1
|
Song BX, Vieira E, Gallagher D, Diniz BS, Fischer CE, Flint AJ, Herrmann N, Mah L, Mulsant BH, Rajji TK, Ma C, Lanctôt KL. Blood Angiogenesis Markers and Cognition in Older Adults at Risk for Dementia: Marqueurs sanguins de l'angiogenèse et cognition chez les personnes âgées à risque de démence. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2025:7067437251337627. [PMID: 40304622 PMCID: PMC12043659 DOI: 10.1177/07067437251337627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
ObjectiveChanges in angiogenesis have been shown to contribute to cognitive decline and dementia. We aimed to identify angiogenesis blood markers associated with cognitive performance in older adults with mild cognitive impairment (MCI), remitted major depressive disorder (rMDD), or both (rMDD + MCI) who are at risk for dementia.MethodWe analyzed data from participants with MCI, rMDD, or rMDD + MCI in the Prevention of Alzheimer's Dementia with Cognitive Remediation plus Transcranial Direct Current Stimulation in Mild Cognitive Impairment and Depression study. Elastic net regression was used to select variables associated with cognitive performance among 19 angiogenesis markers and 6 covariates. Linear regressions were used to determine which of the selected angiogenesis markers were associated with cognitive performance, controlling for the selected covariates. Significant angiogenesis markers were independently analyzed without other angiogenesis markers, controlling for covariates, with subgroup analyses in those with and without rMDD.ResultsAngiogenin was the only selected marker associated with cognitive performance (β = 0.28, Padj = 0.03, f² = .02) when controlling for other selected markers (endothelial cell-specific molecule 1, e-selectin, interleukin-33 [IL-33], oncostatin M, platelet-derived growth factor-AB, IL-33 receptor, and tissue inhibitor of metalloproteinases-1) and selected covariates (age, education, apolipoprotein E ε4 status, diagnosis, and cardiovascular risk factors). When independently analyzed, angiogenin remained positively associated with cognitive performance (β = 0.21, P = 0.01, f² =.02), controlling for the covariates. In subgroup analyses, angiogenin was also associated with cognition in rMDD and rMDD + MCI participants (β =0.50, SE = 0.14, P < 0.001, f² = 0.08) and in MCI-only participants (β= 0.20, SE = 0.09, P = 0.02, f² = 0.02).ConclusionThe association of angiogenin with cognitive performance highlights a potentially novel biological pathway that could influence cognition in older adults at risk for dementia. Angiogenin may protect against cognitive decline, opening new avenues for innovative preventive, or therapeutic interventions.
Collapse
Affiliation(s)
- Bing Xin Song
- Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
- Geriatric Psychopharmacology Research Group, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Erica Vieira
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry and Toronto Dementia Research Alliance, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Damien Gallagher
- Geriatric Psychopharmacology Research Group, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Psychiatry and Toronto Dementia Research Alliance, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Breno S. Diniz
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- UConn Center on Aging and Department of Psychiatry, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Corinne E. Fischer
- Department of Psychiatry and Toronto Dementia Research Alliance, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada
| | - Alastair J. Flint
- Department of Psychiatry and Toronto Dementia Research Alliance, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- University Health Network, Toronto, Ontario, Canada
| | - Nathan Herrmann
- Department of Psychiatry and Toronto Dementia Research Alliance, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Linda Mah
- Department of Psychiatry and Toronto Dementia Research Alliance, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Baycrest Health Sciences, Toronto, Ontario, Canada
| | - Benoit H. Mulsant
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry and Toronto Dementia Research Alliance, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tarek K. Rajji
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry and Toronto Dementia Research Alliance, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Clement Ma
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Krista L. Lanctôt
- Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
- Geriatric Psychopharmacology Research Group, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry and Toronto Dementia Research Alliance, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
2
|
Alves L, Hashiguchi D, Loss CM, van Praag H, Longo BM. Vascular dysfunction in Alzheimer's disease: Exploring the potential of aerobic and resistance exercises as therapeutic strategies. J Alzheimers Dis 2025; 104:963-979. [PMID: 40079781 DOI: 10.1177/13872877251321118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Alzheimer's disease (AD) is the leading cause of morbidity and mortality worldwide, as a result of cognitive decline and neurological dysfunction. In AD, reduced cerebral blood flow and impaired vascularization result from capillary bed degeneration and decreased angiogenesis, as observed in both patients and animal models. Physical exercise is recognized as a potential intervention to delay AD progression and reduce disease risk. While most studies have focused on the benefits of aerobic exercise (AE), emerging evidence suggests that resistance exercise (RE) also exerts positive effects on overall health and cognitive function in aging and AD. However, a notable gap in knowledge remains regarding the effects of RE on cerebral blood flow and vascular structure. This review explores the processes by which AE and RE influence brain vascularization in aging and AD, including blood flow, endothelial function, angiogenesis and neurotrophic factor levels. Based on pre-clinical and clinical studies, we conclude that both AE and RE contribute to improved cerebral blood flow and vascular function, promoting vascular repair in the aging and AD-affected brain. By examining the relationship between exercise modalities and brain vascularization, this review expands knowledge regarding the processes underlying the neuroprotective effects of exercise in neurodegenerative and aging conditions.
Collapse
Affiliation(s)
- Larissa Alves
- Departamento de Fisiologia, Universidade Federal de São Paulo, UNIFESP, São Paulo, SP, Brasil
| | - Debora Hashiguchi
- Instituto do Cérebro, Universidade Federal do Rio Grande do Norte, UFRN, Natal, RN, Brasil
| | - Cássio Morais Loss
- Stiles-Nicholson Brain Institute, Charles E. Schmidt College of Medicine, Florida Atlantic University, FAU, Jupiter, FL, USA
| | - Henriette van Praag
- Stiles-Nicholson Brain Institute, Charles E. Schmidt College of Medicine, Florida Atlantic University, FAU, Jupiter, FL, USA
| | - Beatriz Monteiro Longo
- Departamento de Fisiologia, Universidade Federal de São Paulo, UNIFESP, São Paulo, SP, Brasil
| |
Collapse
|
3
|
Negri S, Reyff Z, Troyano-Rodriguez E, Milan M, Ihuoma J, Tavakol S, Shi H, Patai R, Jiang R, Mohon J, Boma-Iyaye J, Ungvari Z, Csiszar A, Yabluchanskiy A, Moccia F, Tarantini S. Endothelial Colony-Forming Cells (ECFCs) in cerebrovascular aging: Focus on the pathogenesis of Vascular Cognitive Impairment and Dementia (VCID), and treatment prospects. Ageing Res Rev 2025; 104:102672. [PMID: 39884362 DOI: 10.1016/j.arr.2025.102672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 02/01/2025]
Abstract
Endothelial colony-forming cells (ECFCs), a unique endothelial progenitor subset, are essential for vascular integrity and repair, providing significant regenerative potential. Recent studies highlight their role in cerebrovascular aging, particularly in the pathogenesis of vascular cognitive impairment and dementia (VCID). Aging disrupts ECFC functionality through mechanisms such as oxidative stress, chronic inflammation, and cellular senescence, leading to compromised vascular repair and reduced neurovascular resilience. ECFCs influence key cerebrovascular processes, including neurovascular coupling (NVC), blood-brain barrier (BBB) integrity, and vascular regeneration, which are critical for cognitive health. Age-related decline in ECFC quantity and functionality contributes to vascular rarefaction, diminished cerebral blood flow (CBF), and BBB permeability-processes that collectively exacerbate cognitive decline. This review delves into the multifaceted role of ECFCs in cerebrovascular aging and underscores their potential as therapeutic targets in addressing age-related vascular dysfunctions, presenting new directions for mitigating the effects of aging on brain health.
Collapse
Affiliation(s)
- Sharon Negri
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zeke Reyff
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Eva Troyano-Rodriguez
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Madison Milan
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jennifer Ihuoma
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sherwin Tavakol
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Helen Shi
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Roland Patai
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Raymond Jiang
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Casady School, Oklahoma City, OK, USA
| | - Jonah Mohon
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma School of Science and Mathematics, OK, USA
| | - Jed Boma-Iyaye
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma School of Science and Mathematics, OK, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; International Training Program in Geroscience, Doctoral College, Health Sciences Program/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary; Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Francesco Moccia
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso 86100, Italy
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Dept. of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; International Training Program in Geroscience, Doctoral College, Health Sciences Program/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary; Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
4
|
Schwartzman JD, McCall M, Ghattas Y, Pugazhendhi AS, Wei F, Ngo C, Ruiz J, Seal S, Coathup MJ. Multifunctional scaffolds for bone repair following age-related biological decline: Promising prospects for smart biomaterial-driven technologies. Biomaterials 2024; 311:122683. [PMID: 38954959 DOI: 10.1016/j.biomaterials.2024.122683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/09/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
The repair of large bone defects due to trauma, disease, and infection can be exceptionally challenging in the elderly. Despite best clinical practice, bone regeneration within contemporary, surgically implanted synthetic scaffolds is often problematic, inconsistent, and insufficient where additional osteobiological support is required to restore bone. Emergent smart multifunctional biomaterials may drive important and dynamic cellular crosstalk that directly targets, signals, stimulates, and promotes an innate bone repair response following age-related biological decline and when in the presence of disease or infection. However, their role remains largely undetermined. By highlighting their mechanism/s and mode/s of action, this review spotlights smart technologies that favorably align in their conceivable ability to directly target and enhance bone repair and thus are highly promising for future discovery for use in the elderly. The four degrees of interactive scaffold smartness are presented, with a focus on bioactive, bioresponsive, and the yet-to-be-developed autonomous scaffold activity. Further, cell- and biomolecular-assisted approaches were excluded, allowing for contemporary examination of the capabilities, demands, vision, and future requisites of next-generation biomaterial-induced technologies only. Data strongly supports that smart scaffolds hold significant promise in the promotion of bone repair in patients with a reduced osteobiological response. Importantly, many techniques have yet to be tested in preclinical models of aging. Thus, greater clarity on their proficiency to counteract the many unresolved challenges within the scope of aging bone is highly warranted and is arguably the next frontier in the field. This review demonstrates that the use of multifunctional smart synthetic scaffolds with an engineered strategy to circumvent the biological insufficiencies associated with aging bone is a viable route for achieving next-generation therapeutic success in the elderly population.
Collapse
Affiliation(s)
| | - Max McCall
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Yasmine Ghattas
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Abinaya Sindu Pugazhendhi
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Fei Wei
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Christopher Ngo
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Jonathan Ruiz
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Sudipta Seal
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA; Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, USA, Orlando, FL
| | - Melanie J Coathup
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
5
|
Liu F, Schrack JA, Walston J, Mathias RA, Windham BG, Grams ME, Coresh J, Walker KA. Mid-life plasma proteins associated with late-life prefrailty and frailty: a proteomic analysis. GeroScience 2024; 46:5247-5265. [PMID: 38856871 PMCID: PMC11336072 DOI: 10.1007/s11357-024-01219-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/21/2024] [Indexed: 06/11/2024] Open
Abstract
Physical frailty is a syndrome that typically manifests in later life, although the pathogenic process causing physical frailty likely begins decades earlier. To date, few studies have examined the biological signatures in mid-life associated with physical frailty later in life. Among 4,189 middle-aged participants (57.8 ± 5.0 years, 55.8% women) from the Atherosclerosis Risk in Community (ARIC) study, we evaluated the associations of 4,955 plasma proteins (log 2-transformed and standardized) measured using the SomaScan platform with their frailty status approximately 20 years later. Using multinomial logistic regression models adjusting for demographics, health behaviors, kidney function, total cholesterol, and comorbidities, 12 and 221 proteins were associated with prefrailty and frailty in later life, respectively (FDR p < 0.05). Top frailty-associated proteins included neurocan core protein (NCAN, OR = 0.66), fatty acid-binding protein heart (FABP3, OR = 1.62) and adipocyte (FABP4, OR = 1.65), as well proteins involved in the contactin-1 (CNTN1), toll-like receptor 5 (TLR5), and neurogenic locus notch homolog protein 1 (NOTCH1) signaling pathway relevant to skeletal muscle regeneration, myelination, and inflammation. Pathway analyses suggest midlife dysregulation of inflammation, metabolism, extracellular matrix, angiogenesis, and lysosomal autophagy among those at risk for late-life frailty. After further adjusting for midlife body mass index (BMI) - an established frailty risk factor - only CNTN1 (OR = 0.75) remained significantly associated with frailty. Post-hoc analyses demonstrated that the top 41 midlife frailty-associated proteins mediate 32% of the association between mid-life BMI and late-life frailty. Our findings provide new insights into frailty etiology earlier in the life course, enhancing the potential for prevention.
Collapse
Affiliation(s)
- Fangyu Liu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Jennifer A Schrack
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Center On Aging and Health, Johns Hopkins University, Baltimore, MD, USA
| | - Jeremy Walston
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Rasika A Mathias
- Genomics and Precision Health Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infection Disease, Bethesda, MD, USA
| | - B Gwen Windham
- Department of Medicine, MIND Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Morgan E Grams
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Division of Precision Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Population Health and Medicine, Optimal Aging Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Keenan A Walker
- Laboratory of Behavioral Neuroscience, National Institute On Aging, Baltimore, MD, USA
| |
Collapse
|
6
|
Joseph S, Woo J, Robbins CB, Haystead A, Stinnett S, Grewal DS, Fekrat S. Longitudinal Assessment of Peripapillary Microvasculature Using Optical Coherence Tomography Angiography in Cognitively Normal Adults. JOURNAL OF VITREORETINAL DISEASES 2024; 8:571-576. [PMID: 39318979 PMCID: PMC11418659 DOI: 10.1177/24741264241263167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Introduction: To evaluate longitudinal peripapillary changes in cognitively normal older adults using optical coherence tomography (OCT) and OCT angiography (OCTA). Methods: Participants older than 50 years with no history of neurodegenerative disease or cognitive impairment were prospectively enrolled. OCT and OCTA images were obtained at the first visit and 2 years later. Results: The study comprised 189 eyes of 111 adults with a mean age (±SD) of 69.3 ± 5.8 years and mean follow-up of 2.1 ± 0.5 years. Woman experienced slower rate of decline than men in capillary perfusion density (0.000% ± 0.005% vs -0.002% ± 0.004%; P = .038) and retinal nerve fiber layer (RNFL) thickness (0.133 ± 1.617 µm vs -0.659 ± 1.431 µm; P = .008). At both timepoints, after controlling for sex, the capillary perfusion density (P < .001), capillary flux index (P < .001), and RNFL thickness (P = .005) were lower in older participants. The mean capillary perfusion density was higher in women than in men at both timepoints (P = .01 and P = .002, respectively), with no significant differences in the capillary flux index and RNFL thickness. Conclusions: In cognitively normal adults, there is a significant reduction in peripapillary capillary perfusion density, the capillary flux index, and RNFL thickness associated with aging beyond 50 years. Women had higher capillary perfusion density values with slower rates of change in capillary perfusion density and RNFL thickness. These values can serve as benchmarks, and variations could be suspicious for a pathologic process.
Collapse
Affiliation(s)
- Suzanna Joseph
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
- iMIND Research Group, Duke University School of Medicine, Durham, NC, USA
| | - Joshua Woo
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
- iMIND Research Group, Duke University School of Medicine, Durham, NC, USA
| | - Cason B. Robbins
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
- iMIND Research Group, Duke University School of Medicine, Durham, NC, USA
| | - Alice Haystead
- iMIND Research Group, Duke University School of Medicine, Durham, NC, USA
| | - Sandra Stinnett
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
- iMIND Research Group, Duke University School of Medicine, Durham, NC, USA
| | - Dilraj S. Grewal
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
- iMIND Research Group, Duke University School of Medicine, Durham, NC, USA
| | - Sharon Fekrat
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
- iMIND Research Group, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
7
|
Song BX, Azhar L, Koo GKY, Marzolini S, Gallagher D, Swardfager W, Chen C, Ba J, Herrmann N, Lanctôt KL. The effect of exercise on blood concentrations of angiogenesis markers in older adults: A systematic review and meta-analysis. Neurobiol Aging 2024; 135:15-25. [PMID: 38147807 DOI: 10.1016/j.neurobiolaging.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/24/2023] [Accepted: 12/15/2023] [Indexed: 12/28/2023]
Abstract
Impaired angiogenesis is associated with cognitive decline in older adults. While exercise has been broadly associated with increased angiogenesis, the relevant mechanisms in older adults are not clear. Here, we present a systematic review and meta-analysis on the relationship between exercise and specific blood angiogenesis markers in older adults to better understand the relevant mechanisms. MEDLINE, Embase, and Cochrane CENTRAL were searched for original reports of angiogenesis markers' concentrations in blood before and after exercise in older adults (≥50 years). Heterogeneity was investigated using sub-group analyses and meta-regressions. Of the 44 articles included in the review, 38 were included in the meta-analyses for five markers: vascular endothelial growth factor (VEGF), e-selectin (CD62E), endostatin, fibroblast growth factor 2, and matrix metallopeptidase-9. VEGF levels were higher (SMD[95%CI]= 0.18[0.03, 0.34], and CD62E levels were lower (SMD[95%CI]= -0.72[-1.42, -0.03], p = 0.04) after exercise. No other markers were altered. Although more studies are needed, changes in angiogenesis markers may help explain the beneficial effects of exercise on angiogenesis in older adults.
Collapse
Affiliation(s)
- Bing Xin Song
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada; Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Laiba Azhar
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada; Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Grace Ka Yi Koo
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada; Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Susan Marzolini
- KITE - Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| | - Damien Gallagher
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, Division of Geriatric Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Walter Swardfager
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada; Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada; Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Clara Chen
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Joycelyn Ba
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Nathan Herrmann
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, Division of Geriatric Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada; Toronto Dementia Research Alliance, Toronto, ON, Canada
| | - Krista L Lanctôt
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada; Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada; KITE - Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, Division of Geriatric Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada; Toronto Dementia Research Alliance, Toronto, ON, Canada.
| |
Collapse
|
8
|
de Vasconcelos Gurgel BC, Peixe PG, Queiroz SIML, de Almeida Freitas R, de Aquino Martins ARL, Duarte PM. Comparison of immunoexpression of dendritic cells, mast cells and blood vessels in periodontal disease between adults and elderly. Clin Oral Investig 2023; 27:6823-6833. [PMID: 37814161 DOI: 10.1007/s00784-023-05297-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 09/27/2023] [Indexed: 10/11/2023]
Abstract
OBJECTIVE The aim of this study was to compare, in adults and elderly individuals, the immunoexpression of immature and mature dendritic cells (DCs), mast cells, and blood vessels in healthy and diseased gingival tissues. MATERIALS AND METHODS The expressions of immunohistochemical markers, including CD1a (immature dendritic cells), CD83 (mature dendritic cells), tryptase (mast cells) and CD34 (blood vessels), were analyzed in gingival biopsies from elderly (n = 27) and adult (n = 127) patients presenting health, gingivitis and periodontitis. Positive cells for each specimen and marker were counted. RESULTS There were no differences in the immunostaining of DCs, mast cells and the amount of blood vessels among gingival biopsies with health, gingivitis and periodontitis in adult and elderly subjects (p > 0.05). Immature DCs were more frequent in tissues with gingivitis and periodontitis in elderly patients, when compared to adults (p < 0.05). Furthermore, degranulated mast cell counts were higher, whereas the number of microvessels was lower in gingivitis in the elderly, when compared to adults (p < 0.05). CONCLUSIONS Diseased periodontal sites in the elderly present an overall significant overexpression of immature DCs and degranulated mast cells, in relation to those of adults. Furthermore, gingivitis in elderly is associated with decreased microvessel growth. These immunoinflammatory differences between elderly and adults may have implications in periodontal tissue breakdown in the late adulthood. Further studies should be performed to elucidate this hypothesis. CLINICAL RELEVANCE Understading the relationship between aging and changes in immune cells during periodontal inflammation may lead to therapeutic targets for the future management of periodontal diseases.
Collapse
Affiliation(s)
- Bruno Cesar de Vasconcelos Gurgel
- Department of Dentistry, Federal University of Rio Grande do Norte, 1787, Senador Salgado Filho Ave, Lagoa Nova, Natal, Rio Grande do Norte, CEP: 59056-000, Brazil.
| | - Patrícia Guerra Peixe
- Department of Dentistry, Federal University of Rio Grande do Norte, 1787, Senador Salgado Filho Ave, Lagoa Nova, Natal, Rio Grande do Norte, CEP: 59056-000, Brazil
| | - Salomão Israel Monteiro Lourenço Queiroz
- Department of Dentistry, Federal University of Rio Grande do Norte, 1787, Senador Salgado Filho Ave, Lagoa Nova, Natal, Rio Grande do Norte, CEP: 59056-000, Brazil
| | - Roseana de Almeida Freitas
- Department of Dentistry, Federal University of Rio Grande do Norte, 1787, Senador Salgado Filho Ave, Lagoa Nova, Natal, Rio Grande do Norte, CEP: 59056-000, Brazil
| | - Ana Rafaela Luz de Aquino Martins
- Department of Dentistry, Federal University of Rio Grande do Norte, 1787, Senador Salgado Filho Ave, Lagoa Nova, Natal, Rio Grande do Norte, CEP: 59056-000, Brazil
| | - Poliana Mendes Duarte
- Department of Periodontology, University of Florida, 1395 Center Dr, Gainesville, FL, 32610, USA
| |
Collapse
|
9
|
Lagger C, Ursu E, Equey A, Avelar RA, Pisco AO, Tacutu R, de Magalhães JP. scDiffCom: a tool for differential analysis of cell-cell interactions provides a mouse atlas of aging changes in intercellular communication. NATURE AGING 2023; 3:1446-1461. [PMID: 37919434 PMCID: PMC10645595 DOI: 10.1038/s43587-023-00514-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 09/27/2023] [Indexed: 11/04/2023]
Abstract
Dysregulation of intercellular communication is a hallmark of aging. To better quantify and explore changes in intercellular communication, we present scDiffCom and scAgeCom. scDiffCom is an R package, relying on approximately 5,000 curated ligand-receptor interactions, that performs differential intercellular communication analysis between two conditions from single-cell transcriptomics data. Built upon scDiffCom, scAgeCom is an atlas of age-related cell-cell communication changes covering 23 mouse tissues from 58 single-cell RNA sequencing datasets from Tabula Muris Senis and the Calico murine aging cell atlas. It offers a comprehensive resource of tissue-specific and sex-specific aging dysregulations and highlights age-related intercellular communication changes widespread across the whole body, such as the upregulation of immune system processes and inflammation, the downregulation of developmental processes, angiogenesis and extracellular matrix organization and the deregulation of lipid metabolism. Our analysis emphasizes the relevance of the specific ligands, receptors and cell types regulating these processes. The atlas is available online ( https://scagecom.org ).
Collapse
Affiliation(s)
- Cyril Lagger
- Integrative Genomics of Ageing Group, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Altos Labs, San Diego, CA, USA
| | - Eugen Ursu
- Systems Biology of Aging Group, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Anaïs Equey
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Roberto A Avelar
- Integrative Genomics of Ageing Group, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Angela Oliveira Pisco
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Insitro, Inc., South San Francisco, USA
| | - Robi Tacutu
- Systems Biology of Aging Group, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.
| |
Collapse
|
10
|
Shi X. Research advances in cochlear pericytes and hearing loss. Hear Res 2023; 438:108877. [PMID: 37651921 PMCID: PMC10538405 DOI: 10.1016/j.heares.2023.108877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/03/2023] [Accepted: 08/18/2023] [Indexed: 09/02/2023]
Abstract
Pericytes are specialized mural cells surrounding endothelial cells in microvascular beds. They play a role in vascular development, blood flow regulation, maintenance of blood-tissue barrier integrity, and control of angiogenesis, tissue fibrosis, and wound healing. In recent decades, understanding of the critical role played by pericytes in retina, brain, lung, and kidney has seen significant progress. The cochlea contains a large population of pericytes. However, the role of cochlear pericytes in auditory pathophysiology is, by contrast, largely unknown. The present review discusses recent progress in identifying cochlear pericytes, mapping their distribution, and defining their role in regulating blood flow, controlling the blood-labyrinth barrier (BLB) and angiogenesis, and involvement in different types of hearing loss.
Collapse
Affiliation(s)
- Xiaorui Shi
- Department of Otolaryngology/Head & Neck Surgery, Oregon Hearing Research Center (NRC04), Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA.
| |
Collapse
|
11
|
Gentile AM, Lhamyani S, Mengual Mesa M, Pavón-Morón FJ, Pearson JR, Salas J, Clemente-Postigo M, Pérez Costillas L, Fuster GO, El Bekay Rizky R. A Network Comprised of miR-15b and miR-29a Is Involved in Vascular Endothelial Growth Factor Pathway Regulation in Thymus Adipose Tissue from Elderly Ischemic Cardiomyopathy Subjects. Int J Mol Sci 2023; 24:14456. [PMID: 37833902 PMCID: PMC10572810 DOI: 10.3390/ijms241914456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/09/2023] [Accepted: 09/16/2023] [Indexed: 10/15/2023] Open
Abstract
As the human thymus ages, it undergoes a transformation into adipose tissue known as TAT. Interestingly, in previous research, we observed elevated levels of vascular endothelial growth factor A (VEGFA) in TAT from patients with ischemic cardiomyopathy (IC), particularly in those over 70 years old. Moreover, in contrast to subcutaneous adipose tissue (SAT), TAT in elderly individuals exhibits enhanced angiogenic properties and the ability to stimulate tube formation. This makes TAT a promising candidate for angiogenic therapies and the regeneration of ischemic tissues following coronary surgery. MicroRNAs (miRNAs) have emerged as attractive therapeutic targets, especially those that regulate angiogenic processes. The study's purpose is to determine the miRNA network associated with both the VEGFA pathway regulation and the enrichment of age-linked angiogenesis in the TAT. RT-PCR was used to analyze angiogenic miRNAs and the expression levels of their predicted target genes in both TAT and SAT from elderly and middle-aged patients treated with coronary artery bypass graft surgery. miRTargetLink Human was used to search for miRNAs and their target genes. PANTHER was used to annotate the biological processes of the predicted targets. The expression of miR-15b-5p and miR-29a-3p was significantly upregulated in the TAT of elderly compared with middle-aged patients. Interestingly, VEGFA and other angiogenic targets were significantly upregulated in the TAT of elderly patients. Specifically: JAG1, PDGFC, VEGFA, FGF2, KDR, NOTCH2, FOS, PDGFRA, PDGFRB, and RHOB were upregulated, while PIK3CG and WNT7A were downregulated. Our results provide strong evidence of a miRNA/mRNA interaction network linked with age-associated TAT angiogenic enrichment in patients with IC.
Collapse
Affiliation(s)
- Adriana Mariel Gentile
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29580 Malaga, Spain; (A.M.G.); (S.L.); (M.M.M.); (F.J.P.-M.); (M.C.-P.); (G.O.F.)
- Clinical Unit of Endocrinology and Nutrition, University Regional Hospital of Malaga, 29009 Malaga, Spain
- Andalucía Tech, Faculty of Health Sciences, and Department of Systems and Automation Engineering, School of Industrial Engineering, Universidad de Málaga, Teatinos Campus, s/n, 29071 Málaga, Spain
| | - Said Lhamyani
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29580 Malaga, Spain; (A.M.G.); (S.L.); (M.M.M.); (F.J.P.-M.); (M.C.-P.); (G.O.F.)
- Clinical Unit of Endocrinology and Nutrition, University Regional Hospital of Malaga, 29009 Malaga, Spain
| | - María Mengual Mesa
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29580 Malaga, Spain; (A.M.G.); (S.L.); (M.M.M.); (F.J.P.-M.); (M.C.-P.); (G.O.F.)
- Clinical Unit of Endocrinology and Nutrition, University Regional Hospital of Malaga, 29009 Malaga, Spain
- Andalucía Tech, Faculty of Health Sciences, and Department of Systems and Automation Engineering, School of Industrial Engineering, Universidad de Málaga, Teatinos Campus, s/n, 29071 Málaga, Spain
| | - Francisco Javier Pavón-Morón
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29580 Malaga, Spain; (A.M.G.); (S.L.); (M.M.M.); (F.J.P.-M.); (M.C.-P.); (G.O.F.)
- Clinical Unit of the Cardiology Area, University Hospital Virgen de la Victoria, 29009 Málaga, Spain
- Spain Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV), Health Institute III, 28029 Madrid, Spain
| | - John R. Pearson
- Biomedicine Institute of Seville (IBiS), 41013 Seville, Spain;
| | - Julián Salas
- Department of Cardiovascular Surgery, University Regional Hospital of Malaga, 29009 Malaga, Spain;
| | - Mercedes Clemente-Postigo
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29580 Malaga, Spain; (A.M.G.); (S.L.); (M.M.M.); (F.J.P.-M.); (M.C.-P.); (G.O.F.)
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Reina Sofia University Hospital, Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain
- Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Lucía Pérez Costillas
- Research Unit, International Institute for Innovation and Care in Neurodevelopment and Language, Department of Psychiatry and Physiotherapy, Faculty of Medicine, University of Malaga, 29010 Malaga, Spain;
| | - Gabriel Olveira Fuster
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29580 Malaga, Spain; (A.M.G.); (S.L.); (M.M.M.); (F.J.P.-M.); (M.C.-P.); (G.O.F.)
- Clinical Unit of Endocrinology and Nutrition, University Regional Hospital of Malaga, 29009 Malaga, Spain
- Biomedical Research Networking Center on Diabetes and Associated Metabolic Diseases (CIBERDEM), Carlos III Health Institute, 28029 Madrid, Spain
| | - Rajaa El Bekay Rizky
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29580 Malaga, Spain; (A.M.G.); (S.L.); (M.M.M.); (F.J.P.-M.); (M.C.-P.); (G.O.F.)
- Clinical Unit of Endocrinology and Nutrition, University Regional Hospital of Malaga, 29009 Malaga, Spain
- Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
12
|
Fließer E, Lins T, Berg JL, Kolb M, Kwapiszewska G. The endothelium in lung fibrosis: a core signaling hub in disease pathogenesis? Am J Physiol Cell Physiol 2023; 325:C2-C16. [PMID: 37184232 DOI: 10.1152/ajpcell.00097.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023]
Abstract
Pulmonary fibrosis (PF) is a progressive chronic lung disease characterized by excessive deposition of extracellular matrix (ECM) and structural destruction, associated with a severe 5-year mortality rate. The onset of the disease is thought to be triggered by chronic damage to the alveolar epithelium. Since the pulmonary endothelium is an important component of the alveolar-capillary niche, it is also affected by the initial injury. In addition to ensuring proper gas exchange, the endothelium has critical functional properties, including regulation of vascular tone, inflammatory responses, coagulation, and maintenance of vascular homeostasis and integrity. Recent single-cell analyses have shown that shifts in endothelial cell (EC) subtypes occur in PF. Furthermore, the increased vascular remodeling associated with PF leads to deteriorated outcomes for patients, underscoring the importance of the vascular bed in PF. To date, the causes and consequences of endothelial and vascular involvement in lung fibrosis are poorly understood. Therefore, it is of great importance to investigate the involvement of EC and the vascular system in the pathogenesis of the disease. In this review, we will outline the current knowledge on the role of the pulmonary vasculature in PF, in terms of abnormal cellular interactions, hyperinflammation, vascular barrier disorders, and an altered basement membrane composition. Finally, we will summarize recent advances in extensive therapeutic research and discuss the significant value of novel therapies targeting the endothelium.
Collapse
Affiliation(s)
- Elisabeth Fließer
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Thomas Lins
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Johannes Lorenz Berg
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Division of Physiology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Martin Kolb
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Division of Physiology and Pathophysiology, Medical University of Graz, Graz, Austria
- Institute for Lung Health, Member of the German Lung Center (DZL), Cardiopulmonary Institute (CPI), Giessen, Germany
| |
Collapse
|
13
|
Li X, Zhang H, Wang X, Lu M, Ding Q, Chen AF, Xiang M, Chen S. iPSC-derived exosomes promote angiogenesis in naturally aged mice. Aging (Albany NY) 2023; 15:5854-5872. [PMID: 37367945 PMCID: PMC10333073 DOI: 10.18632/aging.204845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023]
Abstract
Heterochronic parabiosis has shown that aging individuals can be rejuvenated by a youthful circulatory system; however, the underlying mechanisms remain unclear. Here, we evaluated the effect of exosomes isolated from mouse induced pluripotent stem cells (iPSCs) on angiogenesis in naturally aged mice. To achieve this, the angiogenic capacity of aortic ring, the total antioxidant capacity (TAOC), p53 and p16 expression levels of major organs, the proliferation of adherent bone marrow cells, and the function and content of serum exosomes in aged mice administered iPSC-derived exosomes were examined. Additionally, the effect of iPSC-derived exosomes on injured human umbilical vein endothelial cells (HUVECs) was assessed. The angiogenic capacity of aortic rings and clonality of bone marrow cells from young mice were significantly higher than those from aged mice; moreover, the organs of aged mice had a higher expression of aging genes and lower total TAOC. However, in vitro and in vivo experiments showed that the administration of iPSC-derived exosomes significantly improved these parameters in aged mice. The synergistic effect of both in vivo and in vitro treatments of aortic rings with iPSC-derived exosomes improved the angiogenic capacity of aortic rings from aged mice to levels similar to that of young mice. Compared with untreated aged mice, serum exosomal protein content and their promoted effect on endothelial cell proliferation and angiogenesis were significantly higher in untreated young mice and aged mice treated with iPSC-derived exosomes. Overall, these results showed that iPSC-derived exosomes may rejuvenate the body by anti-aging the vascular system.
Collapse
Affiliation(s)
- Xingyu Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Heng Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xuemeng Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Meng Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qianqian Ding
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Alex F. Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Meng Xiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Sifeng Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Spinelli R, Baboota RK, Gogg S, Beguinot F, Blüher M, Nerstedt A, Smith U. Increased cell senescence in human metabolic disorders. J Clin Invest 2023; 133:e169922. [PMID: 37317964 DOI: 10.1172/jci169922] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
Cell senescence (CS) is at the nexus between aging and associated chronic disorders, and aging increases the burden of CS in all major metabolic tissues. However, CS is also increased in adult obesity, type 2 diabetes (T2D), and nonalcoholic fatty liver disease independent of aging. Senescent tissues are characterized by dysfunctional cells and increased inflammation, and both progenitor cells and mature, fully differentiated and nonproliferating cells are afflicted. Recent studies have shown that hyperinsulinemia and associated insulin resistance (IR) promote CS in both human adipose and liver cells. Similarly, increased CS promotes cellular IR, showing their interdependence. Furthermore, the increased adipose CS in T2D is independent of age, BMI, and degree of hyperinsulinemia, suggesting premature aging. These results suggest that senomorphic/senolytic therapy may become important for treating these common metabolic disorders.
Collapse
Affiliation(s)
- Rosa Spinelli
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Ritesh Kumar Baboota
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Evotec International GmbH, Göttingen, Germany
| | - Silvia Gogg
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Francesco Beguinot
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Annika Nerstedt
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ulf Smith
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
15
|
Jung Y, Quon JL, Drake JM. Sinus pericranii in the setting of a posterior fossa pilocytic astrocytoma: illustrative case. JOURNAL OF NEUROSURGERY. CASE LESSONS 2023; 5:CASE2332. [PMID: 36941199 PMCID: PMC10550684 DOI: 10.3171/case2332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/06/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND Sinus pericranii (SP) is a rare vascular anomaly, with an uncertain etiology. Often discovered as superficial lesions, they can be primary or secondary in nature. Herein, we report a rare case of SP in the setting of a large posterior fossa pilocytic astrocytoma associated with a significant venous network. OBSERVATIONS A 12-year-old male presented with acute clinical deterioration in extremis with a 2-month history of lethargy and headaches. Outside plain computed tomography imaging revealed a large posterior fossa cystic lesion, probably a tumor, with severe hydrocephalus. There was also a midline small skull defect at the opisthocranion, without visible vascular anomalies. An external ventricular drain was placed with rapid recovery. Contrast imaging revealed a large midline SP emanating from occipital bone with a large intraosseous, and subcutaneous venous plexus in the midline draining inferiorly into venous plexus around the craniocervical junction. A posterior fossa craniotomy without contrast imaging could have resulted in catastrophic hemorrhage. A small modified off-center craniotomy provided access to the tumor with a gross total excision. LESSONS SP is a rare but significant phenomenon. Its presence does not necessarily preclude resection of underlying tumors, provided that a careful preoperative assessment of the venous anomaly is undertaken.
Collapse
Affiliation(s)
| | - Jennifer L. Quon
- Department of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - James M. Drake
- Departments of Neurosurgery
- Surgery, University of Toronto, Toronto, Ontario, Canada; and
- Department of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Ravarotto V, Bertoldi G, Rigato M, Pagnin E, Gobbi L, Davis PA, Calò LA. Tracing angiotensin II's yin-yang effects on cardiovascular-renal pathophysiology. Minerva Med 2023; 114:56-67. [PMID: 34180640 DOI: 10.23736/s0026-4806.21.07440-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adverse changes in cardiovascular and renal systems are major contributors to overall morbidity and mortality. Human cardiovascular and renal systems exhibit a complex network of positive and negative feedback that is reflected in the control of vascular tone via angiotensin II (Ang II) based signaling. This review will examine in some depth, the multiple components and processes that control the status and reflect the health of these various cardiovascular and renal systems, such as pathways associated to monomeric G proteins, RhoA/Rho kinase system and ERK, oxidative stress and NO balance. It will specifically emphasize the "yin-yang" nature of Ang II signaling by comparing and contrasting the effects and activity of various systems, pathways and components found in hypertension to those found in Gitelman's and Bartter's syndromes (GS/BS), two rare autosomal recessive tubulopathies characterized by electrolytic imbalance, metabolic alkalosis, sodium wasting and prominent activation of the renin-angiotensin-aldosterone system. Notwithstanding the activation of the renin-angiotensin-aldosterone system, GS/BS are normo-hypotensive and protected from cardiovascular-renal remodeling and therefore can be considered the mirror image, the opposite of hypertension.
Collapse
Affiliation(s)
- Verdiana Ravarotto
- Unit of Nephrology, Dialysis and Transplantation, Department of Medicine, University of Padua, Padua, Italy
| | - Giovanni Bertoldi
- Unit of Nephrology, Dialysis and Transplantation, Department of Medicine, University of Padua, Padua, Italy
| | - Matteo Rigato
- Unit of Nephrology, Dialysis and Transplantation, Department of Medicine, University of Padua, Padua, Italy
| | - Elisa Pagnin
- Unit of Nephrology, Dialysis and Transplantation, Department of Medicine, University of Padua, Padua, Italy
| | - Laura Gobbi
- Unit of Nephrology, Dialysis and Transplantation, Department of Medicine, University of Padua, Padua, Italy
| | - Paul A Davis
- Department of Nutrition, University of California at Davis, Davis, CA, USA
| | - Lorenzo A Calò
- Unit of Nephrology, Dialysis and Transplantation, Department of Medicine, University of Padua, Padua, Italy -
| |
Collapse
|
17
|
Pacinella G, Ciaccio AM, Tuttolomondo A. Endothelial Dysfunction and Chronic Inflammation: The Cornerstones of Vascular Alterations in Age-Related Diseases. Int J Mol Sci 2022; 23:15722. [PMID: 36555364 PMCID: PMC9779461 DOI: 10.3390/ijms232415722] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Vascular diseases of the elderly are a topic of enormous interest in clinical practice, as they have great epidemiological significance and lead to ever-increasing healthcare expenditures. The mechanisms underlying these pathologies have been increasingly characterized over the years. It has emerged that endothelial dysfunction and chronic inflammation play a diriment role among the most relevant pathophysiological mechanisms. As one can easily imagine, various processes occur during aging, and several pathways undergo irreversible alterations that can promote the decline and aberrations that trigger the diseases above. Endothelial dysfunction and aging of circulating and resident cells are the main characteristics of the aged organism; they represent the framework within which an enormous array of molecular abnormalities occur and contribute to accelerating and perpetuating the decline of organs and tissues. Recognizing and detailing each of these dysfunctional pathways is helpful for therapeutic purposes, as it allows one to hypothesize the possibility of tailoring interventions to the damaged mechanism and hypothetically limiting the cascade of events that drive the onset of these diseases. With this paper, we have reviewed the scientific literature, analysing the pathophysiological basis of the vascular diseases of the elderly and pausing to reflect on attempts to interrupt the vicious cycle that connotes the diseases of aging, laying the groundwork for therapeutic reasoning and expanding the field of scientific research by moving from a solid foundation.
Collapse
Affiliation(s)
| | | | - Antonino Tuttolomondo
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant, Excellence and Internal and Specialized Medicine (PROMISE) G. D’Alessandro, University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy
| |
Collapse
|
18
|
Kavurma MM, Bursill C, Stanley CP, Passam F, Cartland SP, Patel S, Loa J, Figtree GA, Golledge J, Aitken S, Robinson DA. Endothelial cell dysfunction: Implications for the pathogenesis of peripheral artery disease. Front Cardiovasc Med 2022; 9:1054576. [PMID: 36465438 PMCID: PMC9709122 DOI: 10.3389/fcvm.2022.1054576] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/24/2022] [Indexed: 08/27/2023] Open
Abstract
Peripheral artery disease (PAD) is caused by occluded or narrowed arteries that reduce blood flow to the lower limbs. The treatment focuses on lifestyle changes, management of modifiable risk factors and vascular surgery. In this review we focus on how Endothelial Cell (EC) dysfunction contributes to PAD pathophysiology and describe the largely untapped potential of correcting endothelial dysfunction. Moreover, we describe current treatments and clinical trials which improve EC dysfunction and offer insights into where future research efforts could be made. Endothelial dysfunction could represent a target for PAD therapy.
Collapse
Affiliation(s)
- Mary M. Kavurma
- Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Christina Bursill
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Faculty of Health and Medical Science, University of Adelaide, Adelaide, SA, Australia
| | | | - Freda Passam
- Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
- Central Clinical School, Faculty of Health and Medicine, The University of Sydney, Sydney, NSW, Australia
| | - Siân P. Cartland
- Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Sanjay Patel
- Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
- Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Jacky Loa
- Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Gemma A. Figtree
- Faculty of Health and Medicine, The University of Sydney, Sydney, NSW, Australia
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
- The Department of Vascular and Endovascular Surgery, Townsville University Hospital, Townsville, QLD, Australia
| | - Sarah Aitken
- Faculty of Health and Medicine, The University of Sydney, Sydney, NSW, Australia
- Concord Institute of Academic Surgery, Concord Hospital, Sydney, NSW, Australia
| | | |
Collapse
|
19
|
Díaz-Flores L, Gutiérrez R, García MP, González-Gómez M, Díaz-Flores L, Carrasco JL, Madrid JF, Rodríguez Bello A. Comparison of the Behavior of Perivascular Cells (Pericytes and CD34+ Stromal Cell/Telocytes) in Sprouting and Intussusceptive Angiogenesis. Int J Mol Sci 2022; 23:ijms23169010. [PMID: 36012273 PMCID: PMC9409369 DOI: 10.3390/ijms23169010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Perivascular cells in the pericytic microvasculature, pericytes and CD34+ stromal cells/telocytes (CD34+SCs/TCs), have an important role in angiogenesis. We compare the behavior of these cells depending on whether the growth of endothelial cells (ECs) from the pre-existing microvasculature is toward the interstitium with vascular bud and neovessel formation (sprouting angiogenesis) or toward the vascular lumen with intravascular pillar development and vessel division (intussusceptive angiogenesis). Detachment from the vascular wall, mobilization, proliferation, recruitment, and differentiation of pericytes and CD34+SCs/TCs, as well as associated changes in vessel permeability and functionality, and modifications of the extracellular matrix are more intense, longer lasting over time, and with a greater energy cost in sprouting angiogenesis than in intussusceptive angiogenesis, in which some of the aforementioned events do not occur or are compensated for by others (e.g., sparse EC and pericyte proliferation by cell elongation and thinning). The governing mechanisms involve cell-cell contacts (e.g., peg-and-socket junctions between pericytes and ECs), multiple autocrine and paracrine signaling molecules and pathways (e.g., vascular endothelial growth factor, platelet-derived growth factor, angiopoietins, transforming growth factor B, ephrins, semaphorins, and metalloproteinases), and other factors (e.g., hypoxia, vascular patency, and blood flow). Pericytes participate in vessel development, stabilization, maturation and regression in sprouting angiogenesis, and in interstitial tissue structure formation of the pillar core in intussusceptive angiogenesis. In sprouting angiogenesis, proliferating perivascular CD34+SCs/TCs are an important source of stromal cells during repair through granulation tissue formation and of cancer-associated fibroblasts (CAFs) in tumors. Conversely, CD34+SCs/TCs have less participation as precursor cells in intussusceptive angiogenesis. The dysfunction of these mechanisms is involved in several diseases, including neoplasms, with therapeutic implications.
Collapse
Affiliation(s)
- Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
- Correspondence: ; Tel.: +34-922-319317; Fax: +34-922-319279
| | - Ricardo Gutiérrez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
| | - Maria Pino García
- Department of Pathology, Eurofins Megalab–Hospiten Hospitals, 38100 Tenerife, Spain
| | - Miriam González-Gómez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
- Instituto de Tecnologías Biomédicas de Canarias, University of La Laguna, 38071 Tenerife, Spain
| | - Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
| | - Jose Luis Carrasco
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
| | - Juan Francisco Madrid
- Department of Cell Biology and Histology, School of Medicine, Campus of International Excellence “Campus Mare Nostrum”, IMIB-Arrixaca, University of Murcia, 30120 Murcia, Spain
| | - Aixa Rodríguez Bello
- Department of Bioquímica, Microbiología, Biología Celular y Genética, University of La Laguna, 38071 Tenerife, Spain
| |
Collapse
|
20
|
Lampejo AO, Hu NW, Lucas D, Lomel BM, Nguyen CM, Dominguez CC, Ren B, Huang Y, Murfee WL. A Challenge for Engineering Biomimetic Microvascular Models: How do we Incorporate the Physiology? Front Bioeng Biotechnol 2022; 10:912073. [PMID: 35795159 PMCID: PMC9252339 DOI: 10.3389/fbioe.2022.912073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
The gap between in vitro and in vivo assays has inspired biomimetic model development. Tissue engineered models that attempt to mimic the complexity of microvascular networks have emerged as tools for investigating cell-cell and cell-environment interactions that may be not easily viewed in vivo. A key challenge in model development, however, is determining how to recreate the multi-cell/system functional complexity of a real network environment that integrates endothelial cells, smooth muscle cells, vascular pericytes, lymphatics, nerves, fluid flow, extracellular matrix, and inflammatory cells. The objective of this mini-review is to overview the recent evolution of popular biomimetic modeling approaches for investigating microvascular dynamics. A specific focus will highlight the engineering design requirements needed to match physiological function and the potential for top-down tissue culture methods that maintain complexity. Overall, examples of physiological validation, basic science discoveries, and therapeutic evaluation studies will emphasize the value of tissue culture models and biomimetic model development approaches that fill the gap between in vitro and in vivo assays and guide how vascular biologists and physiologists might think about the microcirculation.
Collapse
Affiliation(s)
- Arinola O. Lampejo
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Nien-Wen Hu
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Daniela Lucas
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Banks M. Lomel
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Christian M. Nguyen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Carmen C. Dominguez
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Bing Ren
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, United States
| | - Yong Huang
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, United States
| | - Walter L. Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
- *Correspondence: Walter L. Murfee,
| |
Collapse
|
21
|
Karas A, Holmannova D, Borsky P, Fiala Z, Andrys C, Hamakova K, Svadlakova T, Palicka V, Krejsek J, Rehacek V, Esterkova M, Kovarikova H, Borska L. Significantly Altered Serum Levels of NAD, AGE, RAGE, CRP, and Elastin as Potential Biomarkers of Psoriasis and Aging—A Case-Control Study. Biomedicines 2022; 10:biomedicines10051133. [PMID: 35625870 PMCID: PMC9138308 DOI: 10.3390/biomedicines10051133] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 01/11/2023] Open
Abstract
Background: This study aims to investigate potential markers of psoriasis and aging, and to elucidate possible connections between these two processes. Methods: The serum samples of 60 psoriatic patients and 100 controls were analysed, and the levels of four selected parameters (AGEs, RAGE, NAD, and elastin) were determined using commercial ELISA kits. Serum C-reactive protein was assayed using an immune-nephelometry method. Findings: Among the patients, the levels of CRP, AGEs, and RAGE were all increased, while the levels of NAD were reduced when compared to the control group. A negative correlation between the levels of AGEs and NAD was found. A negative correlation between age and the NAD levels among the control group was observed, however among the patients the relationship was diminished. While there was no difference in the levels of native elastin between the patients and the controls, a positive correlation between the levels of native elastin and age and a negative correlation between the levels of native elastin and the severity of psoriasis were found. Conclusions: The results of our study support the notion of psoriasis and possibly other immune-mediated diseases accelerating the aging process through sustained systemic damage. The serum levels of CRP, NAD, AGEs, and RAGE appear to be promising potential biomarkers of psoriasis. The decrease in the serum levels of NAD is associated with (pro)inflammatory states. Our analysis indicates that the levels of native elastin might strongly reflect both the severity of psoriasis and the aging process.
Collapse
Affiliation(s)
- Adam Karas
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (A.K.); (D.H.); (Z.F.); (T.S.); (M.E.); (L.B.)
| | - Drahomira Holmannova
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (A.K.); (D.H.); (Z.F.); (T.S.); (M.E.); (L.B.)
| | - Pavel Borsky
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (A.K.); (D.H.); (Z.F.); (T.S.); (M.E.); (L.B.)
- Correspondence: ; Tel.: +420-495-816-386
| | - Zdenek Fiala
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (A.K.); (D.H.); (Z.F.); (T.S.); (M.E.); (L.B.)
| | - Ctirad Andrys
- Institute of Clinical Immunology and Allergology, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (C.A.); (J.K.)
| | - Kvetoslava Hamakova
- Clinic of Dermal and Venereal Diseases, University Hospital, 500 03 Hradec Kralove, Czech Republic;
| | - Tereza Svadlakova
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (A.K.); (D.H.); (Z.F.); (T.S.); (M.E.); (L.B.)
- Institute of Clinical Immunology and Allergology, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (C.A.); (J.K.)
| | - Vladimir Palicka
- Institute of Clinical Biochemistry and Diagnostics, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (V.P.); (H.K.)
| | - Jan Krejsek
- Institute of Clinical Immunology and Allergology, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (C.A.); (J.K.)
| | - Vit Rehacek
- Transfusion Center, University Hospital, 500 03 Hradec Kralove, Czech Republic;
| | - Monika Esterkova
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (A.K.); (D.H.); (Z.F.); (T.S.); (M.E.); (L.B.)
| | - Helena Kovarikova
- Institute of Clinical Biochemistry and Diagnostics, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (V.P.); (H.K.)
| | - Lenka Borska
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (A.K.); (D.H.); (Z.F.); (T.S.); (M.E.); (L.B.)
| |
Collapse
|
22
|
Wickham KA, Nørregaard LB, Oxfeldt M, Cheung SS, Gliemann L, Hansen M, Hellsten Y. Short-Term Supplementation With Fermented Red Clover Extract Reduces Vascular Inflammation in Early Post-menopausal Women. Front Cardiovasc Med 2022; 9:826959. [PMID: 35224058 PMCID: PMC8866445 DOI: 10.3389/fcvm.2022.826959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
The decline in estrogen at menopause poses a critical challenge to cardiovascular and metabolic health. Recently, a growing interest in the role of phytoestrogens, with a particular focus on isoflavones, has emerged as they can bind to estrogen receptors and may mimic the roles of endogenous estrogen. Fermented red clover extract (RC) contains isoflavones with superior bioavailability compared to non-fermented isoflavones, however little is known regarding the impact of isoflavones on cardiovascular and metabolic health. We assessed markers of vascular health in plasma and skeletal muscle samples obtained from healthy but sedentary early post-menopausal women (n = 10; 54 ± 4 years) following 2 weeks of twice daily treatment with placebo (PLA) or RC (60 mg isoflavones per day). The two interventions were administered using a randomized, double-blind, crossover design with a two-week washout period. Plasma samples were utilized for assessment of markers of vascular inflammation. There was a statistically significant reduction (~5.4%) in vascular cell adhesion molecule 1 (VCAM-1) following 2 weeks of RC supplementation compared to PLA (p = 0.03). In contrast, there was no effect of RC supplementation compared to PLA on skeletal muscle estrogen receptor content and enzymes related to vascular function, and angiogenesis. Supplementation with RC reduces vascular inflammation in early post-menopausal women and future studies should address the long-term impact of daily supplementation with RC after menopause.
Collapse
Affiliation(s)
- Kate A. Wickham
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
- Environmental Ergonomics Lab, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Line B. Nørregaard
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Oxfeldt
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Stephen S. Cheung
- Environmental Ergonomics Lab, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Lasse Gliemann
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Mette Hansen
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Ylva Hellsten
| |
Collapse
|
23
|
Di Sanzo S, Spengler K, Leheis A, Kirkpatrick JM, Rändler TL, Baldensperger T, Dau T, Henning C, Parca L, Marx C, Wang ZQ, Glomb MA, Ori A, Heller R. Mapping protein carboxymethylation sites provides insights into their role in proteostasis and cell proliferation. Nat Commun 2021; 12:6743. [PMID: 34795246 PMCID: PMC8602705 DOI: 10.1038/s41467-021-26982-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 10/29/2021] [Indexed: 12/19/2022] Open
Abstract
Posttranslational mechanisms play a key role in modifying the abundance and function of cellular proteins. Among these, modification by advanced glycation end products has been shown to accumulate during aging and age-associated diseases but specific protein targets and functional consequences remain largely unexplored. Here, we devise a proteomic strategy to identify sites of carboxymethyllysine modification, one of the most abundant advanced glycation end products. We identify over 1000 sites of protein carboxymethylation in mouse and primary human cells treated with the glycating agent glyoxal. By using quantitative proteomics, we find that protein glycation triggers a proteotoxic response and indirectly affects the protein degradation machinery. In primary endothelial cells, we show that glyoxal induces cell cycle perturbation and that carboxymethyllysine modification reduces acetylation of tubulins and impairs microtubule dynamics. Our data demonstrate the relevance of carboxymethyllysine modification for cellular function and pinpoint specific protein networks that might become compromised during aging.
Collapse
Affiliation(s)
- Simone Di Sanzo
- grid.418245.e0000 0000 9999 5706Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Katrin Spengler
- grid.275559.90000 0000 8517 6224Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, 07743 Jena, Germany
| | - Anja Leheis
- grid.275559.90000 0000 8517 6224Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, 07743 Jena, Germany
| | - Joanna M. Kirkpatrick
- grid.418245.e0000 0000 9999 5706Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), 07745 Jena, Germany ,grid.451388.30000 0004 1795 1830Present Address: Proteomics Science Technology Platform, The Francis Crick Institute, MW1 1AT London, UK
| | - Theresa L. Rändler
- grid.275559.90000 0000 8517 6224Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, 07743 Jena, Germany
| | - Tim Baldensperger
- grid.9018.00000 0001 0679 2801Institute of Chemistry, Food Chemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Therese Dau
- grid.418245.e0000 0000 9999 5706Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Christian Henning
- grid.9018.00000 0001 0679 2801Institute of Chemistry, Food Chemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Luca Parca
- grid.413503.00000 0004 1757 9135Bioinformatics Unit, IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo, Italy
| | - Christian Marx
- grid.418245.e0000 0000 9999 5706Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Zhao-Qi Wang
- grid.418245.e0000 0000 9999 5706Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), 07745 Jena, Germany ,grid.9613.d0000 0001 1939 2794Faculty of Biological Sciences, Friedrich-Schiller-University of Jena, Jena, Germany
| | - Marcus A. Glomb
- grid.9018.00000 0001 0679 2801Institute of Chemistry, Food Chemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Alessandro Ori
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745, Jena, Germany.
| | - Regine Heller
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, 07743, Jena, Germany.
| |
Collapse
|
24
|
Dadwal UC, Bhatti FUR, Awosanya OD, Nagaraj RU, Perugini AJ, Sun S, Valuch CR, de Andrade Staut C, Mendenhall SK, Tewari NP, Mostardo SL, Nazzal MK, Battina HL, Zhou D, Kanagasabapathy D, Blosser RJ, Mulcrone PL, Li J, Kacena MA. The effects of bone morphogenetic protein 2 and thrombopoietin treatment on angiogenic properties of endothelial cells derived from the lung and bone marrow of young and aged, male and female mice. FASEB J 2021; 35:e21840. [PMID: 34423881 DOI: 10.1096/fj.202001616rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 06/30/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022]
Abstract
With an aging world population, there is an increased risk of fracture and impaired healing. One contributing factor may be aging-associated decreases in vascular function; thus, enhancing angiogenesis could improve fracture healing. Both bone morphogenetic protein 2 (BMP-2) and thrombopoietin (TPO) have pro-angiogenic effects. The aim of this study was to investigate the effects of treatment with BMP-2 or TPO on the in vitro angiogenic and proliferative potential of endothelial cells (ECs) isolated from lungs (LECs) or bone marrow (BMECs) of young (3-4 months) and old (22-24 months), male and female, C57BL/6J mice. Cell proliferation, vessel-like structure formation, migration, and gene expression were used to evaluate angiogenic properties. In vitro characterization of ECs generally showed impaired vessel-like structure formation and proliferation in old ECs compared to young ECs, but improved migration characteristics in old BMECs. Differential sex-based angiogenic responses were observed, especially with respect to drug treatments and gene expression. Importantly, these studies suggest that NTN1, ROBO2, and SLIT3, along with angiogenic markers (CD31, FLT-1, ANGPT1, and ANGP2) differentially regulate EC proliferation and functional outcomes based on treatment, sex, and age. Furthermore, treatment of old ECs with TPO typically improved vessel-like structure parameters, but impaired migration. Thus, TPO may serve as an alternative treatment to BMP-2 for fracture healing in aging owing to improved angiogenesis and fracture healing, and the lack of side effects associated with BMP-2.
Collapse
Affiliation(s)
- Ushashi C Dadwal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Fazal Ur Rehman Bhatti
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Olatundun D Awosanya
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rohit U Nagaraj
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anthony J Perugini
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Seungyup Sun
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Conner R Valuch
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Caio de Andrade Staut
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Stephen K Mendenhall
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nikhil P Tewari
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sarah L Mostardo
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Murad K Nazzal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hanisha L Battina
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Donghui Zhou
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Deepa Kanagasabapathy
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rachel J Blosser
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Patrick L Mulcrone
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jiliang Li
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
25
|
Dessalles CA, Babataheri A, Barakat AI. Pericyte mechanics and mechanobiology. J Cell Sci 2021; 134:134/6/jcs240226. [PMID: 33753399 DOI: 10.1242/jcs.240226] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pericytes are mural cells of the microvasculature, recognized by their thin processes and protruding cell body. Pericytes wrap around endothelial cells and play a central role in regulating various endothelial functions, including angiogenesis and inflammation. They also serve as a vascular support and regulate blood flow by contraction. Prior reviews have examined pericyte biological functions and biochemical signaling pathways. In this Review, we focus on the role of mechanics and mechanobiology in regulating pericyte function. After an overview of the morphology and structure of pericytes, we describe their interactions with both the basement membrane and endothelial cells. We then turn our attention to biophysical considerations, and describe contractile forces generated by pericytes, mechanical forces exerted on pericytes, and pericyte responses to these forces. Finally, we discuss 2D and 3D engineered in vitro models for studying pericyte mechano-responsiveness and underscore the need for more evolved models that provide improved understanding of pericyte function and dysfunction.
Collapse
Affiliation(s)
- Claire A Dessalles
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, 91120, Palaiseau, France
| | - Avin Babataheri
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, 91120, Palaiseau, France
| | - Abdul I Barakat
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, 91120, Palaiseau, France
| |
Collapse
|
26
|
Azimi MS, Motherwell JM, Dutreil M, Fishel RL, Nice M, Hodges NA, Bunnell BA, Katz A, Murfee WL. A novel tissue culture model for evaluating the effect of aging on stem cell fate in adult microvascular networks. GeroScience 2020; 42:515-526. [PMID: 32206968 PMCID: PMC7205973 DOI: 10.1007/s11357-020-00178-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 03/04/2020] [Indexed: 12/18/2022] Open
Abstract
In vitro models of angiogenesis are valuable tools for understanding the underlying mechanisms of pathological conditions and for the preclinical evaluation of therapies. Our laboratory developed the rat mesentery culture model as a new tool for investigating mechanistic cell-cell interactions at specific locations across intact blood and lymphatic microvascular networks ex vivo. The objective of this study was to report a method for evaluating the effect of aging on human stem cell differentiation into pericytes during angiogenesis in cultured microvascular networks. DiI labeled exogenous stem cells were seeded onto harvested adult Wistar rat mesenteric tissues and cultured in alpha-MEM + 1% serum for up to 5 days according to four experimental groups: (1) adult human adipose-derived stem cells (hASCs), (2) aged hASCs, (3) adult human bone marrow-derived stem cells (hBMSCs), and (4) aged hBMSCs. Angiogenesis per experimental group was supported by observation of increased vessel density and capillary sprouting. For each tissue per experimental group, a subset of cells was observed in typical pericyte location wrapped along blood vessels. Stem cell differentiation into pericytes was supported by the adoption of elongated pericyte morphology along endothelial cells and positive NG2 labeling. The percentage of cells in pericyte locations was not significantly different across the experimental groups, suggesting that aged mesenchymal stem cells are able to retain their differentiation capacity. Our results showcase an application of the rat mesentery culture model for aging research and the evaluation of stem cell fate within intact microvascular networks.
Collapse
Affiliation(s)
- Mohammad S Azimi
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, 70118, USA
| | - Jessica M Motherwell
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, 70118, USA
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Maria Dutreil
- Tulane Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Ryan L Fishel
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, 70118, USA
| | - Matthew Nice
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, 70118, USA
| | - Nicholas A Hodges
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, 70118, USA
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Bruce A Bunnell
- Tulane Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Adam Katz
- Depart of Surgery, University of Florida School of Medicine, Gainesville, FL, 32611, USA
| | - Walter L Murfee
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
27
|
Abstract
Microvascular dysfunction is a frequent complication of many chronic and acute conditions, especially in the critically ill. Moreover, the severity of microvascular alterations is associated with development of organ dysfunction and poor outcome. The complexities and heterogeneity of critical illness, especially in the elderly patient, requires more mechanistically oriented clinical trials that monitor the effectiveness of existing therapies and of those to come. Recent advances in the ability to obtain physiologically based assessments of microcirculatory function at the bedside will make microcirculatory-guided resuscitation a point of care reality.
Collapse
Affiliation(s)
- Can Ince
- Department of Intensive Care, Laboratory of Translational Intensive Care, Erasmus MC, University Medical Center, Dr Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Daniel De Backer
- Department of Intensive Care, CHIREC Hospitals and Université Libre de Bruxelles, Bd du Triomphe 201, 1160 Brussels, Belgium
| | - Philip R Mayeux
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, 4301 West Markham Street, #611, Little Rock, AR 72212, USA.
| |
Collapse
|
28
|
Chang CW, Seibel AJ, Song JW. Application of microscale culture technologies for studying lymphatic vessel biology. Microcirculation 2019; 26:e12547. [PMID: 30946511 DOI: 10.1111/micc.12547] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 03/04/2019] [Accepted: 04/02/2019] [Indexed: 12/17/2022]
Abstract
Immense progress in microscale engineering technologies has significantly expanded the capabilities of in vitro cell culture systems for reconstituting physiological microenvironments that are mediated by biomolecular gradients, fluid transport, and mechanical forces. Here, we examine the innovative approaches based on microfabricated vessels for studying lymphatic biology. To help understand the necessary design requirements for microfluidic models, we first summarize lymphatic vessel structure and function. Next, we provide an overview of the molecular and biomechanical mediators of lymphatic vessel function. Then we discuss the past achievements and new opportunities for microfluidic culture models to a broad range of applications pertaining to lymphatic vessel physiology. We emphasize the unique attributes of microfluidic systems that enable the recapitulation of multiple physicochemical cues in vitro for studying lymphatic pathophysiology. Current challenges and future outlooks of microscale technology for studying lymphatics are also discussed. Collectively, we make the assertion that further progress in the development of microscale models will continue to enrich our mechanistic understanding of lymphatic biology and physiology to help realize the promise of the lymphatic vasculature as a therapeutic target for a broad spectrum of diseases.
Collapse
Affiliation(s)
- Chia-Wen Chang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Alex J Seibel
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio.,The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
29
|
Affiliation(s)
- Douglas R. Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| | - Lacy M. Alexander
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|