muntean
- Department of Rheumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania; (I.S.); (C.S.); (S.R.)
- Department of Rheumatology, County Emergency Hospital Cluj-Napoca, 400000 Cluj-Napoca, Romania
- Correspondence:
| | - Tania Crisan
- Department of Medical Genetics, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania;
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Voicu Rednic
- Department of Gastroenterology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania;
- Department of Gastroenterology II, “Prof. Dr. Octavian Fodor” Regional Institute of Gastroenterology and Hepatology, 400000 Cluj-Napoca, Romania
| | - Claudia Sirbe
- Department of Rheumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania; (I.S.); (C.S.); (S.R.)
| | - Simona Rednic
- Department of Rheumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania; (I.S.); (C.S.); (S.R.)
- Department of Rheumatology, County Emergency Hospital Cluj-Napoca, 400000 Cluj-Napoca, Romania
| |
Collapse
|
31
|
Li MY, Flora P, Pu H, Bar C, Silva J, Cohen I, Galbo PM, Liu H, Yu X, Jin J, Koseki H, D'Orazio JA, Zheng D, Ezhkova E. UV-induced reduction in Polycomb repression promotes epidermal pigmentation. Dev Cell 2021; 56:2547-2561.e8. [PMID: 34473941 PMCID: PMC8521440 DOI: 10.1016/j.devcel.2021.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/08/2021] [Accepted: 08/06/2021] [Indexed: 12/11/2022]
Abstract
Ultraviolet (UV) radiation is a prime environmental stressor that our epidermis is exposed to on a daily basis. To avert UV-induced damage, epidermal stem cells (EpSCs) become pigmented via a process of heterotypic interaction between melanocytes and EpSCs; however, the molecular mechanisms of this interaction are not well understood. In this study, we show that the function of a key chromatin regulator, the Polycomb complex, was reduced upon UV exposure in human and mouse epidermis. Genetic ablation of key Polycomb subunits in murine EpSCs, mimicking depletion upon UV exposure, results in an increased number of epidermal melanocytes and subsequent epidermal pigmentation. Genome-wide transcriptional and chromatin studies show that Polycomb regulates the expression of UV-responsive genes and identifies type II collagen (COL2A1) as a critical secreted regulator of melanogenesis and epidermal pigmentation. Together, our findings show how UV exposure induces Polycomb-mediated changes in EpSCs to affect melanocyte behavior and promote epidermal pigmentation.
Collapse
Affiliation(s)
- Meng-Yen Li
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Pooja Flora
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Hong Pu
- The Markey Cancer Center, Department of Toxicology and Cancer Biology, Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Carmit Bar
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Jose Silva
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Idan Cohen
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Phillip M Galbo
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Hequn Liu
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Xufen Yu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (RIKEN-IMS) 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; AMED-CREST, 1-7-22 Suehiro-cho Tsurumi-ku, Yokohama 230-0045, Japan
| | - John A D'Orazio
- The Markey Cancer Center, Department of Toxicology and Cancer Biology, Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Departments of Genetics, Neurology, and Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Elena Ezhkova
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
32
|
Maternal Dietary Quality and Dietary Inflammation Associations with Offspring Growth, Placental Development, and DNA Methylation. Nutrients 2021; 13:nu13093130. [PMID: 34579008 PMCID: PMC8468062 DOI: 10.3390/nu13093130] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/31/2021] [Accepted: 09/04/2021] [Indexed: 12/14/2022] Open
Abstract
The ‘Developmental Origins of Health and Diseases’ hypothesis posits that prenatal maternal diet influences offspring growth and later life health outcomes. Dietary assessment has focused on selected nutrients. However, this approach does not consider the complex interactions between foods and nutrients. To provide a more comprehensive approach to public health, dietary indices have been developed to assess dietary quality, dietary inflammation and risk factors for non-communicable diseases. Thus far, their use in the context of placental development is limited and associations with offspring outcomes have been inconsistent. Although epidemiological studies have focused on the role of maternal diet on foetal programming, the underlying mechanisms are still poorly understood. Some evidence suggests these associations may be driven by placental and epigenetic changes. In this narrative review, we examine the current literature regarding relationships between key validated diet quality scores (Dietary Inflammatory Index [DII], Mediterranean diet [MD], Healthy Eating Index [HEI], Alternative Healthy Eating Index [AHEI], Dietary Approaches to Stop Hypertension [DASH], Glycaemic Index [GI] and Glycaemic Load [GL]) in pregnancy and birth and long-term offspring outcomes. We summarise findings, discuss potential underlying placental and epigenetic mechanisms, in particular DNA methylation, and highlight the need for further research and public health strategies that incorporate diet quality and epigenetics.
Collapse
|
33
|
Idiopathic scoliosis: general characteristics and analysis of etiological theories (literature review). ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2021-6.3.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Idiopathic scoliosis is a severe pathology of the musculoskeletal system that affects children and adolescents all over the world. The disease occurs in approximately 0.2-0.6% of the general population, and is the largest subgroup of spinal curvature in humans (70-90% of all known scoliosis cases). In idiopathic scoliosis, a threedimensional deformation of the vertebral column is formed, leading to the formation of a rib hump, curvature of the ribs and chest, asymmetry of the pelvis and impaired development of internal organs. The main feature of the disease is the spontaneous development of deformity during the growth of the child and the tendency to progress. Scoliosis is not only an orthopedic disease, but also a ignificant cosmetic, and, consequently, a psychological and social problem. The standard of treatment for scoliotic disease remains unchanged for a long time: observation, corset treatment and surgical correction. The prognosis for the development of pathology varies depending on the degree of deformation. The corset-therapy, hospitalization, surgery and treatment of chronic back pain have a negative impact on the psychoemotional state of children and adolescents. Despite significant advances in the methods of diagnosis of deformity, improvement of surgical treatment methods and in the study of pathogenesis, the etiological factor of pathology is still unknown. The search for the causes of idiopathic scoliosis covers almost all aspects of its possible origin: genetic, environmental, hormonal, metabolic, biochemical, neurological, and others. In recent decades, relevant theories of the development of scoliosis have been formulated, but none of the theories reveals the essence of the pathological process and has no clear justification. The greatest number of supporters is the genetic theory: genetic factors play a key role in the occurrence and development of idiopathic scoliosis. Understanding the underlying factors of the disease will enable prevention, early diagnosis, and identification of the risk groups of the patients in question.
Collapse
|
34
|
Zeng C, Tsoi LC, Gudjonsson JE. Dysregulated epigenetic modifications in psoriasis. Exp Dermatol 2021; 30:1156-1166. [PMID: 33756010 DOI: 10.1111/exd.14332] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/08/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023]
Abstract
The observed incidence of psoriasis has been gradually increasing over time (J Am Acad Dermatol, 03, 2009, 394), but the underlying pathogenic factors have remained unclear. Recent studies suggest the importance of epigenetic modification in the pathogenesis of psoriasis. Aberrant epigenetic patterns including changes in DNA methylation, histone modifications and non-coding RNA expression are observed in psoriatic skin. Reversing these epigenetic mechanisms has showed improvement in psoriatic phenotypes, making epigenetic therapy a potential avenue for psoriasis treatment. Here, we summarize relevant evidence for epigenetic dysregulation contributing to psoriasis susceptibility and pathogenesis, and the factors responsible for epigenetic modifications, providing directions for potential future clinical avenues.
Collapse
Affiliation(s)
- Chang Zeng
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics and Department of Biostatistics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
- A. Alfred Taubman Medical Research Institute, Ann Arbor, MI, USA
| |
Collapse
|
35
|
Jansen ES, Agyemang C, Boateng D, Danquah I, Beune E, Smeeth L, Klipstein-Grobusch K, Stronks K, Meeks KAC. Rural and urban migration to Europe in relation to cardiovascular disease risk: does it matter where you migrate from? Public Health 2021; 196:172-178. [PMID: 34233244 PMCID: PMC8349844 DOI: 10.1016/j.puhe.2021.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/17/2021] [Accepted: 06/01/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES To assess whether the environmental context (i.e. rural vs urban) in which individuals in low- and middle-income countries have resided most of their lives is associated with estimated cardiovascular disease (CVD) risk after migration to a high-income country. STUDY DESIGN Data from the Research on Obesity and Diabetes among African Migrants (RODAM) study were used including 1699 Ghanaian participants aged 40-79 years who had migrated to Europe from Ghana (1549 of urban origin, 150 of rural origin). METHODS Ten-year CVD risk was estimated using the Pooled Cohort Equation, with estimates ≥7.5% defining elevated CVD risk. Comparisons between urban and rural origin migrant groups were made using proportions and adjusted odds ratios (ORs). RESULTS The proportion of migrants with an elevated CVD-risk score was substantially higher among rural migrants than among urban migrants (45% vs. 37%, OR = 1.44, 95% confidence interval [CI]:1.03-2.02), which persisted after adjustment for education level, site of residence in Europe (London, Amsterdam or Berlin), length of stay in Europe, physical activity, energy intake and alcohol consumption (OR = 1.67, 95% CI: 1.05-2.67). CONCLUSION Our findings indicate that migrants who spent most of their lives in a rural setting before migration to Europe may have a higher CVD risk than those of urban origins. Further work is needed to confirm these findings in other migrant populations and to unravel the mechanisms driving the differential CVD risk between urban and rural migrants.
Collapse
Affiliation(s)
- E S Jansen
- Department of Public Health, Amsterdam Public Health Research Institute, Academic Medical Center, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, 1105AZ, Amsterdam, the Netherlands
| | - C Agyemang
- Department of Public Health, Amsterdam Public Health Research Institute, Academic Medical Center, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, 1105AZ, Amsterdam, the Netherlands
| | - D Boateng
- Julius Global Health, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3508GA, Utrecht, the Netherlands; School of Public Health, Kwame Nkrumah University of Science and Technology, Accra Rd, Kumasi, Ghana
| | - I Danquah
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; Institute for Social Medicine, Epidemiology and Health Economics, Charité-Universitaetsmedizin Berlin, Charitépl, 10117, Berlin, Germany
| | - E Beune
- Department of Public Health, Amsterdam Public Health Research Institute, Academic Medical Center, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, 1105AZ, Amsterdam, the Netherlands
| | - L Smeeth
- Department of Non-communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel St, Bloomsbury, London, WC1E 7HT, United Kingdom
| | - K Klipstein-Grobusch
- Julius Global Health, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3508GA, Utrecht, the Netherlands; Division of Epidemiology and Biostatistics, School of Public Health, University of the Witwatersrand, 1 Jan Smuts Ave, Johannesburg, 2000, South Africa
| | - K Stronks
- Department of Public Health, Amsterdam Public Health Research Institute, Academic Medical Center, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, 1105AZ, Amsterdam, the Netherlands
| | - K A C Meeks
- Department of Public Health, Amsterdam Public Health Research Institute, Academic Medical Center, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, 1105AZ, Amsterdam, the Netherlands; Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Dr, Bethesda, MD, 20892-5635, USA.
| |
Collapse
|
36
|
Guo Z, Mo Z. Regulation of endothelial cell differentiation in embryonic vascular development and its therapeutic potential in cardiovascular diseases. Life Sci 2021; 276:119406. [PMID: 33785330 DOI: 10.1016/j.lfs.2021.119406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 03/05/2021] [Accepted: 03/14/2021] [Indexed: 12/17/2022]
Abstract
During vertebrate development, the cardiovascular system begins operating earlier than any other organ in the embryo. Endothelial cell (EC) forms the inner lining of blood vessels, and its extensive proliferation and migration are requisite for vasculogenesis and angiogenesis. Many aspects of cellular biology are involved in vasculogenesis and angiogenesis, including the tip versus stalk cell specification. Recently, epigenetics has attracted growing attention in regulating embryonic vascular development and controlling EC differentiation. Some proteins that regulate chromatin structure have been shown to be directly implicated in human cardiovascular diseases. Additionally, the roles of important EC signaling such as vascular endothelial growth factor and its receptors, angiopoietin-1 and tyrosine kinase containing immunoglobulin and epidermal growth factor homology domain-2, and transforming growth factor-β in EC differentiation during embryonic vasculature development are briefly discussed in this review. Recently, the transplantation of human induced pluripotent stem cell (iPSC)-ECs are promising approaches for the treatment of ischemic cardiovascular disease including myocardial infarction. Patient-specific iPSC-derived EC is a potential new target to study differences in gene expression or response to drugs. However, clinical application of the iPSC-ECs in regenerative medicine is often limited by the challenges of maintaining cell viability and function. Therefore, novel insights into the molecular mechanisms underlying EC differentiation might provide a better understanding of embryonic vascular development and bring out more effective EC-based therapeutic strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Zi Guo
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaohui Mo
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
37
|
Reolid A, Muñoz-Aceituno E, Abad-Santos F, Ovejero-Benito MC, Daudén E. Epigenetics in Non-tumor Immune-Mediated Skin Diseases. Mol Diagn Ther 2021; 25:137-161. [PMID: 33646564 DOI: 10.1007/s40291-020-00507-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2020] [Indexed: 02/08/2023]
Abstract
Epigenetics is the study of the mechanisms that regulate gene expression without modifying DNA sequences. Knowledge of and evidence about how epigenetics plays a causative role in the pathogenesis of many skin diseases is increasing. Since the epigenetic changes present in tumor diseases have been thoroughly reviewed, we believe that knowledge of the new epigenetic findings in non-tumor immune-mediated dermatological diseases should be of interest to the general dermatologist. Hence, the purpose of this review is to summarize the recent literature on epigenetics in most non-tumor dermatological pathologies, focusing on psoriasis. Hyper- and hypomethylation of DNA methyltransferases and methyl-DNA binding domain proteins are the most common and studied methylation mechanisms. The acetylation and methylation of histones H3 and H4 are the most frequent and well-characterized histone modifications and may be associated with disease severity parameters and serve as therapeutic response markers. Many specific microRNAs dysregulated in non-tumor dermatological disease have been reviewed. Deepening the study of how epigenetic mechanisms influence non-tumor immune-mediated dermatological diseases might help us better understand the role of interactions between the environment and the genome in the physiopathogenesis of these diseases.
Collapse
Affiliation(s)
- Alejandra Reolid
- Dermatology Department, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-IP), Diego de León, 62, 28006, Madrid, Spain.
| | - E Muñoz-Aceituno
- Dermatology Department, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-IP), Diego de León, 62, 28006, Madrid, Spain
| | - F Abad-Santos
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - M C Ovejero-Benito
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain
| | - E Daudén
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain
| |
Collapse
|
38
|
The Functions of the Demethylase JMJD3 in Cancer. Int J Mol Sci 2021; 22:ijms22020968. [PMID: 33478063 PMCID: PMC7835890 DOI: 10.3390/ijms22020968] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/09/2022] Open
Abstract
Cancer is a major cause of death worldwide. Epigenetic changes in response to external (diet, sports activities, etc.) and internal events are increasingly implicated in tumor initiation and progression. In this review, we focused on post-translational changes in histones and, more particularly, the tri methylation of lysine from histone 3 (H3K27me3) mark, a repressive epigenetic mark often under- or overexpressed in a wide range of cancers. Two actors regulate H3K27 methylation: Jumonji Domain-Containing Protein 3 demethylase (JMJD3) and Enhancer of zeste homolog 2 (EZH2) methyltransferase. A number of studies have highlighted the deregulation of these actors, which is why this scientific review will focus on the role of JMJD3 and, consequently, H3K27me3 in cancer development. Data on JMJD3’s involvement in cancer are classified by cancer type: nervous system, prostate, blood, colorectal, breast, lung, liver, ovarian, and gastric cancers.
Collapse
|
39
|
Liu H. The roles of histone deacetylases in kidney development and disease. Clin Exp Nephrol 2021; 25:215-223. [PMID: 33398599 PMCID: PMC7925501 DOI: 10.1007/s10157-020-01995-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
Histone deacetylases (HDACs) are important epigenetic regulators that mediate deacetylation of both histone and non-histone proteins. HDACs, especially class I HDACs, are highly expressed in developing kidney and subject to developmental control. HDACs play an important role in kidney formation, especial nephron progenitor maintenance and differentiation. Several lines of evidence support the critical role of HDACs in the development and progression of various kidney diseases. HDAC inhibitors (HDACis) are very effective in the prevention and treatment of kidney diseases (including kidney cancer). A better understanting of the molecular mechanisms underlying the role(s) of HDACs in the pathogenesis and progression of renal disease are likely to be of great help in developing more effective and less toxic selective HDAC inhibitors and combinatorial therapeutics.
Collapse
Affiliation(s)
- Hongbing Liu
- Department of Pediatrics and The Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, SL-37, 1430 Tulane Avenue, New Orleans, LA, 70112, USA.
| |
Collapse
|
40
|
Leśniak W. Epigenetic Regulation of Epidermal Differentiation. EPIGENOMES 2021; 5:1. [PMID: 34968254 PMCID: PMC8594726 DOI: 10.3390/epigenomes5010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 01/22/2023] Open
Abstract
The epidermis is the outer part of the skin that protects the organism from dehydration and shields from external insults. Epidermal cells, called keratinocytes, undergo a series of morphological and metabolic changes that allow them to establish the biochemical and structural elements of an effective epidermal barrier. This process, known as epidermal differentiation, is critical for the maintenance of the epidermis under physiological conditions and also under stress or in various skin pathologies. Epidermal differentiation relies on a highly coordinated program of gene expression. Epigenetic mechanisms, which commonly include DNA methylation, covalent histone modifications, and microRNA (miRNA) activity, modulate various stages of gene expression by altering chromatin accessibility and mRNA stability. Their involvement in epidermal differentiation is a matter of intensive studies, and the results obtained thus far show a complex network of epigenetic factors, acting together with transcriptional regulators, to maintain epidermal homeostasis and counteract adverse effects of environmental stressors.
Collapse
Affiliation(s)
- Wiesława Leśniak
- Laboratory of Calcium Binding Proteins, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| |
Collapse
|
41
|
Xu YH, Xu YC, Hogstrand C, Zhao T, Wu LX, Zhuo MQ, Luo Z. Waterborne copper exposure up-regulated lipid deposition through the methylation of GRP78 and PGC1α of grass carp Ctenopharyngodon idella. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111089. [PMID: 32810645 DOI: 10.1016/j.ecoenv.2020.111089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/05/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Early molecular events after the exposure of heavy metals, such as aberrant DNA methylation, suggest that DNA methylation was important in regulating physiological processes for animals and accordingly could be used as environmental biomarkers. In the present study, we found that copper (Cu) exposure increased lipid content and induced the DNA hypermethylation at the whole genome level. Especially, Cu induced hypermethylation of glucose-regulated protein 78 (grp78) and peroxisome proliferator-activated receptor gamma coactivator-1α (pgc1α). CCAAT/enhancer binding protein α (C/EBPα) could bind to the methylated sequence of grp78, whereas C/EBPβ could not bind to the methylated sequence of grp78. These synergistically influenced grp78 expression and increased lipogenesis. In contrast, DNA methylation of PGC1α blocked the specific protein 1 (SP1) binding and interfered mitochondrial function. Moreover, Cu increased reactive oxygen species (ROS) production, activated endoplasmic reticulum (ER) stress and damaged mitochondrial function, and accordingly increased lipid deposition. Notably, we found a new toxicological mechanism for Cu-induced lipid deposition at DNA methylation level. The measurement of DNA methylation facilitated the use of these epigenetic biomarkers for the evaluation of environmental risk.
Collapse
Affiliation(s)
- Yi-Huan Xu
- Laboratory of Molecular Nutrition and Environmental Toxicology for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yi-Chuang Xu
- Laboratory of Molecular Nutrition and Environmental Toxicology for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Christer Hogstrand
- Diabetes and Nutritional Sciences Division, School of Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Tao Zhao
- Laboratory of Molecular Nutrition and Environmental Toxicology for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li-Xiang Wu
- Laboratory of Molecular Nutrition and Environmental Toxicology for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mei-Qin Zhuo
- Laboratory of Molecular Nutrition and Environmental Toxicology for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhi Luo
- Laboratory of Molecular Nutrition and Environmental Toxicology for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
42
|
Gurner KH, Truong TT, Harvey AJ, Gardner DK. A combination of growth factors and cytokines alter preimplantation mouse embryo development, foetal development and gene expression profiles. Mol Hum Reprod 2020; 26:953-970. [DOI: 10.1093/molehr/gaaa072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
Abstract
Within the maternal tract, the preimplantation embryo is exposed to an array of growth factors (GFs) and cytokines, most of which are absent from culture media used in clinical IVF. Whilst the addition of individual GFs and cytokines to embryo culture media can improve preimplantation mouse embryo development, there is a lack of evidence on the combined synergistic effects of GFs and cytokines on embryo development and further foetal growth. Therefore, in this study, the effect of a combined group of GFs and cytokines on mouse preimplantation embryo development and subsequent foetal development and gene expression profiles was investigated. Supplementation of embryo culture media with an optimised combination of GFs and cytokines (0.05 ng/ml vascular endothelial GF, 1 ng/ml platelet-derived GF, 0.13 ng/ml insulin-like GF 1, 0.026 ng/ml insulin-like GF 2 and 1 ng/ml granulocyte colony-stimulating factor) had no effect on embryo morphokinetics but significantly increased trophectoderm cell number (P = 0.0002) and total cell number (P = 0.024). Treatment with this combination of GFs and cytokines also significantly increased blastocyst outgrowth area (P < 0.05) and, following embryo transfer, increased foetal weight (P = 0.027), crown-rump length (P = 0.017) and overall morphological development (P = 0.027). RNA-seq analysis of in vitro derived foetuses identified concurrent alterations to the transcriptional profiles of liver and placental tissues compared with those developed in vivo, with greater changes observed in the GF and cytokine treated group. Together these data highlight the importance of balancing the actions of such factors for the regulation of normal development and emphasise the need for further studies investigating this prior to clinical implementation.
Collapse
Affiliation(s)
- Kathryn H Gurner
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Thi T Truong
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Alexandra J Harvey
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - David K Gardner
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
- Melbourne IVF, East Melbourne, VIC 3002, Australia
| |
Collapse
|
43
|
Zheng P, Huang C, Leng D, Sun B, Zhang XD. Transcriptome analysis of peripheral whole blood identifies crucial lncRNAs implicated in childhood asthma. BMC Med Genomics 2020; 13:136. [PMID: 32948203 PMCID: PMC7501638 DOI: 10.1186/s12920-020-00785-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022] Open
Abstract
Background Asthma is a chronic disorder of both adults and children affecting more than 300 million people heath worldwide. Diagnose and treatment for asthma, particularly in childhood asthma have always remained a great challenge because of its complex pathogenesis and multiple triggers, such as allergen, viral infection, tobacco smoke, dust, etc. It is thereby great significant to deeply investigate the transcriptome changes in asthmatic children before and after desensitization treatment, in order that we could identify potential and key mRNAs and lncRNAs which might be considered as useful RNA molecules for observing and supervising desensitization therapy for asthma, which might guide the diagnose and therapy in childhood asthma. Methods In the present study, we performed a systematic transcriptome analysis based on the deep RNA sequencing of ten asthmatic children before and after desensitization treatment, including identification of lncRNAs using a stringent filtering pipeline, differential expression analysis and network analysis, etc. Results First, a large number of lncRNAs were identified and characterized. Then differential expression analysis revealed 39 mRNAs and 15 lncRNAs significantly differentially expressed which involved in two biological processes and pathways. A co-expressed network analysis figured out a desensitization-treatment-related module which contains 27 mRNAs and 21 lncRNAs using WGCNA R package. Module analysis disclosed 17 genes associated to asthma at distinct level. Subsequent network analysis based on PCC figured out several key lncRNAs probably interacted to those key asthma-related genes, i.e., LINC02145, GUSBP2. Our functional investigation indicated that their functions might involve in immune, inflammatory response and apoptosis process. Conclusions Our study successfully discovered many key noncoding RNA molecules related to pathogenesis of asthma and relevant treatment, which may provide some clues for asthmatic diagnose and therapy in future.
Collapse
Affiliation(s)
- Peiyan Zheng
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chen Huang
- CRDA, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Dongliang Leng
- CRDA, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Baoqing Sun
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Xiaohua Douglas Zhang
- CRDA, Faculty of Health Sciences, University of Macau, Taipa, Macau, China. .,Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA.
| |
Collapse
|
44
|
Smeriglio P, Langard P, Querin G, Biferi MG. The Identification of Novel Biomarkers Is Required to Improve Adult SMA Patient Stratification, Diagnosis and Treatment. J Pers Med 2020; 10:jpm10030075. [PMID: 32751151 PMCID: PMC7564782 DOI: 10.3390/jpm10030075] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
Spinal muscular atrophy (SMA) is currently classified into five different subtypes, from the most severe (type 0) to the mildest (type 4) depending on age at onset, best motor function achieved, and copy number of the SMN2 gene. The two recent approved treatments for SMA patients revolutionized their life quality and perspectives. However, upon treatment with Nusinersen, the most widely administered therapy up to date, a high degree of variability in therapeutic response was observed in adult SMA patients. These data, together with the lack of natural history information and the wide spectrum of disease phenotypes, suggest that further efforts are needed to develop precision medicine approaches for all SMA patients. Here, we compile the current methods for functional evaluation of adult SMA patients treated with Nusinersen. We also present an overview of the known molecular changes underpinning disease heterogeneity. We finally highlight the need for novel techniques, i.e., -omics approaches, to capture phenotypic differences and to understand the biological signature in order to revise the disease classification and device personalized treatments.
Collapse
Affiliation(s)
- Piera Smeriglio
- Centre of Research in Myology, Institute of Myology, Sorbonne Université, INSERM, 75013 Paris, France; (P.L.); (G.Q.)
- Correspondence: (P.S.); (M.G.B.)
| | - Paul Langard
- Centre of Research in Myology, Institute of Myology, Sorbonne Université, INSERM, 75013 Paris, France; (P.L.); (G.Q.)
| | - Giorgia Querin
- Centre of Research in Myology, Institute of Myology, Sorbonne Université, INSERM, 75013 Paris, France; (P.L.); (G.Q.)
- Association Institut de Myologie, Plateforme Essais Cliniques Adultes, 75013 Paris, France
- APHP, Service de Neuromyologie, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Maria Grazia Biferi
- Centre of Research in Myology, Institute of Myology, Sorbonne Université, INSERM, 75013 Paris, France; (P.L.); (G.Q.)
- Correspondence: (P.S.); (M.G.B.)
| |
Collapse
|
45
|
Kaur G, Batra S. Regulation of DNA methylation signatures on NF-κB and STAT3 pathway genes and TET activity in cigarette smoke extract-challenged cells/COPD exacerbation model in vitro. Cell Biol Toxicol 2020; 36:459-480. [PMID: 32342329 DOI: 10.1007/s10565-020-09522-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/19/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a global health problem. Currently, there is a lack of knowledge about the pathobiology of this disease and available therapies are ineffective. Cigarette smoking is the leading cause of COPD; however, not all smokers develop COPD. Exacerbations of COPD caused by microbes are common and detrimental. Approximately 20-50% of patient exacerbations are caused by bacterial colonization in the lower airways. It is generally accepted that epigenetic mechanisms, especially DNA methylation, play an important role during progression of COPD. Thus, we hypothesized that DNA methylation patterns vary significantly following smoke exposure and during exacerbations caused by bacterial infections. To test our hypothesis, we used an in vitro study model that mimics COPD exacerbations and performed extensive studies to understand the role of CpG promoter methylation of NF-κB and STAT3-mediated pathway genes. Both NF-κB and STAT3 transcription factors play critical roles in orchestrating inflammatory responses during cigarette smoke exposure. In brief, human lung adenocarcinoma cells with type II alveolar epithelium characteristics (A549) were challenged with cigarette smoke extract (CSE) or DMSO (control) followed by a 3-h challenge with bacterial lipopolysaccharide (LPS; from Pseudomonas aeruginosa) prior to the termination of CSE exposure (COPD exacerbation group). The production of cytokines/chemokines, regulation of transcription factors, and DNA methylation of specific genes were then assessed. We also studied changes in the expression and activity of ten-eleven translocases (TETs), the enzymes responsible for DNA demethylation, and assessed their role in regulating DNA methylation in the CSE-challenged group. RESULTS There was a significant increase in the release of cytokines/chemokines (IL-8, MCP-1, IL-6 and CCL5) in the COPD exacerbation group as compared to the control group. Hypomethylation of NF-κB-mediated pathway genes correlated with their induction in our COPD exacerbation study model. Further, we observed an important role of TET1/2 in regulating the DNA methylation of NF-κB, STAT3, IKK, and NIK genes and cytokine/chemokine production by A549 cells during CSE challenge. CONCLUSIONS Studies to further define the role of TETs in CSE-mediated epigenetic regulation may lead to the development of better and more effective therapeutic intervention strategies for COPD.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Sanjay Batra
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA.
| |
Collapse
|
46
|
Gomez-Verjan JC, Barrera-Vázquez OS, García-Velázquez L, Samper-Ternent R, Arroyo P. Epigenetic variations due to nutritional status in early-life and its later impact on aging and disease. Clin Genet 2020; 98:313-321. [PMID: 32246454 DOI: 10.1111/cge.13748] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/11/2020] [Accepted: 03/27/2020] [Indexed: 12/21/2022]
Abstract
Epigenetics refers to changes in gene function, not resulting from the primary DNA sequence, influenced by the environment. It provides a link between the molecular regulation of the genome and the environmental signals exposed during the life of individuals (including lifestyle, social behavior, development, and nutrition). Notably, early development (intrauterine or postnatal) is highly influenced by the adverse socioeconomic status that leads to malnutrition or obesity; these conditions induce changes over the fetal epigenetic programming and can be transferred by transgenerational inheritance, inducing alterations of the transcription of genes related to several metabolic and neurological processes. Moreover, obesity during pregnancy, and excessive gestational weight gain are associated with an increased risk of fatal pregnancy complications, and adverse cardio-metabolic, respiratory and cognitive-related outcomes of the future child. However, most of our knowledge in this field comes from experimental animal models, that partially resemble the nutritional effects of humans. In this context, nutritional effects implicated in historical famines represent valuable information about the transgenerational effects of undernutrition and stress. In the present review, we attempt to describe the most outstanding results from the most studied famines about the impact of malnutrition on the epigenome.
Collapse
Affiliation(s)
- Juan C Gomez-Verjan
- División de Ciencias Básicas, Instituto Nacional de Geriatría (INGER), Mexico City, Mexico
| | | | - Lizbeth García-Velázquez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Rafael Samper-Ternent
- Geriatric/Sealy Center on Aging, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Pedro Arroyo
- División de Epidemiología, Instituto Nacional de Geriatría (INGER), Mexico City, Mexico
| |
Collapse
|
47
|
Guo XJ, Yang D, Zhang XY. Epigenetics recording varied environment and complex cell events represents the origin of cellular aging. J Zhejiang Univ Sci B 2020; 20:550-562. [PMID: 31168969 DOI: 10.1631/jzus.b1800507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although a relationship between epigenetics and aging phenotypic changes has been established, a theoretical explanation of the intrinsic connection between the epigenetics and aging is lacking. In this essay, we propose that epigenetic recording of varied cell environment and complex history could be an origin of cellular aging. Through epigenetic modifications, the environment and historical events can induce the chromatin template into an activated or repressive accessible structure, thereby shaping the DNA template into a spectrum of chromatin states. The inner nature of diversity and conflicts born by the cell environment and its historical events are hence recorded into the chromatin template. This could result in a dissipated spectrum of the chromatin state and chaos in overall gene expression. An unavoidable degradation of epigenome entropy, similar to Shannon entropy, would be consequently induced. The resultant disorder in epigenome, characterized by corrosion of epigenome entropy as reflected in chromatin template, can be stably memorized and propagated through cell division. Furthermore, the hysteretic nature of epigenetics responding to the emerging environment could exacerbate the degradation of epigenome entropy. As well as stochastic errors, we propose that outside entropy (or chaos) derived from the varied environment and complex cell history, gradually input and imprinted into the chromatin via epigenetic modifications, would lead inevitably to cellular aging, the extent of which could be aggravated by hysteresis of epigenetics without error erasing and correction.
Collapse
Affiliation(s)
- Xue-Jun Guo
- State Key Laboratory of Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Dong Yang
- Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Xiang-Yuan Zhang
- State Key Laboratory of Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
48
|
Ramírez-Cheyne J. Caracterización de la exposición prenatal de un grupo de niños de 0 a 5 años con cardiopatía congénita atendidos en Cali, Colombia. La importancia del ácido fólico. REVISTA DE LA FACULTAD DE MEDICINA 2020. [DOI: 10.15446/revfacmed.v68n1.69885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introducción. Con una prevalencia estimada de 4 a 9 casos por cada 1 000 nacimientos, las cardiopatías congénitas (CC) tienen gran impacto en la morbimortalidad pediátrica. La variabilidad de prevalencia se ha atribuido a diferencias regionales en cuanto a factores genéticos, ambientales, entre otros.Objetivo. Obtener datos sobre variables de exposición prenatales de pacientes con CC atendidos en Cali, Colombia.Materiales y métodos. Se aplicó una encuesta a las madres de 30 pacientes de 0 a 5 años con CC atendidos en 2 clínicas de alta complejidad (tercer y cuarto nivel) de Cali. La encuesta estaba orientada a múltiples variables de exposición y la información recolectada fue digitalizada en una base de datos en el programa Microsoft Excel para hacer un análisis estadístico descriptivo.Resultados. Se evidenciaron varias exposiciones potencialmente asociadas a CC, tales como índice de masa corporal alterado, administración inadecuada de suplementos de ácido fólico y exposición a vitamina A, rayos X, alcohol y cigarrillo.Conclusión. El consumo insuficiente o inoportuno de ácido fólico podría facilitar la generación de efectos teratogénicos de sustancias oxidantes. Por lo tanto, se debe educar a las mujeres de Cali sobre la importancia de una ingesta adecuada de ácido fólico y sobre los riesgos de la exposición a agentes teratogénicos durante el embarazo para reducir las tasas de incidencia de CC en esta ciudad.
Collapse
|
49
|
Ovejero-Benito MC, Reolid A, Sánchez-Jiménez P, Saiz-Rodríguez M, Muñoz-Aceituno E, Llamas-Velasco M, Martín-Vilchez S, Cabaleiro T, Román M, Ochoa D, Daudén E, Abad-Santos F. Histone modifications associated with biological drug response in moderate-to-severe psoriasis. Exp Dermatol 2019; 27:1361-1371. [PMID: 30260532 DOI: 10.1111/exd.13790] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/31/2018] [Accepted: 09/18/2018] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Epigenetic factors play an important role in psoriasis onset and development. Biological drugs are used to treat moderate-to-severe psoriasis patients resistant to conventional systemic drugs. Although they are safe and effective, some patients do not respond to them. Therefore, it is necessary to find biomarkers that could predict response to these therapies. OBJECTIVE To find epigenetic biomarkers that could predict response to biological drugs (ustekinumab, secukinumab, adalimumab, ixekizumab). MATERIALS AND METHODS Peripheral blood mononuclear cells (PBMCs) were isolated from 39 psoriasis patients treated with biological therapies before and after drug administration and from 42 healthy subjects. Afterwards, histones were extracted from PBMCs. Four histone modifications (H3 and H4 acetylation, H3K4 and H3K27 methylation) were determined by ELISA. Data were analysed by IBM-SPSS v.23. RESULTS AND CONCLUSIONS Psoriasis patients presented reduced levels of acetylated H3 and H4 and increased levels of methylated H3K4 compared to controls. Non-significant changes were observed after treatment administration in any of the histone modifications analysed. Nevertheless, significant changes in methylated H3K27 were found between responders and non-responders to biological drugs at 3 months. As 28% of these patients also presented psoriatic arthritis (PsA), the former analysis was repeated in the subsets of patients with or without PsA. In patients without PsA, significant changes in methylated H3K4 were found between responders and non-responders to biological drugs at 3 and 6 months. Although further studies should confirm these results, these findings suggest that H3K27 and H3K4 methylation may contribute to patients' response to biological drugs in psoriasis.
Collapse
Affiliation(s)
- María C Ovejero-Benito
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain
| | - Alejandra Reolid
- Dermatology Department, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria del Hospital de La Princesa (IIS-IP), Madrid, Spain
| | - Patricia Sánchez-Jiménez
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain
| | - Miriam Saiz-Rodríguez
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain
| | - Ester Muñoz-Aceituno
- Dermatology Department, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria del Hospital de La Princesa (IIS-IP), Madrid, Spain
| | - Mar Llamas-Velasco
- Dermatology Department, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria del Hospital de La Princesa (IIS-IP), Madrid, Spain
| | - Samuel Martín-Vilchez
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain
| | - Teresa Cabaleiro
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain
| | - Manuel Román
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain
| | - Dolores Ochoa
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain
| | - Esteban Daudén
- Dermatology Department, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria del Hospital de La Princesa (IIS-IP), Madrid, Spain
| | - Francisco Abad-Santos
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
50
|
David I, Ricard A. A Unified Model for Inclusive Inheritance in Livestock Species. Genetics 2019; 212:1075-1099. [PMID: 31209104 PMCID: PMC6707455 DOI: 10.1534/genetics.119.302375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/06/2019] [Indexed: 12/31/2022] Open
Abstract
For years, animal selection in livestock species has been performed by selecting animals based on genetic inheritance. However, evolutionary studies have reported that nongenetic information that drives natural selection can also be inherited across generations (epigenetic, microbiota, environmental inheritance). In response to this finding, the concept of inclusive heritability, which combines all sources of information inherited across generations, was developed. To better predict the transmissible potential of each animal by taking into account these diverse sources of inheritance and improve selection in livestock species, we propose the "transmissibility model." Similarly to the animal model, this model uses pedigree and phenotypic information to estimate variance components and predict the transmissible potential of an individual, but differs by estimating the path coefficients of inherited information from parent to offspring instead of using a set value of 0.5 for both the sire and the dam (additive genetic relationship matrix). We demonstrated the structural identifiability of the transmissibility model, and performed a practical identifiability and power study of the model. We also performed simulations to compare the performances of the animal and transmissibility models for estimating the covariances between relatives and predicting the transmissible potential under different combinations of sources of inheritance. The transmissibility model provided similar results to the animal model when inheritance was of genetic origin only, but outperformed the animal model for estimating the covariances between relatives and predicting the transmissible potential when the proportion of inheritance of nongenetic origin was high or when the sire and dam path coefficients were very different.
Collapse
Affiliation(s)
- Ingrid David
- GenPhySE, INRA, Université de Toulouse, INPT, ENVT, 31326 Castanet Tolosan, France
| | - Anne Ricard
- GABI, INRA, AgroParisTech, Université Paris Saclay, Département Sciences du Vivant, UMR 1313, 78352 Jouy-en-Josas, France
- Institut Français du Cheval et de l'Equitation, Département Recherche et Innovation, 61310 Exmes, France
| |
Collapse
|