1
|
Morrison JL, Berry MJ, Botting KJ, Darby JRT, Frasch MG, Gatford KL, Giussani DA, Gray CL, Harding R, Herrera EA, Kemp MW, Lock MC, McMillen IC, Moss TJ, Musk GC, Oliver MH, Regnault TRH, Roberts CT, Soo JY, Tellam RL. Improving pregnancy outcomes in humans through studies in sheep. Am J Physiol Regul Integr Comp Physiol 2018; 315:R1123-R1153. [PMID: 30325659 DOI: 10.1152/ajpregu.00391.2017] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Experimental studies that are relevant to human pregnancy rely on the selection of appropriate animal models as an important element in experimental design. Consideration of the strengths and weaknesses of any animal model of human disease is fundamental to effective and meaningful translation of preclinical research. Studies in sheep have made significant contributions to our understanding of the normal and abnormal development of the fetus. As a model of human pregnancy, studies in sheep have enabled scientists and clinicians to answer questions about the etiology and treatment of poor maternal, placental, and fetal health and to provide an evidence base for translation of interventions to the clinic. The aim of this review is to highlight the advances in perinatal human medicine that have been achieved following translation of research using the pregnant sheep and fetus.
Collapse
Affiliation(s)
- Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Mary J Berry
- Department of Paediatrics and Child Health, University of Otago , Wellington , New Zealand
| | - Kimberley J Botting
- Department of Physiology, Development, and Neuroscience, University of Cambridge , Cambridge , United Kingdom
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Martin G Frasch
- Department of Obstetrics and Gynecology, University of Washington , Seattle, Washington
| | - Kathryn L Gatford
- Robinson Research Institute and Adelaide Medical School, University of Adelaide , Adelaide, South Australia , Australia
| | - Dino A Giussani
- Department of Physiology, Development, and Neuroscience, University of Cambridge , Cambridge , United Kingdom
| | - Clint L Gray
- Department of Paediatrics and Child Health, University of Otago , Wellington , New Zealand
| | - Richard Harding
- Department of Anatomy and Developmental Biology, Monash University , Clayton, Victoria , Australia
| | - Emilio A Herrera
- Pathophysiology Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile , Santiago , Chile
| | - Matthew W Kemp
- Division of Obstetrics and Gynecology, University of Western Australia , Perth, Western Australia , Australia
| | - Mitchell C Lock
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - I Caroline McMillen
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Timothy J Moss
- The Ritchie Centre, Hudson Institute of Medical Research, Department of Obstetrics and Gynaecology, Monash University , Clayton, Victoria , Australia
| | - Gabrielle C Musk
- Animal Care Services, University of Western Australia , Perth, Western Australia , Australia
| | - Mark H Oliver
- Liggins Institute, University of Auckland , Auckland , New Zealand
| | - Timothy R H Regnault
- Department of Obstetrics and Gynecology and Department of Physiology and Pharmacology, Western University, and Children's Health Research Institute , London, Ontario , Canada
| | - Claire T Roberts
- Robinson Research Institute and Adelaide Medical School, University of Adelaide , Adelaide, South Australia , Australia
| | - Jia Yin Soo
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Ross L Tellam
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
2
|
Feitosa FF, Alcindo J, Narciso L, Bovino F, Souza ND, Mendes L, Peiró J, Perri S, Avila L. Parâmetros hematológicos e perfil bioquímico renal de cordeiros nascidos a termo e prematuros. ARQ BRAS MED VET ZOO 2017. [DOI: 10.1590/1678-4162-9098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RESUMO O objetivo do presente estudo foi avaliar as variáveis hematológicas e o perfil bioquímico renal sérico de cordeiros nascidos a termo e prematuros do nascimento às 48 horas de vida, bem como verificar a influência da dexametasona sobre tais variáveis. Foram constituídos quatros grupos experimentais: PN (cordeiros nascidos de parto normal, n=15, média de 146 dias); PNDEX (cordeiros nascidos de parto normal cujas mães receberam 16mg de dexametasona aos 141 de gestação, n=8, média de 143 dias); PRE (cordeiros prematuros nascidos de cesarianas aos 138 dias de gestação, n=10) e PREDEX (cordeiros prematuros nascidos de cesarianas aos 138 dias de gestação cujas mães receberam 16mg de dexametasona dois dias antes, n=9). Os valores médios do volume globular e de hemoglobina diminuíram ao longo das 48 horas de observação, nos quatro grupos experimentais, porém dentro dos limites fisiológicos para a espécie. Houve variação da concentração plasmática de proteínas totais em todos os momentos, sendo os menores valores no grupo PRE. A contagem leucocitária foi mais alta no grupo PN apenas no M24h. Ao longo do período, apenas o grupo PN mostrou diferença entre o M24h e os demais momentos, e o grupo PRE apresentou os menores valores de neutrófilos no M0h, M15min e M60min. As concentrações séricas de creatinina foram mais altas no grupo PRE no M60min, M24h e M48h. Em todos os grupos, houve diminuição no M24h e M48h. Os parâmetros avaliados foram afetados pela prematuridade na espécie ovina e a dexametasona teve influência positiva sobre a taxa de sobrevivência dos animais prematuros.
Collapse
|
3
|
De Matteo R, Hodgson DJ, Bianco-Miotto T, Nguyen V, Owens JA, Harding R, Allison BJ, Polglase G, Black MJ, Gatford KL. Betamethasone-exposed preterm birth does not impair insulin action in adult sheep. J Endocrinol 2017; 232:175-187. [PMID: 27821470 DOI: 10.1530/joe-16-0300] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 11/07/2016] [Indexed: 12/13/2022]
Abstract
Preterm birth is associated with increased risk of type 2 diabetes (T2D) in adulthood; however, the underlying mechanisms are poorly understood. We therefore investigated the effect of preterm birth at ~0.9 of term after antenatal maternal betamethasone on insulin sensitivity, secretion and key determinants in adulthood, in a clinically relevant animal model. Glucose tolerance and insulin secretion (intravenous glucose tolerance test) and whole-body insulin sensitivity (hyperinsulinaemic euglycaemic clamp) were measured and tissue collected in young adult sheep (14 months old) after epostane-induced preterm (9M, 7F) or term delivery (11M, 6F). Glucose tolerance and disposition, insulin secretion, β-cell mass and insulin sensitivity did not differ between term and preterm sheep. Hepatic PRKAG2 expression was greater in preterm than in term males (P = 0.028), but did not differ between preterm and term females. In skeletal muscle, SLC2A4 (P = 0.019), PRKAA2 (P = 0.021) and PRKAG2 (P = 0.049) expression was greater in preterm than in term overall and in males, while INSR (P = 0.047) and AKT2 (P = 0.043) expression was greater in preterm than in term males only. Hepatic PRKAG2 expression correlated positively with whole-body insulin sensitivity in males only. Thus, preterm birth at 0.9 of term after betamethasone does not impair insulin sensitivity or secretion in adult sheep, and has sex-specific effects on gene expression of the insulin signalling pathway. Hence, the increased risk of T2D in preterm humans may be due to factors that initiate preterm delivery or in early neonatal exposures, rather than preterm birth per se.
Collapse
Affiliation(s)
- R De Matteo
- Department of Anatomy and Developmental BiologyMonash University, Clayton, Victoria, Australia
| | - D J Hodgson
- Robinson Research InstituteUniversity of Adelaide, Adelaide, South Australia, Australia
- Adelaide Medical SchoolUniversity of Adelaide, Adelaide, South Australia, Australia
| | - T Bianco-Miotto
- Robinson Research InstituteUniversity of Adelaide, Adelaide, South Australia, Australia
- School of AgricultureFood and Wine, University of Adelaide, Adelaide, South Australia, Australia
| | - V Nguyen
- Department of Anatomy and Developmental BiologyMonash University, Clayton, Victoria, Australia
| | - J A Owens
- Robinson Research InstituteUniversity of Adelaide, Adelaide, South Australia, Australia
- Adelaide Medical SchoolUniversity of Adelaide, Adelaide, South Australia, Australia
| | - R Harding
- Department of Anatomy and Developmental BiologyMonash University, Clayton, Victoria, Australia
| | - B J Allison
- Department of Obstetrics & GynaecologyMonash University, Clayton, Victoria, Australia
- The Ritchie CentreHudson Institute of Medical Research, Clayton, Victoria, Australia
| | - G Polglase
- Department of Obstetrics & GynaecologyMonash University, Clayton, Victoria, Australia
- The Ritchie CentreHudson Institute of Medical Research, Clayton, Victoria, Australia
| | - M J Black
- Department of Anatomy and Developmental BiologyMonash University, Clayton, Victoria, Australia
| | - K L Gatford
- Robinson Research InstituteUniversity of Adelaide, Adelaide, South Australia, Australia
- Adelaide Medical SchoolUniversity of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
4
|
Dharmakumara M, Prisk GK, Royce SG, Tawhai M, Thompson BR. The effect of gas exchange on multiple-breath nitrogen washout measures of ventilation inhomogeneity in the mouse. J Appl Physiol (1985) 2014; 117:1049-54. [PMID: 25213637 DOI: 10.1152/japplphysiol.00543.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inert-gas washout measurements using oxygen, in the lungs of small animals, are complicated by the continuous process of oxygen consumption (V̇o2). The multiple-breath nitrogen washout (MBNW) technique uses the alveolar slope to determine measures of ventilation inhomogeneity in the acinar (Sacin) and conducting (Scond) airway regions, as well as overall inhomogeneity, as determined by the lung clearance index (LCI). We hypothesized that measured ventilation inhomogeneity in the mouse lung while it is alive is in fact an artifact due to the high V̇o2 in proportion to alveolar gas volume (Va), and not ventilation inhomogeneity per se. In seven male C57BL/6 mice, MBNW was performed alive and postmortem to derive measures with and without the effect of gas exchange, respectively. These results were compared with those obtained from an asymmetric multibranch point mathematical model of the mouse lung. There was no statistical difference in Sacin and LCI between alive and postmortem results (Sacin alive = 0.311 ± 0.043 ml(-1) and Sacin postmortem = 0.338 ± 0.032 ml(-1), LCI alive = 7.0 ± 0.1 and LCI postmortem = 7.0 ± 0.1). However, there was a significant decrease in Scond from 0.086 ± 0.005 ml(-1) alive to 0.006 ± 0.002 ml(-1) postmortem (P < 0.01). Model simulations replicated these results. Furthermore, in the model, as V̇o2 increased, so did the alveolar slope. These findings suggests that the MBNW measurement of Scond in the mouse lung is confounded by the effect of gas exchange, a result of the high V̇o2-to-Va ratio in this small animal, and not due to inhomogeneity within the airways.
Collapse
Affiliation(s)
- Mahesh Dharmakumara
- Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, and Monash University, Melbourne, Victoria, Australia;
| | - G Kim Prisk
- Departments of Medicine and Radiology, University of California, San Diego, California
| | - Simon G Royce
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia; and
| | - Merryn Tawhai
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Bruce R Thompson
- Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, and Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Boudaa N, Samson N, Carrière V, Germim PS, Pasquier JC, Bairam A, Praud JP. Effects of caffeine and/or nasal CPAP treatment on laryngeal chemoreflexes in preterm lambs. J Appl Physiol (1985) 2013; 114:637-46. [PMID: 23305977 DOI: 10.1152/japplphysiol.00599.2012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Current knowledge suggests that laryngeal chemoreflexes (LCR) are involved in the occurrence of certain neonatal apneas/bradycardias, especially in the preterm newborn. While caffeine and/or nasal continuous positive airway pressure (nCPAP) are the most frequent options used for treating apneas in preterm newborns, their effects on LCR-related apneas/bradycardias are virtually unknown. The aim of the present study was to test the hypothesis that caffeine and/or nCPAP decreases LCR-related cardiorespiratory inhibition in a preterm ovine model. Seven preterm lambs were born vaginally on gestational day 133 (normal gestation: 147 days) after intramuscular injections of betamethasone and mifepristone. Five days after birth, a chronic surgical instrumentation was performed to record states of alertness, electrocardiogram, systemic arterial pressure, and electromyographic activity of a laryngeal constrictor muscle, as well as to insert a transcutaneous supraglottal catheter. LCR were induced in quiet sleep under four conditions: 1) control (without caffeine or nCPAP); 2) nCPAP (5 cmH2O, without caffeine); 3) caffeine (10 mg/kg infused intravenously for 30 min, without nCPAP); and 4) nCPAP + caffeine. Our results showed that nCPAP consistently blunted LCR-related cardiorespiratory inhibition vs. control condition, contrary to caffeine whose overall effect was nonsignificant. In addition, nCPAP condition was characterized by a more consistent and rapid arousal after HCl injection. No significant differences were observed between all tested conditions with regard to swallowing and cough. It is concluded that nCPAP should be further assessed for its usefulness in treating neonatal apneas linked to LCR.
Collapse
Affiliation(s)
- Nadia Boudaa
- Neonatal Respiratory Research Unit, Departments of Pediatrics and Physiology, Université de Sherbrooke, Quebec, Canada J1H 5N4
| | | | | | | | | | | | | |
Collapse
|
6
|
|
7
|
De Matteo R, Blasch N, Stokes V, Davis P, Harding R. Induced preterm birth in sheep: a suitable model for studying the developmental effects of moderately preterm birth. Reprod Sci 2010; 17:724-33. [PMID: 20445008 DOI: 10.1177/1933719110369182] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Our aim was to characterize an ovine model of preterm birth that allows analysis of the developmental effects of preterm birth in the absence of postnatal confounding factors. Preterm birth was induced at 131 days of gestation in 82 lambs; controls (n = 31) were born at term (145 days). Overall survival of preterm lambs was 60%; males had significantly lower survival than females (44% vs 76%); 94% of term lambs survived. Although the birth weight of preterm lambs was approximately 0.9 kg lower than in term lambs, the crown-to-rump and forelimb lengths were similar. At 9 weeks after term-equivalent age, there were no differences in body weight or dimensions between preterm and term lambs; when adjusted for body weight, the heart was 21% heavier in preterm than term lambs. We conclude that moderately preterm birth in sheep is characterized by a greater survival of female lambs than males and has significant effects on organ development.
Collapse
Affiliation(s)
- Robert De Matteo
- Department of Anatomy & Developmental Biology, Monash University, Clayton, VIC 3800, Australia.
| | | | | | | | | |
Collapse
|