1
|
Calvo-Rubio M, Garcia-Domiguez E, Tamayo-Torres E, Soto-Rodríguez S, Olaso-Gonzalez G, Ferrucci L, de Cabo R, Gómez-Cabrera MC. The repeated bout effect evokes the training-induced skeletal muscle cellular memory. Free Radic Biol Med 2024; 225:247-254. [PMID: 39343184 DOI: 10.1016/j.freeradbiomed.2024.09.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/29/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Physical exercise is well-established as beneficial for health. With the 20th-century epidemiological transition, promoting healthy habits like exercise has become crucial for preventing chronic diseases. Stress can yield adaptive long-term benefits, potentially transmitted trans-generationally. Physical training exposes individuals to metabolic, thermal, mechanical, and oxidative stressors, activating cell signaling pathways that regulate gene expression and adaptive responses, thereby enhancing stress tolerance - a phenomenon known as hormesis. Muscle memory is the capacity of skeletal muscle to respond differently to environmental stimuli in an adaptive (positive) or maladaptive (negative) manner if the stimuli have been encountered previously. The Repeated Bout Effect encompasses our skeletal muscle capacity to activate an intrinsic protective mechanism that reacts to eccentric exercise-induced damage by activating an adaptive response that resists subsequent damage stimuli. Deciphering the molecular mechanism of this phenomenon would allow the incorporation of muscle memory in training programs for professional athletes, active individuals looking for the health benefits of exercise training, and patients with "exercise intolerance." Moreover, enhancing the adaptive response of muscle memory could promote healing in individuals who traditionally do not recover after immobilization. The improvement could be part of an exercise program but could also be targeted pharmacologically. This review explores Repeated Bout Effect mechanisms: neural adaptations, tendon and muscle fiber property changes, extracellular matrix remodeling, and improved inflammatory responses.
Collapse
Affiliation(s)
- Miguel Calvo-Rubio
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Esther Garcia-Domiguez
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia; Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Eva Tamayo-Torres
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Silvana Soto-Rodríguez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Gloria Olaso-Gonzalez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain.
| | - Luigi Ferrucci
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Maria Carmen Gómez-Cabrera
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| |
Collapse
|
2
|
Hinks A, Patterson MA, Njai BS, Power GA. Age-related blunting of serial sarcomerogenesis and mechanical adaptations following 4 wk of maximal eccentric resistance training. J Appl Physiol (1985) 2024; 136:1209-1225. [PMID: 38511212 DOI: 10.1152/japplphysiol.00041.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/26/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024] Open
Abstract
During aging, muscles undergo atrophy, which is partly accounted for by a loss of sarcomeres in series. Serial sarcomere number (SSN) is associated with aspects of muscle mechanical function including the force-length and force-velocity-power relationships; hence, the age-related loss of SSN contributes to declining performance. Training emphasizing eccentric contractions increases SSN in young healthy rodents; however, the ability for eccentric training to increase SSN in old age is unknown. Ten young (8 mo) and 11 old (32 mo) male Fisher344/BN rats completed 4 wk of unilateral eccentric plantar flexion training. Pre- and posttraining, the plantar flexors were assessed for the torque-frequency, passive torque-angle, and torque-velocity-power relationships. The soleus, lateral gastrocnemius (LG), and medial gastrocnemius (MG) were harvested for SSN assessment via laser diffraction, with the untrained leg used as a control. In the untrained leg/pretraining, old rats had lower SSN in the soleus, LG, and MG, lower maximum torque, power, and shortening velocity, and greater passive torque than young. Young showed increased soleus and MG SSN following training. In contrast, old had no change in soleus SSN and experienced SSN loss in the LG. Pre- to posttraining, young experienced an increase in maximum isometric torque, whereas old had reductions in maximum torque, shortening velocity, and power, and increased passive torque. Our results show that although young muscle has the ability to add sarcomeres in response to maximal eccentric training, this stimulus could be not only ineffective, but also detrimental to aged muscle leading to dysfunctional remodeling.NEW & NOTEWORTHY The loss of sarcomeres in series with age contributes to declining muscle performance. The present study investigated whether eccentric training could improve performance via serial sarcomere addition in old muscle, like in young muscle. Four weeks of maximal eccentric training induced serial sarcomere addition in the young rat plantar flexors and improved in vivo performance, however, led to dysfunctional remodeling accompanied by further impaired performance in old rats.
Collapse
Affiliation(s)
- Avery Hinks
- Department of Human Health and Nutritional Sciences, College of Biological SciencesUniversity of GuelphGuelphOntarioCanada
| | - Makenna A Patterson
- Department of Human Health and Nutritional Sciences, College of Biological SciencesUniversity of GuelphGuelphOntarioCanada
| | - Binta S Njai
- Department of Human Health and Nutritional Sciences, College of Biological SciencesUniversity of GuelphGuelphOntarioCanada
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, College of Biological SciencesUniversity of GuelphGuelphOntarioCanada
| |
Collapse
|
3
|
Qian Z, Ping L, Xuelin Z. Re‑examining the mechanism of eccentric exercise‑induced skeletal muscle damage from the role of the third filament, titin (Review). Biomed Rep 2024; 20:14. [PMID: 38124762 PMCID: PMC10731162 DOI: 10.3892/br.2023.1703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/23/2023] [Indexed: 12/23/2023] Open
Abstract
Intense and unaccustomed eccentric exercise has been extensively studied for its ability to induce muscle damage. However, the underlying mechanism of this phenomenon still requires further clarification. This knowledge gap arises from the need for explanation of the eccentric contraction through the sliding filament theory. The two-filament sarcomere model, which is consisted of thin and thick filaments, forms the basis of the sliding filament theory. The mechanisms of concentric and isometric contractions at the cellular and molecular levels are effectively described by this model. However, when relying solely on the cross-bridge swing, the sliding filament theory fails to account for specific observations, such as the stability of the descending limb of the force-length relationship curve. Recent evidence indicated that titin and the extracellular matrix (ECM) may play a protective role by interacting with the thick and thin filaments. During an eccentric contraction, titin serves as a third filament in the sarcomere, which helps regulate changes in passive force. The two-filament sarcomere model has limitations in explaining eccentric contraction, thus this compensates for those shortcomings. The present review explored the potential of replacing the two-filament sarcomere model with a three-filament sarcomere model, incorporating thin filaments, thick filaments and titin. This revised model offers a more comprehensive explanation of eccentric contraction phenomena. Furthermore, the sliding filament theory was investigated in the context of the three-filament sarcomere model. The double-layer protection mechanism, which involves increased titin stiffness and the ECM during eccentric contraction was explored. This mechanism may enhance lateral force transmission between muscle fibers and the ECM, resulting in sarcolemma and ECM shear deformation. These findings provided insight into the mechanism of eccentric exercise-induced skeletal muscle damage. Considering the three-filament sarcomere model and the double-layer protection mechanism, the present review offered a more logical and comprehensive understanding of the mechanism behind eccentric exercise-induced muscle damage.
Collapse
Affiliation(s)
- Zhao Qian
- College of Physical Education, Qufu Normal University, Jining, Shandong 273165, P.R. China
| | - Liu Ping
- College of Physical Education, Qufu Normal University, Jining, Shandong 273165, P.R. China
| | - Zhang Xuelin
- College of Physical Education, Qufu Normal University, Jining, Shandong 273165, P.R. China
| |
Collapse
|
4
|
Singh H, Moore BA, Rathore R, Reed WR, Thompson WR, Fisher G, Lein DH, Hunter GR. Skeletal effects of eccentric strengthening exercise: a scoping review. BMC Musculoskelet Disord 2023; 24:611. [PMID: 37491261 PMCID: PMC10367324 DOI: 10.1186/s12891-023-06739-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 07/11/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Conventional progressive concentric strengthening exercise (CSE) to improve bone mineral density (BMD) and bone mineral content (BMC) may not be feasible for populations with chronic musculoskeletal and/or metabolic conditions, such as osteoporosis or obesity. Muscle lengthening exercise, also known as an eccentric strengthening exercise (ESE), may have a special utility for those populations due to greater force generation versus CSE. In fact, greater mechanical loading can be induced on bone at lower resistance levels with ESE. However, effects of ESE on BMD and BMC are unclear. Thus, the purpose of this review was to interrogate the effects of ESE on BMD and BMC. METHODS A literature review was conducted between January 1995 and April 2022 focusing on randomized controlled trials investigating the effects of ESE on BMD and/or BMC in humans. Terms covering the domains of exercise, bone, and populations were searched on PubMed, CINAHL, and Scopus. The methodological quality of each interventional study was rated using Physiotherapy Evidence Database (PEDro) scale. Cohen's d was calculated to determine the magnitude of the effects of ERE on site-specific outcome measures of BMD and/or BMC. RESULTS Out of 1,182 articles initially found, a total of seven full length articles met our inclusion criteria. Of the seven studies, most of the interventions were performed in young (n = 5, PEDro = 5-7) versus middle-aged (n = 1, PEDro = 4) or older (n = 1, PEDro = 6) adults. BMD and BMC generally improved due to ESE; however the effects of ESE on BMD and BMC were non-homogenous. Effect size (d) ranged from 0.10-0.87 in young adults while it was 1.16 in older adults. Effect size (d) could not be calculated for the middle-aged adult study due to critical methodological limitations of the intervention. CONCLUSIONS Large variability exists for the effectiveness of ESE on BMD/BMC across the human life spectrum. The benefits of ESE on BMD holds promise but rigorous studies are lacking. Further research is needed to examine if the dose, mode, age, and sex-specificity dictate effects of ESE on BMD/BMC.
Collapse
Affiliation(s)
- Harshvardhan Singh
- Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, AL, US.
| | - Bethany A Moore
- Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, AL, US
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, US
| | - Roshita Rathore
- Department of Physical Medicine and Rehabilitation, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, US
| | - William R Reed
- Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, AL, US
| | - William R Thompson
- Department of Physical Therapy, Indiana University, Indianapolis, IN, US
| | - Gordon Fisher
- Department of Kinesiology, University of Alabama at Birmingham, Birmingham, AL, US
| | - Donald H Lein
- Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, AL, US
| | - Gary R Hunter
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, US
| |
Collapse
|
5
|
Križaj L, Kozinc Ž, Löfler S, Šarabon N. The chronic effects of eccentric exercise interventions in different populations: an umbrella review. Eur J Transl Myol 2022; 32:10876. [PMID: 36269123 PMCID: PMC9830406 DOI: 10.4081/ejtm.2022.10876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 09/23/2022] [Indexed: 01/13/2023] Open
Abstract
The effectiveness of eccentric exercise interventions (EEI) has been extensively explored in different populations. The aim of our umbrella review was to combine all systematic reviews about the chronic efficiency of EEI and to summarize the literature on the chronic effects of different types of eccentric exercise protocols, with or without extra loads and devices (e.g., Flywheel device), compared to other therapeutic interventions, exercise interventions, or no intervention. We screened four major electronic scientific databases (PubMed, Scopus, Web of Science, and PEDro), using one combined string for all included databases (eccentric exercise OR flywheel OR isoinertial exercise OR eccentric training). Included reviews needed to be based on any human population, that executed EEI in comparison with any other type of intervention. The methodological quality of the included reviews was assessed using AMSTAR 2 tool. Considering the inclusion criteria, we included 35 reviews. EEI were found suitable for chronic or long-term pain reduction in patient populations. EEI largely improved muscle performance (muscle strength, and muscle power), muscle architecture (e.g., pennation angle, fascicle length, cross-sectional area, muscle thickness, and muscle mass), decreased risk of injury, incidence, and severity of the injury, and increased range of motion of the joints There is less evidence about the effects of EEI in older adult populations, compared to athletes and younger populations, however, eccentric exercise seems promising for these populations as well.
Collapse
Affiliation(s)
- Luka Križaj
- University of Primorska, Faculty of Health Sciences, Izola, Slovenia
| | - Žiga Kozinc
- University of Primorska, Faculty of Health Sciences, Izola, Slovenia, University of Primorska, Andrej Marušič Institute, Koper, Slovenia
| | - Stefan Löfler
- Ludwig Boltzmann Institute for Rehabilitation Research, Vienna, Austria
| | - Nejc Šarabon
- University of Primorska, Faculty of Health Sciences, Izola, Slovenia,Ludwig Boltzmann Institute for Rehabilitation Research, Vienna, Austria, InnoRenew CoE, Human Health Department, Izola, Slovenia, S2P, Science to Practice, Ltd., Laboratory for Motor Control and Motor Behavior, Ljubljana, Slovenia,University of Primorska Faculty of Health Sciences, Polje 42, SI-6310 Izola, Slovenia ORCID ID: 0000-0003-0747-3735
| |
Collapse
|
6
|
Contreras-Briceño F, Espinosa-Ramírez M, Rozenberg D, Reid WD. Eccentric Training in Pulmonary Rehabilitation of Post-COVID-19 Patients: An Alternative for Improving the Functional Capacity, Inflammation, and Oxidative Stress. BIOLOGY 2022; 11:biology11101446. [PMID: 36290350 PMCID: PMC9598133 DOI: 10.3390/biology11101446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 01/08/2023]
Abstract
The purpose of this narrative review is to highlight the oxidative stress induced in COVID-19 patients (SARS-CoV-2 infection), describe longstanding functional impairments, and provide the pathophysiologic rationale that supports aerobic eccentric (ECC) exercise as a novel alternative to conventional concentric (CONC) exercise for post-COVID-19 patients. Patients who recovered from moderate-to-severe COVID-19 respiratory distress demonstrate long-term functional impairment. During the acute phase, SARS-CoV-2 induces the generation of reactive oxygen species that can be amplified to a "cytokine storm". The resultant inflammatory and oxidative stress process causes organ damage, particularly in the respiratory system, with the lungs as the tissues most susceptible to injury. The acute illness often requires a long-term hospital stay and consequent sarcopenia. Upon discharge, muscle weakness compounded by limited lung and cardiac function is often accompanied by dyspnea, myalgia, anxiety, depression, and sleep disturbance. Consequently, these patients could benefit from pulmonary rehabilitation (PR), with exercise as a critical intervention (including sessions of strength and endurance or aerobic exercises). Unfortunately, conventional CONC exercises induce significant cardiopulmonary stress and increase inflammatory and oxidative stress (OS) when performed at moderate/high intensity, which can exacerbate debilitating dyspnoea and muscle fatigue post-COVID-19. Eccentric training (ECC) is a well-tolerated alternative that improves muscle mass while mitigating cardiopulmonary stress in patients with COPD and other chronic diseases. Similar benefits could be realized in post-COVID-19 patients. Consequently, these patients could benefit from PR with exercise as a critical intervention.
Collapse
Affiliation(s)
- Felipe Contreras-Briceño
- Laboratory of Exercise Physiology, Department of Health Science, Faculty of Medicine, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna #4860, Santiago 7820436, Chile
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
- Advanced Center for Chronic Diseases (ACCDiS), Division of Cardiovascular Diseases, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta #367, Santiago 8380000, Chile
- Millennium Institute for Intelligent Healthcare Engineering, Av. Vicuña Mackenna #4860, Santiago 7820436, Chile
- Correspondence: ; Tel.: +56-9-82288153
| | - Maximiliano Espinosa-Ramírez
- Laboratory of Exercise Physiology, Department of Health Science, Faculty of Medicine, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna #4860, Santiago 7820436, Chile
| | - Dmitry Rozenberg
- Department of Medicine, Respirology, University of Toronto, Toronto, ON M5G 2C4, Canada
- Toronto General Hospital, Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
| | - W. Darlene Reid
- Department of Physical Therapy and Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON M5G 2C4, Canada
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON M5G 2A2, Canada
| |
Collapse
|
7
|
Otsuka Y, Yamada Y, Maeda A, Izumo T, Rogi T, Shibata H, Fukuda M, Arimitsu T, Miyamoto N, Hashimoto T. Effects of resistance training intensity on muscle quantity/quality in middle-aged and older people: a randomized controlled trial. J Cachexia Sarcopenia Muscle 2022; 13:894-908. [PMID: 35187867 PMCID: PMC8977953 DOI: 10.1002/jcsm.12941] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 10/21/2021] [Accepted: 01/17/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND A sarcopenia diagnosis is confirmed by the presence of low muscle quantity or quality under the 2018 revised definition by the European Working Group on Sarcopenia in Older People 2. Imaging methods [i.e. magnetic resonance imaging (MRI)], dual-energy X-ray absorptiometry (DXA), and bioelectrical impedance analysis are tools to evaluate muscle quantity or quality. The present study aimed to investigate whether and how low-intensity and moderate-intensity resistance training improved both muscle quantity and quality measured by MRI, DXA, and segmental bioelectrical impedance spectroscopy (S-BIS) in middle-aged and older people. METHODS A single-blind, randomized, controlled trial was conducted. Community-dwelling people aged 50-79 years were randomly allocated to no exercise (no-Ex), low-intensity exercise (low-Ex), and moderate-intensity exercise (moderate-Ex) groups. Participants in the exercise groups performed resistance training for 24 weeks, with loads of 40% and 60% of one repetition maximum in the low-Ex and moderate-Ex groups, respectively. Cross-sectional area (CSA), lean mass, and muscle electrical properties on S-BIS were used to determine the effects of training interventions on muscle quantity and quality of the lower limbs. RESULTS Fifty participants (no-Ex 17, age 63.5 ± 8.5 years, women 47.1%; low-Ex 16, age 63.6 ± 8.1 years, women 50.0%; moderate-Ex 17, age 63.5 ± 8.3 years, women 52.9%) completed the 24 week exercise intervention. For the primary outcome, significant intervention effects were found in thigh muscle CSA on MRI between the moderate-Ex and no-Ex groups (+6.8 cm2 , P < 0.01). Low-Ex for 24 weeks only increased quadriceps CSA (+2.3 cm2 , P < 0.05). The per cent change of thigh muscle CSA (+7.0%, P < 0.01) after 24 week moderate-Ex was higher than that of leg lean mass on DXA (+2.3%, P = 0.088). Moderate-Ex for 24 weeks also improved S-BIS electrical properties related to muscle quantity and quality, including the intracellular resistance index (+0.1 cm2 /Ω, P < 0.05), membrane capacitance (+0.7 nF, P < 0.05), and phase angle (+0.3 deg, P < 0.05); their changes were positively correlated with that of thigh muscle CSA (P < 0.01). CONCLUSIONS Resistance exercise with moderate intensity improved muscle quantity and quality measured by MRI and S-BIS, whereas that with low intensity only increased muscle quantity in middle-aged and older people. The comparisons among the responses to exercise between the assessment methods indicate the greater value of MRI and S-BIS to measure changes of muscle quantity and quality than of lean mass measured by DXA for assessing the local effects of resistance training.
Collapse
Affiliation(s)
- Yuta Otsuka
- Institute for Health Care Science, Suntory Wellness Ltd., Kyoto, Japan
| | - Yosuke Yamada
- National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition Tokyo, Tokyo, Japan
| | - Akifumi Maeda
- Suntory Global Innovation Center Ltd., Research Institute, Kyoto, Japan.,Faculty of Sport and Health Science, Ritsumeikan University, Kyoto, Japan
| | - Takayuki Izumo
- Institute for Health Care Science, Suntory Wellness Ltd., Kyoto, Japan
| | - Tomohiro Rogi
- Institute for Health Care Science, Suntory Wellness Ltd., Kyoto, Japan
| | - Hiroshi Shibata
- Institute for Health Care Science, Suntory Wellness Ltd., Kyoto, Japan
| | | | - Takuma Arimitsu
- Faculty of Sport and Health Science, Ritsumeikan University, Kyoto, Japan.,Faculty of Health Care, Undergraduate Department of Human Health, Hachinohe Gakuin University, Hachinohe, Japan
| | - Naokazu Miyamoto
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Takeshi Hashimoto
- Faculty of Sport and Health Science, Ritsumeikan University, Kyoto, Japan
| |
Collapse
|
8
|
Kim DY, Oh SL, Lim JY. Applications of Eccentric Exercise to Improve Muscle and Mobility Function in Older Adults. Ann Geriatr Med Res 2022; 26:4-15. [PMID: 35038818 PMCID: PMC8984170 DOI: 10.4235/agmr.21.0138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/11/2022] [Indexed: 11/01/2022] Open
Abstract
Muscle aging ultimately leads to the deterioration of human physiological functioning, including declining muscle strength, loss of muscle mass, and decreased quality of life in advanced age. Eccentric exercise is a key intervention that has the potential to ameliorate this problem. Recent studies have focused on evidence-based exercise interventions to prevent declines in muscle strength and physical function in older adults. This paper reviewed relevant literature on the use of eccentric exercise to improve muscle and mobility function in older adults. We explained not only the changes in mobility that occur with aging but also the rationale for and positive effects of eccentric intervention in older adults. We also explored several proposed mechanisms for the intramuscular changes caused by eccentric muscle contraction and considered the safety and side effects accompanying eccentric training. We concluded by suggesting that eccentric exercise is an exercise modality that can potentially improve muscle strength and enhance mobility in older adults.
Collapse
Affiliation(s)
- Dae Young Kim
- Department of Rehabilitation Medicine, Aging and Mobility Biophysics Laboratory, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.,Health and Exercise Science Laboratory, Institute of Sports Science, Seoul National University, Seoul, Republic of Korea
| | - Seung Lyul Oh
- Department of Rehabilitation Medicine, Aging and Mobility Biophysics Laboratory, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.,Institute on Aging, Seoul National University, Seoul, Republic of Korea
| | - Jae-Young Lim
- Department of Rehabilitation Medicine, Aging and Mobility Biophysics Laboratory, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.,Institute on Aging, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Harris-Love MO, Gollie JM, Keogh JWL. Eccentric Exercise: Adaptations and Applications for Health and Performance. J Funct Morphol Kinesiol 2021; 6:96. [PMID: 34842737 PMCID: PMC8628948 DOI: 10.3390/jfmk6040096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
The goals of this narrative review are to provide a brief overview of the muscle and tendon adaptations to eccentric resistance exercise and address the applications of this form of training to aid rehabilitative interventions and enhance sports performance. This work is centered on the author contributions to the Special Issue entitled "Eccentric Exercise: Adaptations and Applications for Health and Performance". The major themes from the contributing authors include the need to place greater attention on eccentric exercise mode selection based on training goals and individual fitness level, optimal approaches to implementing eccentric resistance exercise for therapeutic purposes, factors that affect the use of eccentric exercise across the lifespan, and general recommendations to integrate eccentric exercise in athletic training regimens. The authors propose that movement velocity and the absorption or recovery of kinetic energy are critical components of eccentric exercise programming. Regarding the therapeutic use of eccentric resistance training, patient-level factors regarding condition severity, fitness level, and stage of rehabilitation should govern the plan of care. In athletic populations, use of eccentric exercise may improve movement competency and promote improved safety and performance of sport-specific tasks. Eccentric resistance training is a viable option for youth, young adults, and older adults when the exercise prescription appropriately addresses program goals, exercise tolerability, and compliance. Despite the benefits of eccentric exercise, several key questions remain unanswered regarding its application underscoring the need for further investigation.
Collapse
Affiliation(s)
- Michael O. Harris-Love
- Physical Therapy Program, Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Geriatric Research Education and Clinical Center, VA Eastern Colorado Healthcare System, Aurora, CO 80045, USA
- Muscle Morphology, Mechanics, and Performance Laboratory, Geriatrics Service, Veterans Affairs Medical Center, Washington, DC 20422, USA;
| | - Jared M. Gollie
- Muscle Morphology, Mechanics, and Performance Laboratory, Geriatrics Service, Veterans Affairs Medical Center, Washington, DC 20422, USA;
- Department of Health, Human Function, and Rehabilitation Sciences, School of Medicine & Health Sciences, George Washington University, Washington, DC 20052, USA
| | - Justin W. L. Keogh
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD 4226, Australia;
- Sports Performance Research Centre New Zealand, Auckland University of Technology, Auckland 1010, New Zealand
- Cluster for Health Improvement, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sunshine Coast, QLD 4556, Australia
- Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
10
|
Determination of the pathways of potential muscle damage and regeneration in response to acute and long-term swimming exercise in mice. Life Sci 2021; 272:119265. [PMID: 33626393 DOI: 10.1016/j.lfs.2021.119265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 01/22/2023]
Abstract
The objective of the current study was examining early and late (3, 24 h) responses to acute, chronic swimming exercise as muscle damage and regeneration in gastrocnemius-soleus muscle complexes. We also aimed to reveal the signaling pathways involved. 8-12 weeks old mice were grouped as control, exercise. Exercising groups were firstly divided into two as acute and chronic, later every group was again divided in terms of time (3, 24 h) passed from the last exercise session until exsanguination. Acute exercise groups swam 30 min, while chronic swimming groups exercised 30 min/day, 5 days/week, 6 weeks. Histological investigations were performed to determine muscle damage and regeneration. Whole-genome expression analysis was applied to total RNA samples. Microarray data was confirmed by quantitative real-time PCR. Exercising mice muscle revealed enhanced damage, leukocyte infiltration. Increments in acute and chronic 3 h groups were statistically significant. Car3, Neb, Obscn, Ttn, Igfbp5, Igfbp7, Gsk3β, and Usp2 were down-regulated in muscles of swimming mice. The exercise-induced signaling pathways involved in muscle damage and regeneration were drawn. Our findings demonstrate that swimming induces muscle damage. Samples were obtained at 3 and 24 h following exercise, this time duration seems not sufficient for the development of myofibrillogenesis.
Collapse
|
11
|
Hu X, Pickle NT, Grabowski AM, Silverman AK, Blemker SS. Muscle Eccentric Contractions Increase in Downhill and High-Grade Uphill Walking. Front Bioeng Biotechnol 2020; 8:573666. [PMID: 33178672 PMCID: PMC7591807 DOI: 10.3389/fbioe.2020.573666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/21/2020] [Indexed: 01/26/2023] Open
Abstract
In Duchenne muscular dystrophy (DMD), one of the most severe and frequent genetic diseases in humans, dystrophic muscles are prone to damage caused by mechanical stresses during eccentric contractions. Eccentric contraction during walking on level ground likely contributes to the progression of degeneration in lower limb muscles. However, little is known about how the amount of muscle eccentric contractions is affected by uphill/downhill sloped walking, which is often encountered in patients’ daily lives and poses different biomechanical demands than level walking. By recreating the dynamic musculoskeletal simulations of downhill (−9°, −6°, and −3°), uphill (+3°, +6°, and +9°) and level walking (0°) from a published study of healthy participants, negative muscle mechanical work, as a measure of eccentric contraction, of 35 lower limb muscles was quantified and compared. Our results indicated that downhill walking overall induced more (32% at −9°, 19% at −6°, and 13% at −3°) eccentric contractions in lower limb muscles compared to level walking. In contrast, uphill walking led to eccentric contractions similar to level walking at low grades (+3° and +6°), but 17% more eccentric contraction at high grades (+9°). The changes of muscle eccentric contraction were largely predicted by the changes in both joint negative work and muscle coactivation in sloped walking. As muscle eccentric contractions play a critical role in the disease progression in DMD, this study provides an important baseline for future studies to safely improve rehabilitation strategies and exercise management for patients with DMD and other similar conditions.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Nathaniel T Pickle
- Department of Mechanical Engineering, Colorado School of Mines, Golden, CO, United States
| | - Alena M Grabowski
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States.,Department of Veterans Affairs, VA Eastern Colorado Healthcare System, Denver, CO, United States
| | - Anne K Silverman
- Department of Mechanical Engineering, Colorado School of Mines, Golden, CO, United States
| | - Silvia S Blemker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States.,Department of Orthopedic Surgery, University of Virginia, Charlottesville, VA, United States.,Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
12
|
Clifford T, Hayes EJ, Scragg JH, Taylor G, Smith K, Bowden Davies KA, Stevenson EJ. The Effects of a High-Protein Diet on Markers of Muscle Damage Following Exercise in Active Older Adults: A Randomized, Controlled Trial. Int J Sport Nutr Exerc Metab 2020; 30:323-329. [PMID: 32698121 DOI: 10.1123/ijsnem.2020-0113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/02/2020] [Accepted: 06/10/2020] [Indexed: 11/18/2022]
Abstract
PURPOSE This study examined whether a higher protein diet following strenuous exercise can alter markers of muscle damage and inflammation in older adults. METHODS Using a double-blind, independent group design, 10 males and eight females (age 57 ± 4 years; mass 72.3 ± 5.6 kg; height 1.7 ± 6.5 m) were supplied with a higher protein (2.50 g·kg-1·day-1) or moderate protein (1.25 g·kg-1·day-1) diet for 48 hr after 140 squats with 25% of their body mass. Maximal isometric voluntary contractions, muscle soreness, creatine kinase, Brief Assessment of Mood Adapted, and inflammatory markers were measured preexercise, and 24 hr and 48 hr postexercise. RESULTS The maximal isometric voluntary contractions decreased postexercise (p = .001, ηp2=.421), but did not differ between groups (p = .822, ηp2=.012). Muscle soreness peaked at 24 hr post in moderate protein (44 ± 30 mm) and 48 hr post in higher protein (70 ± 46 mm; p = .005; ηp2=.282); however, no group differences were found (p = .585; ηp2=.083). Monocytes and lymphocytes significantly decreased postexercise, and eosinophils increased 24 hr postexercise (p < 0.05), but neutrophils, creatine kinase, interleukin-6, C-reactive protein, monocyte chemotactic protein-1, and Brief Assessment of Mood Adapted were unchanged by exercise or the intervention (p > .05). CONCLUSION In conclusion, 2.50 g·kg-1·day-1 of protein is not more effective than 1.25 g·kg-1·day-1 for attenuating indirect markers of muscle damage and inflammation following strenuous exercise in older adults.
Collapse
|
13
|
Clos P, Garnier Y, Martin A, Lepers R. Corticospinal excitability is altered similarly following concentric and eccentric maximal contractions. Eur J Appl Physiol 2020; 120:1457-1469. [PMID: 32347373 DOI: 10.1007/s00421-020-04377-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/13/2020] [Indexed: 01/24/2023]
Abstract
PURPOSE To examine corticospinal excitability and neuromuscular function following the completion of eccentric (ECC) or concentric (CON) maximal exercises of same mechanical work. METHODS Ten males (29.9 ± 11.8 years) performed maximal isokinetic knee extensor contractions in four experimental sessions. The two first sessions (one in ECC and one in CON) ended with a dynamic peak torque loss of 20%. The work completed in each contraction type was then achieved in the other contraction type. Neuromuscular function- maximal voluntary isometric contraction (MVIC), voluntary activation level (VAL), potentiated doublet (Dt), M-wave- and corticospinal excitability- motor evoked potential (MEP) amplitude and silent period (SP)-were assessed in the vastus lateralis (VL) and rectus femoris (RF) muscles at 20% MVIC before and immediately after exercise. RESULTS To lose 20% of dynamic peak torque subjects performed 1.8 times more work in ECC than CON (P = 0.03), inducing a non-different decline in MVIC (P = 0.15). VAL dropped after the ECC sessions only (- 8.5 ± 6.7%; all P < 0.027). Only, the CON session featuring the greatest work affected Dt amplitude (- 9.4 ± 23.8%; P = 0.047). In both muscles, MEP amplitude decreased (all P < 0.001) and MEP SP stayed constant (all P > 0.45), irrespective of contraction type (all P > 0.15). CONCLUSION Same-work maximal ECC and CON exercises induced similar fatigue level but from different origins (preferentially central for ECC vs peripheral for CON). Yet, net corticospinal excitability did not depend on contraction type.
Collapse
Affiliation(s)
- Pierre Clos
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, 21000, Dijon, France.
| | - Yoann Garnier
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, 21000, Dijon, France
- Clermont-Auvergne University, AME2P, Clermont-Ferrand, France
| | - Alain Martin
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, 21000, Dijon, France
| | - Romuald Lepers
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, 21000, Dijon, France
| |
Collapse
|
14
|
Geremia JM, Baroni BM, Bini RR, Lanferdini FJ, de Lima AR, Herzog W, Vaz MA. Triceps Surae Muscle Architecture Adaptations to Eccentric Training. Front Physiol 2019; 10:1456. [PMID: 31849706 PMCID: PMC6901927 DOI: 10.3389/fphys.2019.01456] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 11/11/2019] [Indexed: 12/11/2022] Open
Abstract
Background Eccentric exercises have been used in physical training, injury prevention, and rehabilitation programs. The systematic use of eccentric training promotes specific morphological adaptations on skeletal muscles. However, synergistic muscles, such as the triceps surae components, might display different structural adaptations due to differences in architecture, function, and load sharing. Therefore, the purpose of this study was to determine the effects of an eccentric training program on the triceps surae (GM, gastrocnemius medialis; GL, gastrocnemius lateralis; and SO, soleus) muscle architecture. Methods Twenty healthy male subjects (26 ± 4 years) underwent a 4-week control period followed by a 12-week eccentric training program. Muscle architecture [fascicle length (FL), pennation angle (PA), and muscle thickness (MT)] of GM, GL, and SO was evaluated every 4 weeks by ultrasonography. Results Fascicle lengths (GM: 13.2%; GL: 8.8%; SO: 21%) and MT (GM: 14.9%; GL: 15.3%; SO: 19.1%) increased from pre- to post-training, whereas PAs remained similar. GM and SO FL and MT increased up to the 8th training week, whereas GL FL increased up to the 4th week. SO displayed the highest, and GL the smallest gains in FL post-training. Conclusion All three synergistic plantar flexor muscles increased FL and MT with eccentric training. MT increased similarly among the synergistic muscles, while the muscle with the shortest FL at baseline (SO) showed the greatest increase in FL.
Collapse
Affiliation(s)
- Jeam Marcel Geremia
- Laboratório de Pesquisa do Exercício, Escola de Educação Física, Fisioterapia e Dança, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Bruno Manfredini Baroni
- Departamento de Fisioterapia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Rodrigo Rico Bini
- Holsworth Research Initiative, La Trobe Rural Health School, La Trobe University, Bendigo, VIC, Australia
| | - Fabio Juner Lanferdini
- Laboratório de Biomecânica, Centro de Desportos, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Amanda Rodrigues de Lima
- Laboratório de Pesquisa do Exercício, Escola de Educação Física, Fisioterapia e Dança, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Walter Herzog
- Faculty of Kinesiology, Engineering, Medicine and Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Marco Aurélio Vaz
- Laboratório de Pesquisa do Exercício, Escola de Educação Física, Fisioterapia e Dança, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
15
|
Quinlan JI, Narici MV, Reeves ND, Franchi MV. Tendon Adaptations to Eccentric Exercise and the Implications for Older Adults. J Funct Morphol Kinesiol 2019; 4:E60. [PMID: 33467375 PMCID: PMC7739434 DOI: 10.3390/jfmk4030060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/14/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
The purpose of this short review is to discuss the effects of eccentric exercise in modifying the properties of tendon tissue in healthy individuals. The tendon provides a mechanical link between muscle and bone, allowing force transmission to the skeleton, and thus, its properties have significant functional implications. Chronic resistance training has long been shown to increase the stiffness and Young's modulus of the tendon and even tendon cross-sectional area. However, as the tendon responds to the amount and/or frequency of strain, it has been previously suggested that eccentric training may result in greater adaptations due to the potential for greater training loads. Thus, this review discusses the effects of eccentric training upon healthy tendon tissue and compares these to other training modalities. Furthermore, it has been reported that the tendon may undergo adverse age-related changes. Thus, this review also discusses the potential application of eccentric resistance training as a preferential modality for counteracting these age-related changes. We conclude that while there may be no difference between contraction types for overall tendon adaptation, the lower demands of eccentric contractions may make it more appealing for the elderly population.
Collapse
Affiliation(s)
- Jonathan I Quinlan
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham, NHS Foundation Trust and University of Birmingham, Birmingham B15 2GW, UK
| | - Marco V Narici
- Department of Biomedical Sciences, Institute of Physiology, University of Padua, 35131 Padua, Italy
| | - Neil D Reeves
- Department of Life Sciences, Research Centre for Musculoskeletal Science and Sports Medicine, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Martino V Franchi
- Department of Biomedical Sciences, Institute of Physiology, University of Padua, 35131 Padua, Italy
| |
Collapse
|
16
|
Fenwick AJ, Awinda PO, Yarbrough-Jones JA, Eldridge JA, Rodgers BD, Tanner BCW. Demembranated skeletal and cardiac fibers produce less force with altered cross-bridge kinetics in a mouse model for limb-girdle muscular dystrophy 2i. Am J Physiol Cell Physiol 2019; 317:C226-C234. [PMID: 31091146 DOI: 10.1152/ajpcell.00524.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Limb-girdle muscular dystrophy 2i (LGMD2i) is a dystroglycanopathy that compromises myofiber integrity and primarily reduces power output in limb muscles but can influence cardiac muscle as well. Previous studies of LGMD2i made use of a transgenic mouse model in which a proline-to-leucine (P448L) mutation in fukutin-related protein severely reduces glycosylation of α-dystroglycan. Muscle function is compromised in P448L mice in a manner similar to human patients with LGMD2i. In situ studies reported lower maximal twitch force and depressed force-velocity curves in medial gastrocnemius (MG) muscles from male P448L mice. Here, we measured Ca2+-activated force generation and cross-bridge kinetics in both demembranated MG fibers and papillary muscle strips from P448L mice. Maximal activated tension was 37% lower in MG fibers and 18% lower in papillary strips from P448L mice than controls. We also found slightly faster rates of cross-bridge recruitment and detachment in MG fibers from P448L than control mice. These increases in skeletal cross-bridge cycling could reduce the unitary force output from individual cross bridges by lowering the ratio of time spent in a force-bearing state to total cycle time. This suggests that the decreased force production in LGMD2i may be due (at least in part) to altered cross-bridge kinetics. This finding is notable, as the majority of studies germane to muscular dystrophies have focused on sarcolemma or whole muscle properties, whereas our findings suggest that the disease pathology is also influenced by potential downstream effects on cross-bridge behavior.
Collapse
Affiliation(s)
- Axel J Fenwick
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington.,Washington Center for Muscle Biology, Washington State University , Pullman, Washington
| | - Peter O Awinda
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington.,Washington Center for Muscle Biology, Washington State University , Pullman, Washington
| | - Jacob A Yarbrough-Jones
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington.,Washington Center for Muscle Biology, Washington State University , Pullman, Washington
| | - Jennifer A Eldridge
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington.,Washington Center for Muscle Biology, Washington State University , Pullman, Washington
| | - Buel D Rodgers
- Washington Center for Muscle Biology, Washington State University , Pullman, Washington.,AAVogen, Inc. , Rockville, Maryland
| | - Bertrand C W Tanner
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington.,Washington Center for Muscle Biology, Washington State University , Pullman, Washington
| |
Collapse
|
17
|
Hill C, James RS, Cox VM, Tallis J. The Effect of Increasing Age on the Concentric and Eccentric Contractile Properties of Isolated Mouse Soleus and Extensor Digitorum Longus Muscles. J Gerontol A Biol Sci Med Sci 2019; 73:579-587. [PMID: 29236945 DOI: 10.1093/gerona/glx243] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 12/06/2017] [Indexed: 11/13/2022] Open
Abstract
There is currently a limited amount of literature investigating the age-related changes in eccentric muscle function in vitro. The present study uniquely uses the work loop (WL) technique, to better replicate in vivo muscle function, in the assessment of the age- and muscle-specific changes in acute and sustained concentric and eccentric power and recovery. Whole soleus or extensor digitorum longus (EDL) muscles were isolated from 10-week and 78-week-old mice and acute and sustained concentric and eccentric WL power assessed. Despite an age-related increase in body and muscle mass, peak absolute power for both muscles was unaffected by age. Peak concentric power normalized to muscle mass declined significantly for each muscle, while peak normalized eccentric power declined only for soleus. Fatigue resistance and recovery for the soleus did not differ between age or contraction type. Older EDL was less resistant to concentric fatigue, but was better able to withstand sustained eccentric activity than young EDL. We have shown that age-related changes in muscle quality are more limited for eccentric function than concentric function. A greater bodily inertia is likely to further reduce in vivo locomotor performance in older animals.
Collapse
Affiliation(s)
- Cameron Hill
- School of Life Sciences, Coventry University, UK
| | - Rob S James
- School of Life Sciences, Coventry University, UK
| | - Val M Cox
- School of Life Sciences, Coventry University, UK
| | - Jason Tallis
- School of Life Sciences, Coventry University, UK
| |
Collapse
|
18
|
Hody S, Croisier JL, Bury T, Rogister B, Leprince P. Eccentric Muscle Contractions: Risks and Benefits. Front Physiol 2019; 10:536. [PMID: 31130877 PMCID: PMC6510035 DOI: 10.3389/fphys.2019.00536] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/15/2019] [Indexed: 01/12/2023] Open
Abstract
Eccentric contractions, characterized by the lengthening of the muscle-tendon complex, present several unique features compared with other types of contractions, which may lead to unique adaptations. Due to its specific physiological and mechanical properties, there is an increasing interest in employing eccentric muscle work for rehabilitation and clinical purposes. However, unaccustomed eccentric exercise is known to cause muscle damage and delayed pain, commonly defined as “Delayed-Onset Muscular Soreness” (DOMS). To date, the most useful preventive strategy to avoid these adverse effects consists of repeating sessions involving submaximal eccentric contractions whose intensity is progressively increased over the training. Despite an increased number of investigations focusing on the eccentric contraction, a significant gap still remains in our understanding of the cellular and molecular mechanisms underlying the initial damage response and subsequent adaptations to eccentric exercise. Yet, unraveling the molecular basis of exercise-related muscle damage and soreness might help uncover the mechanistic basis of pathological conditions as myalgia or neuromuscular diseases. In addition, a better insight into the mechanisms governing eccentric training adaptations should provide invaluable information for designing therapeutic interventions and identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Stéphanie Hody
- Department of Motricity Sciences, University of Liège, Liege, Belgium
| | | | - Thierry Bury
- Department of Motricity Sciences, University of Liège, Liege, Belgium
| | - Bernard Rogister
- GIGA-Neurosciences, University of Liège, Liege, Belgium.,Department of Neurology, The University Hospital Center, University of Liège, Liege, Belgium.,GIGA - Laboratory of Nervous System Disorders and Therapy, University of Liège, Liege, Belgium
| | - Pierre Leprince
- GIGA-Neurosciences, University of Liège, Liege, Belgium.,GIGA - Laboratory of Nervous System Disorders and Therapy, University of Liège, Liege, Belgium
| |
Collapse
|
19
|
Clos P, Laroche D, Stapley PJ, Lepers R. Neuromuscular and Perceptual Responses to Sub-Maximal Eccentric Cycling. Front Physiol 2019; 10:354. [PMID: 30984032 PMCID: PMC6447677 DOI: 10.3389/fphys.2019.00354] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/14/2019] [Indexed: 11/13/2022] Open
Abstract
Objective Eccentric (ECC) cycle-ergometers have recently become commercially-available, offering a novel method for rehabilitation training. Many studies have reported that ECC cycling enables the development of higher levels of muscular force at lower cardiorespiratory and metabolic loads, leading to greater force enhancements after a training period. However, fewer studies have focused on the specific perceptual and neuromuscular changes. As the two latter aspects are of major interest in clinical settings, this review aimed to present an overview of the current literature centered on the neuromuscular and perceptual responses to submaximal ECC cycling in comparison to concentric (CON) cycling. Design Narrative review of the literature. Results At a given mechanical workload, muscle activation is lower in ECC than in CON while the characteristics of the musculo-articular system (i.e., muscle-tendon unit, fascicle, and tendinous tissue length) are quite similar. At a given heart rate or oxygen consumption, ECC cycling training results in greater muscular hypertrophy and strength gains than CON cycling. On the contrary, CON cycling training seems to enhance more markers of muscle aerobic metabolism than ECC cycling performed at the same heart rate intensity. Data concerning perceptual responses, and neuromuscular mechanisms leading to a lower muscle activation (i.e., neural commands from cortex to muscular system) at a given mechanical workload are scarce. Conclusion Even though ECC cycling appears to be a very useful tool for rehabilitation purposes the perceptual and neural commands from cortex to muscular system during exercise need to be further studied.
Collapse
Affiliation(s)
- Pierre Clos
- CAPS UMR1093, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Bourgogne-Franche Comté, Dijon, France
| | - Davy Laroche
- CAPS UMR1093, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Bourgogne-Franche Comté, Dijon, France.,INSERM CIC 1432, Plateforme d'Investigation Technologique, University Hospital of Dijon, Dijon, France
| | - Paul J Stapley
- Neural Control of Movement Group, Faculty of Science, Medicine and Health, School of Medicine, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Romuald Lepers
- CAPS UMR1093, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Bourgogne-Franche Comté, Dijon, France
| |
Collapse
|
20
|
Müller E, Pröller P, Ferreira-Briza F, Aglas L, Stöggl T. Effectiveness of Grounded Sleeping on Recovery After Intensive Eccentric Muscle Loading. Front Physiol 2019; 10:35. [PMID: 30745882 PMCID: PMC6360250 DOI: 10.3389/fphys.2019.00035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/11/2019] [Indexed: 01/22/2023] Open
Abstract
Purpose: We set out to investigate the effectiveness of grounded sleeping on the time course of recovery with respect to muscle soreness and athletic performance after intensive eccentric muscle loading. Methods: Twenty-two healthy participants were recruited for this study and randomly assigned to an experimental group (GRD, grounded sleeping, n = 12) or control group (UGD, sham-grounded sleeping, n = 10) to evaluate the effects of 10 days recovery with GRD vs. UGD following a single intensive downhill treadmill intervention in a triple-blinded (participant, tester, and data analyst) manner. To operationalize recovery a test battery was performed at baseline and on days 1, 2, 3, 5, 7, and 10 post-intervention: (1) perception of muscle soreness (VAS), (2) creatine kinase blood levels (CK), (3) maximum voluntary isometric contraction (MVIC) for both legs, (4) counter movement jump (CMJ) and drop jump (DJ) performance. Furthermore, in four participants blood was sampled for detailed analysis of complete blood counts and serum-derived inflammation markers. Results: The downhill treadmill running intervention led to distinct changes in all measured parameters related to fatigue. These changes were detectable already 5-min post intervention and were not fully recovered 10 days post intervention. GRD led to less pronounced decrease in performance (CMJ, MVIC) and less increase with respect to CK compared with UGD (all P < 0.05). Detailed blood samples demonstrated that grounded sleeping modulates the recovery process by (a) keeping a constant hemoconcentration, as represented by the number of erythrocytes, and the hemoglobin/hematocrit values; and (b) by the reduction of muscle damage-associated inflammation markers such as, IP-10, MIP-1α, and sP-Selectin. Conclusion: The downhill running protocol is a feasible methodology to produce long term muscle soreness and muscular fatigue. GRD was shown to result in faster recovery and/or less pronounced markers of muscle damage and inflammation. GRD might be seen as a simple methodology to enhance acute and long-term recovery after intensive eccentric exercises.
Collapse
Affiliation(s)
- Erich Müller
- Department of Sport and Exercise Science, University of Salzburg, Salzburg, Austria
- Olympic Training Center Salzburg-Rif, Hallein, Austria
| | - Patrick Pröller
- Department of Sport and Exercise Science, University of Salzburg, Salzburg, Austria
| | | | - Lorenz Aglas
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Thomas Stöggl
- Department of Sport and Exercise Science, University of Salzburg, Salzburg, Austria
| |
Collapse
|
21
|
Delacroix C, Hyzewicz J, Lemaitre M, Friguet B, Li Z, Klein A, Furling D, Agbulut O, Ferry A. Improvement of Dystrophic Muscle Fragility by Short-Term Voluntary Exercise through Activation of Calcineurin Pathway in mdx Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2662-2673. [PMID: 30142334 DOI: 10.1016/j.ajpath.2018.07.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/23/2018] [Accepted: 07/16/2018] [Indexed: 01/01/2023]
Abstract
Dystrophin deficiency in mdx mice, a model for Duchenne muscular dystrophy, leads to muscle weakness revealed by a reduced specific maximal force as well as fragility (ie, higher susceptibility to contraction-induced injury, as shown by a greater force decrease after lengthening contractions). Both symptoms could be improved with dystrophin restoration-based therapies and long-term (months) voluntary exercise. Herein, we evaluated the effect of short-term (1-week) voluntary wheel running. We found that running improved fragility of tibialis anterior muscle (TA), but not plantaris muscle, independently of utrophin up-regulation, without affecting weakness. Moreover, TA muscle excitability was also preserved by running, as shown by compound muscle action potential measurements after lengthening contractions. Of interest, the calcineurin inhibitor cyclosporin A prevented the effect of running on both muscle fragility and excitability. Cyclosporin also prevented the running-induced changes in expression of genes involved in excitability (Scn4a and Cacna1s) and slower contractile phenotype (Myh2 and Tnni1) in TA muscle. In conclusion, short-term voluntary exercise improves TA muscle fragility in mdx mice, without worsening weakness. Its effect was related to preserved excitability, calcineurin pathway activation, and changes in the program of genes involved in excitability and slower contractile phenotype. Thus, remediation of muscle fragility of Duchenne muscular dystrophy patients through appropriate exercise training deserves to be explored in more detail.
Collapse
Affiliation(s)
- Clement Delacroix
- Research Center in Myology, Association Institute of Myology, Sorbonne University, INSERM, UMRS974, Paris, France
| | - Janek Hyzewicz
- Biological Adaptation and Aging, Institute of Biology Paris-Seine, UMR CNRS 8256, INSERM ERL U1164, Sorbonne University, Paris, France
| | - Megane Lemaitre
- Research Center in Myology, Association Institute of Myology, Sorbonne University, INSERM, UMRS974, Paris, France
| | - Bertrand Friguet
- Biological Adaptation and Aging, Institute of Biology Paris-Seine, UMR CNRS 8256, INSERM ERL U1164, Sorbonne University, Paris, France
| | - Zhenlin Li
- Biological Adaptation and Aging, Institute of Biology Paris-Seine, UMR CNRS 8256, INSERM ERL U1164, Sorbonne University, Paris, France
| | - Arnaud Klein
- Research Center in Myology, Association Institute of Myology, Sorbonne University, INSERM, UMRS974, Paris, France
| | - Denis Furling
- Research Center in Myology, Association Institute of Myology, Sorbonne University, INSERM, UMRS974, Paris, France
| | - Onnik Agbulut
- Biological Adaptation and Aging, Institute of Biology Paris-Seine, UMR CNRS 8256, INSERM ERL U1164, Sorbonne University, Paris, France
| | - Arnaud Ferry
- Research Center in Myology, Association Institute of Myology, Sorbonne University, INSERM, UMRS974, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
22
|
Begam M, Roche JA. Damaged muscle fibers might masquerade as hybrid fibers - a cautionary note on immunophenotyping mouse muscle with mouse monoclonal antibodies. Eur J Histochem 2018; 62. [PMID: 30043594 PMCID: PMC6060487 DOI: 10.4081/ejh.2018.2896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 07/06/2018] [Indexed: 11/24/2022] Open
Abstract
We report that, labeling mouse muscle tissue, with mouse monoclonal antibodies specific to slow or fast myosin heavy chain (sMyHC and fMyHC, respectively), can lead to artefactual labeling of damaged muscle fibers, as hybrid fibers (sMyHC+ and fMyHC+). We demonstrate that, such erroneous immunophenotyping of muscle may be avoided, by performing colabeling or serialsection- labeling, to identify damaged fibers. The quadriceps femorismuscle group (QF) in 7-month-old, male, C57BL/6J mice had: 1.21±0.21%, 98.34±1.06%, 0.07±0.01%, and 0.53±0.85% fibers, that were, sMyHC+, fMyHC+, hybrid, and damaged, respectively. All fibers in the tibialis anterior muscle (TA) of 3-month-old, male, C57BL/6J mice were fMyHC+; and at 3 days after injurious eccentric contractions, there was no fiber-type shift, but ~ 18% fibers were damaged.
Collapse
Affiliation(s)
- Morium Begam
- Wayne State University, Department of Health Care Sciences.
| | | |
Collapse
|
23
|
Araujo APQC, Nardes F, Fortes CPDD, Pereira JA, Rebel MF, Dias CM, Barbosa RDCGA, Lopes MVR, Langer AL, Neves FR, Reis EF. Brazilian consensus on Duchenne muscular dystrophy. Part 2: rehabilitation and systemic care. ARQUIVOS DE NEURO-PSIQUIATRIA 2018; 76:481-489. [DOI: 10.1590/0004-282x20180062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 04/30/2018] [Indexed: 12/19/2022]
Abstract
ABSTRACT Significant advances in the understanding and management of Duchenne muscular dystrophy (DMD) have occurred since the publication of international guidelines for DMD care in 2010. Our objective was to provide an evidence-based national consensus statement for multidisciplinary care of DMD in Brazil. A combination of the Delphi technique with a systematic review of studies from 2010 to 2016 was employed to classify evidence levels and grade of recommendations for the guideline. Our recommendations were divided in two parts. Guideline methodology and overall disease concept descriptions are found in Part 1. Here we present Part 2, where we provide the results and recommendations on rehabilitation and systemic care for DMD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Edna Fátima Reis
- Associação Brasileira de Distrofia Muscular Viver Bem sem Limite, Brasil; Associação de Assistência à Criança Deficiente, Brasil
| |
Collapse
|
24
|
Hind D, Parkin J, Whitworth V, Rex S, Young T, Hampson L, Sheehan J, Maguire C, Cantrill H, Scott E, Epps H, Main M, Geary M, McMurchie H, Pallant L, Woods D, Freeman J, Lee E, Eagle M, Willis T, Muntoni F, Baxter P. Aquatic therapy for children with Duchenne muscular dystrophy: a pilot feasibility randomised controlled trial and mixed-methods process evaluation. Health Technol Assess 2018. [PMID: 28627356 DOI: 10.3310/hta21270] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a rare disease that causes the progressive loss of motor abilities such as walking. Standard treatment includes physiotherapy. No trial has evaluated whether or not adding aquatic therapy (AT) to land-based therapy (LBT) exercises helps to keep muscles strong and children independent. OBJECTIVES To assess the feasibility of recruiting boys with DMD to a randomised trial evaluating AT (primary objective) and to collect data from them; to assess how, and how well, the intervention and trial procedures work. DESIGN Parallel-group, single-blind, randomised pilot trial with nested qualitative research. SETTING Six paediatric neuromuscular units. PARTICIPANTS Children with DMD aged 7-16 years, established on corticosteroids, with a North Star Ambulatory Assessment (NSAA) score of 8-34 and able to complete a 10-m walk without aids/assistance. Exclusions: > 20% variation between baseline screens 4 weeks apart and contraindications. INTERVENTIONS Participants were allocated on a 1 : 1 ratio to (1) optimised, manualised LBT (prescribed by specialist neuromuscular physiotherapists) or (2) the same plus manualised AT (30 minutes, twice weekly for 6 months: active assisted and/or passive stretching regime; simulated or real functional activities; submaximal exercise). Semistructured interviews with participants, parents (n = 8) and professionals (n = 8) were analysed using Framework analysis. An independent rater reviewed patient records to determine the extent to which treatment was optimised. A cost-impact analysis was performed. Quantitative and qualitative data were mixed using a triangulation exercise. MAIN OUTCOME MEASURES Feasibility of recruiting 40 participants in 6 months, participant and therapist views on the acceptability of the intervention and research protocols, clinical outcomes including NSAA, independent assessment of treatment optimisation and intervention costs. RESULTS Over 6 months, 348 children were screened - most lived too far from centres or were enrolled in other trials. Twelve (30% of target) were randomised to AT (n = 8) or control (n = 4). People in the AT (n = 8) and control (n = 2: attrition because of parental report) arms contributed outcome data. The mean change in NSAA score at 6 months was -5.5 [standard deviation (SD) 7.8] for LBT and -2.8 (SD 4.1) in the AT arm. One boy suffered pain and fatigue after AT, which resolved the same day. Physiotherapists and parents valued AT and believed that it should be delivered in community settings. The independent rater considered AT optimised for three out of eight children, with other children given programmes that were too extensive and insufficiently focused. The estimated NHS costs of 6-month service were between £1970 and £2734 per patient. LIMITATIONS The focus on delivery in hospitals limits generalisability. CONCLUSIONS Neither a full-scale frequentist randomised controlled trial (RCT) recruiting in the UK alone nor a twice-weekly open-ended AT course delivered at tertiary centres is feasible. Further intervention development research is needed to identify how community-based pools can be accessed, and how families can link with each other and community physiotherapists to access tailored AT programmes guided by highly specialised physiotherapists. Bayesian RCTs may be feasible; otherwise, time series designs are recommended. TRIAL REGISTRATION Current Controlled Trials ISRCTN41002956. FUNDING This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 21, No. 27. See the NIHR Journals Library website for further project information.
Collapse
Affiliation(s)
- Daniel Hind
- Sheffield Clinical Trials Research Unit, University of Sheffield, Sheffield, UK
| | - James Parkin
- Sheffield Clinical Trials Research Unit, University of Sheffield, Sheffield, UK
| | - Victoria Whitworth
- Sheffield Clinical Trials Research Unit, University of Sheffield, Sheffield, UK
| | - Saleema Rex
- Sheffield Clinical Trials Research Unit, University of Sheffield, Sheffield, UK
| | - Tracey Young
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Lisa Hampson
- Department of Mathematics and Statistics, University of Lancaster, Lancaster, UK
| | - Jennie Sheehan
- Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK
| | - Chin Maguire
- Sheffield Clinical Trials Research Unit, University of Sheffield, Sheffield, UK
| | - Hannah Cantrill
- Sheffield Clinical Trials Research Unit, University of Sheffield, Sheffield, UK
| | - Elaine Scott
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | | | - Marion Main
- Dubowitz Neuromuscular Centre (DNC), Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Michelle Geary
- Children's Therapy Department, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Heather McMurchie
- Paediatric Physiotherapy, Heart of England NHS Foundation Trust, Birmingham, UK
| | - Lindsey Pallant
- Regional Paediatric Neuromuscular Team, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | | | - Jennifer Freeman
- Leeds Institute of Health Sciences, University of Leeds, Leeds, UK
| | - Ellen Lee
- Sheffield Clinical Trials Research Unit, University of Sheffield, Sheffield, UK
| | | | - Tracey Willis
- The Oswestry Inherited Neuromuscular Service, The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre (DNC), Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Peter Baxter
- Paediatric Neurology, Sheffield Children's Hospital, Sheffield, UK
| |
Collapse
|
25
|
Rader EP, Naimo MA, Ensey J, Baker BA. High-intensity stretch-shortening contraction training modifies responsivity of skeletal muscle in old male rats. Exp Gerontol 2018; 104:118-126. [PMID: 29438735 DOI: 10.1016/j.exger.2018.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/25/2018] [Accepted: 02/08/2018] [Indexed: 12/22/2022]
Abstract
Utilization of high-intensity resistance training to counter age-related sarcopenia is currently debated because of the potential for maladaptation when training design is inappropriate. Training design is problematic because the influence of various loading variables (e.g. contraction mode, repetition number, and training frequency) is still not well characterized at old age. To address this in a precisely controlled manner, we developed a rodent model of high-intensity training consisting of maximally-activated stretch-shortening contractions (SSCs), contractions typical during resistance training. With this model, we determined that at old age, high-repetition SSC training (80 SSCs: 8 sets of 10 repetitions) performed frequently (i.e. 3 days per week) for 4.5 weeks induced strength deficits with no muscle mass gain while decreasing frequency to 2 days per week promoted increases in muscle mass and muscle quality (i.e. performance normalized to muscle mass). This finding confirmed the popular notion that decreasing training frequency has a robust effect with age. Meanwhile, the influence of other loading variables remains contentious. The aim of the present study was to assess muscle adaptation following modulation of contraction mode and repetition number during high-intensity SSC training. Muscles of young (3 month old) and old (30 month old) male rats were exposed to 4.5 weeks of low-repetition static training of 4 (i.e. 4 sets of one repetition) isometric (ISO) contractions 3 days per week or a more moderate-repetition dynamic training of 40 SSCs (i.e. 4 sets of 10 repetitions) 3 days per week. For young rats, performance and muscle mass increased regardless of training protocol. For old rats, no muscle mass adaptation was observed for 4 ISO training while 40 SSC training induced muscle mass gain without improvement in muscle quality, an outcome distinct from modulating training frequency. Muscle mass gain for old rats was accompanied by decreased protein levels of tumor necrosis factor alpha, a mediator of age-related chronic inflammatory signaling, to young levels. These findings suggest that while dynamic high-intensity training with a moderate number of repetitions has a limited capacity for altering muscle quality, such training is a viable strategy for countering age-related inflammatory signaling and modifying muscle mass.
Collapse
Affiliation(s)
- Erik P Rader
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States.
| | - Marshall A Naimo
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States; West Virginia University School of Medicine, Division of Exercise Physiology, Morgantown, WV 26506, United States
| | - James Ensey
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States
| | - Brent A Baker
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States
| |
Collapse
|
26
|
Morais SRL, Brito VGB, Mello WG, Oliveira SHP. l-arginine modulates inflammation and muscle regulatory genes after a single session of resistance exercise in rats. Scand J Med Sci Sports 2017. [PMID: 28649743 DOI: 10.1111/sms.12935] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We investigated the skeletal muscle adaptation to l-arginine supplementation prior to a single session of resistance exercise (RE) during the early phase of muscle repair. Wistar rats were randomly assigned into non-exercised (Control), RE plus vehicle (RE); RE plus l-arginine (RE+L-arg) and RE plus aminoguanidine (RE+AG) groups. Animals received four doses of either vehicle (0.9% NaCl), l-arg (1 g/b.w.), or AG (iNOS inhibitor) (50 mg/b.w.). The animals performed a single RE session until the concentric failure (ladder climbing; 80% overload) and the skeletal muscles were harvested at 0, 8, 24, and 48 hours post-RE. The RE resulted in increased neutrophil infiltrate (24 hours post-RE) (3621 vs 11852; P<.0001) associated with enhanced TNF-α (819.49 vs 357.02; P<.005) and IL-6 (3.84 vs 1.08; P<.0001). Prior, l-arginine supplementation attenuates neutrophil infiltration (5622; P<.0001), and also TNF-α (506.01; P<.05) and IL-6 (2.51, P<.05) levels. AG pretreatment mediated an inhibition of iNOS levels similar to levels found in RE group. RE animals displayed increased of atrogin-1 (1.9 fold) and MuRF-1 (3.2 fold) mRNA levels, reversed by l-arg supplementation [atrogin-1 (0.6 fold; P<.001); MuRF-1 (0.8-fold; P<.001)] at 24 hours post-RE. MyoD up-regulated levels were restricted to l-arg treated animals at 24 hours (2.8 vs 1.5 fold; P<.005) and 48 hours post-RE (2.4 vs 1.1 fold; P<.001). AG pretreatment reversed these processes at 24 hours [atrogin-1 (2.1 fold; P<.0001); MuRF-1 (2.5 fold; P<.0001); MyoD (1.4 fold)]. l-arginine supplementation seems to attenuate the resolution of RE-induced muscle inflammation and up-regulates MyoD expression during the early phase of muscle repair.
Collapse
Affiliation(s)
- S R L Morais
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas-SBFis/UNESP, Araçatuba, São Paulo, Brazil.,Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - V G B Brito
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas-SBFis/UNESP, Araçatuba, São Paulo, Brazil.,Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - W G Mello
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas-SBFis/UNESP, Araçatuba, São Paulo, Brazil.,Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - S H P Oliveira
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas-SBFis/UNESP, Araçatuba, São Paulo, Brazil.,Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| |
Collapse
|
27
|
Kamandulis S, de Souza Leite F, Hernández A, Katz A, Brazaitis M, Bruton JD, Venckunas T, Masiulis N, Mickeviciene D, Eimantas N, Subocius A, Rassier DE, Skurvydas A, Ivarsson N, Westerblad H. Prolonged force depression after mechanically demanding contractions is largely independent of Ca 2+ and reactive oxygen species. FASEB J 2017; 31:4809-4820. [PMID: 28716970 DOI: 10.1096/fj.201700019r] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/05/2017] [Indexed: 12/21/2022]
Abstract
Increased production of reactive oxygen/nitrogen species (ROS) and impaired cellular Ca2+ handling are implicated in the prolonged low-frequency force depression (PLFFD) observed in skeletal muscle after both metabolically and mechanically demanding exercise. Metabolically demanding high-intensity exercise can induce PLFFD accompanied by ROS-dependent fragmentation of the sarcoplasmic reticulum Ca2+ release channels, the ryanodine receptor 1s (RyR1s). We tested whether similar changes occur after mechanically demanding eccentric contractions. Human subjects performed 100 repeated drop jumps, which require eccentric knee extensor contractions upon landing. This exercise caused a major PLFFD, such that maximum voluntary and electrically evoked forces did not recover within 24 h. Drop jumps induced only minor signs of increased ROS, and RyR1 fragmentation was observed in only 3 of 7 elderly subjects. Also, isolated mouse muscle preparations exposed to drop-jump-mimicking eccentric contractions showed neither signs of increased ROS nor RyR1 fragmentation. Still, the free cytosolic [Ca2+] during tetanic contractions was decreased by ∼15% 1 h after contractions, which can explain the exaggerated force decrease at low-stimulation frequencies but not the major frequency-independent force depression. In conclusion, PLFFD caused by mechanically demanding eccentric contractions does not involve any major increase in ROS or RyR1 fragmentation.-Kamandulis, S., de Souza Leite, F., Hernandez, A., Katz, A., Brazaitis, M., Bruton, J. D., Venckunas, T., Masiulis, N., Mickeviciene, D., Eimantas, N., Subocius, A., Rassier, D. E., Skurvydas, A., Ivarsson, N., Westerblad, H. Prolonged force depression after mechanically demanding contractions is largely independent of Ca2+ and reactive oxygen species.
Collapse
Affiliation(s)
- Sigitas Kamandulis
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Felipe de Souza Leite
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | - Andres Hernández
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Abram Katz
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Marius Brazaitis
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Joseph D Bruton
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Venckunas
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Nerijus Masiulis
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Dalia Mickeviciene
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Nerijus Eimantas
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Andrejus Subocius
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania.,Department of Surgery, Kaunas Clinical Hospital, Kaunas, Lithuania; and.,Clinic of Surgery, Republican Hospital of Kaunas, Kaunas, Lithuania
| | - Dilson E Rassier
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | - Albertas Skurvydas
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Niklas Ivarsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Håkan Westerblad
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania; .,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
28
|
Mankodi A, Azzabou N, Bulea T, Reyngoudt H, Shimellis H, Ren Y, Kim E, Fischbeck KH, Carlier PG. Skeletal muscle water T 2 as a biomarker of disease status and exercise effects in patients with Duchenne muscular dystrophy. Neuromuscul Disord 2017; 27:705-714. [PMID: 28601553 DOI: 10.1016/j.nmd.2017.04.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 12/16/2022]
Abstract
The purpose of this study was to examine exercise effects on muscle water T2 in patients with Duchenne muscular dystrophy (DMD). In 12 DMD subjects and 19 controls, lower leg muscle fat (%) was measured by Dixon and muscle water T2 and R2 (1/T2) by the tri-exponential model. Muscle water R2 was measured again at 3 hours after an ankle dorsiflexion exercise. The muscle fat fraction was higher in DMD participants than in controls (p < .001) except in the tibialis posterior muscle. Muscle water T2 was measured independent of the degree of fatty degeneration in DMD muscle. At baseline, muscle water T2 was higher in all but the extensor digitorum longus muscles of DMD participants than controls (p < .001). DMD participants had a lower muscle torque (p < .001) and exerted less power (p < .01) during exercise than controls. Nevertheless, muscle water R2 decreased (T2 increased) after exercise from baseline in DMD subjects and controls with greater changes in the target muscles of the exercise than in ankle plantarflexor muscles. Skeletal muscle water T2 is a sensitive biomarker of the disease status in DMD and of the exercise response in DMD patients and controls.
Collapse
Affiliation(s)
- Ami Mankodi
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Noura Azzabou
- NMR Laboratory, DRF, I2BM, MIRCen, Institute of Myology, Pitie-Salpetriere University Hospital and CEA, Paris, France
| | - Thomas Bulea
- Functional & Applied Biomechanics Section, Rehabilitation Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Harmen Reyngoudt
- NMR Laboratory, DRF, I2BM, MIRCen, Institute of Myology, Pitie-Salpetriere University Hospital and CEA, Paris, France
| | - Hirity Shimellis
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | - Eunhee Kim
- Office of Biostatistics, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Kenneth H Fischbeck
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Pierre G Carlier
- NMR Laboratory, DRF, I2BM, MIRCen, Institute of Myology, Pitie-Salpetriere University Hospital and CEA, Paris, France
| |
Collapse
|
29
|
Sanchez B, Iyer SR, Li J, Kapur K, Xu S, Rutkove SB, Lovering RM. Non-invasive assessment of muscle injury in healthy and dystrophic animals with electrical impedance myography. Muscle Nerve 2017; 56:E85-E94. [PMID: 28056487 DOI: 10.1002/mus.25559] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/30/2016] [Accepted: 01/04/2017] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Dystrophic muscle is particularly susceptible to eccentric contraction-induced injury. We tested the hypothesis that electrical impedance myography (EIM) can detect injury induced by maximal-force lengthening contractions. METHODS We induced injury in the quadriceps of wild-type (WT) and dystrophic (mdx) mice with eccentric contractions using an established model. RESULTS mdx quadriceps had significantly greater losses in peak twitch and tetany compared with losses in WT quadriceps. Injured muscle showed a significant increase in EIM characteristic frequency in both WT (177 ± 7.7%) and mdx (167 ± 7.8%) quadriceps. EIM also revealed decreased extracellular resistance for both WT and mdx quadriceps after injury. DISCUSSION Our results show overall agreement between muscle function and EIM measurements of injured muscle, indicating that EIM is a viable tool to assess injury in dystrophic muscle. Muscle Nerve 56: E85-E94, 2017.
Collapse
Affiliation(s)
- Benjamin Sanchez
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Shama R Iyer
- Department of Orthopaedics, University of Maryland School of Medicine, AHB, Room 540, 100 Penn Street, Baltimore, Maryland, 21201, USA
| | - Jia Li
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Kush Kapur
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.,Boston Children's Hospital, Boston, Massachusetts, USA
| | - Su Xu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Seward B Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard M Lovering
- Department of Orthopaedics, University of Maryland School of Medicine, AHB, Room 540, 100 Penn Street, Baltimore, Maryland, 21201, USA
| |
Collapse
|
30
|
Harris-Love MO, Seamon BA, Gonzales TI, Hernandez HJ, Pennington D, Hoover BM. Eccentric Exercise Program Design: A Periodization Model for Rehabilitation Applications. Front Physiol 2017; 8:112. [PMID: 28280471 PMCID: PMC5322206 DOI: 10.3389/fphys.2017.00112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/10/2017] [Indexed: 01/05/2023] Open
Abstract
The applied use of eccentric muscle actions for physical rehabilitation may utilize the framework of periodization. This approach may facilitate the safe introduction of eccentric exercise and appropriate management of the workload progression. The purpose of this data-driven Hypothesis and Theory paper is to present a periodization model for isokinetic eccentric strengthening of older adults in an outpatient rehabilitation setting. Exemplar and group data are used to describe the initial eccentric exercise prescription, structured familiarization procedures, workload progression algorithm, and feasibility of the exercise regimen. Twenty-four men (61.8 ± 6.3 years of age) completed a 12-week isokinetic eccentric strengthening regimen involving the knee extensors. Feasibility and safety of the regimen was evaluated using serial visual analog scale (VAS, 0–10) values for self-reported pain, and examining changes in the magnitude of mean eccentric power as a function of movement velocity. Motor learning associated with the familiarization sessions was characterized through torque-time curve analysis. Total work was analyzed to identify relative training plateaus or diminished exercise capacity during the progressive phase of the macrocycle. Variability in the mean repetition interval decreased from 68 to 12% during the familiarization phase of the macrocycle. The mean VAS values were 2.9 ± 2.7 at the start of the regimen and 2.6 ± 2.9 following 12 weeks of eccentric strength training. During the progressive phase of the macrocycle, exercise workload increased from 70% of the estimated eccentric peak torque to 141% and total work increased by 185% during this training phase. The slope of the total work performed across the progressive phase of the macrocycle ranged from −5.5 to 29.6, with the lowest slope values occurring during microcycles 8 and 11. Also, mean power generation increased by 25% when eccentric isokinetic velocity increased from 60 to 90° s−1 while maintaining the same workload target. The periodization model used in this study for eccentric exercise familiarization and workload progression was feasible and safe to implement within an outpatient rehabilitation setting. Cyclic implementation of higher eccentric movement velocities, and the addition of active recovery periods, are featured in the proposed theoretical periodization model for isokinetic eccentric strengthening.
Collapse
Affiliation(s)
- Michael O Harris-Love
- Muscle Morphology, Mechanics and Performance Laboratory, Clinical Research Center-Human Performance Research Unit, Veterans Affairs Medical CenterWashington, DC, USA; Geriatrics and Extended Care Service/Research Service, Veterans Affairs Medical CenterWashington, DC, USA; Department of Exercise and Nutritional Sciences, Milken Institute School of Public Health, The George Washington UniversityWashington, DC, USA
| | - Bryant A Seamon
- Muscle Morphology, Mechanics and Performance Laboratory, Clinical Research Center-Human Performance Research Unit, Veterans Affairs Medical CenterWashington, DC, USA; Physical Medicine and Rehabilitation Service, Veterans Affairs Medical CenterWashington, DC, USA
| | - Tomas I Gonzales
- Muscle Morphology, Mechanics and Performance Laboratory, Clinical Research Center-Human Performance Research Unit, Veterans Affairs Medical Center Washington, DC, USA
| | - Haniel J Hernandez
- Muscle Morphology, Mechanics and Performance Laboratory, Clinical Research Center-Human Performance Research Unit, Veterans Affairs Medical CenterWashington, DC, USA; Physical Medicine and Rehabilitation Service, Veterans Affairs Medical CenterWashington, DC, USA
| | - Donte Pennington
- Muscle Morphology, Mechanics and Performance Laboratory, Clinical Research Center-Human Performance Research Unit, Veterans Affairs Medical CenterWashington, DC, USA; Department of Physiology and Biophysics, College of Medicine, Howard UniversityWashington, DC, USA
| | - Brian M Hoover
- Muscle Morphology, Mechanics and Performance Laboratory, Clinical Research Center-Human Performance Research Unit, Veterans Affairs Medical Center Washington, DC, USA
| |
Collapse
|
31
|
Hallgren RC. Injury Threshold of Rectus Capitis Muscles at the Atlanto-occipital Joint. J Manipulative Physiol Ther 2017; 40:71-76. [DOI: 10.1016/j.jmpt.2016.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/30/2016] [Accepted: 06/15/2016] [Indexed: 12/25/2022]
|
32
|
Effect of Oral Branched-Chain Amino Acid Supplementation Prior to Resistance Exercise on Metabolic Hormones, Plasma Amino Acids, and Serum Indices of Muscle Damage in the Recovery Period. TOP CLIN NUTR 2016. [DOI: 10.1097/tin.0000000000000085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Lim JY. Therapeutic potential of eccentric exercises for age-related muscle atrophy. Integr Med Res 2016; 5:176-181. [PMID: 28462115 PMCID: PMC5390411 DOI: 10.1016/j.imr.2016.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/14/2016] [Accepted: 06/14/2016] [Indexed: 02/04/2023] Open
Abstract
Recent studies have focused on evidence-based interventions to prevent mobility decline and enhance physical performance in older adults. Several modalities, in addition to traditional strengthening programs, have been designed to manage age-related functional decline more effectively. In this study, we reviewed the current relevant literatures to assess the therapeutic potential of eccentric exercises for age-related muscle atrophy (sarcopenia). Age-related changes in human skeletal muscle, and their relationship with physical performance, are discussed with reference to in vitro physiologic and human biomechanics studies. An overview of issues relevant to sarcopenia is provided in the context of the recent consensus on the diagnosis and management of the condition. A decline in mobility among the aging population is closely linked with changes in the muscle force-velocity relationship. Interventions based specifically on increasing velocity and eccentric strength can improve function more effectively compared with traditional strengthening programs. Eccentric strengthening programs are introduced as a specific method for improving both muscle force and velocity. To be more effective, exercise interventions for older adults should focus on enhancing the muscle force-velocity relationship. Exercises that can be performed easily, and that utilize eccentric strength (which is relatively spared during the aging process), are needed to improve both muscle force and velocity.
Collapse
Affiliation(s)
- Jae-Young Lim
- Department of Rehabilitation Medicine, Mechanic and Molecular Myology Laboratory, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| |
Collapse
|
34
|
Greiwe L, Vinck M, Suhr F. The muscle contraction mode determines lymphangiogenesis differentially in rat skeletal and cardiac muscles by modifying local lymphatic extracellular matrix microenvironments. Acta Physiol (Oxf) 2016; 217:61-79. [PMID: 26601802 DOI: 10.1111/apha.12633] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/14/2015] [Accepted: 11/16/2015] [Indexed: 12/13/2022]
Abstract
AIM Lymphatic vessels are of special importance for tissue homeostasis, and increases of their density may foster tissue regeneration. Exercise could be a relevant tool to increase lymphatic vessel density (LVD); however, a significant lack of knowledge remains to understand lymphangiogenesis in skeletal muscles upon training. Interestingly, training-induced lymphangiogenesis has never been studied in the heart. We studied lymphangiogenesis and LVD upon chronic concentric and chronic eccentric muscle contractions in both rat skeletal (Mm. Edl and Sol) and cardiac muscles. METHODS/RESULTS We found that LVD decreased in both skeletal muscles specifically upon eccentric training, while this contraction increased LVD in cardiac tissue. These observations were supported by opposing local remodelling of lymphatic vessel-specific extracellular matrix components in skeletal and cardiac muscles and protein levels of lymphatic markers (Lyve-1, Pdpn, Vegf-C/D). Confocal microscopy further revealed transformations of lymphatic vessels into vessels expressing both blood (Cav-1) and lymphatic (Vegfr-3) markers upon eccentric training specifically in skeletal muscles. In addition and phenotype supportive, we found increased inflammation (NF-κB/p65, Il-1β, Ifn-γ, Tnf-α and MPO(+) cells) in eccentrically stressed skeletal, but decreased levels in cardiac muscles. CONCLUSION Our data provide novel mechanistic insights into lymphangiogenic processes in skeletal and cardiac muscles upon chronic muscle contraction modes and demonstrate that both tissues adapt in opposing manners specifically to eccentric training. These data are highly relevant for clinical applications, because eccentric training serves as a sufficient strategy to increase LVD and to decrease inflammation in cardiac tissue, for example in order to reduce tissue abortion in transplantation settings.
Collapse
Affiliation(s)
- L. Greiwe
- Department of Molecular and Cellular Sport Medicine; Institute of Cardiovascular Research and Sport Medicine; German Sport University Cologne; Cologne Germany
| | - M. Vinck
- Department of Molecular and Cellular Sport Medicine; Institute of Cardiovascular Research and Sport Medicine; German Sport University Cologne; Cologne Germany
| | - F. Suhr
- Department of Molecular and Cellular Sport Medicine; Institute of Cardiovascular Research and Sport Medicine; German Sport University Cologne; Cologne Germany
| |
Collapse
|
35
|
Rader EP, Layner K, Triscuit AM, Chetlin RD, Ensey J, Baker BA. Age-dependent Muscle Adaptation after Chronic Stretch-shortening Contractions in Rats. Aging Dis 2016; 7:1-13. [PMID: 26816659 DOI: 10.14336/ad.2015.0920] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/20/2015] [Indexed: 11/01/2022] Open
Abstract
Age-related differences in contraction-induced adaptation have been well characterized especially for young and old rodent models but much less so at intermediate ages. Therefore, additional research is warranted to determine to what extent alterations in adaptation are due to maturation versus aging per se. The purpose of our study was to evaluate muscles of Fisher 344XBrown Norway rats of various ages following one month of exposure to stretch-shortening contractions (SSCs). With exposure, muscles mass increased by ~10% for 27 and 30 month old rats vs. ~20% for 3 and 6 month old rats (P < 0.05). For 3 month old rats, maximum isometric force and dynamic peak force increased by 22 ± 8% and 27 ± 10%, respectively (P < 0.05). For 6 month old rats, these forces were unaltered by exposure and positive work capacity diminished by 27 ± 2% (P = 0.006). By 30 months of age, age-related deficits in maximum isometric force, peak force, negative work, and positive work were apparent and SSC exposure was ineffective at counteracting such deficits. Recovery from fatigue was also tested and exposure-induced improvements in fatigue recovery were indicated for 6 month old rats and to a lesser extent for 3 month old rats whereas no such effect was observed for older rats. Alterations in fatigue recovery were accompanied by evidence of substantial type IIb to IIx fiber type shifting. These results highlight the exceptional adaptive capacity for strength at a young age, the inclination for adaptation in fatigue recovery at early adulthood, and diminished adaptation for muscle performance in general beginning at late adulthood. Such findings motivate careful investigation to determine appropriate SSC exposures at all stages of life.
Collapse
Affiliation(s)
- Erik P Rader
- 1Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, USA
| | - KaylaN Layner
- 1Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, USA
| | - Alyssa M Triscuit
- 1Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, USA
| | - Robert D Chetlin
- 1Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, USA; 2Mercyhurst University, Department of Sports Medicine, Erie, Pennsylvania 16546, USA
| | - James Ensey
- 1Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, USA
| | - Brent A Baker
- 1Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, USA
| |
Collapse
|
36
|
Rader EP, Layner KN, Triscuit AM, Kashon ML, Gu JK, Ensey J, Baker BA. Desensitized morphological and cytokine response after stretch-shortening muscle contractions as a feature of aging in rats. Exp Gerontol 2015; 72:138-49. [PMID: 26454037 DOI: 10.1016/j.exger.2015.09.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/14/2015] [Accepted: 09/29/2015] [Indexed: 12/22/2022]
Abstract
Recovery from contraction-induced injury is impaired with aging. At a young age, the secondary response several days following contraction-induced injury consists of edema, inflammatory cell infiltration, and segmental muscle fiber degeneration to aid in the clearance of damaged tissue and repair. This morphological response has not been wholly established at advanced age. Our aim was to characterize muscle fiber morphology 3 and 10 days following stretch-shortening contractions (SSCs) varying in repetition number (i.e. 0, 30, 80, and 150) for young and old rats. For muscles of young rats, muscle fiber degeneration was overt at 3 days exclusively after 80 or 150 SSCs and returned significantly closer to control values by 10 days. For muscles of old rats, no such responses were observed. Transcriptional microarray analysis at 3 days demonstrated that muscles of young rats differentially expressed up to 2144 genes while muscles of old rats differentially expressed 47 genes. Bioinformatic analysis indicated that cellular movement was a major biological process over-represented with genes that were significantly altered by SSCs especially for young rats. Protein levels in muscle for various cytokines and chemokines, key inflammatory factors for cell movement, increased 3- to 50-fold following high-repetition SSCs for young rats with no change for old rats. This age-related differential response was insightful given that for control (i.e. 0 SSCs) conditions, protein levels of circulatory cytokines/chemokines were increased with age. The results demonstrate ongoing systemic low-grade inflammatory signaling and subsequent desensitization of the cytokine/chemokine and morphological response to contraction-induced injury with aging - features which accompany age-related impairment in muscle recovery.
Collapse
Affiliation(s)
- Erik P Rader
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States.
| | - Kayla N Layner
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States.
| | - Alyssa M Triscuit
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States.
| | - Michael L Kashon
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States.
| | - Ja K Gu
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States.
| | - James Ensey
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States.
| | - Brent A Baker
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States.
| |
Collapse
|
37
|
Hughes DC, Wallace MA, Baar K. Effects of aging, exercise, and disease on force transfer in skeletal muscle. Am J Physiol Endocrinol Metab 2015; 309:E1-E10. [PMID: 25968577 PMCID: PMC4490334 DOI: 10.1152/ajpendo.00095.2015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/08/2015] [Indexed: 11/22/2022]
Abstract
The loss of muscle strength and increased injury rate in aging skeletal muscle has previously been attributed to loss of muscle protein (cross-sectional area) and/or decreased neural activation. However, it is becoming clear that force transfer within and between fibers plays a significant role in this process as well. Force transfer involves a secondary matrix of proteins that align and transmit the force produced by the thick and thin filaments along muscle fibers and out to the extracellular matrix. These specialized networks of cytoskeletal proteins aid in passing force through the muscle and also serve to protect individual fibers from injury. This review discusses the cytoskeleton proteins that have been identified as playing a role in muscle force transmission, both longitudinally and laterally, and where possible highlights how disease, aging, and exercise influence the expression and function of these proteins.
Collapse
Affiliation(s)
- David C Hughes
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, California
| | - Marita A Wallace
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, California
| | - Keith Baar
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, California
| |
Collapse
|
38
|
Mechanical Overloading Increases Maximal Force and Reduces Fragility in Hind Limb Skeletal Muscle from Mdx Mouse. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2012-24. [DOI: 10.1016/j.ajpath.2015.03.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 01/30/2015] [Accepted: 03/09/2015] [Indexed: 12/20/2022]
|
39
|
Affiliation(s)
| | - Walter Herzog
- University of Calgary Human Performance Lab, Calgary, Canada
| |
Collapse
|
40
|
Leung DG, Wagner KR. Therapeutic advances in muscular dystrophy. Ann Neurol 2013; 74:404-11. [PMID: 23939629 PMCID: PMC3886293 DOI: 10.1002/ana.23989] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/29/2013] [Accepted: 07/29/2013] [Indexed: 12/27/2022]
Abstract
The muscular dystrophies comprise a heterogeneous group of genetic disorders that produce progressive skeletal muscle weakness and wasting. There has been rapid growth and change in our understanding of these disorders in recent years, and advances in basic science are being translated into increasing numbers of clinical trials. This review will discuss therapeutic developments in 3 of the most common forms of muscular dystrophy: Duchenne muscular dystrophy, facioscapulohumeral muscular dystrophy, and myotonic dystrophy. Each of these disorders represents a different class of genetic disease (monogenic, epigenetic, and repeat expansion disorders), and the approach to therapy addresses the diverse and complex molecular mechanisms involved in these diseases. The large number of novel pharmacologic agents in development with good biologic rationale and strong proof of concept suggests there will be an improved quality of life for individuals with muscular dystrophy.
Collapse
Affiliation(s)
- Doris G Leung
- Center for Genetic Muscle Disorders, Kennedy Krieger Institute, Baltimore, MD; Departments of Neurology, Johns Hopkins School of Medicine, Baltimore, MD
| | | |
Collapse
|
41
|
Boppart MD, De Lisio M, Zou K, Huntsman HD. Defining a role for non-satellite stem cells in the regulation of muscle repair following exercise. Front Physiol 2013; 4:310. [PMID: 24204344 PMCID: PMC3817631 DOI: 10.3389/fphys.2013.00310] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/10/2013] [Indexed: 11/16/2022] Open
Abstract
Skeletal muscle repair is essential for effective remodeling, tissue maintenance, and initiation of beneficial adaptations post-eccentric exercise. A series of well characterized events, such as recruitment of immune cells and activation of satellite cells, constitute the basis for muscle regeneration. However, details regarding the fine-tuned regulation of this process in response to different types of injury are open for investigation. Muscle-resident non-myogenic, non-satellite stem cells expressing conventional mesenchymal stem cell (MSC) markers, have the potential to significantly contribute to regeneration given the role for bone marrow-derived MSCs in whole body tissue repair in response to injury and disease. The purpose of this mini-review is to highlight a regulatory role for Pnon-satellite stem cells in the process of skeletal muscle healing post-eccentric exercise. The non-myogenic, non-satellite stem cell fraction will be defined, its role in tissue repair will be briefly reviewed, and recent studies demonstrating a contribution to eccentric exercise-induced regeneration will be presented.
Collapse
Affiliation(s)
- Marni D Boppart
- Department of Kinesiology and Community Health, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana, IL, USA
| | | | | | | |
Collapse
|
42
|
Gault ML, Willems MET. Aging, functional capacity and eccentric exercise training. Aging Dis 2013; 4:351-63. [PMID: 24307968 DOI: 10.14336/ad.2013.0400351] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 08/21/2013] [Accepted: 09/20/2013] [Indexed: 12/21/2022] Open
Abstract
Aging is a multi-factorial process that ultimately induces a decline in our physiological functioning, causing a decreased health-span, quality of life and independence for older adults. Exercise participation is seen as a way to reduce the impact of aging through maintenance of physiological parameters. Eccentric exercise is a model that can be employed with older adults, due to the muscle's ability to combine high muscle force production with a low energy cost. There may however be a risk of muscle damage before the muscle is able to adapt. The first part of this review describes the process of aging and how it reduces aerobic capacity, muscle strength and therefore functional mobility. The second part highlights eccentric exercise and the associated muscle damage, in addition to the repeated bout effect. The final section reviews eccentric exercise interventions that have been completed by older adults with a focus on the changes in functional mobility. In conclusion, eccentric endurance exercise is a potential training modality that can be applied to older adults for improving muscle strength, aerobic capacity and functional ability. However, further research is needed to assess the effects on aerobic capacity and the ideal prescription for eccentric endurance exercise.
Collapse
Affiliation(s)
- Mandy L Gault
- Mandy L. Gault, Mark E.T. Willems, University of Chichester, Department of Sport & Exercise Sciences, College Lane, Chichester, West Sussex, PO19 6PE, United Kingdom
| | | |
Collapse
|
43
|
Loenneke JP, Thiebaud RS, Abe T, Manfro IG, Marin PJ. Acute blood flow restricted exercise to treat Duchenne muscular dystrophy: would it be efficacious? Front Physiol 2013; 4:114. [PMID: 23720637 PMCID: PMC3655283 DOI: 10.3389/fphys.2013.00114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 05/01/2013] [Indexed: 11/25/2022] Open
Affiliation(s)
- Jeremy P Loenneke
- Neuromuscular Research Laboratory, Department of Health and Exercise Science, The University of Oklahoma Norman, OK, USA
| | | | | | | | | |
Collapse
|