1
|
Mitchell SJ. Decompression illness: a comprehensive overview. Diving Hyperb Med 2024; 54:1-53. [PMID: 38537300 PMCID: PMC11168797 DOI: 10.28920/dhm54.1.suppl.1-53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 01/31/2024] [Indexed: 05/20/2024]
Abstract
Decompression illness is a collective term for two maladies (decompression sickness [DCS] and arterial gas embolism [AGE]) that may arise during or after surfacing from compressed gas diving. Bubbles are the presumed primary vector of injury in both disorders, but the respective sources of bubbles are distinct. In DCS bubbles form primarily from inert gas that becomes dissolved in tissues over the course of a compressed gas dive. During and after ascent ('decompression'), if the pressure of this dissolved gas exceeds ambient pressure small bubbles may form in the extravascular space or in tissue blood vessels, thereafter passing into the venous circulation. In AGE, if compressed gas is trapped in the lungs during ascent, pulmonary barotrauma may introduce bubbles directly into the pulmonary veins and thence to the systemic arterial circulation. In both settings, bubbles may provoke ischaemic, inflammatory, and mechanical injury to tissues and their associated microcirculation. While AGE typically presents with stroke-like manifestations referrable to cerebral involvement, DCS can affect many organs including the brain, spinal cord, inner ear, musculoskeletal tissue, cardiopulmonary system and skin, and potential symptoms are protean in both nature and severity. This comprehensive overview addresses the pathophysiology, manifestations, prevention and treatment of both disorders.
Collapse
Affiliation(s)
- Simon J Mitchell
- Department of Anaesthesiology, School of Medicine, University of Auckland, Auckland, New Zealand
- Department of Anaesthesia, Auckland City Hospital, Auckland, New Zealand
- Slark Hyperbaric Medicine Unit, North Shore Hospital, Auckland, New Zealand
- Corresponding address: Department of Anaesthesiology, School of Medicine, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand, ORCiD: 0000-0002-5149-6371,
| |
Collapse
|
2
|
Marsh PL, Moore EE, Moore HB, Bunch CM, Aboukhaled M, Condon SM, Al-Fadhl MD, Thomas SJ, Larson JR, Bower CW, Miller CB, Pearson ML, Twilling CL, Reser DW, Kim GS, Troyer BM, Yeager D, Thomas SG, Srikureja DP, Patel SS, Añón SL, Thomas AV, Miller JB, Van Ryn DE, Pamulapati SV, Zimmerman D, Wells B, Martin PL, Seder CW, Aversa JG, Greene RB, March RJ, Kwaan HC, Fulkerson DH, Vande Lune SA, Mollnes TE, Nielsen EW, Storm BS, Walsh MM. Iatrogenic air embolism: pathoanatomy, thromboinflammation, endotheliopathy, and therapies. Front Immunol 2023; 14:1230049. [PMID: 37795086 PMCID: PMC10546929 DOI: 10.3389/fimmu.2023.1230049] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/12/2023] [Indexed: 10/06/2023] Open
Abstract
Iatrogenic vascular air embolism is a relatively infrequent event but is associated with significant morbidity and mortality. These emboli can arise in many clinical settings such as neurosurgery, cardiac surgery, and liver transplantation, but more recently, endoscopy, hemodialysis, thoracentesis, tissue biopsy, angiography, and central and peripheral venous access and removal have overtaken surgery and trauma as significant causes of vascular air embolism. The true incidence may be greater since many of these air emboli are asymptomatic and frequently go undiagnosed or unreported. Due to the rarity of vascular air embolism and because of the many manifestations, diagnoses can be difficult and require immediate therapeutic intervention. An iatrogenic air embolism can result in both venous and arterial emboli whose anatomic locations dictate the clinical course. Most clinically significant iatrogenic air emboli are caused by arterial obstruction of small vessels because the pulmonary gas exchange filters the more frequent, smaller volume bubbles that gain access to the venous circulation. However, there is a subset of patients with venous air emboli caused by larger volumes of air who present with more protean manifestations. There have been significant gains in the understanding of the interactions of fluid dynamics, hemostasis, and inflammation caused by air emboli due to in vitro and in vivo studies on flow dynamics of bubbles in small vessels. Intensive research regarding the thromboinflammatory changes at the level of the endothelium has been described recently. The obstruction of vessels by air emboli causes immediate pathoanatomic and immunologic and thromboinflammatory responses at the level of the endothelium. In this review, we describe those immunologic and thromboinflammatory responses at the level of the endothelium as well as evaluate traditional and novel forms of therapy for this rare and often unrecognized clinical condition.
Collapse
Affiliation(s)
- Phillip L. Marsh
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Ernest E. Moore
- Department of Surgery, Ernest E. Moore Shock Trauma Center at Denver Health and University of Colorado Health Sciences Center, Denver, CO, United States
| | - Hunter B. Moore
- University of Colorado Health Transplant Surgery - Anschutz Medical Campus, Aurora, CO, United States
| | - Connor M. Bunch
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - Michael Aboukhaled
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Shaun M. Condon
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States
| | | | - Samuel J. Thomas
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - John R. Larson
- Department of Emergency Medicine, Goshen Health, Goshen, IN, United States
| | - Charles W. Bower
- Department of Emergency Medicine, Goshen Health, Goshen, IN, United States
| | - Craig B. Miller
- Department of Family Medicine, Saint Joseph Health System, Mishawaka, IN, United States
| | - Michelle L. Pearson
- Department of Family Medicine, Saint Joseph Health System, Mishawaka, IN, United States
| | | | - David W. Reser
- Department of Emergency Medicine, Goshen Health, Goshen, IN, United States
| | - George S. Kim
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
- Department of Emergency Medicine, Goshen Health, Goshen, IN, United States
| | - Brittany M. Troyer
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
- Department of Emergency Medicine, Goshen Health, Goshen, IN, United States
| | - Doyle Yeager
- Department of Emergency Medicine, Goshen Health, Goshen, IN, United States
| | - Scott G. Thomas
- Department of Trauma & Surgical Research Services, South Bend, IN, United States
| | - Daniel P. Srikureja
- Department of Trauma & Surgical Research Services, South Bend, IN, United States
| | - Shivani S. Patel
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - Sofía L. Añón
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Anthony V. Thomas
- Indiana University School of Medicine, South Bend, IN, United States
| | - Joseph B. Miller
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - David E. Van Ryn
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
- Department of Emergency Medicine, Goshen Health, Goshen, IN, United States
- Department of Emergency Medicine, Beacon Health System, Elkhart, IN, United States
| | - Saagar V. Pamulapati
- Department of Internal Medicine, Mercy Health Internal Medicine Residency Program, Rockford, IL, United States
| | - Devin Zimmerman
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Byars Wells
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Peter L. Martin
- Department of Emergency Medicine, Goshen Health, Goshen, IN, United States
| | - Christopher W. Seder
- Department of Cardiovascular and Thoracic Surgery, RUSH Medical College, Chicago, IL, United States
| | - John G. Aversa
- Department of Cardiovascular and Thoracic Surgery, RUSH Medical College, Chicago, IL, United States
| | - Ryan B. Greene
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Robert J. March
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Hau C. Kwaan
- Division of Hematology and Oncology, Department of Medicine, Northwestern University, Chicago, IL, United States
| | - Daniel H. Fulkerson
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
- Department of Trauma & Surgical Research Services, South Bend, IN, United States
| | - Stefani A. Vande Lune
- Department of Emergency Medicine, Naval Medical Center Portsmouth, Portsmouth, VA, United States
| | - Tom E. Mollnes
- Research Laboratory, Nordland Hospital, Bodø, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Erik W. Nielsen
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Anesthesia and Intensive Care Medicine, Surgical Clinic, Nordland Hospital, Bodø, Norway
- Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway
- Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| | - Benjamin S. Storm
- Department of Anesthesia and Intensive Care Medicine, Surgical Clinic, Nordland Hospital, Bodø, Norway
- Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway
- Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| | - Mark M. Walsh
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
- Indiana University School of Medicine, South Bend, IN, United States
| |
Collapse
|
3
|
Bao XC, Wang N, Xu J, Ma J, Fang YQ. Effects of different simulated submarine escape depths by free ascent in animal models. Front Physiol 2023; 14:1107782. [PMID: 36776974 PMCID: PMC9911523 DOI: 10.3389/fphys.2023.1107782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
Objective: If a damaged submarine cannot be rescued in time, it is necessary to carry out a submarine escape by free ascent. Decompression illness is the greatest threat to the safety of submariners. The maximum depth at which a safe escape can be carried out is unknown. This study intends to explore the maximum safe escape depth by observing the effects of simulated submarine escape at different depths on animal models. Methods: We evaluated pulmonary function indexes, blood gas values, blood cell counts, the myocardial enzyme spectrum, coagulation parameters, and proinflammatory cytokine levels in rats, electrocardiographic activity in rabbits after simulated 150-m, 200-m, 220-m, and 250-m submarine escape by free ascent. Results: An escape depth of 150 m did not cause significant changes in the indicators. An escape depth of >200 m led to pulmonary ventilation and gas diffusion dysfunction, hypoxemia, myocardial ischemia, and activation of the fibrinolytic and inflammatory systems. The magnitudes of the changes in the indicators were proportional to escape depth. Conclusion: An escape depth of 150 m in animal models is safe, whereas escape at > 200 m can be harmful.
Collapse
Affiliation(s)
| | | | | | | | - Yi-Qun Fang
- *Correspondence: Xiao Chen Bao, ; Yi-Qun Fang,
| |
Collapse
|
4
|
Desruelle AV, de Maistre S, Gaillard S, Richard S, Tardivel C, Martin JC, Blatteau JE, Boussuges A, Rives S, Risso JJ, Vallee N. Cecal Metabolomic Fingerprint of Unscathed Rats: Does It Reflect the Good Response to a Provocative Decompression? Front Physiol 2022; 13:882944. [PMID: 35655958 PMCID: PMC9152359 DOI: 10.3389/fphys.2022.882944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/27/2022] [Indexed: 11/23/2022] Open
Abstract
On one side, decompression sickness (DCS) with neurological disorders lead to a reshuffle of the cecal metabolome of rats. On the other side, there is also a specific and different metabolomic signature in the cecum of a strain of DCS-resistant rats, that are not exposed to hyperbaric protocol. We decide to study a conventional strain of rats that resist to an accident-provoking hyperbaric exposure, and we hypothesize that the metabolomic signature put forward may correspond to a physiological response adapted to the stress induced by diving. The aim is to verify and characterize whether the cecal compounds of rats resistant to the provocative dive have a cecal metabolomic signature different from those who do not dive. 35 asymptomatic diver rats are selected to be compared to 21 rats non-exposed to the hyperbaric protocol. Because our aim is essentially to study the differences in the cecal metabolome associated with the hyperbaric exposure, about half of the rats are fed soy and the other half of maize in order to better rule out the effect of the diet itself. Lower levels of IL-1β and glutathione peroxidase (GPX) activity are registered in blood of diving rats. No blood cell mobilization is noted. Conventional and ChemRICH approaches help the metabolomic interpretation of the 185 chemical compounds analyzed in the cecal content. Statistical analysis show a panel of 102 compounds diet related. 19 are in common with the hyperbaric protocol effect. Expression of 25 compounds has changed in the cecal metabolome of rats resistant to the provocative dive suggesting an alteration of biliary acids metabolism, most likely through actions on gut microbiota. There seem to be also weak changes in allocations dedicated to various energy pathways, including hormonal reshuffle. Some of the metabolites may also have a role in regulating inflammation, while some may be consumed for the benefit of oxidative stress management.
Collapse
Affiliation(s)
- Anne-Virginie Desruelle
- Institut de Recherche Biomédicale des Armées, Equipe de Recherche Subaquatique Opérationnelle, Toulon Cedex, France
| | - Sébastien de Maistre
- Service de Médecine Hyperbare Expertise Plongée, Hôpital d'Instruction des Armées Sainte-Anne, Toulon Cedex, France
| | | | | | - Catherine Tardivel
- C2VN, INRAE, INSERM, BIOMET, Aix Marseille University, Faculté de Médecine La Timone, Marseille, France
| | - Jean-Charles Martin
- C2VN, INRAE, INSERM, BIOMET, Aix Marseille University, Faculté de Médecine La Timone, Marseille, France
| | - Jean-Eric Blatteau
- Service de Médecine Hyperbare Expertise Plongée, Hôpital d'Instruction des Armées Sainte-Anne, Toulon Cedex, France
| | - Alain Boussuges
- Institut de Recherche Biomédicale des Armées, Equipe de Recherche Subaquatique Opérationnelle, Toulon Cedex, France
| | - Sarah Rives
- Institut de Recherche Biomédicale des Armées, Equipe de Recherche Subaquatique Opérationnelle, Toulon Cedex, France
| | - Jean-Jacques Risso
- Institut de Recherche Biomédicale des Armées, Equipe de Recherche Subaquatique Opérationnelle, Toulon Cedex, France
| | - Nicolas Vallee
- Institut de Recherche Biomédicale des Armées, Equipe de Recherche Subaquatique Opérationnelle, Toulon Cedex, France
- *Correspondence: Nicolas Vallee,
| |
Collapse
|
5
|
Desruelle AV, Louge P, Richard S, Blatteau JE, Gaillard S, De Maistre S, David H, Risso JJ, Vallée N. Demonstration by Infra-Red Imaging of a Temperature Control Defect in a Decompression Sickness Model Testing Minocycline. Front Physiol 2019; 10:933. [PMID: 31396102 PMCID: PMC6668502 DOI: 10.3389/fphys.2019.00933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022] Open
Abstract
The prevention, prognosis and resolution of decompression sickness (DCS) are not satisfactory. The etiology of DCS has highlighted thrombotic and inflammatory phenomena that could cause severe neurological disorders or even death. Given the immunomodulatory effects described for minocycline, an antibiotic in widespread use, we have decided to explore its effects in an experimental model for decompression sickness. 40 control mice (Ctrl) and 40 mice treated orally with 90 mg/kg of minocycline (MINO) were subjected to a protocol in a hyperbaric chamber, compressed with air. The purpose was to mimic a scuba dive to a depth of 90 msw and its pathogenic decompression phase. Clinical examinations and blood counts were conducted after the return to the surface. For the first time they were completed by a simple infrared (IR) imaging technique in order to assess feasibility and its clinical advantage in differentiating the sick mice (DCS) from the healthy mice (NoDCS). In this tudy, exposure to the hyperbaric protocol provoked a reduction in the number of circulating leukocytes. DCS in mice, manifesting itself by paralysis or convulsion for example, is also associated with a fall in platelets count. Cold areas ( < 25°C) were detected by IR in the hind paws and tail with significant differences (p < 0.05) between DCS and NoDCS. Severe hypothermia was also shown in the DCS mice. The ROC analysis of the thermograms has made it possible to determine that an average tail temperature below 27.5°C allows us to consider the animals to be suffering from DCS (OR = 8; AUC = 0.754, p = 0.0018). Minocycline modulates blood analysis and it seems to limit the mobilization of monocytes and granulocytes after the provocative dive. While a higher proportion of mice treated with minocycline experienced DCS symptoms, there is no significant difference. The infrared imaging has made it possible to show severe hypothermia. It suggests an modification of thermregulation in DCS animals. Surveillance by infrared camera is fast and it can aid the prognosis in the case of decompression sickness in mice.
Collapse
Affiliation(s)
- Anne-Virginie Desruelle
- Unité Environnements Extrêmes, Département Environnement Opérationnel, Institut de Recherche Biomédicale des Armées, Equipe Résidante de Recherche Subaquatique Opérationnelle, Toulon, France
| | - Pierre Louge
- Service de Médecine Hyperbare et Expertise Plongée, Hôpital d'Instruction des Armées, Toulon, France
| | | | - Jean-Eric Blatteau
- Unité Environnements Extrêmes, Département Environnement Opérationnel, Institut de Recherche Biomédicale des Armées, Equipe Résidante de Recherche Subaquatique Opérationnelle, Toulon, France.,Service de Médecine Hyperbare et Expertise Plongée, Hôpital d'Instruction des Armées, Toulon, France
| | | | - Sébastien De Maistre
- Service de Médecine Hyperbare et Expertise Plongée, Hôpital d'Instruction des Armées, Toulon, France
| | - Hélène David
- Apricot Inhalotherapeutics, Saint-Laurent-de-l'Île-d'Orléans, QC, Canada
| | - Jean-Jacques Risso
- Unité Environnements Extrêmes, Département Environnement Opérationnel, Institut de Recherche Biomédicale des Armées, Equipe Résidante de Recherche Subaquatique Opérationnelle, Toulon, France
| | - Nicolas Vallée
- Unité Environnements Extrêmes, Département Environnement Opérationnel, Institut de Recherche Biomédicale des Armées, Equipe Résidante de Recherche Subaquatique Opérationnelle, Toulon, France
| |
Collapse
|
6
|
Blatteau JE, Gaillard S, De Maistre S, Richard S, Louges P, Gempp E, Druelles A, Lehot H, Morin J, Castagna O, Abraini JH, Risso JJ, Vallée N. Reduction in the Level of Plasma Mitochondrial DNA in Human Diving, Followed by an Increase in the Event of an Accident. Front Physiol 2018; 9:1695. [PMID: 30555340 PMCID: PMC6282000 DOI: 10.3389/fphys.2018.01695] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/09/2018] [Indexed: 01/02/2023] Open
Abstract
Circulating mitochondrial DNA (mtDNA) is receiving increasing attention as a danger-associated molecular pattern in conditions such as autoimmunity or trauma. In the context of decompression sickness (DCS), the course of which is sometimes erratic, we hypothesize that mtDNA plays a not insignificant role particularly in neurological type accidents. This study is based on the comparison of circulating mtDNA levels in humans presenting with various types of diving accidents, and punctured upon their admission at the hyperbaric facility. One hundred and fourteen volunteers took part in the study. According to the clinical criteria there were 12 Cerebro DCS, 57 Medullary DCS, 15 Vestibular DCS, 8 Ctrl+ (accident-free divers), and 22 Ctrl- (non-divers). This work demonstrates that accident-free divers have less mtDNA than non-divers, which leads to the assumption that hyperbaric exposure degrades the mtDNA. mtDNA levels are on average greater in divers with DCS compared with accident-free divers. On another hand, the amount of double strand DNA (dsDNA) is neither significantly different between controls, nor between the different DCS types. Initially the increase in circulating oligonucleotides was attributed to the destruction of cells by bubble abrasion following necrotic phenomena. If there really is a significant difference between the Medullary DCS and the Ctrl-, this difference is not significant between these same DCS and the Ctrl+. This refutes the idea of massive degassing and suggests the need for new research in order to verify that oxidative stress could be a key element without necessarily being sufficient for the occurrence of a neurological type of accident.
Collapse
Affiliation(s)
- Jean-Eric Blatteau
- Institut de Recherche Biomédicale des Armées, Equipe Résidante de Recherche Subaquatique Opérationnelle, Département Environnement Opérationnel, Unité Environnements Extrêmes, Toulon, France
- Hôpital d’Instruction des Armées – Service de Médecine Hyperbare et Expertise Plongée, Toulon, France
| | | | - Sébastien De Maistre
- Hôpital d’Instruction des Armées – Service de Médecine Hyperbare et Expertise Plongée, Toulon, France
| | - Simone Richard
- Mediterranean Institute of Oceanography, Université de Toulon, Toulon, France
| | - Pierre Louges
- Hôpital d’Instruction des Armées – Service de Médecine Hyperbare et Expertise Plongée, Toulon, France
| | - Emmanuel Gempp
- Hôpital d’Instruction des Armées – Service de Médecine Hyperbare et Expertise Plongée, Toulon, France
| | - Arnaud Druelles
- Hôpital d’Instruction des Armées – Service de Médecine Hyperbare et Expertise Plongée, Toulon, France
| | - Henri Lehot
- Hôpital d’Instruction des Armées – Service de Médecine Hyperbare et Expertise Plongée, Toulon, France
| | - Jean Morin
- Hôpital d’Instruction des Armées – Service de Médecine Hyperbare et Expertise Plongée, Toulon, France
| | - Olivier Castagna
- Institut de Recherche Biomédicale des Armées, Equipe Résidante de Recherche Subaquatique Opérationnelle, Département Environnement Opérationnel, Unité Environnements Extrêmes, Toulon, France
| | - Jacques H. Abraini
- Institut de Recherche Biomédicale des Armées, Equipe Résidante de Recherche Subaquatique Opérationnelle, Département Environnement Opérationnel, Unité Environnements Extrêmes, Toulon, France
| | - Jean-Jacques Risso
- Institut de Recherche Biomédicale des Armées, Equipe Résidante de Recherche Subaquatique Opérationnelle, Département Environnement Opérationnel, Unité Environnements Extrêmes, Toulon, France
| | - Nicolas Vallée
- Institut de Recherche Biomédicale des Armées, Equipe Résidante de Recherche Subaquatique Opérationnelle, Département Environnement Opérationnel, Unité Environnements Extrêmes, Toulon, France
| |
Collapse
|
7
|
Lambrechts K, de Maistre S, Abraini JH, Blatteau JE, Risso JJ, Vallée N. Tirofiban, a Glycoprotein IIb/IIIa Antagonist, Has a Protective Effect on Decompression Sickness in Rats: Is the Crosstalk Between Platelet and Leukocytes Essential? Front Physiol 2018; 9:906. [PMID: 30050468 PMCID: PMC6050390 DOI: 10.3389/fphys.2018.00906] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/21/2018] [Indexed: 12/18/2022] Open
Abstract
In its severest forms, decompression sickness (DCS) may extend systemically and/or induce severe neurological deficits, including paralysis or even death. It seems that the sterile and ischemic inflammatory phenomena are consecutive to the reaction of the bubbles with the organism and that the blood platelet activation plays a determinant role in the development of DCS. According to the hypotheses commonly put forward, the bubbles could either activate the platelets by direct contact or be the cause of abrasion of the vascular epithelium, which would expose the basal plate glycogen and then prompt the platelets to activate. The purpose of this study is to confirm anti-platelet drugs specific to GPIIb/IIIa integrin could prevent DCS, using a rat model. There is a significant difference concerning the incidence of the drug on the clinical status of the rats (p = 0.016), with a better clinical outcome for rats treated with tirofiban (TIR) compared with the control rats (p = 0.027), even if the three anti-GPIIb/IIIa agents used have limited respiratory distress. TIR limited the decrease in platelet counts following the hyperbaric exposure. TIR help to prevent from DCS. TIR is specific to GPIIb/IIIa whereas eptifibatide and abciximab could inhibit αVβ3 and αMβ2 involved in communication with the immune system. While inhibiting GPIIb/IIIa could highlight a platelet-dependent inflammatory pathway that improves DCS outcomes, we wonder whether inhibiting the αVβ3 and αMβ2 communications is not a wrong approach for limiting mortality in DCS.
Collapse
Affiliation(s)
- Kate Lambrechts
- Département Environnement Opérationnel, Unité Environnements Extrêmes, Institut de Recherche Biomédicale des Armées - Equipe Résidente de Recherche Subaquatique Opérationnelle (Armed Forces Biomedical Research Institute - Resident Operational Subaquatic Research Team), Toulon, France.,Laboratoire Motricité Humaine Expertise Sport Santé (LAMHESS - Human Motricity, Education, Sport and Health Laboratory), Université du Sud Toulon Var, La Garde, France
| | - Sébastien de Maistre
- Hôpital d'Instruction des Armées - Service de Médecine Hyperbare et Expertise Plongée (Military Teaching Hospital - Hyperbaric Medicine and Diving Expertise Department), Toulon, France
| | - Jacques H Abraini
- Département Environnement Opérationnel, Unité Environnements Extrêmes, Institut de Recherche Biomédicale des Armées - Equipe Résidente de Recherche Subaquatique Opérationnelle (Armed Forces Biomedical Research Institute - Resident Operational Subaquatic Research Team), Toulon, France.,Département d'Anesthésiologie, Université Laval, Laval, QC, Canada.,Faculté de Médecine, Université de Caen Normandie (UNICAEN), Caen, France
| | - Jean-Eric Blatteau
- Hôpital d'Instruction des Armées - Service de Médecine Hyperbare et Expertise Plongée (Military Teaching Hospital - Hyperbaric Medicine and Diving Expertise Department), Toulon, France
| | - Jean-Jacques Risso
- Département Environnement Opérationnel, Unité Environnements Extrêmes, Institut de Recherche Biomédicale des Armées - Equipe Résidente de Recherche Subaquatique Opérationnelle (Armed Forces Biomedical Research Institute - Resident Operational Subaquatic Research Team), Toulon, France
| | - Nicolas Vallée
- Département Environnement Opérationnel, Unité Environnements Extrêmes, Institut de Recherche Biomédicale des Armées - Equipe Résidente de Recherche Subaquatique Opérationnelle (Armed Forces Biomedical Research Institute - Resident Operational Subaquatic Research Team), Toulon, France
| |
Collapse
|
8
|
Nates JL, Cattano D, Costa FS, Chelly JE, Doursout MF. Thromboelastographic assessment of the impact of mexiletine on coagulation abnormalities induced by air or normal saline intravenous injections in conscious rats. Diving Hyperb Med 2017; 47:228-232. [PMID: 29241232 PMCID: PMC6706339 DOI: 10.28920/dhm47.4.228-232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 09/11/2017] [Indexed: 11/05/2022]
Abstract
BACKGROUND Thromboelastography (TEG) in venous air embolism (VAE) has been poorly studied. We induced coagulation abnormalities by VAE in a rat model, assessed by TEG with and without mexiletine, a lidocaine analogue local anesthetic. METHODS Twenty-three Sprague Dawley rats instrumented under isoflurane anesthesia and allowed to recover five days prior to the experiments were randomized into three experimental groups: 1) VAE (n = 6); 2) VAE and mexiletine (n = 9); and 3) normal saline (NS) alone (control group, n = 8). Blood samples were collected at baseline, one hour (h) and 24 h in all groups and analyzed by TEG to record the R, K, angle α and MA parameters. RESULTS In Group 1, VAE decreased significantly R at 1 h (31%), K at 1 h (59%) and 24 h (34%); α increased significantly at 1 h (30%) and 24 h (22%). While R returned to baseline values within 24 h, K, MA and α did not. In group-2 (Mexiletine + VAE), K and R decreased at 1 h (48% and 29%, respectively) and at 24 h the changes were non-significant. Angle α increased at 1 h (28%) and remained increased for 24 h (25%). In group 3 (NS), only R was temporarily affected. MA increased significantly at 24 h only in the VAE alone group. CONCLUSION As expected, VAE produced a consistent and significant hypercoagulable response diagnosed/confirmed by TEG. Mexiletine prevented the MA elevation seen with VAE and corrected R and K time at 24 h, whereas angle α remained unchanged. Mexiletine seemed to attenuate the hypercoagulability associated with VAE in this experiment. These results may have potential clinical applications and deserve further investigation.
Collapse
Affiliation(s)
- Joseph L Nates
- Department of Critical Care Medicine, Division of Anesthesiology, Critical Care, and Pain Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 112, Houston, TX 77030, USA,
| | - Davide Cattano
- Department of Anesthesiology, The University of Texas Medical School at Houston, Houston, Texas, USA
| | | | - Jacques E Chelly
- Department of Anesthesiology, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Marie-Francoise Doursout
- Department of Anesthesiology, The University of Texas Medical School at Houston, Houston, Texas, USA
| |
Collapse
|
9
|
The effect of the perfluorocarbon emulsion Oxycyte on platelet count and function in the treatment of decompression sickness in a swine model. Blood Coagul Fibrinolysis 2017; 27:702-10. [PMID: 26650458 DOI: 10.1097/mbc.0000000000000481] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Decompression from elevated ambient pressure is associated with platelet activation and decreased platelet counts. Standard treatment for decompression sickness (DCS) is hyperbaric oxygen therapy. Intravenous perfluorocarbon (PFC) emulsion is a nonrecompressive therapy being examined that improves mortality in animal models of DCS. However, PFC emulsions are associated with a decreased platelet count. We used a swine model of DCS to study the effect of PFC therapy on platelet count, function, and hemostasis. Castrated male swine (n = 50) were fitted with a vascular port, recovered, randomized, and compressed to 180 feet of sea water (fsw) for 31 min followed by decompression at 30 fsw/min. Animals were observed for DCS, administered 100% oxygen, and treated with either emulsified PFC Oxycyte (DCS-PFC) or isotonic saline (DCS-NS). Controls underwent the same procedures, but were not compressed (Sham-PFC and Sham-NS). Measurements of platelet count, thromboelastometry, and coagulation were obtained 1 h before compression and 1, 24, 48, 96, 168 and 192 h after treatment. No significant changes in normalized platelet counts were observed. Prothrombin time was elevated in DCS-PFC from 48 to 192 h compared with DCS-NS, and from 96 to 192 h compared with Sham-PFC. Normalized activated partial thromboplastin time was also elevated in DCS-PFC from 168 to 192 h compared with Sham-PFC. No bleeding events were noted. DCS treated with PFC (Oxycyte) does not impact platelet numbers, whole blood clotting by thromboelastometry, or clinical bleeding. Late changes in prothrombin time and activated partial thromboplastin time associated with PFC use in both DCS therapy and controls warrant further investigation.
Collapse
|
10
|
Could some aviation deep vein thrombosis be a form of decompression sickness? J Thromb Thrombolysis 2016; 42:346-51. [PMID: 27106903 DOI: 10.1007/s11239-016-1368-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Aviation deep vein thrombosis is a challenge poorly understood in modern aviation. The aim of the present project was to determine if cabin decompression might favor formation of vascular bubbles in commercial air travelers. Thirty commercial flights were taken. Cabin pressure was noted at take-off and at every minute following, until the pressure stabilized. These time-pressure profiles were imported into the statistics program R and analyzed using the package SCUBA. Greatest pressure differentials between tissues and cabin pressures were estimated for 20, 40, 60, 80 and 120 min half-time compartments. Time to decompress ranged from 11 to 47 min. The greatest drop in cabin pressure was from 1022 to 776 mBar, equivalent to a saturated diver ascending from 2.46 msw depth. Mean pressure drop in flights >2 h duration was 193 mBar, while mean pressure drop in flights <2 h was 165 mBar. The greatest drop in pressure over 1 min was 28 mBar. Over 30 commercial flights it was found that the drop in cabin pressure was commensurate with that found to cause bubbles in man. Both the US Navy and the Royal Navy mandate far slower decompression from states of saturation, being 1.7 and 1.9 mBar/min respectively. The median overall rate of decompression found in this study was 8.5 mBar/min, five times the rate prescribed for USN saturation divers. The tissues associated with hypobaric bubble formation are likely slower than those associated with bounce diving, with 60 min a potentially useful index.
Collapse
|
11
|
Yamakoshi K, Yagishita K, Tsuchimochi H, Inagaki T, Shirai M, Poole DC, Kano Y. Microvascular oxygen partial pressure during hyperbaric oxygen in diabetic rat skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2015; 309:R1512-20. [PMID: 26468263 DOI: 10.1152/ajpregu.00380.2015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/10/2015] [Indexed: 11/22/2022]
Abstract
Hyperbaric oxygen (HBO) is a major therapeutic treatment for ischemic ulcerations that perforate skin and underlying muscle in diabetic patients. These lesions do not heal effectively, in part, because of the hypoxic microvascular O2 partial pressures (PmvO2 ) resulting from diabetes-induced cardiovascular dysfunction, which alters the dynamic balance between O2 delivery (Q̇o2) and utilization (V̇o2) rates. We tested the hypothesis that HBO in diabetic muscle would exacerbate the hyperoxic PmvO2 dynamics due, in part, to a reduction or slowing of the cardiovascular, sympathetic nervous, and respiratory system responses to acute HBO exposure. Adult male Wistar rats were divided randomly into diabetic (DIA: streptozotocin ip) and healthy (control) groups. A small animal hyperbaric chamber was pressurized with oxygen (100% O2) to 3.0 atmospheres absolute (ATA) at 0.2 ATA/min. Phosphorescence quenching techniques were used to measure PmvO2 in tibialis anterior muscle of anesthetized rats during HBO. Lumbar sympathetic nerve activity (LSNA), heart rate (HR), and respiratory rate (RR) were measured electrophysiologically. During the normobaric hyperoxia and HBO, DIA tibialis anterior PmvO2 increased faster (mean response time, CONT 78 ± 8, DIA 55 ± 8 s, P < 0.05) than CONT. Subsequently, PmvO2 remained elevated at similar levels in CONT and DIA muscles until normobaric normoxic recovery where the DIA PmvO2 retained its hyperoxic level longer than CONT. Sympathetic nervous system and cardiac and respiratory responses to HBO were slower in DIA vs. CONT. Specifically the mean response times for RR (CONT: 6 ± 1 s, DIA: 29 ± 4 s, P < 0.05), HR (CONT: 16 ± 1 s, DIA: 45 ± 5 s, P < 0.05), and LSNA (CONT: 140 ± 16 s, DIA: 247 ± 34 s, P < 0.05) were greater following HBO onset in DIA than CONT. HBO treatment increases tibialis anterior muscle PmvO2 more rapidly and for a longer duration in DIA than CONT, but not to a greater level. Whereas respiratory, cardiovascular, and LSNA responses to HBO are profoundly slowed in DIA, only the cardiovascular arm (via HR) may contribute to the muscle vascular incompetence and these faster PmvO2 kinetics.
Collapse
Affiliation(s)
- Kohei Yamakoshi
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Tokyo, Japan
| | - Kazuyoshi Yagishita
- Clinical Center for Sports Medicine and Sports Dentistry, Hyperbaric Medical Center/Sports Medicine Clinical Center, Medical Hospital of Tokyo Medical and Dental University, Tokyo, Japan
| | - Hirotsugu Tsuchimochi
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan; and
| | - Tadakatsu Inagaki
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan; and
| | - Mikiyasu Shirai
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan; and
| | - David C Poole
- Departments of Anatomy & Physiology and Kinesiology, Kansas State University, Manhattan, Kansas
| | - Yutaka Kano
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Tokyo, Japan;
| |
Collapse
|
12
|
Clopidogrel reduces the inflammatory response of lung in a rat model of decompression sickness. Respir Physiol Neurobiol 2015; 211:9-16. [DOI: 10.1016/j.resp.2015.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 02/24/2015] [Accepted: 02/24/2015] [Indexed: 02/08/2023]
|
13
|
Lambrechts K, Pontier JM, Mazur A, Theron M, Buzzacott P, Wang Q, Belhomme M, Guerrero F. Mechanism of action of antiplatelet drugs on decompression sickness in rats: a protective effect of anti-GPIIbIIIa therapy. J Appl Physiol (1985) 2015; 118:1234-9. [PMID: 25792711 DOI: 10.1152/japplphysiol.00125.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/13/2015] [Indexed: 11/22/2022] Open
Abstract
Literature highlights the involvement of disseminated thrombosis in the pathophysiology of decompression sickness (DCS). We examined the effect of several antithrombotic treatments targeting various pathways on DCS outcome: acetyl salicylate, prasugrel, abciximab, and enoxaparin. Rats were randomly assigned to six groups. Groups 1 and 2 were a control nondiving group (C; n = 10) and a control diving group (CD; n = 30). Animals in Groups 3 to 6 were treated before hyperbaric exposure (HBE) with either prasugrel (n = 10), acetyl salicylate (n = 10), enoxaparin (n = 10), or abciximab (n = 10). Blood samples were taken for platelet factor 4 (PF4), thiobarbituric acid reactive substances (TBARS), and von Willebrand factor analysis. Onset of DCS symptoms and death were recorded during a 60-min observation period after HBE. Although we observed fewer outcomes of DCS in all treated groups compared with the CD, statistical significance was reached in abciximab only (20% vs. 73%, respectively, P = 0.007). We also observed significantly higher levels of plasmatic PF4 in abciximab (8.14 ± 1.40 ng/ml; P = 0.004) and enoxaparin groups (8.01 ± 0.80 ng/ml; P = 0.021) compared with the C group (6.45 ± 1.90 ng/ml) but not CD group (8.14 ± 1.40 ng/ml). Plasmatic levels of TBARS were significantly higher in the CD group than the C group (49.04 ± 11.20 μM vs. 34.44 ± 5.70 μM, P = 0.002). This effect was prevented by all treatments. Our results suggest that abciximab pretreatment, a powerful glycoprotein IIb/IIIa receptor antagonist, has a strong protective effect on decompression risk by significantly improving DCS outcome. Besides its powerful inhibitory action on platelet aggregation, we suggest that abciximab could also act through its effects on vascular function, oxidative stress, and/or inflammation.
Collapse
Affiliation(s)
- Kate Lambrechts
- Orphy Laboratory, Université de Bretagne Occidentale, Brest, France; Université de Toulon, LAMHESS, La Garde, France; and Université Nice Sophia Antipolis, LAMHESS, Nice, France
| | | | - Aleksandra Mazur
- Orphy Laboratory, Université de Bretagne Occidentale, Brest, France
| | - Michaël Theron
- Orphy Laboratory, Université de Bretagne Occidentale, Brest, France
| | - Peter Buzzacott
- Orphy Laboratory, Université de Bretagne Occidentale, Brest, France
| | - Qiong Wang
- Orphy Laboratory, Université de Bretagne Occidentale, Brest, France
| | - Marc Belhomme
- Orphy Laboratory, Université de Bretagne Occidentale, Brest, France
| | | |
Collapse
|
14
|
Mazur A, Buzzacott P, Lambrechts K, Wang Q, Belhomme M, Theron M, Popov G, Distefano G, Guerrero F. Different effect of l-NAME treatment on susceptibility to decompression sickness in male and female rats. Appl Physiol Nutr Metab 2014; 39:1280-5. [PMID: 25181356 DOI: 10.1139/apnm-2014-0148] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vascular bubble formation results from supersaturation during inadequate decompression contributes to endothelial injuries, which form the basis for the development of decompression sickness (DCS). Risk factors for DCS include increased age, weight-fat mass, decreased maximal oxygen uptake, chronic diseases, dehydration, and nitric oxide (NO) bioavailability. Production of NO is often affected by diving and its expression-activity varies between the genders. Little is known about the influence of sex on the risk of DCS. To study this relationship we used an animal model of Nω-nitro-l-arginine methyl ester (l-NAME) to induce decreased NO production. Male and female rats with diverse ages and weights were divided into 2 groups: treated with l-NAME (in tap water; 0.05 mg·mL(-1) for 7 days) and a control group. To control the distribution of nitrogen among tissues, 2 different compression-decompression protocols were used. Results showed that l-NAME was significantly associated with increased DCS in female rats (p = 0.039) only. Weight was significant for both sexes (p = 0.01). The protocol with the highest estimated tissue pressures in the slower compartments was 2.6 times more likely to produce DCS than the protocol with the highest estimated tissue pressures in faster compartments. The outcome of this study had significantly different susceptibility to DCS after l-NAME treatment between the sexes, while l-NAME per se had no effect on the likelihood of DCS. The analysis also showed that for the appearance of DCS, the most significant factors were type of protocol and weight.
Collapse
Affiliation(s)
- Aleksandra Mazur
- a Laboratoire ORPHY, UFR Sciences et Techniques, Université de Bretagne Occidentale, 6 Av. Le Gorgeu, CS 93837 29238 BREST Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Pontier JM, Lambrechts K. Effect of oxygen-breathing during a decompression-stop on bubble-induced platelet activation after an open-sea air dive: oxygen-stop decompression. Eur J Appl Physiol 2014; 114:1175-81. [PMID: 24563091 DOI: 10.1007/s00421-014-2841-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 01/30/2014] [Indexed: 11/25/2022]
Abstract
PURPOSE We highlighted a relationship between decompression-induced bubble formation and platelet micro-particle (PMP) release after a scuba air-dive. It is known that decompression protocol using oxygen-stop accelerates the washout of nitrogen loaded in tissues. The aim was to study the effect of oxygen deco-stop on bubble formation and cell-derived MP release. METHODS Healthy experienced divers performed two scuba-air dives to 30 msw for 30 min, one with an air deco-stop and a second with 100% oxygen deco-stop at 3 msw for 9 min. Bubble grades were monitored with ultrasound and converted to the Kisman integrated severity score (KISS). Blood samples for cell-derived micro-particle analysis (AnnexinV for PMP and CD31 for endothelial MP) were taken 1 h before and after each dive. RESULTS Mean KISS bubble score was significantly lower after the dive with oxygen-decompression stop, compared to the dive with air-decompression stop (4.3 ± 7.3 vs. 32.7 ± 19.9, p < 0.001). After the dive with an air-breathing decompression stop, we observed an increase of the post-dive mean values of PMP (753 ± 245 vs. 381 ± 191 ng/μl, p = 0.003) but no significant change in the oxygen-stop decompression dive (329 ± 215 vs. 381 +/191 ng/μl, p = 0.2). For the post-dive mean values of endothelial MP, there was no significant difference between both the dives. CONCLUSIONS The Oxygen breathing during decompression has a beneficial effect on bubble formation accelerating the washout of nitrogen loaded in tissues. Secondary oxygen-decompression stop could reduce bubble-induced platelet activation and the pro-coagulant activity of PMP release preventing the thrombotic event in the pathogenesis of decompression sickness.
Collapse
Affiliation(s)
- J-M Pontier
- Diving and Hyperbaric Department, French Navy Diving School, BP 311, 83800, Toulon, France
| | | |
Collapse
|
16
|
Vallée N, Gaillard S, Peinnequin A, Risso JJ, Blatteau JE. Evidence of cell damages caused by circulating bubbles: high level of free mitochondrial DNA in plasma of rats. J Appl Physiol (1985) 2013; 115:1526-32. [DOI: 10.1152/japplphysiol.00025.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bubble formation can occur in the vascular system after diving, leading to decompression sickness (DCS). DCS signs and symptoms range from minor to death. Too often, patients are admitted to a hyperbaric center with atypical symptoms, as bubbles cannot be detected anymore. In the absence of a relevant biomarker for humans, the therapeutic management remains difficult. As circulating DNA was found in the blood of healthy humans and animals, our study was made to correlate the extracellular mitochondrial DNA (mDNA) concentration with the occurrence of clinical DCS symptoms resulting from initial bubble-induced damages. Therefore, 109 rats were subjected to decompression from a simulated 90-m sea water dive, after which, 78 rats survived (71.6%). Among the survivors, 15.6% exhibited typical DCS symptoms (DCS group), whereas the remaining 56% showed no detectable symptoms (noDCS group). Here, we report that the symptomatic rats displayed both a circulating mDNA level (DNADCS → 2.99 ± 2.62) and a bubble grade (median Spencer score = 3) higher than rats from the noDCS group (DNAnoDCS → 1.49 ± 1.27; Spencer score = 1). These higher levels could be correlated with the platelet and leukocyte consumption induced by the pathogenic decompression. Rats with no detectable bubble had lower circulating mDNA than those with higher bubble scores. We determined that in rats, a level of circulating mDNA >1.91 was highly predictive of DCS with a positive-predictive value of 87.3% and an odds ratio of 4.57. Thus circulating mDNA could become a relevant biomarker to diagnose DCS and should be investigated further to confirm its potential application in humans.
Collapse
Affiliation(s)
- Nicolas Vallée
- Equipe Résidante de Recherche Subaquatique Opérationnelle, Institut de Recherche Biomédicale des Armées, Toulon, Département Environnement Opérationnel, Unité Environnements Extrêmes, Toulon Cedex, France; and
| | - Sandrine Gaillard
- Plateforme Technologique BioTechServices, Université du Sud Toulon Var, La Garde Cedex, France
| | - André Peinnequin
- Equipe Résidante de Recherche Subaquatique Opérationnelle, Institut de Recherche Biomédicale des Armées, Toulon, Département Environnement Opérationnel, Unité Environnements Extrêmes, Toulon Cedex, France; and
| | - Jean-Jacques Risso
- Equipe Résidante de Recherche Subaquatique Opérationnelle, Institut de Recherche Biomédicale des Armées, Toulon, Département Environnement Opérationnel, Unité Environnements Extrêmes, Toulon Cedex, France; and
| | - Jean-Eric Blatteau
- Equipe Résidante de Recherche Subaquatique Opérationnelle, Institut de Recherche Biomédicale des Armées, Toulon, Département Environnement Opérationnel, Unité Environnements Extrêmes, Toulon Cedex, France; and
| |
Collapse
|
17
|
Effect of a single, open-sea, air scuba dive on human micro- and macrovascular function. Eur J Appl Physiol 2013; 113:2637-45. [DOI: 10.1007/s00421-013-2676-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 05/31/2013] [Indexed: 11/26/2022]
|
18
|
Wang Q, Belhomme M, Guerrero F, Mazur A, Lambrechts K, Theron M. Diving under a microscope--a new simple and versatile in vitro diving device for fluorescence and confocal microscopy allowing the controls of hydrostatic pressure, gas pressures, and kinetics of gas saturation. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2013; 19:608-616. [PMID: 23590810 DOI: 10.1017/s1431927613000378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
How underwater diving effects the function of the arterial wall and the activities of endothelial cells is the focus of recent studies on decompression sickness. Here we describe an in vitro diving system constructed to achieve real-time monitoring of cell activity during simulated dives under fluorescent microscopy and confocal microscopy. A 1-mL chamber with sapphire windows on both sides and located on the stage of an inverted microscope was built to allow in vitro diving simulation of isolated cells or arteries in which activities during diving are monitored in real-time via fluorescent microscopy and confocal microscopy. Speed of compression and decompression can range from 20 to 2000 kPa/min, allowing systemic pressure to range up to 6500 kPa. Diving temperature is controlled at 37°C. During air dive simulation oxygen partial pressure is optically monitored. Perfusion speed can range from 0.05 to 10 mL/min. The system can support physiological viability of in vitro samples for real-time monitoring of cellular activity during diving. It allows regulations of pressure, speeds of compression and decompression, temperature, gas saturation, and perfusion speed. It will be a valuable tool for hyperbaric research.
Collapse
Affiliation(s)
- Qiong Wang
- Laboratory ORPHY, Université Européenne de Bretagne, Université de Brest, 6 Avenue Le Gorgeu CS 93837, 29238 Brest-CEDEX 3, France
| | | | | | | | | | | |
Collapse
|
19
|
Pontier JM, Gempp E, Ignatescu M. Blood platelet-derived microparticles release and bubble formation after an open-sea air dive. Appl Physiol Nutr Metab 2012; 37:888-92. [PMID: 22735037 DOI: 10.1139/h2012-067] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bubble-induced platelet aggregation offers an index for evaluating decompression severity in humans and in a rat model of decompression sickness. Endothelial cells, blood platelets, or leukocytes shed microparticles (MP) upon activation and during cell apoptosis. The aim was to study blood platelet MP (PMP) release and bubble formation after a scuba-air dive in field conditions. Healthy, experienced divers were assigned to 1 experimental group (n = 10) with an open-sea air dive to 30 msw for 30 min and 1 control group (n = 5) during head-out water immersion for the same period. Bubble grades were monitored with a pulsed doppler according to Kissman Integrated Severity Score (KISS). Blood samples for platelet count (PC) and PMP (annexin V and CD41) were taken 1 h before and after exposure in both groups. The result showed a decrease in post-dive PC compared with pre-dive values in experimental group with no significant change in the control group. We observed a significant increase in PMP values after the dive while no change was revealed in the control group. There was a significant positive correlation between the PMP values after the dive and the KISS bubble score. The present study highlighted a relationship between the post-dive decrease in PC, platelet MP release, and bubble formation. Release of platelet MPs could reflect bubble-induced platelet aggregation and could play a key role in alteration of the coagulation. Further studies must investigate endothelial and leukocyte MP release in the same field conditions.
Collapse
Affiliation(s)
- Jean-Michel Pontier
- French Navy Diving School, Diving Medicine Department, BP 311, 83041 Toulon, France
- UMR MD2 Physiologie et physiopathologie en condition d’oxygénation extrême, IRBA and IFR Jean Roche, France
| | - Emmanuel Gempp
- Diving and Hyperbaric Medicine Department, St Anne’s Military Hospital, BP 20545, 83041 Toulon, France
| | - Mihaela Ignatescu
- Diving Diseases Research Centre (DDRC), Tamar Science Park, Plymouth, UK
| |
Collapse
|