1
|
Pereira EN, da Silva Arêas FZ, Neves Tavares SRS, Monteiro BC, Dantas ENT, Freire RC, da Luz Goulart C, de Almeida Val F, Henriques J, Arêas GPT. The acute effect of bilateral cathodic transcranial direct current stimulation on respiratory muscle strength and endurance. Respir Physiol Neurobiol 2025; 332:104382. [PMID: 39689738 DOI: 10.1016/j.resp.2024.104382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/24/2024] [Accepted: 11/29/2024] [Indexed: 12/19/2024]
Abstract
INTRODUCTION Transcranial direct current stimulation (tDCS) is a non-invasive technique with therapeutic potential, especially in respiratory muscle training (RMT) in pathological conditions such as chronic obstructive pulmonary disease and heart failure. OBJECTIVE To evaluate the effect of bilateral cathodic tDCS on respiratory muscle strength and endurance in healthy young and elderly women. METHODS An experimental, randomized study with 80 participants divided into young and old women, subdivided into intervention and sham control groups. The participants were evaluated by spirometry and dynamic muscle strength tests before and after the one session intervention. tDCS was applied with cathode electrodes positioned bilaterally in the motor area. RESULTS The elderly women in the intervention group showed significant improvement in dynamic inspiratory muscle strength (S-Index) and dominant hand strength, with moderate to large effect sizes. The young women showed a significant increase only in the strength of the dominant hand, with no improvement in inspiratory muscle strength. There were no significant differences in ventilatory parameters, including Maximal Ventilatory Capacity, in any of the age groups. CONCLUSION Bilateral cathodic tDCS was effective in increasing dynamic inspiratory muscle strength and dominant hand strength in elderly women, with more pronounced effects compared to young women. The technique did not produce significant changes in maximal ventilatory capacity in any of the age groups, suggesting that the response to tDCS may vary with age, being more beneficial in elderly women.
Collapse
Affiliation(s)
- Elder Nascimento Pereira
- Biology Science Institute, Universidade Federal do Amazonas, Manaus, Brasil; Bioscience Department, Universidade de Coimbra, Coimbra, Portugal
| | | | | | - Beatriz Campelo Monteiro
- Physical Education and Physical Therapy Faculty, Universidade Federal do Amazonas, Manaus, Brasil
| | | | - Renato Campos Freire
- Physical Education and Physical Therapy Faculty, Universidade Federal do Amazonas, Manaus, Brasil; Human Movement Science Graduation, Universidade Federal do Amazonas, Manaus, Brasil
| | | | - Fernando de Almeida Val
- Instituto Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brasil
| | - Jorge Henriques
- Habilitation at Informatics Engineering Department, Universidade de Coimbra, Coimbra, Portugal
| | - Guilherme Peixoto Tinoco Arêas
- Human Movement Science Graduation, Universidade Federal do Amazonas, Manaus, Brasil; Physiological Science Department, Universidade Federal do Amazonas, Manaus, Brasil.
| |
Collapse
|
2
|
Palkovic B, Mustapic S, Saric I, Stuth EAE, Stucke AG, Zuperku EJ. Changes in pontine and preBötzinger/Bötzinger complex neuronal activity during remifentanil-induced respiratory depression in decerebrate dogs. Front Physiol 2023; 14:1156076. [PMID: 37362432 PMCID: PMC10285059 DOI: 10.3389/fphys.2023.1156076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction: In vivo studies using selective, localized opioid antagonist injections or localized opioid receptor deletion have identified that systemic opioids dose-dependently depress respiratory output through effects in multiple respiratory-related brainstem areas. Methods: With approval of the subcommittee on animal studies of the Zablocki VA Medical Center, experiments were performed in 53 decerebrate, vagotomized, mechanically ventilated dogs of either sex during isocapnic hyperoxia. We performed single neuron recordings in the Pontine Respiratory Group (PRG, n = 432) and preBötzinger/Bötzinger complex region (preBötC/BötC, n = 213) before and during intravenous remifentanil infusion (0.1-1 mcg/kg/min) and then until complete recovery of phrenic nerve activity. A generalized linear mixed model was used to determine changes in Fn with remifentanil and the statistical association between remifentanil-induced changes in Fn and changes in inspiratory and expiratory duration and peak phrenic activity. Analysis was controlled via random effects for animal, run, and neuron type. Results: Remifentanil decreased Fn in most neuron subtypes in the preBötC/BötC as well as in inspiratory (I), inspiratory-expiratory, expiratory (E) decrementing and non-respiratory modulated neurons in the PRG. The decrease in PRG inspiratory and non-respiratory modulated neuronal activity was associated with an increase in inspiratory duration. In the preBötC, the decrease in I-decrementing neuron activity was associated with an increase in expiratory and of E-decrementing activity with an increase in inspiratory duration. In contrast, decreased activity of I-augmenting neurons was associated with a decrease in inspiratory duration. Discussion: While statistical associations do not necessarily imply a causal relationship, our data suggest mechanisms for the opioid-induced increase in expiratory duration in the PRG and preBötC/BötC and how inspiratory failure at high opioid doses may result from a decrease in activity and decrease in slope of the pre-inspiratory ramp-like activity in preBötC/BötC pre-inspiratory neurons combined with a depression of preBötC/BötC I-augmenting neurons. Additional studies must clarify whether the observed changes in neuronal activity are due to direct neuronal inhibition or decreased excitatory inputs.
Collapse
Affiliation(s)
- Barbara Palkovic
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Faculty of Medicine, University of Osijek, Osijek, Croatia
| | - Sanda Mustapic
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
- University Hospital Dubrava, Zagreb, Croatia
| | - Ivana Saric
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
- University Hospital Split, Split, Croatia
| | - Eckehard A. E. Stuth
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Children’s Wisconsin, Milwaukee, WI, United States
| | - Astrid G. Stucke
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Children’s Wisconsin, Milwaukee, WI, United States
| | - Edward J. Zuperku
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Clement J Zablocki Department of Veterans Affairs Medical Center, Milwaukee, WI, United States
| |
Collapse
|
3
|
Lynch N, Lima JD, Spinieli RL, Kaur S. Opioids, sleep, analgesia and respiratory depression: Their convergence on Mu (μ)-opioid receptors in the parabrachial area. Front Neurosci 2023; 17:1134842. [PMID: 37090798 PMCID: PMC10117663 DOI: 10.3389/fnins.2023.1134842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/21/2023] [Indexed: 04/25/2023] Open
Abstract
Opioids provide analgesia, as well as modulate sleep and respiration, all by possibly acting on the μ-opioid receptors (MOR). MOR's are ubiquitously present throughout the brain, posing a challenge for understanding the precise anatomical substrates that mediate opioid induced respiratory depression (OIRD) that ultimately kills most users. Sleep is a major modulator not only of pain perception, but also for changing the efficacy of opioids as analgesics. Therefore, sleep disturbances are major risk factors for developing opioid overuse, withdrawal, poor treatment response for pain, and addiction relapse. Despite challenges to resolve the neural substrates of respiratory malfunctions during opioid overdose, two main areas, the pre-Bötzinger complex (preBötC) in the medulla and the parabrachial (PB) complex have been implicated in regulating respiratory depression. More recent studies suggest that it is mediation by the PB that causes OIRD. The PB also act as a major node in the upper brain stem that not only receives input from the chemosensory areas in medulla, but also receives nociceptive information from spinal cord. We have previously shown that the PB neurons play an important role in mediating arousal from sleep in response to hypercapnia by its projections to the forebrain arousal centers, and it may also act as a major relay for the pain stimuli. However, due to heterogeneity of cells in the PB, their precise roles in regulating, sleep, analgesia, and respiratory depression, needs addressing. This review sheds light on interactions between sleep and pain, along with dissecting the elements that adversely affects respiration.
Collapse
Affiliation(s)
| | | | | | - Satvinder Kaur
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
The Expression of Galanin in the Parafacial Respiratory Group and its Effects on Respiration in Neonatal Rats. Neuroscience 2018; 384:1-13. [PMID: 29772344 DOI: 10.1016/j.neuroscience.2018.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 11/23/2022]
Abstract
The inhibitory peptide galanin is expressed within the retrotrapezoidal nucleus (RTN) - a key central chemoreceptor site that also contains the active expiratory oscillator. It was previously reported that microinjection of galanin into pre-Bötzinger complex - containing the inspiratory oscillator - exerts inhibitory effects on inspiratory motor output and respiratory rhythm. In neonatal rats, the present study aimed to investigate: (1) expression of galanin within the parafacial respiratory group (pFRG), which overlaps anatomically and functionally with the adult RTN, and; (2) effects of galanin on respiratory rhythm using the in vitro brainstem-spinal cord preparation. We showed that 14 ± 2% of Phox2b-immunoreactive (ir) neurons in the parafacial region were also galanin-ir. Galanin peptide expression was confirmed within 3/9 CO2-sensitive, Phox2b-ir Pre-Inspiratory neurons (Pre-I) recorded in parafacial region. Bath application of galanin (0.1-0.2 µM): (1) decreased the duration of membrane depolarization in both Pre-I and inspiratory pFRG neurons, and; (2) decreased the number of C4 bursts that were associated with each burst in Pre-I neurons within the pFRG. In preparations showing episodic breathing at baseline, the respiratory patterning reverted to the 'normal' pattern of single, uniformly rhythmic C4 bursts (n = 10). In preparations with normal respiratory patterning at baseline, slowing of C4 rhythm (n = 7) resulted although rhythmic bursting in recorded Pre-I neurons remained unperturbed (n = 6). This study therefore demonstrates that galanin is expressed within the pFRG of neonatal rats, including neurons that are intrinsically chemosensitive. Overall the peptide has an inhibitory effect on inspiratory motor output, as previously shown in adults.
Collapse
|
5
|
Chowdhuri S, Badr MS. Control of Ventilation in Health and Disease. Chest 2016; 151:917-929. [PMID: 28007622 DOI: 10.1016/j.chest.2016.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 11/29/2022] Open
Abstract
Control of ventilation occurs at different levels of the respiratory system through a negative feedback system that allows precise regulation of levels of arterial carbon dioxide and oxygen. Mechanisms for ventilatory instability leading to sleep-disordered breathing include changes in the genesis of respiratory rhythm and chemoresponsiveness to hypoxia and hypercapnia, cerebrovascular reactivity, abnormal chest wall and airway reflexes, and sleep state oscillations. One can potentially stabilize breathing during sleep and treat sleep-disordered breathing by identifying one or more of these pathophysiological mechanisms. This review describes the current concepts in ventilatory control that pertain to breathing instability during wakefulness and sleep, delineates potential avenues for alternative therapies to stabilize breathing during sleep, and proposes recommendations for future research.
Collapse
Affiliation(s)
- Susmita Chowdhuri
- John D. Dingell VA Medical Center, Wayne State University, Detroit MI; Department of Medicine, Wayne State University, Detroit MI.
| | - M Safwan Badr
- John D. Dingell VA Medical Center, Wayne State University, Detroit MI; Department of Medicine, Wayne State University, Detroit MI
| |
Collapse
|
6
|
Role of Astrocytes in Central Respiratory Chemoreception. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 949:109-145. [PMID: 27714687 DOI: 10.1007/978-3-319-40764-7_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Astrocytes perform various homeostatic functions in the nervous system beyond that of a supportive or metabolic role for neurons. A growing body of evidence indicates that astrocytes are crucial for central respiratory chemoreception. This review presents a classical overview of respiratory central chemoreception and the new evidence for astrocytes as brainstem sensors in the respiratory response to hypercapnia. We review properties of astrocytes for chemosensory function and for modulation of the respiratory network. We propose that astrocytes not only mediate between CO2/H+ levels and motor responses, but they also allow for two emergent functions: (1) Amplifying the responses of intrinsic chemosensitive neurons through feedforward signaling via gliotransmitters and; (2) Recruiting non-intrinsically chemosensitive cells thanks to volume spreading of signals (calcium waves and gliotransmitters) to regions distant from the CO2/H+ sensitive domains. Thus, astrocytes may both increase the intensity of the neuron responses at the chemosensitive sites and recruit of a greater number of respiratory neurons to participate in the response to hypercapnia.
Collapse
|
7
|
Jerath R, Crawford MW, Barnes VA, Harden K. Widespread depolarization during expiration: A source of respiratory drive? Med Hypotheses 2015; 84:31-7. [DOI: 10.1016/j.mehy.2014.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 10/23/2014] [Accepted: 11/08/2014] [Indexed: 12/21/2022]
|
8
|
Warren PM, Awad BI, Alilain WJ. Reprint of "Drawing breath without the command of effectors: the control of respiration following spinal cord injury". Respir Physiol Neurobiol 2014; 204:120-30. [PMID: 25266395 DOI: 10.1016/j.resp.2014.09.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The maintenance of blood gas and pH homeostasis is essential to life. As such breathing, and the mechanisms which control ventilation, must be tightly regulated yet highly plastic and dynamic. However, injury to the spinal cord prevents the medullary areas which control respiration from connecting to respiratory effectors and feedback mechanisms below the level of the lesion. This trauma typically leads to severe and permanent functional deficits in the respiratory motor system. However, endogenous mechanisms of plasticity occur following spinal cord injury to facilitate respiration and help recover pulmonary ventilation. These mechanisms include the activation of spared or latent pathways, endogenous sprouting or synaptogenesis, and the possible formation of new respiratory control centres. Acting in combination, these processes provide a means to facilitate respiratory support following spinal cord trauma. However, they are by no means sufficient to return pulmonary function to pre-injury levels. A major challenge in the study of spinal cord injury is to understand and enhance the systems of endogenous plasticity which arise to facilitate respiration to mediate effective treatments for pulmonary dysfunction.
Collapse
Affiliation(s)
- Philippa M Warren
- Department of Neurosciences, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA
| | - Basem I Awad
- Department of Neurosciences, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA; Department of Neurological Surgery, Mansoura University School of Medicine, Mansoura, Egypt
| | - Warren J Alilain
- Department of Neurosciences, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA.
| |
Collapse
|
9
|
Abstract
The evolution of the aspiration pump seen in tetrapod vertebrates from the buccal-pharyngeal force pump seen in air breathing fish and amphibians appears to have first involved the production of active expiration. Active inspiration arose later. This appears to have involved reconfiguration of a parafacial oscillator (now the parafacial respiratory group/retrotrapezoid nucleus (pFRG/RTN)) to produce active expiration, followed by reconfiguration of a paravagal oscillator (now the preBötC) to produce active inspiration. In the ancestral breathing cycle, inspiration follows expiration, which is in turn followed by glottal closure and breath holding. When both rhythms are expressed, as they are in reptiles and birds, and mammals under conditions of elevated respiratory drive, the pFRG/RTN appears to initiate the respiratory cycle. We propose that the coordinated output of this system is a ventilation cycle characterized by four phases. In reptiles, these consist of active inspiration (I), glottal closure (E1), a pause (an apnea or breath hold) (E2), and an active expiration (E3) that initiates the next cycle. In mammals under resting conditions, active expiration (E3) is suppressed and inspiration (I) is followed by airway constriction and diaphragmatic braking (E1) (rather than glottal closure) and a short pause at end-expiration (E2). As respiratory drive increases in mammals, expiratory muscle activity appears. Frequently, it first appears immediately preceding inspiration (E3) just as it does in reptiles. It can also appear in E1, however, and it is not yet clear what mechanisms underlie when and where in the cycle it appears. This may reflect whether the active expiration is recruited to enhance tidal volume, increase breathing frequency, or both.
Collapse
Affiliation(s)
- Sarah E M Jenkin
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - William K Milsom
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
10
|
Abstract
The invertebrates have adopted a myriad of breathing strategies to facilitate the extraction of adequate quantities of oxygen from their surrounding environments. Their respiratory structures can take a wide variety of forms, including integumentary surfaces, lungs, gills, tracheal systems, and even parallel combinations of these same gas exchange structures. Like their vertebrate counterparts, the invertebrates have evolved elaborate control strategies to regulate their breathing activity. Our goal in this article is to present the reader with a description of what is known regarding the control of breathing in some of the specific invertebrate species that have been used as model systems to study different mechanistic aspects of the control of breathing. We will examine how several species have been used to study fundamental principles of respiratory rhythm generation, central and peripheral chemosensory modulation of breathing, and plasticity in the control of breathing. We will also present the reader with an overview of some of the behavioral and neuronal adaptability that has been extensively documented in these animals. By presenting explicit invertebrate species as model organisms, we will illustrate mechanistic principles that form the neuronal foundation of respiratory control, and moreover appear likely to be conserved across not only invertebrates, but vertebrate species as well.
Collapse
Affiliation(s)
- Harold J Bell
- Division of Pulmonary and Critical Care, Department of Medicine, Penn State University, Hershey, Pennsylvania, USA.
| | | |
Collapse
|
11
|
Sources of Inspiration: A Neurophysiologic Framework for Understanding Anesthetic Effects on Ventilatory Control. CURRENT ANESTHESIOLOGY REPORTS 2013. [DOI: 10.1007/s40140-013-0042-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Stuth EAE, Stucke AG, Zuperku EJ. Effects of anesthetics, sedatives, and opioids on ventilatory control. Compr Physiol 2013; 2:2281-367. [PMID: 23720250 DOI: 10.1002/cphy.c100061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This article provides a comprehensive, up to date summary of the effects of volatile, gaseous, and intravenous anesthetics and opioid agonists on ventilatory control. Emphasis is placed on data from human studies. Further mechanistic insights are provided by in vivo and in vitro data from other mammalian species. The focus is on the effects of clinically relevant agonist concentrations and studies using pharmacological, that is, supraclinical agonist concentrations are de-emphasized or excluded.
Collapse
Affiliation(s)
- Eckehard A E Stuth
- Medical College of Wisconsin, Anesthesia Research Service, Zablocki VA Medical Center, Milwaukee, Wisconsin, USA.
| | | | | |
Collapse
|
13
|
Hess A, Yu L, Klein I, De Mazancourt M, Jebrak G, Mal H, Brugière O, Fournier M, Courbage M, Dauriat G, Schouman-Clayes E, Clerici C, Mangin L. Neural mechanisms underlying breathing complexity. PLoS One 2013; 8:e75740. [PMID: 24098396 PMCID: PMC3789752 DOI: 10.1371/journal.pone.0075740] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 08/20/2013] [Indexed: 01/22/2023] Open
Abstract
Breathing is maintained and controlled by a network of automatic neurons in the brainstem that generate respiratory rhythm and receive regulatory inputs. Breathing complexity therefore arises from respiratory central pattern generators modulated by peripheral and supra-spinal inputs. Very little is known on the brainstem neural substrates underlying breathing complexity in humans. We used both experimental and theoretical approaches to decipher these mechanisms in healthy humans and patients with chronic obstructive pulmonary disease (COPD). COPD is the most frequent chronic lung disease in the general population mainly due to tobacco smoke. In patients, airflow obstruction associated with hyperinflation and respiratory muscles weakness are key factors contributing to load-capacity imbalance and hence increased respiratory drive. Unexpectedly, we found that the patients breathed with a higher level of complexity during inspiration and expiration than controls. Using functional magnetic resonance imaging (fMRI), we scanned the brain of the participants to analyze the activity of two small regions involved in respiratory rhythmogenesis, the rostral ventro-lateral (VL) medulla (pre-Bötzinger complex) and the caudal VL pons (parafacial group). fMRI revealed in controls higher activity of the VL medulla suggesting active inspiration, while in patients higher activity of the VL pons suggesting active expiration. COPD patients reactivate the parafacial to sustain ventilation. These findings may be involved in the onset of respiratory failure when the neural network becomes overwhelmed by respiratory overload We show that central neural activity correlates with airflow complexity in healthy subjects and COPD patients, at rest and during inspiratory loading. We finally used a theoretical approach of respiratory rhythmogenesis that reproduces the kernel activity of neurons involved in the automatic breathing. The model reveals how a chaotic activity in neurons can contribute to chaos in airflow and reproduces key experimental fMRI findings.
Collapse
Affiliation(s)
- Agathe Hess
- Laboratoire Matière et Systèmes complexes, UMR 7057, CNRS, Université Paris 7, Paris, France
- Service de Radiologie, APHP, Hôpital Bichat-Claude Bernard, Paris, France
| | - Lianchun Yu
- Laboratoire Matière et Systèmes complexes, UMR 7057, CNRS, Université Paris 7, Paris, France
- Institute of Theoretical Physics, Lanzhou University, Lanzhou, China
| | - Isabelle Klein
- Service de Radiologie, APHP, Hôpital Bichat-Claude Bernard, Paris, France
- Unité Inserm 698, Université Paris 7, Paris, France
| | - Marine De Mazancourt
- Laboratoire Matière et Systèmes complexes, UMR 7057, CNRS, Université Paris 7, Paris, France
- Ecole Normale Supérieure, Paris, France
| | - Gilles Jebrak
- Service de Pneumologie B, APHP, Hôpital Bichat-Claude Bernard, Paris, France
| | - Hervé Mal
- Service de Pneumologie B, APHP, Hôpital Bichat-Claude Bernard, Paris, France
| | - Olivier Brugière
- Service de Pneumologie B, APHP, Hôpital Bichat-Claude Bernard, Paris, France
| | - Michel Fournier
- Service de Pneumologie B, APHP, Hôpital Bichat-Claude Bernard, Paris, France
| | - Maurice Courbage
- Laboratoire Matière et Systèmes complexes, UMR 7057, CNRS, Université Paris 7, Paris, France
| | - Gaelle Dauriat
- Service de Pneumologie B, APHP, Hôpital Bichat-Claude Bernard, Paris, France
| | | | - Christine Clerici
- Département de Physiologie-Explorations fonctionnelles, APHP, Hôpital Bichat-Claude Bernard, Paris, France
- Unité Inserm 700, Université Paris 7, Paris, France
| | - Laurence Mangin
- Laboratoire Matière et Systèmes complexes, UMR 7057, CNRS, Université Paris 7, Paris, France
- Département de Physiologie-Explorations fonctionnelles, APHP, Hôpital Bichat-Claude Bernard, Paris, France
- Centre d’Investigation Clinique APHP, Hôpital Bichat, Paris, France
- * E-mail:
| |
Collapse
|
14
|
Carey JL, Dunn C, Gaspari RJ. Central respiratory failure during acute organophosphate poisoning. Respir Physiol Neurobiol 2013; 189:403-10. [PMID: 23933009 DOI: 10.1016/j.resp.2013.07.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 07/25/2013] [Accepted: 07/26/2013] [Indexed: 01/30/2023]
Abstract
Organophosphate (OP) pesticide poisoning is a global health problem with over 250,000 deaths per year. OPs affect neuronal signaling through acetylcholine (Ach) neurotransmission via inhibition of acetylcholinesterase (AChE), leading to accumulation of Ach at the synaptic cleft and excessive stimulation at post-synaptic receptors. Mortality due to OP agents is attributed to respiratory dysfunction, including central apnea. Cholinergic circuits are integral to many aspects of the central control of respiration, however it is unclear which mechanisms predominate during acute OP intoxication. A more complete understanding of the cholinergic aspects of both respiratory control as well as neural modification of pulmonary function is needed to better understand OP-induced respiratory dysfunction. In this article, we review the physiologic mechanisms of acute OP exposure in the context of the known cholinergic contributions to the central control of respiration. We also discuss the potential central cholinergic contributions to the known peripheral physiologic effects of OP intoxication.
Collapse
Affiliation(s)
- Jennifer L Carey
- Department of Emergency Medicine, UMASS Memorial Medical Center, United States.
| | | | | |
Collapse
|
15
|
Laviolette L, Niérat MC, Hudson AL, Raux M, Allard É, Similowski T. The supplementary motor area exerts a tonic excitatory influence on corticospinal projections to phrenic motoneurons in awake humans. PLoS One 2013; 8:e62258. [PMID: 23614046 PMCID: PMC3628339 DOI: 10.1371/journal.pone.0062258] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 03/19/2013] [Indexed: 11/18/2022] Open
Abstract
Introduction In humans, cortical mechanisms can interfere with autonomic breathing. Respiratory-related activation of the supplementary motor area (SMA) has been documented during voluntary breathing and in response to inspiratory constraints. The SMA could therefore participate in the increased resting state of the respiratory motor system during wake (i.e. "wakefulness drive to breathe"). Methods The SMA was conditioned by continuous theta burst magnetic stimulation (cTBS, inhibitory) and 5 Hz conventional rTMS (5 Hz, excitatory). The ensuing effects were described in terms of the diaphragm motor evoked response (DiMEPs) to single-pulse transcranial magnetic stimulation over the motor cortex. DiMEPs were recorded at baseline, and at 3 time-points ("post1", "post2", "post3") up to 15 minutes following conditioning of the SMA. Results cTBS reduced the amplitude of DiMEPs from 327.5±159.8 µV at baseline to 243.3±118.7 µV, 217.8±102.9 µV and 240.6±123.9 µV at post 1, post 2 and post 3, respectively (F = 6.341, p = 0.002). 5 Hz conditioning increased the amplitude of DiMEPs from 184.7±96.5 µV at baseline to 270.7±135.4 µV at post 3 (F = 4.844, p = 0.009). Conclusions The corticospinal pathway to the diaphragm can be modulated in both directions by conditioning the SMA. This suggests that the baseline respiratory activity of the SMA represents an equipoise from which it is possible to move in either direction. The resting corticofugal outflow from the SMA to phrenic motoneurones that this study evidences could putatively contribute to the wakefulness drive to breathe.
Collapse
Affiliation(s)
| | | | - Anna L. Hudson
- Université Paris 6, ER10UPMC, Paris, France
- Neuroscience Research Australia and University of New South Wales, Sydney, Australia
| | | | | | - Thomas Similowski
- Université Paris 6, ER10UPMC, Paris, France
- Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Service de Pneumologie et Réanimation Médicale, Paris, France
- * E-mail:
| |
Collapse
|
16
|
The rhythmic, transverse medullary slice preparation in respiratory neurobiology: contributions and caveats. Respir Physiol Neurobiol 2013; 186:236-53. [PMID: 23357617 DOI: 10.1016/j.resp.2013.01.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 01/18/2013] [Accepted: 01/21/2013] [Indexed: 11/23/2022]
Abstract
Our understanding of the sites and mechanisms underlying rhythmic breathing as well as the neuromodulatory control of respiratory rhythm, pattern, and respiratory motoneuron excitability during perinatal development has advanced significantly over the last 20 years. A major catalyst was the development in 1991 of the rhythmically-active medullary slice preparation, which provided precise mechanical and chemical control over the network as well as enhanced physical and optical access to key brainstem regions. Insights obtained in vitro have informed multiple mechanistic hypotheses. In vivo tests of these hypotheses, performed under conditions of reduced control and precision but more obvious physiological relevance, have clearly established the significance for respiratory neurobiology of the rhythmic slice preparation. We review the contributions of this preparation to current understanding/concepts in respiratory control, and outline the limitations of this approach in the context of studying rhythm and pattern generation, homeostatic control mechanisms and murine models of human genetic disorders that feature prominent breathing disturbances.
Collapse
|
17
|
Abstract
Breathing is an essential behavior that presents a unique opportunity to understand how the nervous system functions normally, how it balances inherent robustness with a highly regulated lability, how it adapts to both rapidly and slowly changing conditions, and how particular dysfunctions result in disease. We focus on recent advancements related to two essential sites for respiratory rhythmogenesis: (a) the preBötzinger Complex (preBötC) as the site for the generation of inspiratory rhythm and (b) the retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG) as the site for the generation of active expiration.
Collapse
Affiliation(s)
- Jack L Feldman
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095-1763, USA.
| | | | | |
Collapse
|
18
|
Gariépy JF, Missaghi K, Chartré S, Robert M, Auclair F, Dubuc R. Bilateral connectivity in the brainstem respiratory networks of lampreys. J Comp Neurol 2012; 520:1442-56. [PMID: 22101947 DOI: 10.1002/cne.22804] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This study examines the connectivity in the neural networks controlling respiration in the lampreys, a basal vertebrate. Previous studies have shown that the lamprey paratrigeminal respiratory group (pTRG) plays a crucial role in the generation of respiration. By using a combination of anatomical and physiological techniques, we characterized the bilateral connections between the pTRGs and descending projections to the motoneurons. Tracers were injected in the respiratory motoneuron pools to identify pre-motor respiratory interneurons. Retrogradely labeled cell bodies were found in the pTRG on both sides. Whole-cell recordings of the retrogradely labeled pTRG neurons showed rhythmical excitatory currents in tune with respiratory motoneuron activity. This confirmed that they were related to respiration. Intracellular labeling of individual pTRG neurons revealed axonal branches to the contralateral pTRG and bilateral projections to the respiratory motoneuronal columns. Stimulation of the pTRG induced excitatory postsynaptic potentials in ipsi- and contralateral respiratory motoneurons as well as in contralateral pTRG neurons. A lidocaine HCl (Xylocaine) injection on the midline at the rostrocaudal level of the pTRG diminished the contralateral motoneuronal EPSPs as well as a local injection of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and (2R)-amino-5-phosphonovaleric acid (AP-5) on the recorded respiratory motoneuron. Our data show that neurons in the pTRG send two sets of axonal projections: one to the contralateral pTRG and another to activate respiratory motoneurons on both sides through glutamatergic synapses.
Collapse
Affiliation(s)
- Jean-François Gariépy
- Groupe de Recherche sur le Système Nerveux Central (GRSNC), Département de Physiologie, Université de Montréal, Montréal, Québec, Canada H3T 1J4
| | | | | | | | | | | |
Collapse
|
19
|
Lindsey BG, Rybak IA, Smith JC. Computational models and emergent properties of respiratory neural networks. Compr Physiol 2012; 2:1619-70. [PMID: 23687564 PMCID: PMC3656479 DOI: 10.1002/cphy.c110016] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Computational models of the neural control system for breathing in mammals provide a theoretical and computational framework bringing together experimental data obtained from different animal preparations under various experimental conditions. Many of these models were developed in parallel and iteratively with experimental studies and provided predictions guiding new experiments. This data-driven modeling approach has advanced our understanding of respiratory network architecture and neural mechanisms underlying generation of the respiratory rhythm and pattern, including their functional reorganization under different physiological conditions. Models reviewed here vary in neurobiological details and computational complexity and span multiple spatiotemporal scales of respiratory control mechanisms. Recent models describe interacting populations of respiratory neurons spatially distributed within the Bötzinger and pre-Bötzinger complexes and rostral ventrolateral medulla that contain core circuits of the respiratory central pattern generator (CPG). Network interactions within these circuits along with intrinsic rhythmogenic properties of neurons form a hierarchy of multiple rhythm generation mechanisms. The functional expression of these mechanisms is controlled by input drives from other brainstem components,including the retrotrapezoid nucleus and pons, which regulate the dynamic behavior of the core circuitry. The emerging view is that the brainstem respiratory network has rhythmogenic capabilities at multiple levels of circuit organization. This allows flexible, state-dependent expression of different neural pattern-generation mechanisms under various physiological conditions,enabling a wide repertoire of respiratory behaviors. Some models consider control of the respiratory CPG by pulmonary feedback and network reconfiguration during defensive behaviors such as cough. Future directions in modeling of the respiratory CPG are considered.
Collapse
Affiliation(s)
- Bruce G Lindsey
- Department of Molecular Pharmacology and Physiology and Neuroscience Program, University of South Florida College of Medicine, Tampa, Florida, USA.
| | | | | |
Collapse
|
20
|
Isolated in vitro brainstem-spinal cord preparations remain important tools in respiratory neurobiology. Respir Physiol Neurobiol 2011; 180:1-7. [PMID: 22015642 DOI: 10.1016/j.resp.2011.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 10/06/2011] [Indexed: 11/22/2022]
Abstract
Isolated in vitro brainstem-spinal cord preparations are used extensively in respiratory neurobiology because the respiratory network in the pons and medulla is intact, monosynaptic descending inputs to spinal motoneurons can be activated, brainstem and spinal cord tissue can be bathed with different solutions, and the responses of cervical, thoracic, and lumbar spinal motoneurons to experimental perturbations can be compared. The caveats and limitations of in vitro brainstem-spinal cord preparations are well-documented. However, isolated brainstem-spinal cords are still valuable experimental preparations that can be used to study neuronal connectivity within the brainstem, development of motor networks with lethal genetic mutations, deleterious effects of pathological drugs and conditions, respiratory spinal motor plasticity, and interactions with other motor behaviors. Our goal is to show how isolated brainstem-spinal cord preparations still have a lot to offer scientifically and experimentally to address questions within and outside the field of respiratory neurobiology.
Collapse
|
21
|
Niebert M, Vogelgesang S, Koch UR, Bischoff AM, Kron M, Bock N, Manzke T. Expression and function of serotonin 2A and 2B receptors in the mammalian respiratory network. PLoS One 2011; 6:e21395. [PMID: 21789169 PMCID: PMC3138749 DOI: 10.1371/journal.pone.0021395] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 05/27/2011] [Indexed: 12/20/2022] Open
Abstract
Neurons of the respiratory network in the lower brainstem express a variety of serotonin receptors (5-HTRs) that act primarily through adenylyl cyclase. However, there is one receptor family including 5-HT2A, 5-HT2B, and 5-HT2C receptors that are directed towards protein kinase C (PKC). In contrast to 5-HT2ARs, expression and function of 5-HT2BRs within the respiratory network are still unclear. 5-HT2BR utilizes a Gq-mediated signaling cascade involving calcium and leading to activation of phospholipase C and IP3/DAG pathways. Based on previous studies, this signal pathway appears to mediate excitatory actions on respiration. In the present study, we analyzed receptor expression in pontine and medullary regions of the respiratory network both at the transcriptional and translational level using quantitative RT-PCR and self-made as well as commercially available antibodies, respectively. In addition we measured effects of selective agonists and antagonists for 5-HT2ARs and 5-HT2BRs given intra-arterially on phrenic nerve discharges in juvenile rats using the perfused brainstem preparation. The drugs caused significant changes in discharge activity. Co-administration of both agonists revealed a dominance of the 5-HT2BR. Given the nature of the signaling pathways, we investigated whether intracellular calcium may explain effects observed in the respiratory network. Taken together, the results of this study suggest a significant role of both receptors in respiratory network modulation.
Collapse
MESH Headings
- Animals
- Antibodies/immunology
- Antibody Specificity/immunology
- Calcium/metabolism
- Fluorescence
- Gene Expression Regulation/drug effects
- In Vitro Techniques
- Male
- Mammals/metabolism
- Medulla Oblongata/cytology
- Medulla Oblongata/drug effects
- Medulla Oblongata/metabolism
- Mice
- Pons/cytology
- Pons/drug effects
- Pons/metabolism
- Rats
- Receptor, Serotonin, 5-HT2A/genetics
- Receptor, Serotonin, 5-HT2A/metabolism
- Receptor, Serotonin, 5-HT2B/chemistry
- Receptor, Serotonin, 5-HT2B/genetics
- Receptor, Serotonin, 5-HT2B/metabolism
- Recombinant Proteins/metabolism
- Reproducibility of Results
- Respiration/drug effects
- Respiratory System/drug effects
- Respiratory System/metabolism
- Serotonin 5-HT2 Receptor Antagonists/pharmacology
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Marcus Niebert
- Department of Neuro- and Sensory Physiology, Georg-August-University of Göttingen, Göttingen, Germany
- German Research Council Research Center for Molecular Physiology of the Brain, Göttingen, Germany
| | - Steffen Vogelgesang
- Department of Neuro- and Sensory Physiology, Georg-August-University of Göttingen, Göttingen, Germany
- German Research Council Research Center for Molecular Physiology of the Brain, Göttingen, Germany
| | - Uwe R. Koch
- Department of Neuro- and Sensory Physiology, Georg-August-University of Göttingen, Göttingen, Germany
| | - Anna-Maria Bischoff
- Department of Neuro- and Sensory Physiology, Georg-August-University of Göttingen, Göttingen, Germany
| | - Miriam Kron
- German Research Council Research Center for Molecular Physiology of the Brain, Göttingen, Germany
| | - Nathalie Bock
- Department of Child and Adolescent Psychiatry, Georg-August-University of Göttingen, Göttingen, Germany
| | - Till Manzke
- Department of Neuro- and Sensory Physiology, Georg-August-University of Göttingen, Göttingen, Germany
- German Research Council Research Center for Molecular Physiology of the Brain, Göttingen, Germany
- * E-mail:
| |
Collapse
|
22
|
Ott MM, Nuding SC, Segers LS, Lindsey BG, Morris KF. Ventrolateral medullary functional connectivity and the respiratory and central chemoreceptor-evoked modulation of retrotrapezoid-parafacial neurons. J Neurophysiol 2011; 105:2960-75. [PMID: 21389310 DOI: 10.1152/jn.00262.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The medullary ventral respiratory column (VRC) of neurons is essential for respiratory motor pattern generation; however, the functional connections among these cells are not well understood. A rostral extension of the VRC, including the retrotrapezoid nucleus/parafacial region (RTN-pF), contains neurons responsive to local perturbations of CO(2)/pH. We addressed the hypothesis that both local RTN-pF interactions and functional connections from more caudal VRC compartments--extending from the Bötzinger and pre-Bötzinger complexes to the ventral respiratory group (Böt-VRG)--influence the respiratory modulation of RTN-pF neurons and their responses to central chemoreceptor and baroreflex activation. Spike trains from 294 RTN-pF and 490 Böt-VRG neurons were monitored with multielectrode arrays along with phrenic nerve activity in 14 decerebrate, vagotomized cats. Overall, 214 RTN-pF and 398 Böt-VRG neurons were respiratory modulated; 124 and 95, respectively, were cardiac modulated. Subsets of these neurons were tested with sequential, selective, transient stimulation of central chemoreceptors and arterial baroreceptors; each cell's response was evaluated and categorized according to the change in firing rate (if any) following the stimulus. Cross-correlation analysis was applied to 2,884 RTN-pF↔RTN-pF and 8,490 Böt-VRG↔RTN-pF neuron pairs. In total, 174 RTN-pF neurons (59.5%) had significant features in short-time scale correlations with other RTN-pF neurons. Of these, 49 neurons triggered cross-correlograms with offset peaks or troughs (n = 99) indicative of paucisynaptic excitation or inhibition of the target. Forty-nine Böt-VRG neurons (10.0%) were triggers in 74 Böt-VRG→RTN-pF correlograms with offset features, suggesting that Böt-VRG trigger neurons influence RTN-pF target neurons. The results support the hypothesis that local RTN-pF neuron interactions and inputs from Böt-VRG neurons jointly contribute to respiratory modulation of RTN-pF neuronal discharge patterns and promotion or limitation of their responses to central chemoreceptor and baroreceptor stimulation.
Collapse
Affiliation(s)
- Mackenzie M Ott
- Department of Molecular Pharmacology and Physiology and Neuroscience Program, School of Biomedical Sciences, University of South Florida College of Medicine, Tampa, Florida 33612-4799, USA
| | | | | | | | | |
Collapse
|
23
|
Dichlorvos-induced central apnea: effects of selective brainstem exposure in the rat. Neurotoxicology 2011; 32:206-14. [PMID: 21241738 DOI: 10.1016/j.neuro.2011.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 11/22/2010] [Accepted: 01/10/2011] [Indexed: 12/21/2022]
Abstract
The area of the brain responsible for organophosphate (OP)-induced central apnea is unknown. Automatic breathing is governed by circuits in the medulla and pons. Respiratory-related neurons in the brainstem are concentrated in a few areas, including ventral regions of the medulla, which contains a number of sites critical for respiratory rhythmogenesis, including the pre-Bötzinger complex (preBötC). The preBötC contains cholinergic receptors, making it a candidate site of action for the apnea-inducing effect of OP. We analyzed respiratory output during a series of experiments using both intact and reduced Wistar rat preparations exposed to dichlorvos (2,2-dichlorovinyl dimethyl phosphate). Exposure of the brainstem using a working heart-brainstem preparation resulted in a central apnea similar to that seen in intact animal models. In contrast, microdialysis of locally toxic doses of dichlorvos to the ventral region of the medulla resulted in delayed and mild respiratory depression in most animals and apnea in only 29% of the animals. We conclude that exposure of the entire brainstem to OP is sufficient to induce central apnea. Our microdialysis experiments suggest that the neural substrate for OP-induced central apnea involves a specific brainstem site other than the ventral region of the medulla, or apnea might result from a distributed effect involving cholinergic toxicities of multiple brainstem sites.
Collapse
|
24
|
Role of Glutamate and GABA in Mechanisms Underlying Respiratory Control. NEUROPHYSIOLOGY+ 2011. [DOI: 10.1007/s11062-011-9162-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Abstract
I provide a personal view of the developments since ~1986 that underlie the contemporary view(s) about how the rhythm of breathing is generated and how the pattern of breathing is modulated. Two sites in the mammalian brainstem are likely to participate in respiratory rhythm generation: the preBötzinger Complex (preBötC), first described and intensely investigated since 1990, plays a well-documented essential role in normal breathing in mammals of all ages and may be principally involved in controlling inspiratory motor activity, and the retrotrapezoid/parafacial respiratory group (RTN/pFRG) that appears to play at least a modulatory role in neonatal and juvenile rodents and may be a conditional oscillator that controls active expiration.
Collapse
Affiliation(s)
- Jack L Feldman
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
26
|
Haouzi P. Initiating inspiration outside the medulla does produce eupneic breathing. J Appl Physiol (1985) 2010; 110:854-6. [PMID: 21030668 DOI: 10.1152/japplphysiol.00833.2010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Philippe Haouzi
- Pennsylvania State Univ., College of Medicine, Penn State Hershey Medical Center, 500 Univ. Dr., Hershey, PO Box 850, MC H047, PA 17033-0850, USA.
| |
Collapse
|
27
|
K(+) and Ca²(+) dependence of inspiratory-related rhythm in novel "calibrated" mouse brainstem slices. Respir Physiol Neurobiol 2010; 175:37-48. [PMID: 20833274 DOI: 10.1016/j.resp.2010.09.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 08/31/2010] [Accepted: 09/02/2010] [Indexed: 11/21/2022]
Abstract
Recently developed transversal newborn rat brainstem slices with "calibrated" rostrocaudal margins unraveled novel features of rhythmogenic inspiratory active pre-Bötzinger complex (preBötC) neural networks (Ballanyi and Ruangkittisakul, 2009). For example, slice rhythm in physiological (3 mM) superfusate K(+) is depressed by modestly raised Ca²(+) and restored by raised K(+). Correspondingly, we generated here calibrated preBötC slices from commonly used newborn C57BL/6 mice in which rostrocaudal extents of respiratory marker structures, e.g., the inferior olive, turned out to be smaller than in newborn rats. Slices of 400-600 μm thickness with likely centered preBötC kernel ("m-preBötC slices") generated rhythm in 3 mM K(+) and 1mM Ca(2+) for several hours although its rate decreased to < 5 bursts/min after >1 h. Rhythm was stable at 8-12 bursts/min in 6-7 mM K(+), depressed by 2 mM Ca²(+), and restored by 9 mM K(+). Our findings provide the basis for future structure-function analyses of the mouse preBötC, whose activity depends critically on a "Ca(+)/K(+) antagonism" as in rats.
Collapse
|
28
|
Molkov YI, Abdala APL, Bacak BJ, Smith JC, Paton JFR, Rybak IA. Late-expiratory activity: emergence and interactions with the respiratory CpG. J Neurophysiol 2010; 104:2713-29. [PMID: 20884764 DOI: 10.1152/jn.00334.2010] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The respiratory rhythm and motor pattern are hypothesized to be generated by a brain stem respiratory network with a rhythmogenic core consisting of neural populations interacting within and between the pre-Bötzinger (pre-BötC) and Bötzinger (BötC) complexes and controlled by drives from other brain stem compartments. Our previous large-scale computational model reproduced the behavior of this network under many different conditions but did not consider neural oscillations that were proposed to emerge within the retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG) and drive preinspiratory (or late-expiratory, late-E) discharges in the abdominal motor output. Here we extend the analysis of our previously published data and consider new data on the generation of abdominal late-E activity as the basis for extending our computational model. The extended model incorporates an additional late-E population in RTN/pFRG, representing a source of late-E oscillatory activity. In the proposed model, under normal metabolic conditions, this RTN/pFRG oscillator is inhibited by BötC/pre-BötC circuits, and the late-E oscillations can be released by either hypercapnia-evoked activation of RTN/pFRG or by hypoxia-dependent suppression of RTN/pFRG inhibition by BötC/pre-BötC. The proposed interactions between BötC/pre-BötC and RTN/pFRG allow the model to reproduce several experimentally observed behaviors, including quantal acceleration of abdominal late-E oscillations with progressive hypercapnia and quantal slowing of phrenic activity with progressive suppression of pre-BötC excitability, as well as to predict a release of late-E oscillations by disinhibition of RTN/pFRG under normal conditions. The extended model proposes mechanistic explanations for the emergence of RTN/pFRG oscillations and their interaction with the brain stem respiratory network.
Collapse
Affiliation(s)
- Yaroslav I Molkov
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | | | | | | | | | | |
Collapse
|
29
|
Milsom WK. Adaptive trends in respiratory control: a comparative perspective. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1-10. [DOI: 10.1152/ajpregu.00069.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In 1941, August Krogh published a monograph entitled The Comparative Physiology of Respiratory Mechanisms (Philadelphia, PA: University of Pennsylvania Press, 1941). Since that time comparative studies have continued to contribute significantly to our understanding of the fundamentals of respiratory physiology and the adaptive trends in these processes that support a broad range of metabolic performance under demanding environmental conditions. This review specifically focuses on recent advances in our understanding of adaptive trends in respiratory control. Respiratory rhythm generators most likely arose from, and must remain integrated with, rhythm generators for chewing, suckling, and swallowing. Within the central nervous system there are multiple “segmental” rhythm generators, and through evolution there is a caudal shift in the predominant respiratory rhythm-generating site. All sites, however, may still be capable of producing or modulating respiratory rhythm under appropriate conditions. Expression of the respiratory rhythm is conditional on (tonic) input. Once the rhythm is expressed, it is often episodic as the basic medullary rhythm is turned on/off subject to a hierarchy of controls. Breathing patterns reflect differences in pulmonary mechanics resulting from differences in body wall and lung architecture and are modulated in different species by various combinations of upper and lower airway mechanoreceptors and arterial chemoreceptors to protect airways, reduce dead space ventilation, enhance gas exchange efficiency, and reduce the cost of breathing.
Collapse
Affiliation(s)
- William K. Milsom
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
30
|
Lal A, Oku Y, Hülsmann S, Okada Y, Miwakeichi F, Kawai S, Tamura Y, Ishiguro M. Dual oscillator model of the respiratory neuronal network generating quantal slowing of respiratory rhythm. J Comput Neurosci 2010; 30:225-40. [PMID: 20544264 PMCID: PMC3058346 DOI: 10.1007/s10827-010-0249-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 03/10/2010] [Accepted: 05/24/2010] [Indexed: 11/28/2022]
Abstract
We developed a dual oscillator model to facilitate the understanding of dynamic interactions between the parafacial respiratory group (pFRG) and the preBötzinger complex (preBötC) neurons in the respiratory rhythm generation. Both neuronal groups were modeled as groups of 81 interconnected pacemaker neurons; the bursting cell model described by Butera and others [model 1 in Butera et al. (J Neurophysiol 81:382–397, 1999a)] were used to model the pacemaker neurons. We assumed (1) both pFRG and preBötC networks are rhythm generators, (2) preBötC receives excitatory inputs from pFRG, and pFRG receives inhibitory inputs from preBötC, and (3) persistent Na+ current conductance and synaptic current conductances are randomly distributed within each population. Our model could reproduce 1:1 coupling of bursting rhythms between pFRG and preBötC with the characteristic biphasic firing pattern of pFRG neurons, i.e., firings during pre-inspiratory and post-inspiratory phases. Compatible with experimental results, the model predicted the changes in firing pattern of pFRG neurons from biphasic expiratory to monophasic inspiratory, synchronous with preBötC neurons. Quantal slowing, a phenomena of prolonged respiratory period that jumps non-deterministically to integer multiples of the control period, was observed when the excitability of preBötC network decreased while strengths of synaptic connections between the two groups remained unchanged, suggesting that, in contrast to the earlier suggestions (Mellen et al., Neuron 37:821–826, 2003; Wittmeier et al., Proc Natl Acad Sci USA 105(46):18000–18005, 2008), quantal slowing could occur without suppressed or stochastic excitatory synaptic transmission. With a reduced excitability of preBötC network, the breakdown of synchronous bursting of preBötC neurons was predicted by simulation. We suggest that quantal slowing could result from a breakdown of synchronized bursting within the preBötC.
Collapse
Affiliation(s)
- Amit Lal
- Department of Physiology, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Defective respiratory rhythmogenesis and loss of central chemosensitivity in Phox2b mutants targeting retrotrapezoid nucleus neurons. J Neurosci 2010; 29:14836-46. [PMID: 19940179 DOI: 10.1523/jneurosci.2623-09.2009] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The retrotrapezoid nucleus (RTN) is a group of neurons in the rostral medulla, defined here as Phox2b-, Vglut2-, neurokinin1 receptor-, and Atoh1-expressing cells in the parafacial region, which have been proposed to function both as generators of respiratory rhythm and as central respiratory chemoreceptors. The present study was undertaken to assess these two putative functions using genetic tools. We generated two conditional Phox2b mutations, which target different subsets of Phox2b-expressing cells, but have in common a massive depletion of RTN neurons. In both conditional mutants as well as in the previously described Phox2b(27Ala) mutants, in which the RTN is also compromised, the respiratory-like rhythmic activity normally seen in the parafacial region of fetal brainstem preparations was completely abrogated. Rhythmic motor bursts were recorded from the phrenic nerve roots in the mutants, but their frequency was markedly reduced. Both the rhythmic activity in the RTN region and the phrenic nerve discharges responded to a low pH challenge in control, but not in the mutant embryos. Together, our results provide genetic evidence for the essential role of the Phox2b-expressing RTN neurons both in establishing a normal respiratory rhythm before birth and in providing chemosensory drive.
Collapse
|
32
|
Dubreuil V, Barhanin J, Goridis C, Brunet JF. Breathing with phox2b. Philos Trans R Soc Lond B Biol Sci 2009; 364:2477-83. [PMID: 19651649 DOI: 10.1098/rstb.2009.0085] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the last few years, elucidation of the architecture of breathing control centres has reached the cellular level. This has been facilitated by increasing knowledge of the molecular signatures of various classes of hindbrain neurons. Here, we review the advances achieved by studying the homeodomain factor Phox2b, a transcriptional determinant of neuronal identity in the central and peripheral nervous systems. Evidence from human genetics, neurophysiology and mouse reverse genetics converges to implicate a small population of Phox2b-dependent neurons, located in the retrotrapezoid nucleus, in the detection of CO(2), which is a paramount source of the 'drive to breathe'. Moreover, the same and other studies suggest that an overlapping or identical neuronal population, the parafacial respiratory group, might contribute to the respiratory rhythm at least in some circumstances, such as for the initiation of breathing following birth. Together with the previously established Phox2b dependency of other respiratory neurons (which we review briefly here), our new data highlight a key role of this transcription factor in setting up the circuits for breathing automaticity.
Collapse
|
33
|
Kinkead R. Phylogenetic trends in respiratory rhythmogenesis: Insights from ectothermic vertebrates. Respir Physiol Neurobiol 2009; 168:39-48. [DOI: 10.1016/j.resp.2009.05.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 05/27/2009] [Accepted: 05/28/2009] [Indexed: 11/26/2022]
|
34
|
Branco LGS, Moreira TS, Guyenet PG, Lalley PM, Kawai A, Putnam RW, Chamberlin NL, Saper CB, Gourine AV, Kanamaru M, Homma I. Commentaries on Viewpoint: Central chemoreception is a complex system function that involves multiple brain stem sites. J Appl Physiol (1985) 2009; 106:1467-70. [PMID: 19336680 DOI: 10.1152/japplphysiol.00057.2009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
35
|
Pacemakers handshake synchronization mechanism of mammalian respiratory rhythmogenesis. Proc Natl Acad Sci U S A 2008; 105:18000-5. [PMID: 19008356 DOI: 10.1073/pnas.0809377105] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inspiratory and expiratory rhythms in mammals are thought to be generated by pacemaker-like neurons in 2 discrete brainstem regions: pre-Bötzinger complex (preBötC) and parafacial respiratory group (pFRG). How these putative pacemakers or pacemaker networks may interact to set the overall respiratory rhythm in synchrony remains unclear. Here, we show that a pacemakers 2-way "handshake" process comprising pFRG excitation of the preBötC, followed by reverse inhibition and postinhibitory rebound (PIR) excitation of the pFRG and postinspiratory feedback inhibition of the preBötC, can provide a phase-locked mechanism that sequentially resets and, hence, synchronizes the inspiratory and expiratory rhythms in neonates. The order of this handshake sequence and its progression vary depending on the relative excitabilities of the preBötC vs. the pFRG and resultant modulations of the PIR in various excited and depressed states, leading to complex inspiratory and expiratory phase-resetting behaviors in neonates and adults. This parsimonious model of pacemakers synchronization and mutual entrainment replicates key experimental data in vitro and in vivo that delineate the developmental changes in respiratory rhythm from neonates to maturity, elucidating their underlying mechanisms and suggesting hypotheses for further experimental testing. Such a pacemakers handshake process with conjugate excitation-inhibition and PIR provides a reinforcing and evolutionarily advantageous fail-safe mechanism for respiratory rhythmogenesis in mammals.
Collapse
|
36
|
Guyenet PG. The 2008 Carl Ludwig Lecture: retrotrapezoid nucleus, CO2 homeostasis, and breathing automaticity. J Appl Physiol (1985) 2008; 105:404-16. [PMID: 18535135 PMCID: PMC2519946 DOI: 10.1152/japplphysiol.90452.2008] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The retrotrapezoid nucleus (RTN) contains 2,000 glutamatergic neurons that innervate selectively the respiratory centers of the pontomedullary region. These cells are at the ventral medullary surface in a previously identified chemosensitive region. RTN neurons are highly sensitive to acid in vitro and vigorously activated by inputs from the carotid body and from the hypothalamus in vivo. Mutations of the transcription factor Phox2b cause the congenital hypoventilation syndrome (CCHS), a disease characterized by extremely reduced chemoreflexes and the loss of breathing automaticity during sleep. RTN neurons express Phox2b and develop poorly in a mouse model of CCHS, which lacks chemoreflexes. Based on these and other data, I propose that the RTN is a critical nodal point for the homeostatic regulation of arterial PCO2 and that the nucleus operates as follows. RTN always contributes a major fraction of the tonic excitatory drive to the respiratory centers. RTN neurons derive their activity from two sources: a chemosensory drive (intrinsic chemosensitivity and inputs from the carotid bodies) and synaptic inputs from higher brain centers (non-chemosensory drive). Under anesthesia or non-rapid eye movement sleep, the chemosensory drive to RTN neurons dominates, and, under these circumstances, the excitatory input from RTN to the respiratory controller is required for breathing automaticity. During waking and exercise, RTN contributes a reduced fraction of the total excitatory drive to the respiratory controller, but this fraction remains essential for CO2 homeostasis because of its exquisite chemosensitivity. The working hypothesis could explain the breathing deficits experienced by CCHS patients.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, University of Virginia Health System, PO Box 800735, 1300 Jefferson Park Ave., Charlottesville, VA 22908-0735, USA.
| |
Collapse
|
37
|
Chen AK, Hedrick MS. Role of glutamate and substance P in the amphibian respiratory network during development. Respir Physiol Neurobiol 2008; 162:24-31. [PMID: 18450524 PMCID: PMC2504693 DOI: 10.1016/j.resp.2008.03.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 03/18/2008] [Accepted: 03/24/2008] [Indexed: 01/08/2023]
Abstract
This study tested the hypothesis that glutamatergic ionotropic (AMPA/kainate) receptors and neurokinin receptors (NKR) are important in the regulation of respiratory motor output during development in the bullfrog. The roles of these receptors were studied with in vitro brainstem preparations from pre-metamorphic tadpoles and post-metamorphic frogs. Brainstems were superfused with an artificial cerebrospinal fluid at 20-22 degrees C containing CNQX, a selective non-NMDA antagonist, or with substance P (SP), an agonist of NKR. Blockade of glutamate receptors with CNQX in both groups caused a reduction of lung burst frequency that was reversibly abolished at 5 microM (P<0.01). CNQX, but not SP, application produced a significant increase (P<0.05) in gill and buccal frequency in tadpoles and frogs, respectively. SP caused a significant increase (P<0.05) in lung burst frequency at 5 microM in both groups. These results suggest that glutamatergic activation of AMPA/kainate receptors is necessary for generation of lung burst activity and that SP is an excitatory neurotransmitter for lung burst frequency generation. Both glutamate and SP provide excitatory input for lung burst generation throughout the aquatic to terrestrial developmental transition in bullfrogs.
Collapse
Affiliation(s)
- Anna K. Chen
- Department of Biological Sciences, California State University, East Bay, Hayward, CA 94542 USA
| | - Michael S. Hedrick
- Department of Biological Sciences, California State University, East Bay, Hayward, CA 94542 USA
| |
Collapse
|
38
|
Fournier S, Kinkead R. Role of pontine neurons in central O(2) chemoreflex during development in bullfrogs (Lithobates catesbeiana). Neuroscience 2008; 155:983-96. [PMID: 18590803 DOI: 10.1016/j.neuroscience.2008.05.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 05/20/2008] [Accepted: 05/26/2008] [Indexed: 11/25/2022]
Abstract
The present study used an in vitro brainstem preparation from pre-metamorphic tadpoles and adult bullfrogs (Lithobates catesbeiana) to understand the neural mechanisms associated with central O(2) chemosensitivity and its maturation. In this species, brainstem hypoxia increases fictive lung ventilation in tadpoles but decreases in adults. Previous studies have shown that alpha(1)-adrenoceptor inactivation prevents these responses, suggesting that noradrenergic neurons are involved. We first tested the hypothesis that the pons (which includes noradrenergic neurons from the locus coeruleus; LC) plays a role in the lung burst frequency response to central hypoxia by comparing the effects of brainstem transection at the LC level between pre-metamorphic tadpoles and adults. Data show that brainstem transection prevents the lung burst frequency response in both stage groups. During development, the progressive decrease in the Na(+)/K(+)/Cl(-) co-transporter NKCC1 contributes to the maturation of neural networks. Because NKCC1 becomes activated during hypoxia, we then tested the hypothesis that NKCC1 contributes to maturation of the central O(2) chemoreflex. Double labeling experiments showed that the proportion of tyrosine hydroxylase positive neurons expressing NKCC1 in the LC decreases during development. Inactivation of NKCC1 with bumetanide bath application reversed the lung burst response to hypoxia in tadpoles. Bumetanide inhibited the response in adults. These data indicate that a structure within the pons (potentially the LC) is necessary to the central hypoxic chemoreflex and demonstrate that NKCC1 plays a role in central O(2) chemosensitivity and its maturation in this species.
Collapse
Affiliation(s)
- S Fournier
- Department of Pediatrics, Université Laval, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec City, QC, Canada
| | | |
Collapse
|
39
|
Nattie E, Li A. Central chemoreception is a complex system function that involves multiple brain stem sites. J Appl Physiol (1985) 2008; 106:1464-6. [PMID: 18467549 DOI: 10.1152/japplphysiol.00112.2008] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Eugene Nattie
- 706E Borwell Bldg., Dept. of Physiology, Dartmouth Medical School, Lebanon, NH 03755-0001, USA.
| | | |
Collapse
|
40
|
Reconfiguration of respiratory-related population activity in a rostrally tilted transversal slice preparation following blockade of inhibitory neurotransmission in neonatal rats. Pflugers Arch 2008; 457:185-95. [DOI: 10.1007/s00424-008-0509-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 03/10/2008] [Accepted: 03/23/2008] [Indexed: 11/25/2022]
|
41
|
Fortuna MG, West GH, Stornetta RL, Guyenet PG. Botzinger expiratory-augmenting neurons and the parafacial respiratory group. J Neurosci 2008; 28:2506-15. [PMID: 18322095 PMCID: PMC6671197 DOI: 10.1523/jneurosci.5595-07.2008] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 01/21/2008] [Accepted: 01/22/2008] [Indexed: 11/21/2022] Open
Abstract
In neonatal rat brains in vitro, the rostral ventral respiratory column (rVRC) contains neurons that burst just before the phrenic nerve discharge (PND) and rebound after inspiration (pre-I neurons). These neurons, called parafacial respiratory group (pfRG), have been interpreted as a master inspiratory oscillator, an expiratory rhythm generator or simply as neonatal precursors of retrotrapezoid (RTN) chemoreceptor neurons. pfRG neurons have not been identified in adults, and their phenotype is unknown. Here, we confirm that the rVRC normally lacks pre-I neurons in adult anesthetized rats. However, we show that, during hypercapnic hypoxia, a population of rVRC expiratory-augmenting (E-AUG) neurons consistently develops a pre-I discharge. These cells reside in the Bötzinger region of the rVRC, they express glycine-transporter-2, and their axons arborize throughout the VRC. Hypoxia triggers an identical pre-I pattern in retroambigual expiratory bulbospinal neurons, but this pattern is not elicited in Bötzinger expiratory-decrementing neurons, Bötzinger inspiratory neurons, RTN neurons, and blood pressure-regulating neurons. In conclusion, under hypoxia in vivo, abdominal expiratory premotor neurons of adult rats develop a pre-I pattern reminiscent of that observed in neonate brainstems in vitro. In the rVRC of adult rats, pre-I cells include selected rhythmogenic neurons (glycinergic Bötzinger neurons) but not RTN chemoreceptors. We suggest that the pfRG may not be an independent rhythm generator but a heterogeneous collection of E-AUG neurons (glycinergic Bötzinger neurons, possibly facial motor and premotor neurons), the discharge of which becomes preinspiratory under specific experimental conditions resulting from, in part, a prolonged and intensified activity of postinspiratory neurons.
Collapse
Affiliation(s)
- Michal G. Fortuna
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Gavin H. West
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Ruth L. Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Patrice G. Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
42
|
Gray PA. Transcription factors and the genetic organization of brain stem respiratory neurons. J Appl Physiol (1985) 2008; 104:1513-21. [PMID: 18218908 DOI: 10.1152/japplphysiol.01383.2007] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Breathing is a genetically determined behavior generated by neurons in the brain stem. Transcription factors, in part, determine the basic developmental identity of neurons, but the relationships between these genes and the neural populations generating and modulating respiration are unclear. The diversity of brain stem populations has been proposed to result from a combinatorial code of transcription factor expression corresponding to the anterior-posterior (A-P) and dorsal-ventral (D-V) location of a neuron's birth. I provide a schematic of transcription factor coding identifying at least 15 genetically distinct D-V subdivisions of brain stem neurons that, combined with A-P patterning, may provide a genetic organization of the brain stem in general, with the eventual goal of describing respiratory populations in particular. Using a combination of fate mapping in transgenic mouse lines and immunohistochemistry, we confirm the parabrachial nuclei are derived from a subset of Atoh1 expression progenitor neurons. I hypothesize the Kölliker-Fuse nucleus can be uniquely defined in the neonate mouse by the coexpression of the transcription factor FoxP2 in Atoh1-derived neurons of rhombomere 1.
Collapse
Affiliation(s)
- Paul A Gray
- Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110-1093, USA.
| |
Collapse
|
43
|
Two modes of respiratory rhythm generation in the newborn rat brainstem-spinal cord preparation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 605:104-8. [PMID: 18085255 DOI: 10.1007/978-0-387-73693-8_18] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Two respiration-related rhythm generators, the pre-Bötzinger complex inspiratory and the parafacial pre-inspiratory rhythm generators, have been identified in the medulla of rodents that produce intrinsic periodic bursts. Although both generators can be independently active under specific conditions, they interact as a coupled oscillator system to regulate the respiratory rhythm. Here, we summarize different mechanisms of modulation of the respiratory rhythm in the brainstem-spinal cord preparation of newborn rats and discuss factors determining rhythm generator dominance. We show two different modes of respiratory rhythm generation in the brainstem-spinal cord preparation that depends on the background stimulation level.
Collapse
|
44
|
A human mutation in Phox2b causes lack of CO2 chemosensitivity, fatal central apnea, and specific loss of parafacial neurons. Proc Natl Acad Sci U S A 2008; 105:1067-72. [PMID: 18198276 DOI: 10.1073/pnas.0709115105] [Citation(s) in RCA: 237] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Breathing is maintained and controlled by a network of neurons in the brainstem that generate respiratory rhythm and provide regulatory input. Central chemoreception, the mechanism for CO(2) detection that provides an essential stimulatory input, is thought to involve neurons located near the medullary surface, whose nature is controversial. Good candidates are serotonergic medullary neurons and glutamatergic neurons in the parafacial region. Here, we show that mice bearing a mutation in Phox2b that causes congenital central hypoventilation syndrome in humans breathe irregularly, do not respond to an increase in CO(2), and die soon after birth from central apnea. They specifically lack Phox2b-expressing glutamatergic neurons located in the parafacial region, whereas other sites known or supposed to be involved in the control of breathing are anatomically normal. These data provide genetic evidence for the essential role of a specific population of medullary interneurons in driving proper breathing at birth and will be instrumental in understanding the etiopathology of congenital central hypoventilation syndrome.
Collapse
|
45
|
Lee KZ, Fuller DD, Lu IJ, Ku LC, Hwang JC. Pulmonary C-fiber receptor activation abolishes uncoupled facial nerve activity from phrenic bursting during positive end-expired pressure in the rat. J Appl Physiol (1985) 2008; 104:119-29. [DOI: 10.1152/japplphysiol.00505.2007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phasic respiratory bursting in the facial nerve (FN) can be uncoupled from phrenic bursting by application of 9 cmH2O positive end-expired pressure (PEEP). This response reflects excitation of expiratory-inspiratory (EI) and preinspiratory (Pre-I) facial neurons during the Pre-I period and inhibition of EI neurons during inspiration (I). Because activation of pulmonary C-fiber (PCF) receptors can inhibit the discharge of EI and Pre-I neurons, we hypothesized that PCF receptor activation via capsaicin would attenuate or abolish uncoupled FN bursting with an increase from 3 cmH2O (baseline) to 9 cmH2O PEEP. Neurograms were recorded in the FN and phrenic nerve in anesthetized, ventilated, vagally intact adult Wistar rats. Increasing PEEP to 9 cmH2O resulted in a persistent rhythmic discharge in the FN during phrenic quiescence (i.e., uncoupled bursting). Combination of PEEP with intrajugular capsaicin injection severely attenuated or eliminated uncoupled bursting in the FN ( P < 0.05). Additional experiments examined the pattern of facial motoneuron (vs. neurogram) bursting during PEEP application and capsaicin treatment. These single-fiber recordings confirmed that Pre-I and EI (but not I) neurons continued to burst during PEEP-induced phrenic apnea. Capsaicin treatment during PEEP substantially inhibited Pre-I and EI neuron discharge. Finally, analyses of FN and motoneuron bursting across the respiratory cycle indicated that the inhibitory effects of capsaicin were more pronounced during the Pre-I period. We conclude that activation of PCF receptors can inhibit FN bursting during PEEP-induced phrenic apnea by inhibiting EI and I facial motoneuron discharge.
Collapse
|
46
|
Belt-and-Suspenders as a Biological Design Principle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 605:99-103. [DOI: 10.1007/978-0-387-73693-8_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
47
|
Hartelt N, Skorova E, Manzke T, Suhr M, Mironova L, Kügler S, Mironov SL. Imaging of respiratory network topology in living brainstem slices. Mol Cell Neurosci 2007; 37:425-31. [PMID: 18203620 DOI: 10.1016/j.mcn.2007.10.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 10/18/2007] [Accepted: 10/23/2007] [Indexed: 10/22/2022] Open
Abstract
Topology of neuronal networks contributes to their functioning but the structure-function relationships are not yet understood. In order to reveal the spatial organisation of the respiratory network, we expressed enhanced green fluorescent proteins in neurons in brainstem slices containing the respiratory kernel (pre-Bötzinger complex). The expression was neuron specific due to use of adeno-associated viral vector driving transgene expression from synapsin 1 promoter. Both neuronal cell bodies and their dendrites were labelled with high efficacy. This labelling allowed for enhanced spatial resolution as compared to conventional calcium-sensitive dyes. Neurons occupied about 10% of tissue volume and formed an interconnected network. Using custom-developed software, we quantified the network structure that had a modular structure consisting of clusters having transverse (dorso-ventral) orientation. They contained in average seven neurons and connections between the cells in different clusters were less frequent. This novel in situ imaging technique is promising to gain new knowledge about the fine structure and function of neuronal networks in living slice preparations.
Collapse
Affiliation(s)
- N Hartelt
- DFG-Center of Molecular Physiology of the Brain, Department of Neuro- and Sensory Physiology, Humboldtallee 23, Georg-August-University, 37073 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Zimmer MB, Nantwi K, Goshgarian HG. Effect of spinal cord injury on the respiratory system: basic research and current clinical treatment options. J Spinal Cord Med 2007; 203:98-108. [PMID: 17853653 DOI: 10.1016/j.resp.2014.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/11/2014] [Accepted: 08/12/2014] [Indexed: 02/09/2023] Open
Abstract
Spinal cord injury (SCI) often leads to an impairment of the respiratory system. The more rostral the level of injury, the more likely the injury will affect ventilation. In fact, respiratory insufficiency is the number one cause of mortality and morbidity after SCI. This review highlights the progress that has been made in basic and clinical research, while noting the gaps in our knowledge. Basic research has focused on a hemisection injury model to examine methods aimed at improving respiratory function after SCI, but contusion injury models have also been used. Increasing synaptic plasticity, strengthening spared axonal pathways, and the disinhibition of phrenic motor neurons all result in the activation of a latent respiratory motor pathway that restores function to a previously paralyzed hemidiaphragm in animal models. Human clinical studies have revealed that respiratory function is negatively impacted by SCI. Respiratory muscle training regimens may improve inspiratory function after SCI, but more thorough and carefully designed studies are needed to adequately address this issue. Phrenic nerve and diaphragm pacing are options available to wean patients from standard mechanical ventilation. The techniques aimed at improving respiratory function in humans with SCI have both pros and cons, but having more options available to the clinician allows for more individualized treatment, resulting in better patient care. Despite significant progress in both basic and clinical research, there is still a significant gap in our understanding of the effect of SCI on the respiratory system.
Collapse
Affiliation(s)
- M Beth Zimmer
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, Michigan 48201, USA.
| | | | | |
Collapse
|
49
|
Chatonnet F, Wrobel LJ, Mézières V, Pasqualetti M, Ducret S, Taillebourg E, Charnay P, Rijli FM, Champagnat J. Distinct roles of Hoxa2 and Krox20 in the development of rhythmic neural networks controlling inspiratory depth, respiratory frequency, and jaw opening. Neural Dev 2007; 2:19. [PMID: 17897445 PMCID: PMC2098766 DOI: 10.1186/1749-8104-2-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 09/26/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Little is known about the involvement of molecular determinants of segmental patterning of rhombomeres (r) in the development of rhythmic neural networks in the mouse hindbrain. Here, we compare the phenotypes of mice carrying targeted inactivations of Hoxa2, the only Hox gene expressed up to r2, and of Krox20, expressed in r3 and r5. We investigated the impact of such mutations on the neural circuits controlling jaw opening and breathing in newborn mice, compatible with Hoxa2-dependent trigeminal defects and direct regulation of Hoxa2 by Krox20 in r3. RESULTS We found that Hoxa2 mutants displayed an impaired oro-buccal reflex, similarly to Krox20 mutants. In contrast, while Krox20 is required for the development of the rhythm-promoting parafacial respiratory group (pFRG) modulating respiratory frequency, Hoxa2 inactivation did not affect neonatal breathing frequency. Instead, we found that Hoxa2-/- but not Krox20-/- mutation leads to the elimination of a transient control of the inspiratory amplitude normally occurring during the first hours following birth. Tracing of r2-specific progenies of Hoxa2 expressing cells indicated that the control of inspiratory activity resides in rostral pontine areas and required an intact r2-derived territory. CONCLUSION Thus, inspiratory shaping and respiratory frequency are under the control of distinct Hox-dependent segmental cues in the mammalian brain. Moreover, these data point to the importance of rhombomere-specific genetic control in the development of modular neural networks in the mammalian hindbrain.
Collapse
Affiliation(s)
- Fabrice Chatonnet
- NGI, UPR 2216, Institut de Neurobiologie Alfred Fessard IFR2218, Centre National de la Recherche Scientifique, F-91198 Gif sur Yvette Cedex, France
- IGFL UMR 5242 CNRS/INRA/UCB/École Normale Supérieure de Lyon, allée d'Italie, 69364 Lyon Cedex 07, France
| | - Ludovic J Wrobel
- NGI, UPR 2216, Institut de Neurobiologie Alfred Fessard IFR2218, Centre National de la Recherche Scientifique, F-91198 Gif sur Yvette Cedex, France
| | - Valérie Mézières
- NGI, UPR 2216, Institut de Neurobiologie Alfred Fessard IFR2218, Centre National de la Recherche Scientifique, F-91198 Gif sur Yvette Cedex, France
| | - Massimo Pasqualetti
- IGBMC, UMR 7104, CNRS/INSERM/ULP/Collège de France, CU de Strasbourg, F-67404 Illkirch Cedex, France
- Laboratori di Biologia Cellulare e dello Sviluppo, Università di Pisa, Via G Carducci, Pisa, Italy
| | - Sébastien Ducret
- IGBMC, UMR 7104, CNRS/INSERM/ULP/Collège de France, CU de Strasbourg, F-67404 Illkirch Cedex, France
| | - Emmanuel Taillebourg
- INSERM, U 784, Ecole Normale Supérieure, rue d'Ulm, 75230 Paris Cedex 05, France
- CEA, Laboratoire de Biochimie et Biophysique des Systèmes Intégrés, 38054 Grenoble, France
| | - Patrick Charnay
- INSERM, U 784, Ecole Normale Supérieure, rue d'Ulm, 75230 Paris Cedex 05, France
| | - Filippo M Rijli
- IGBMC, UMR 7104, CNRS/INSERM/ULP/Collège de France, CU de Strasbourg, F-67404 Illkirch Cedex, France
| | - Jean Champagnat
- NGI, UPR 2216, Institut de Neurobiologie Alfred Fessard IFR2218, Centre National de la Recherche Scientifique, F-91198 Gif sur Yvette Cedex, France
| |
Collapse
|
50
|
Oku Y, Masumiya H, Okada Y. Postnatal developmental changes in activation profiles of the respiratory neuronal network in the rat ventral medulla. J Physiol 2007; 585:175-86. [PMID: 17884928 PMCID: PMC2375450 DOI: 10.1113/jphysiol.2007.138180] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Two putative respiratory rhythm generators (RRGs), the para-facial respiratory group (pFRG) and the pre-Bötzinger complex (preBötC), have been identified in the neonatal rodent brainstem. To elucidate their functional roles during the neonatal period, we evaluated developmental changes of these RRGs by optical imaging using a voltage-sensitive dye. Optical signals, recorded from the ventral medulla of brainstem-spinal cord preparations of neonatal (P0-P4) rats (n = 44), were analysed by a cross correlation method. With development during the first few postnatal days, the respiratory-related activity in the pFRG reduced and shifted from a preinspiratory (P0-P1) to an inspiratory (P2-P4) pattern, whereas preBötC activity remained unchanged. The mu-opioid agonist [D-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO) augmented preinspiratory activity in the pFRG, while the mu-opioid antagonist naloxone induced changes in spatiotemporal activation profiles that closely mimicked the developmental changes. These results are consistent with the recently proposed hypothesis by Janczewski and Feldman that the pFRG is activated to compensate for the depression of the preBötC by perinatal opiate surge. We conclude that significant reorganization of the respiratory neuronal network, characterized by a reduction of preinspiratory activity in the pFRG, occurs at P1-P2 in rats. The changes in spatiotemporal activation profiles of the pFRG neurones may reflect changes in the mode of coupling of the two respiratory rhythm generators.
Collapse
Affiliation(s)
- Yoshitaka Oku
- Department of Physiology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan.
| | | | | |
Collapse
|