1
|
Yu GF, Yu LQ, Lai QR, Li W. Role of ENaC in gender-associated differences in blood pressure. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2025; 28:527-532. [PMID: 39968083 PMCID: PMC11831749 DOI: 10.22038/ijbms.2025.81832.17701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/18/2024] [Indexed: 02/20/2025]
Abstract
Objectives Sexual dimorphism in blood pressure regulation has been extensively noted in humans, but the underlying mechanisms remain to be fully understood. Our research aims to investigate the possible correlation between gender-associated differences in blood pressure and renal sodium transport. Materials and Methods We measured male and female mice's blood pressure, urine, and plasma sodium concentration when fed a regular or high-Na+ diet. After that, their renal sodium transporters were assessed by western blot and immunofluorescence. For further investigation, male mice were castrated to observe the differences in blood pressure and renal sodium transporters compared to normal mice. Results Male mice exhibited higher blood pressure and lower renal sodium excretion than female littermates. Furthermore, the blood pressure of male mice exhibited a more significant and rapid increase relative to female mice when the diet was switched from control sodium to high sodium. Western blot and immunofluorescent staining revealed that in male mice, the sodium transporters epithelial sodium channel (ENaC) and the upstream kinases SPAK (Ste20-related proline/alanine-rich kinase), OSR1 (oxidative stress response kinase 1), and WNK4 (Lysine-Deficient Protein Kinase 4) were elevated. Beyond that, male mice exhibited lowered blood pressure and reduced abundance of ENaC (α, β, and γ) after castration. Conclusion ENaC plays a significant role in gender-associated differences in blood pressure and renal sodium reabsorption.
Collapse
Affiliation(s)
- Guo-feng Yu
- Department of Clinical Laboratory, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China, 310052
- These authors contributed equally to this work
| | - Li-qin Yu
- Qiaosi Branch, First People’s Hospital of Linping District, Hangzhou, Zhejiang Province, China
- These authors contributed equally to this work
| | - Qin-rui Lai
- Department of Clinical Laboratory, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China, 310052
| | - Wei Li
- Department of Clinical Laboratory, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China, 310052
| |
Collapse
|
2
|
Pesova P, Jiravska Godula B, Jiravsky O, Jelinek L, Sovova M, Moravcova K, Ozana J, Ranic I, Neuwirth R, Miklik R, Pekar M, Sknouril L, Tuka V, Sovova E. Peak systolic blood pressure during preparticipation exercise testing in 12,083 athletes: age, sex, and workload-indexed values and predictors. Front Physiol 2024; 15:1456331. [PMID: 39651432 PMCID: PMC11621218 DOI: 10.3389/fphys.2024.1456331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/30/2024] [Indexed: 12/11/2024] Open
Abstract
Aim Assessment of blood pressure during exercise is routine in athletes, but normal values remain equivocal. This study examines the response of systolic blood pressure (SBP) to exercise in a large cohort of athletes and establishes normative values by sex and age. Methods Competitive athletes free of cardiovascular disease underwent pre-participation exercise testing on a bicycle ergometer. Resting (SBPrest) and peak blood pressure (SBPpeak), heart rate (HRrest and HRpeak), and power output (WR) were recorded. Workload indexed values were calculated. Results The cohort included 12,083 athletes (median age 15 years, 26.9% female). Median peak exercise SBP was similar between sexes, but WR-indexed measures including SBP/WR ratio and SBP/(WR/kg) slope were higher in females (0.9 vs. 0.7, p < 0.001; 10.94 vs. 9.52, p < 0.001). Univariate analyses revealed significant associations between SBPpeak and several predictors, including sex, age, weight, height, SBPrest, DBPrest, HRrest, HRpeak, and WR (all p < .001). Multivariate analysis showed that SBPrest (beta = 0.353, 95% CI [0.541, 0.609], p < 0.001), height (beta = 0.303, 95% CI [0.360, 0.447], p < 0.001), WR (beta = 0.171, 95% CI [0.029, 0.045], p < 0.001), and age (beta = 0.093, 95% CI [0.162, 0.241], p < 0.001) were the strongest predictors of SBPpeak. Conclusion This study provides reference values for the interpretation of SBP responses to exercise in athletes. Multivariate analyses highlight the complex interplay of factors influencing peak SBP, including SBPrest, height, WR, age, DBPrest, sex, endurance sport category, and weight. In future studies, these findings may inform the development of personalised training strategies and risk stratification models in athletic populations.
Collapse
Affiliation(s)
- Petra Pesova
- Department of Exercise Medicine and Cardiovascular Rehabilitation, University Hospital Olomouc and Faculty of Medicine, Palacky University, Olomouc, Czechia
- Sports Cardiology Center, Agel Hospital Trinec-Podlesi, Trinec, Czechia
| | - Bogna Jiravska Godula
- Department of Exercise Medicine and Cardiovascular Rehabilitation, University Hospital Olomouc and Faculty of Medicine, Palacky University, Olomouc, Czechia
- Sports Cardiology Center, Agel Hospital Trinec-Podlesi, Trinec, Czechia
| | - Otakar Jiravsky
- Sports Cardiology Center, Agel Hospital Trinec-Podlesi, Trinec, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Libor Jelinek
- Department of Exercise Medicine and Cardiovascular Rehabilitation, University Hospital Olomouc and Faculty of Medicine, Palacky University, Olomouc, Czechia
| | - Marketa Sovova
- Department of Exercise Medicine and Cardiovascular Rehabilitation, University Hospital Olomouc and Faculty of Medicine, Palacky University, Olomouc, Czechia
| | - Katarina Moravcova
- Department of Exercise Medicine and Cardiovascular Rehabilitation, University Hospital Olomouc and Faculty of Medicine, Palacky University, Olomouc, Czechia
| | - Jaromir Ozana
- Department of Exercise Medicine and Cardiovascular Rehabilitation, University Hospital Olomouc and Faculty of Medicine, Palacky University, Olomouc, Czechia
| | - Ivan Ranic
- Sports Cardiology Center, Agel Hospital Trinec-Podlesi, Trinec, Czechia
- Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| | - Radek Neuwirth
- Sports Cardiology Center, Agel Hospital Trinec-Podlesi, Trinec, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
- Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| | - Roman Miklik
- Sports Cardiology Center, Agel Hospital Trinec-Podlesi, Trinec, Czechia
| | - Matej Pekar
- Sports Cardiology Center, Agel Hospital Trinec-Podlesi, Trinec, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Libor Sknouril
- Sports Cardiology Center, Agel Hospital Trinec-Podlesi, Trinec, Czechia
- Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| | - Vladimir Tuka
- Second Department of Medicine - Department of Cardiovascular Medicine, General University Hospital and First Faculty of Medicine, Charles University, Praha, Czechia
| | - Eliska Sovova
- Department of Exercise Medicine and Cardiovascular Rehabilitation, University Hospital Olomouc and Faculty of Medicine, Palacky University, Olomouc, Czechia
| |
Collapse
|
3
|
Thosar SS, Brito LC. Partial sleep restriction and blood pressure during exercise: surprising findings and future directions. Am J Physiol Heart Circ Physiol 2024; 327:H935-H936. [PMID: 39269454 DOI: 10.1152/ajpheart.00606.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Affiliation(s)
- Saurabh S Thosar
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, United States
- School of Nursing, Oregon Health & Science University, Portland, Oregon, United States
- Oregon Health & Science University-Portland State University School of Public Health, Oregon Health & Science University, Portland, Oregon, United States
- Knight Cardiovascular Institute, Department of Medicine, Oregon Health & Science University, Portland, Oregon, United States
| | - Leandro C Brito
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, United States
| |
Collapse
|
4
|
Asirvatham-Jeyaraj N, Anselmo M, Chantigian DP, Larson M, Lee EJ, Keller-Ross ML. Influence of endogenous and exogenous hormones on the cardiovascular response to lower extremity exercise and group III/IV activation in young females. Am J Physiol Regul Integr Comp Physiol 2024; 327:R379-R388. [PMID: 39034814 PMCID: PMC11483072 DOI: 10.1152/ajpregu.00017.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
Oral contraceptive (OC) use can increase resting blood pressure (BP) in females as well as contribute to greater activation of group III/IV afferents during upper body exercise. It is unknown, however, whether an exaggerated BP response occurs during lower limb exercise in OC users. We sought to elucidate the group III/IV afferent activity-mediated BP and heart rate responses while performing lower extremity tasks during early and late follicular phases in young, healthy females. Females not taking OCs (NOC: n = 8; age: 25 ± 4 yr) and those taking OCs (OC: n = 10; age: 23 ± 2 yr) completed a continuous knee extension/flexion passive stretch (mechanoreflex) and cycling exercise with subsystolic cuff occlusion (exercise pressor reflex), which was followed by a 2-min postexercise circulatory occlusion (PECO) (metaboreflex). Data collection occurred on two occasions: once during the early follicular phase (days 1-4) and once during the late follicular phase (days 10-14) of their menstrual cycle (NOC) or during the placebo and active pill phases (OC). Resting mean arterial BP and heart rate were not different between phases in NOC and OC participants (P > 0.05). Hemodynamic responses to metaboreflex, mechanoreflex, and collective exercise pressor reflex activation were not different between phases in both groups (P > 0.05). In conclusion, although OCs are known to increase BP at rest, our findings indicate that neither endogenous nor exogenous (OC) sex hormones modulate BP during large, lower limb muscle exercise with or without group III/IV afferent activation in young, healthy females.NEW & NOTEWORTHY Sex differences in the cardiovascular response to exercise have been demonstrated and may be dependent on sex hormone levels. Furthermore, oral contraceptives (OCs) have been shown to exaggerate the blood pressure response to upper extremity exercise. The results of this study indicate that neither endogenous nor exogenous (OC) sex hormones modulate BP during lower extremity dynamic exercise or with group III/IV afferent activation in young, healthy females.
Collapse
Affiliation(s)
- Ninitha Asirvatham-Jeyaraj
- Cardiometabolic and Neuromodulation Research Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Miguel Anselmo
- Division of Physical Therapy and Rehabilitation Science, University of Minnesota, Minneapolis, Minnesota, United States
| | - Daniel P Chantigian
- Division of Physical Therapy and Rehabilitation Science, University of Minnesota, Minneapolis, Minnesota, United States
| | - Mia Larson
- Lillehei Clinical Research Unit, University of Minnesota, Cancer and Cardiovascular Research Center, Minnesota, United States
| | - Emma J Lee
- Division of Physical Therapy and Rehabilitation Science, University of Minnesota, Minneapolis, Minnesota, United States
| | - Manda L Keller-Ross
- Division of Physical Therapy and Rehabilitation Science, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
5
|
Lie SL, Hisdal J, Rehn M, Høiseth LØ. Effect of systemic vascular resistance on the agreement between stroke volume by non-invasive pulse wave analysis and Doppler ultrasound in healthy volunteers. PLoS One 2024; 19:e0302159. [PMID: 38713665 DOI: 10.1371/journal.pone.0302159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/27/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND Stroke volume can be estimated beat-to-beat and non-invasively by pulse wave analysis (PWA). However, its reliability has been questioned during marked alterations in systemic vascular resistance (SVR). We studied the effect of SVR on the agreement between stroke volume by PWA and Doppler ultrasound during reductions in stroke volume in healthy volunteers. METHODS In a previous study we simultaneously measured stroke volume by PWA (SVPWA) and suprasternal Doppler ultrasound (SVUS). We exposed 16 healthy volunteers to lower body negative pressure (LBNP) to reduce stroke volume in combination with isometric hand grip to elevate SVR. LBNP was increased by 20 mmHg every 6 minutes from 0 to 80 mmHg, or until hemodynamic decompensation. The agreement between SVPWA and SVUS was examined using Bland-Altman analysis with mixed regression. Within-subject limits of agreement (LOA) was calculated from the residual standard deviation. SVRUS was calculated from SVUS. We allowed for a sloped bias line by introducing the mean of the methods and SVRUS as explanatory variables to examine whether the agreement was dependent on the magnitude of stroke volume and SVRUS. RESULTS Bias ± limits of agreement (LOA) was 27.0 ± 30.1 mL. The within-subject LOA was ±11.1 mL. The within-subject percentage error was 14.6%. The difference between methods decreased with higher means of the methods (-0.15 mL/mL, confidence interval (CI): -0.19 to -0.11, P<0.001). The difference between methods increased with higher SVRUS (0.60 mL/mmHg × min × L-1, 95% CI: 0.48 to 0.72, P<0.001). CONCLUSION PWA overestimated stroke volume compared to Doppler ultrasound during reductions in stroke volume and elevated SVR in healthy volunteers. The agreement between SVPWA and SVUS decreased during increases in SVR. This is relevant in settings where a high level of reliability is required.
Collapse
Affiliation(s)
- Sole Lindvåg Lie
- Norwegian Air Ambulance Foundation, Department of Research and Development, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Section of Vascular Investigations, Oslo University Hospital, Oslo, Norway
| | - Jonny Hisdal
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Section of Vascular Investigations, Oslo University Hospital, Oslo, Norway
| | - Marius Rehn
- Norwegian Air Ambulance Foundation, Department of Research and Development, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Air Ambulance Department, Division of Prehospital Services, Oslo University Hospital, Oslo, Norway
| | - Lars Øivind Høiseth
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Anesthesia and Intensive Care Medicine, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
6
|
Le Bourvellec M, Delpech N, Hervo J, Bosquet L, Enea C. Effect of exercise modalities on postexercise hypotension in pre- and postmenopausal women: a systematic review and meta-analysis. J Appl Physiol (1985) 2024; 136:864-876. [PMID: 38328822 DOI: 10.1152/japplphysiol.00684.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/16/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024] Open
Abstract
Hormonal changes associated with menopause increase the risk of hypertension. Postexercise hypotension (PEH) is an important tool in the prevention and management of hypertension; however, menopause may alter this response. The aim of this systematic review and meta-analysis [International Prospective Registered of Systematic Review (PROSPERO): CRD42023297557] was to evaluate the effect of exercise modalities (aerobic, AE; resistance, RE; and combined exercise, CE: AE + RE) on PEH in women, according to their menopausal status (premenopausal or postmenopausal). We searched controlled trials in PubMed, Web of Science, EBSCO, and Science Direct published between 1990 and March 2023. Inclusion criteria were normotensive, pre- and hypertensive, pre- and postmenopausal women who performed an exercise session compared with a control session and reported systolic blood pressure (SBP) and diastolic blood pressure (DBP) for at least 30 min after the sessions. Methodological quality was assessed using the PEDro scale. Standardized mean differences (Hedge's g) and their 95% confidence intervals (CIs) were calculated, and Q-test and Z-test were conducted to assess differences between moderators. Forty-one trials with 718 women (474 menopausal) were included. Overall, we found with moderate evidence that SBP and DBP decreased significantly after exercise session (SBP: g = -0.69, 95% CI -0.87 to -0.51; DBP: g = -0.31, 95% CI -0.47 to -0.14), with no difference between premenopausal and postmenopausal women. Regarding exercise modalities, RE is more effective than AE and CE in lowering blood pressure (BP) in women regardless of menopausal status. In conclusion, women's menopausal status does not influence the magnitude of PEH, and the best modality to reduce BP in women seems to be RE.NEW & NOTEWORTHY This meta-analysis has demonstrated that a single bout of exercise induces postexercise hypotension (PEH) in women and that the hormonal shift occurring with menopause does not influence the magnitude of PEH. However, we have shown with moderate evidence that the effectiveness of exercise modalities differs between pre- and postmenopausal women. Resistance and combined exercises are the best modalities to induce PEH in premenopausal women, whereas resistance and aerobic exercises are more effective in postmenopausal women.
Collapse
Affiliation(s)
- Morgane Le Bourvellec
- Laboratory MOVE (UR20296), Faculté des Sciences du Sport, Université de Poitiers, Poitiers, France
| | - Nathalie Delpech
- Laboratory MOVE (UR20296), Faculté des Sciences du Sport, Université de Poitiers, Poitiers, France
| | - Jéromine Hervo
- Laboratoire de Traitement de l'information Médicale (LaTIM), UMR1101, Université Bretagne Occidentale, Brest, France
| | - Laurent Bosquet
- Laboratory MOVE (UR20296), Faculté des Sciences du Sport, Université de Poitiers, Poitiers, France
| | - Carina Enea
- Laboratory MOVE (UR20296), Faculté des Sciences du Sport, Université de Poitiers, Poitiers, France
| |
Collapse
|
7
|
Tharpe MA, Linder BA, Babcock MC, Watso JC, Pollin KU, Hutchison ZJ, Barnett AM, Culver MN, Kavazis AN, Brian MS, Robinson AT. Adjusting for muscle strength and body size attenuates sex differences in the exercise pressor reflex in young adults. Am J Physiol Heart Circ Physiol 2023; 325:H1418-H1429. [PMID: 37861651 PMCID: PMC10907031 DOI: 10.1152/ajpheart.00151.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 10/03/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023]
Abstract
Females typically exhibit lower blood pressure (BP) during exercise than males. However, recent findings indicate that adjusting for maximal strength attenuates sex differences in BP during isometric handgrip (HG) exercise and postexercise ischemia (PEI; metaboreflex isolation). In addition, body size is associated with HG strength but its contribution to sex differences in exercising BP is less appreciated. Therefore, the purpose of this study was to determine whether adjusting for strength and body size would attenuate sex differences in BP during HG and PEI. We obtained beat-to-beat BP in 110 participants (36 females, 74 males) who completed 2 min of isometric HG exercise at 40% of their maximal voluntary contraction followed by 3 min of PEI. In a subset (11 females, 17 males), we collected muscle sympathetic nerve activity (MSNA). Statistical analyses included independent t tests and mixed models (sex × time) with covariate adjustment for 40% HG force, height2, and body surface area. Females exhibited a lower absolute 40% HG force than male participants (Ps < 0.001). Females exhibited lower Δsystolic, Δdiastolic, and Δmean BPs during HG and PEI than males (e.g., PEI, Δsystolic BP, 15 ± 11 vs. 23 ± 14 mmHg; P = 0.004). After covariate adjustment, sex differences in BP responses were attenuated. There were no sex differences in MSNA. In a smaller strength-matched cohort, there was no sex × time interactions for BP responses (e.g., PEI systolic BP, P = 0.539; diastolic BP, P = 0.758). Our data indicate that sex differences in exercising BP responses are attenuated after adjusting for muscle strength and body size.NEW & NOTEWORTHY When compared with young males, females typically exhibit lower blood pressure (BP) during exercise. Adjusting for maximal strength attenuates sex differences in BP during isometric handgrip (HG) exercise and postexercise ischemia (PEI), but the contribution of body size is unknown. Novel findings include adjustments for muscle strength and body size attenuate sex differences in BP reactivity during exercise and PEI, and sex differences in body size contribute to HG strength differences.
Collapse
Affiliation(s)
- McKenna A Tharpe
- Neurovascular Physiology Laboratory, School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Braxton A Linder
- Neurovascular Physiology Laboratory, School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Matthew C Babcock
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
- Division of Geriatric Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado, United States
| | - Joseph C Watso
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Kamila U Pollin
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
- War-Related Injury and Illness Study Center, Veterans Affairs Medical Center, Washington, District of Columbia, United States
| | - Zach J Hutchison
- Neurovascular Physiology Laboratory, School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Alex M Barnett
- Neurovascular Physiology Laboratory, School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Meral N Culver
- Neurovascular Physiology Laboratory, School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Andreas N Kavazis
- Neurovascular Physiology Laboratory, School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Michael S Brian
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
- Department of Kinesiology, University of New Hampshire, Durham, New Hampshire, United States
| | - Austin T Robinson
- Neurovascular Physiology Laboratory, School of Kinesiology, Auburn University, Auburn, Alabama, United States
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| |
Collapse
|
8
|
Grotle AK, Langlo JV, Holsbrekken E, Stone AJ, Tanaka H, Fadel PJ. Age-related alterations in the cardiovascular responses to acute exercise in males and females: role of the exercise pressor reflex. Front Physiol 2023; 14:1287392. [PMID: 38028783 PMCID: PMC10652405 DOI: 10.3389/fphys.2023.1287392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Autonomic adjustments of the cardiovascular system are critical for initiating and sustaining exercise by facilitating the redistribution of blood flow and oxygen delivery to meet the metabolic demands of the active skeletal muscle. Afferent feedback from active skeletal muscles evokes reflex increases in sympathetic nerve activity and blood pressure (BP) (i.e., exercise pressor reflex) and contributes importantly to these primary neurovascular adjustments to exercise. When altered, this reflex contributes significantly to the exaggerated sympathetic and BP response to exercise observed in many cardiovascular-related diseases, highlighting the importance of examining the reflex and its underlying mechanism(s). A leading risk factor for the pathogenesis of cardiovascular disease in both males and females is aging. Although regular exercise is an effective strategy for mitigating the health burden of aging, older adults face a greater risk of experiencing an exaggerated cardiovascular response to exercise. However, the role of aging in mediating the exercise pressor reflex remains highly controversial, as conflicting findings have been reported. This review aims to provide a brief overview of the current understanding of the influence of aging on cardiovascular responses to exercise, focusing on the role of the exercise pressor reflex and proposing future directions for research. We reason that this review will serve as a resource for health professionals and researchers to stimulate a renewed interest in this critical area.
Collapse
Affiliation(s)
- A. K. Grotle
- Department of Sports, Food and Natural Science, Western Norway University of Applied Sciences, Bergen, Norway
| | - J. V. Langlo
- Department of Sports, Food and Natural Science, Western Norway University of Applied Sciences, Bergen, Norway
| | - E. Holsbrekken
- Department of Sports, Food and Natural Science, Western Norway University of Applied Sciences, Bergen, Norway
| | - A. J. Stone
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - H. Tanaka
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - P. J. Fadel
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
9
|
Lee JB, Thompson KMA, Teixeira AL, Burr JF, Millar PJ. Cardiovascular responses to combined mechanoreflex and metaboreflex activation in healthy adults: effects of sex and low- versus high-hormone phases in females. J Appl Physiol (1985) 2023; 135:1102-1114. [PMID: 37795529 DOI: 10.1152/japplphysiol.00775.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 09/08/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023] Open
Abstract
Females generally have smaller blood pressure (BP) responses to isolated muscle mechanoreflex and metaboreflex activation compared with males, which may explain sex differences in BP responses to voluntary exercise. The mechanoreflex may be sensitized during exercise, but whether mechanoreflex-metaboreflex interactions differ by sex or variations in sex hormones remains unknown. Thirty-one young healthy subjects (females, n = 16) performed unilateral passive cycling (mechanoreflex), active cycling (40% peak Watts), postexercise circulatory occlusion (PECO; metaboreflex), and passive cycling combined with PECO (combined mechanoreflex and metaboreflex activation). Beat-to-beat BP, heart rate, inactive leg vascular conductance, and active leg muscle oxygenation were measured. Ten females underwent exploratory testing during low- and high-hormone phases of their self-reported menstrual cycle or oral contraceptive use. Systolic BP and heart rate responses did not differ between sexes during active cycling [Δ30 ± 9 vs. 29 ± 11 mmHg (males vs. females), P = 0.9; Δ33 ± 8 vs. 35 ± 6 beats/min, P = 0.4] or passive cycling with PECO (Δ26 ± 11 vs. 21 ± 10 mmHg, P = 0.3; Δ14 ± 7 vs. 18 ± 15 beats/min, P = 0.3). Passive cycling with PECO revealed additive, not synergistic, effects for systolic BP [males: Δ23 ± 14 vs. 26 ± 11 mmHg (sum of isolated passive cycling and PECO vs. combined activation); females: Δ26 ± 11 vs. 21 ± 12 mmHg, interaction P = 0.05]. Results were consistent in subset analyses with sex differences in active cycling BP (P > 0.1) and exploratory analyses of hormone phase (P > 0.4). Despite a lack of statistical equivalence, no differences in cardiovascular responses were found during combined mechanoreflex-metaboreflex activation between sexes or hormone levels. These results provide preliminary data regarding the involvement of muscle mechanoreflex-metaboreflex interactions in mediating sex differences in voluntary exercise BP responses.NEW & NOTEWORTHY The muscle mechanoreflex may be sensitized by metabolites during exercise. We show that cardiovascular responses to combined mechanoreflex (passive cycling) and metaboreflex (postexercise circulatory occlusion) activation are primarily additive and do not differ between males and females, or across variations in sex hormones in females. Our findings provide new insight into the contributions of muscle mechanoreflex-metaboreflex interactions as a cause for prior reports that females have smaller blood pressure responses to voluntary exercise.
Collapse
Affiliation(s)
- Jordan B Lee
- Human Cardiovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Kyle M A Thompson
- Human Performance and Health Research Lab, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - André L Teixeira
- Human Cardiovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jamie F Burr
- Human Performance and Health Research Lab, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Philip J Millar
- Human Cardiovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
10
|
Wan Yusof WMN, Nasaruddin WNS, Hami R, Che Muhamed AM, Ahmad Yusof H. The effect of a single session of isometric handgrip exercise on blood pressure. ISOKINET EXERC SCI 2022. [DOI: 10.3233/ies-220057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: It is unknown whether a session of isometric handgrip (IHG) exercise can influence the blood pressure of hypertensive and normotensive individuals. OBJECTIVE: To compare post exercise hypotension among groups with different resting blood pressure (BP) levels. METHODS: 56 Malay male volunteers (12 normotensive, 14 pre-hypertensive, 19 hypertensive stage 1, and 11 hypertensive stage 2) completed four sets of 2-minute isometric handgrip exercises at 30% of their maximum handgrip contraction with a one-minute break between the sets. Systolic BP (SBP), diastolic BP (DBP), pulse pressure (PP), mean arterial pressure (MAP), resting heart rate (RHR), and handgrip strength (HGS) were measured before and after an hour of IHG exercise. A paired sample t-test, one-way ANOVA, and two-way repeated measure ANCOVA were used to examine the data. RESULTS: All parameters, except RHR and HGS, were significantly changed following the exercise across the BP groups. The SBP, MAP, and HGS were greatly reduced among hypertensive stage 1 (SBP =-6.3 ± 0.6 mmHg; MAP =-4.8 ± 1.1 mmHg; HGS =-6.8 ±-0.4 mmHg) compared to other groups. Meanwhile, the most DBP was reduced among hypertensive stage 2 (mean =-5.2 ± 0.6 mmHg). CONCLUSIONS: The current study discovered a significant reduction in BP among hypertensive stage 1 and 2 individuals after a session of IHG exercise.
Collapse
|
11
|
Teixeira AL, Vianna LC. The exercise pressor reflex: An update. Clin Auton Res 2022; 32:271-290. [PMID: 35727398 DOI: 10.1007/s10286-022-00872-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/25/2022] [Indexed: 02/07/2023]
Abstract
The exercise pressor reflex is a feedback mechanism engaged upon stimulation of mechano- and metabosensitive skeletal muscle afferents. Activation of these afferents elicits a reflex increase in heart rate, blood pressure, and ventilation in an intensity-dependent manner. Consequently, the exercise pressor reflex has been postulated to be one of the principal mediators of the cardiorespiratory responses to exercise. In this updated review, we will discuss classical and recent advancements in our understating of the exercise pressor reflex function in both human and animal models. Particular attention will be paid to the afferent mechanisms and pathways involved during its activation, its effects on different target organs, its potential role in the abnormal cardiovascular response to exercise in diseased states, and the impact of age and biological sex on these responses. Finally, we will highlight some unanswered questions in the literature that may inspire future investigations in the field.
Collapse
Affiliation(s)
- André L Teixeira
- NeuroV̇ASQ̇, Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, DF, Brasília, Brazil
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Lauro C Vianna
- NeuroV̇ASQ̇, Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, DF, Brasília, Brazil.
| |
Collapse
|
12
|
Munley JA, Kelly LS, Mohr AM. Adrenergic Modulation of Erythropoiesis After Trauma. Front Physiol 2022; 13:859103. [PMID: 35514362 PMCID: PMC9063634 DOI: 10.3389/fphys.2022.859103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/02/2022] [Indexed: 11/17/2022] Open
Abstract
Severe traumatic injury results in a cascade of systemic changes which negatively affect normal erythropoiesis. Immediately after injury, acute blood loss leads to anemia, however, patients can remain anemic for as long as 6 months after injury. Research on the underlying mechanisms of such alterations of erythropoiesis after trauma has focused on the prolonged hypercatecholaminemia seen after trauma. Supraphysiologic elevation of catecholamines leads to an inhibitive effect on erythropoiesis. There is evidence to show that alleviation of the neuroendocrine stress response following trauma reduces these inhibitory effects. Both beta blockade and alpha-2 adrenergic receptor stimulation have demonstrated increased growth of hematopoietic progenitor cells as well as increased pro-erythropoietic cytokines after trauma. This review will describe prior research on the neuroendocrine stress response after trauma and its consequences on erythropoiesis, which offer insight into underlying mechanisms of prolonged anemia postinjury. We will then discuss the beneficial effects of adrenergic modulation to improve erythropoiesis following injury and propose future directions for the field.
Collapse
Affiliation(s)
- Jennifer A Munley
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida, Gainesville, FL, United States
| | - Lauren S Kelly
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida, Gainesville, FL, United States
| | - Alicia M Mohr
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida, Gainesville, FL, United States
| |
Collapse
|
13
|
Teixeira AL, Nardone M, Samora M, Fernandes IA, Ramos PS, Sabino-Carvalho JL, Ricardo DR, Millar PJ, Vianna LC. Potentiation of GABAergic synaptic transmission by diazepam acutely increases resting beat-to-beat blood pressure variability in young adults. Am J Physiol Regul Integr Comp Physiol 2022; 322:R501-R510. [PMID: 35348021 DOI: 10.1152/ajpregu.00291.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Resting beat-to-beat blood pressure variability is a powerful predictor of cardiovascular events and end-organ damage. However, its underlying mechanisms remain unknown. Herein, we tested the hypothesis that a potentiation of GABAergic synaptic transmission by diazepam would acutely increase resting beat-to-beat blood pressure variability. In 40 (17 females) young, normotensive subjects, resting beat-to-beat blood pressure (finger photoplethysmography) was continuously measured for 5 to 10 min, 60 min after the oral administration of either diazepam (10 mg) or placebo. The experiments were conducted in a randomized, double-blinded, and placebo-controlled design. Stroke volume was estimated from the blood pressure waveform (ModelFlow) permitting the calculation of cardiac output and total peripheral resistance. Direct recordings of muscle sympathetic nerve activity (MSNA, microneurography) were obtained in a subset of subjects (N=13) and spontaneous cardiac and sympathetic baroreflex sensitivity calculated. Compared to placebo, diazepam significantly increased the standard deviation of systolic (4.7±1.4 vs. 5.7±1.5 mmHg, P=0.001), diastolic (3.8±1.2 vs. 4.5±1.2 mmHg, P=0.007) and mean blood pressure (3.8±1.1 vs. 4.5±1.1 mmHg, P=0.002), as well as cardiac output (469±149 vs. 626±259 ml/min, P<0.001) and total peripheral resistance (1.0±0.3 vs. 1.4±0.6 mmHg/l/min, P<0.001). Similar results were found using different indices of variability. Furthermore, diazepam reduced MSNA burst frequency (placebo: 22±6 vs. diazepam: 18±8 bursts/min, P=0.025) without affecting the arterial baroreflex control of heart rate (placebo: 18.6±6.7 vs. diazepam: 18.8±7.0 ms/mmHg, P=0.87) and MSNA (placebo: -3.6±1.2 vs. diazepam: -3.4±1.5 bursts/100Hb/mmHg, P=0.55). These findings suggest that GABAA receptors modulate resting beat-to-beat blood pressure variability in young adults.
Collapse
Affiliation(s)
- André L Teixeira
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.,NeuroVASQ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, DF, Brazil
| | - Massimo Nardone
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Milena Samora
- NeuroVASQ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, DF, Brazil
| | - Igor Alexandre Fernandes
- NeuroVASQ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, DF, Brazil
| | - Plinio Santos Ramos
- Maternity Hospital Therezinha de Jesus, Faculty of Health and Medical Sciences (SUPREMA), Juiz de Fora, MG, Brazil
| | - Jeann L Sabino-Carvalho
- NeuroVASQ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, DF, Brazil
| | - Djalma Rabelo Ricardo
- Maternity Hospital Therezinha de Jesus, Faculty of Health and Medical Sciences (SUPREMA), Juiz de Fora, MG, Brazil
| | - Philip J Millar
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Lauro C Vianna
- NeuroVASQ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, DF, Brazil
| |
Collapse
|
14
|
Petek BJ, Gustus SK, Churchill TW, Guseh JS, Loomer G, VanAtta C, Baggish AL, Wasfy MM. Sex-Based Differences in Peak Exercise Blood Pressure Indexed to Oxygen Consumption Among Competitive Athletes. Clin Ther 2021; 44:11-22.e3. [PMID: 34819243 DOI: 10.1016/j.clinthera.2021.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/01/2021] [Accepted: 10/27/2021] [Indexed: 01/04/2023]
Abstract
PURPOSE Although exercise testing guidelines define cutoffs for an exaggerated exercise systolic blood pressure (SBP) response, SBPs above these cutoffs are not uncommon in athletes given their high exercise capacity. Alternately, guidelines also specify a normal SBP response that accounts for metabolic equivalents (METs; mean [SD] of 10 [2] mm Hg per MET or 3.5 mL/kg/min oxygen consumption [V˙o2]). SBP and V˙o2 increase less during exercise in females than males. It is not clear if sex-based differences in exercise V˙o2 are related to differences in SBP or if current recommendations for normal increase in SBP per MET produce reasonable estimates using measured METs (ie, V˙o2) in athletes. We therefore examined sex-based differences in exercise SBP indexed to V˙o2 in athletes with the goal of defining normative values for exercise SBP that account for fitness and sex. METHODS Using prospectively collected data from a single sports cardiology program, normotensive athlete patients were identified who had no relevant cardiopulmonary disease and had undergone cardiopulmonary exercise testing with cycle ergometry or treadmill. The relationship between ΔSBP (peak - rest) and ΔV˙o2 (peak - rest) was examined in the total cohort and compared between sexes. FINDINGS A total of 413 athletes (mean [SD] age, 35.5 [14] years; 38% female; mean [SD] peak V˙o2, 46.0 [10.2] mL/kg/min, 127% [27%] predicted) met the inclusion criteria. The ΔSBP correlated with unadjusted ΔV˙o2 (cycle: R2 = 0.18, treadmill: R2 = 0.12; P < 0.0001). Female athletes had lower mean (SD) peak SBP (cycle: 161 [15] vs 186 [24] mm Hg; treadmill: 165 [17] vs 180 [20] mm Hg; P < 0.05) than male athletes. Despite lower peak SBP, mean (SD) ΔSBP relative to unadjusted ΔV˙o2 was higher in female than male athletes (cycle: 25.6 [7.2] vs 21.1 [7.3] mm Hg/L/min; treadmill: 21.6 [7.2] vs 17.0 [6.2] mm Hg/L/min; P < 0.05). When V˙o2 was adjusted for body size and converted to METs, female and male athletes had similar mean (SD) ΔSBP /ΔMET (cycle: 6.0 [2.1] vs 5.8 [2.0] mm Hg/mL/kg/min; treadmill: 4.7 [1.8] vs 4.8 [1.7] mm Hg/mL/kg/min). IMPLICATIONS In this cohort of athletes without known cardiopulmonary disease, observed sex-based differences in peak exercise SBP were in part related to the differences in ΔV˙o2 between male and female athletes. Despite lower peak SBP, ΔSBP/unadjusted ΔV˙o2 was paradoxically higher in female athletes. Future work should define whether this finding reflects sex-based differences in the peripheral vascular response to exercise. In this athletic cohort, ΔSBP/ΔMET was similar between sexes and much lower than the ratio that has been proposed by guidelines to define a normal SBP response. Our observed ΔSBP/ΔMET, based on measured rather than estimated METs, provides a clinically useful estimate for normal peak SBP range in athletes.
Collapse
Affiliation(s)
- Bradley J Petek
- Division of Cardiology, Massachusetts General Hospital, Boston, Massachusetts; Cardiovascular Performance Program, Massachusetts General Hospital, Boston, Massachusetts
| | - Sarah K Gustus
- Division of Cardiology, Massachusetts General Hospital, Boston, Massachusetts; Cardiovascular Performance Program, Massachusetts General Hospital, Boston, Massachusetts
| | - Timothy W Churchill
- Division of Cardiology, Massachusetts General Hospital, Boston, Massachusetts; Cardiovascular Performance Program, Massachusetts General Hospital, Boston, Massachusetts
| | - J Sawalla Guseh
- Division of Cardiology, Massachusetts General Hospital, Boston, Massachusetts; Cardiovascular Performance Program, Massachusetts General Hospital, Boston, Massachusetts
| | - Garrett Loomer
- Division of Cardiology, Massachusetts General Hospital, Boston, Massachusetts; Cardiovascular Performance Program, Massachusetts General Hospital, Boston, Massachusetts
| | - Carolyn VanAtta
- Division of Cardiology, Massachusetts General Hospital, Boston, Massachusetts; Cardiovascular Performance Program, Massachusetts General Hospital, Boston, Massachusetts
| | - Aaron L Baggish
- Division of Cardiology, Massachusetts General Hospital, Boston, Massachusetts; Cardiovascular Performance Program, Massachusetts General Hospital, Boston, Massachusetts
| | - Meagan M Wasfy
- Division of Cardiology, Massachusetts General Hospital, Boston, Massachusetts; Cardiovascular Performance Program, Massachusetts General Hospital, Boston, Massachusetts.
| |
Collapse
|
15
|
Sex differences in blood pressure regulation during the isometric exercise under heated environment. Blood Press Monit 2021; 27:55-62. [PMID: 34569989 DOI: 10.1097/mbp.0000000000000566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the absence of heat stress, females increase blood pressure (BP) during isometric handgrip exercise due to cardiac output more than total peripheral resistance (TPR) compared to men. Although heat stress seems to blunt BP responses at rest and during handgrip, possible sex differences remained unknown. We hypothesized that BP responses during handgrip under a heated environment (HOT) will be different between men and women. Eight healthy men (29 ± 6 years) and eight women (26 ± 4 years) participated in this study. The experimental protocol was separated into two environmental conditions: HOT (~ 36 °C) and thermoneutral (TC; ~ 24 °C). In both conditions, participants rested for 30 min and performed the handgrip for 3 min. BP, heart rate (HR) stroke volume and cardiac output were continuously recorded, and TPR was calculated (TPR = mean blood pressure (MBP)/cardiac output). HOT reduced BP and TPR at baseline and during handgrip in females as compared to TC, while males showed similar responses in both thermal conditions. HR was higher under HOT in both groups. Cardiac output and stroke volume were not different under HOT compared to TC for females. In males, cardiac output increased at the last minute of handgrip under HOT through augmented HR, because stroke volume was unchanged. In conclusion, the main effect of HOT was to shift downwards BP and total peripheral resistance at rest and during isometric exercise in females. In males, the combination of handgrip and HOT increased cardiac output by augmented HR, whereas BP presented similar responses between thermal conditions during handgrip.
Collapse
|
16
|
Lee JB, Notay K, Seed JD, Nardone M, Omazic LJ, Millar PJ. Sex Differences in Muscle Metaboreflex Activation following Static Handgrip Exercise. Med Sci Sports Exerc 2021; 53:2596-2604. [PMID: 34310499 DOI: 10.1249/mss.0000000000002747] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Larger blood pressure (BP) responses to relative-intensity static exercise in males vs. females is thought to involve altered muscle metaboreflex activation, but whether this is due to an intrinsic sex difference in metabolite production or to differences in muscle strength and absolute load is unknown. METHODS Continuous BP and heart rate were recorded in 200 healthy young males and females (females: n = 109) during 2 minutes of static handgrip exercise at 30% of maximal voluntary contraction (MVC), followed by 2 minutes of post-exercise circulatory occlusion (PECO). Muscle sympathetic nerve activity (MSNA) was recorded in a subset of participants (n = 39; female n = 21), permitting calculation of signal-averaged resting sympathetic transduction (MSNA-diastolic BP). Sex differences were examined with and without statistical adjustment for MVC. Multivariate regression analyses were performed to identify predictors of BP responses. RESULTS Males had larger systolic BP responses (interactions, P < 0.0001) to static handgrip exercise (24 ± 10 vs. 17 ± 9 mmHg [mean ± SD], P < 0.0001) and PECO (20 ± 11 vs. 16 ± 9 mmHg, P < 0.0001). Adjustment for MVC abolished these sex differences in BP (interactions, P > 0.7). In the subset with MSNA, neither burst frequency or incidence responses to static handgrip exercise or PECO differed between males and females (interactions, P > 0.2). Resting sympathetic transduction was also similar (P = 0.8). Multivariate analysis showed that MVC, the change in MSNA, and sympathetic transduction were predictors of the systolic BP response to static handgrip but only MVC was associated with responses during PECO. CONCLUSION Sex differences in absolute contraction load contribute to differences in BP responses during muscle metaboreflex isolation using PECO. These data do not support an intrinsic effect of sex as being responsible for exercise BP differences between males and females.
Collapse
Affiliation(s)
- Jordan B Lee
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada Toronto General Research Institute, Toronto General Hospital, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Merkely P, Bakos M, Bányai B, Monori-Kiss A, Horváth EM, Bognár J, Benkő R, Oláh A, Radovits T, Merkely B, Ács N, Nádasy GL, Török M, Várbíró S. Sex Differences in Exercise-Training-Related Functional and Morphological Adaptation of Rat Gracilis Muscle Arterioles. Front Physiol 2021; 12:685664. [PMID: 34322036 PMCID: PMC8313298 DOI: 10.3389/fphys.2021.685664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/17/2021] [Indexed: 12/17/2022] Open
Abstract
Background The cardiovascular effects of training have been widely investigated; however, few studies have addressed sex differences in arteriolar adaptation. In the current study, we examined the adaptation of the gracilis arterioles of male and female rats in response to intensive training. Methods Wistar rats were divided into four groups: male exercise (ME) and female exercise (FE) animals that underwent a 12-week intensive swim-training program (5 days/week, 200 min/day); and male control (MC) and female control (FC) animals that were placed in water for 5 min daily. Exercise-induced cardiac hypertrophy was confirmed by echocardiography. Following the training, the gracilis muscle arterioles were prepared, and their biomechanical properties and functional reactivity were tested, using pressure arteriography. Collagen and smooth muscle remodeling were observed in the histological sections. Results Left ventricular mass was elevated in both sexes in response to chronic training. In the gracilis arterioles, the inner radius and wall tension increased in female animals, and the wall thickness and elastic modulus were reduced in males. Myogenic tone was reduced in the ME group, whereas norepinephrine-induced vasoconstriction was elevated in the FE group. More pronounced collagen staining was observed in the ME group than in the MC group. Relative hypertrophy and tangential stress of the gracilis arterioles were higher in females than in males. The direct vasoconstriction induced by testosterone was lower in females and was reduced as an effect of exercise in males. Conclusion The gracilis muscle arteriole was remodeled as a result of swim training, and this adaptation was sex dependent.
Collapse
Affiliation(s)
- Petra Merkely
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
| | - Marcell Bakos
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
| | - Bálint Bányai
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Anna Monori-Kiss
- Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Eszter M Horváth
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Judit Bognár
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary.,Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Rita Benkő
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Attila Oláh
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Nándor Ács
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
| | - György L Nádasy
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Marianna Török
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
| | - Szabolcs Várbíró
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
18
|
Bauer P, Kraushaar L, Hoelscher S, Weber R, Akdogan E, Keranov S, Dörr O, Nef H, Hamm CW, Most A. Blood Pressure Response and Vascular Function of Professional Athletes and Controls. Sports Med Int Open 2021; 5:E45-E52. [PMID: 33889714 PMCID: PMC8055378 DOI: 10.1055/a-1400-1897] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 02/24/2021] [Indexed: 11/03/2022] Open
Abstract
Workload-indexed blood pressure response (wiBPR) to exercise has been shown
to be superior to peak systolic blood pressure (SBP) in predicting mortality
in healthy men. Thus far, however, markers of wiBPR have not been evaluated
for athletes and the association with vascular function is unclear. We
examined 95 male professional athletes (26±5 y) and 30 male controls
(26±4 y). We assessed vascular functional parameters at rest and
wiBPR with a graded bicycle ergometer test and compared values for athletes
with those of controls. Athletes had a lower pulse wave velocity
(6.4±0.9 vs. 7.2±1.5 m/s, p=0.001) compared
to controls. SBP/Watt slope (0.34±0.13 vs.
0.44±0.12 mmHg/W), SBP/MET slope
(6.2±1.8 vs. 7.85±1.8 mmHg/MET) and peak
SBP/Watt ratio (0.61±0.12 vs.
0.95±0.17 mmHg/W) were lower in athletes than in
controls (p<0.001). The SBP/Watt and SBP/MET slope
in athletes were comparable to the reference values, whereas the peak
SBP/Watt-ratio was lower. All vascular functional parameters
measured were not significantly correlated to the wiBPR in either athletes
or controls. In conclusion, our findings indicate the potential use of the
SBP/Watt and SBP/MET slope in pre-participation screening of
athletes. Further, vascular functional parameters, measured at rest, were
unrelated to the wiBPR in athletes and controls.
Collapse
Affiliation(s)
- Pascal Bauer
- Medizinische Klinik I- Kardiologie/Angiologie, Justus Liebig Universitat Giessen, Giessen, Germany
| | | | - Sophie Hoelscher
- Medizinische Klinik I- Kardiologie/Angiologie, Justus Liebig Universitat Giessen, Giessen, Germany
| | - Rebecca Weber
- Medizinische Klinik I- Kardiologie/Angiologie, Justus Liebig Universitat Giessen, Giessen, Germany
| | - Ebru Akdogan
- Medizinische Klinik I- Kardiologie/Angiologie, Justus Liebig Universitat Giessen, Giessen, Germany
| | - Stanislav Keranov
- Medizinische Klinik I- Kardiologie/Angiologie, Justus Liebig Universitat Giessen, Giessen, Germany
| | - Oliver Dörr
- Medizinische Klinik I- Kardiologie/Angiologie, Justus Liebig Universitat Giessen, Giessen, Germany
| | - Holger Nef
- Medizinische Klinik I- Kardiologie/Angiologie, Justus Liebig Universitat Giessen, Giessen, Germany
| | - Christian W Hamm
- Medizinische Klinik I- Kardiologie/Angiologie, Justus Liebig Universitat Giessen, Giessen, Germany.,Department of Cardiology, Kerckhoff-Klinik GmbH, Bad Nauheim, Germany
| | - Astrid Most
- Medizinische Klinik I- Kardiologie/Angiologie, Justus Liebig Universitat Giessen, Giessen, Germany
| |
Collapse
|
19
|
Bauer P, Kraushaar L, Dörr O, Nef H, Hamm CW, Most A. Sex differences in workload-indexed blood pressure response and vascular function among professional athletes and their utility for clinical exercise testing. Eur J Appl Physiol 2021; 121:1859-1869. [PMID: 33709207 PMCID: PMC8192366 DOI: 10.1007/s00421-021-04656-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/05/2021] [Indexed: 12/28/2022]
Abstract
Purpose Sex differences in blood pressure (BP) regulation at rest have been attributed to differences in vascular function. Further, arterial stiffness predicts an exaggerated blood pressure response to exercise (BPR) in healthy young adults. However, the relationship of vascular function to the workload-indexed BPR and potential sex differences in athletes are unknown. Methods We examined 47 male (21.6 ± 1.7 years) and 25 female (21.1 ± 2 years) athletes in this single-center pilot study. We assessed vascular function at rest, including systolic blood pressure (SBP). Further, we determined the SBP/W slope, the SBP/MET slope, and the SBP/W ratio at peak exercise during cycling ergometry. Results Male athletes had a lower central diastolic blood pressure (57 ± 9.5 vs. 67 ± 9.5 mmHg, p < 0.001) but a higher central pulse pressure (37 ± 6.5 vs. 29 ± 4.7 mmHg, p < 0.001), maximum SBP (202 ± 20 vs. 177 ± 15 mmHg, p < 0.001), and ΔSBP (78 ± 19 vs. 58 ± 14 mmHg, p < 0.001) than females. Total vascular resistance (1293 ± 318 vs. 1218 ± 341 dyn*s/cm5, p = 0.369), pulse wave velocity (6.2 ± 0.85 vs. 5.9 ± 0.58 m/s, p = 0.079), BP at rest (125 ± 10/76 ± 7 vs. 120 ± 11/73.5 ± 8 mmHg, p > 0.05), and the SBP/MET slope (5.7 ± 1.8 vs. 5.1 ± 1.6 mmHg/MET, p = 0.158) were not different. The SBP/W slope (0.34 ± 0.12 vs. 0.53 ± 0.19 mmHg/W) and the peak SBP/W ratio (0.61 ± 0.12 vs. 0.95 ± 0.17 mmHg/W) were markedly lower in males than in females (p < 0.001). Conclusion Male athletes displayed a lower SBP/W slope and peak SBP/W ratio than females, whereas the SBP/MET slope was not different between the sexes. Vascular functional parameters were not able to predict the workload-indexed BPR in males and females.
Collapse
Affiliation(s)
- Pascal Bauer
- Department of Cardiology and Angiology, Justus- Liebig- University Giessen, Giessen, Germany.
| | | | - Oliver Dörr
- Department of Cardiology and Angiology, Justus- Liebig- University Giessen, Giessen, Germany
| | - Holger Nef
- Department of Cardiology and Angiology, Justus- Liebig- University Giessen, Giessen, Germany
| | - Christian W Hamm
- Department of Cardiology and Angiology, Justus- Liebig- University Giessen, Giessen, Germany
- Department of Cardiology, Kerckhoff Clinic GmbH, Bad Nauheim, Germany
| | - Astrid Most
- Department of Cardiology and Angiology, Justus- Liebig- University Giessen, Giessen, Germany
| |
Collapse
|
20
|
Blood pressure-lowering efficacy of a 6-week multi-modal isometric exercise intervention. Blood Press Monit 2021; 26:30-38. [PMID: 33136654 DOI: 10.1097/mbp.0000000000000492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Isometric exercise training (IET) is an effective method for reducing resting blood pressure (BP). To date, no research studies have been conducted using multiple exercises within an IET intervention. Previous research has suggested that varied exercise programmes may have a positive effect on adherence. Therefore, this randomized controlled study aimed to investigate the BP-lowering efficacy of a multi-modal IET (MIET) intervention in healthy young adults. Twenty healthy participants were randomized to an MIET [n = 10; four women; SBP 117.9 ± 6.9 mmHg; DBP 66.3 ± 5.1 mmHg] or control (CON) group (n = 10; five women; SBP, 123.3 ± 10.4 mmHg; DBP, 77.3 ± 6.7 mmHg). The MIET group completed three sessions per week of 4, 2-min isometric contractions, with a 1-min rest between each contraction, for 6 weeks. Resting BP and heart rate (HR) were measured at baseline and post-intervention. Pre-to-post intervention within-group reductions in resting BP were observed (SBP: 5.3 ± 6.1 mmHg, DBP: 3.4 ± 3.7 mmHg, MAP: 4.0 ± 3.9 mmHg, HR: 4.8 ±6 .6 bpm), although clinically relevant (≥2 mmHg), these changes were not statistically significant. Significant (p < 0.05) between-group differences were found between the intervention and control groups, indicating that the MIET intervention has a greater BP-lowering effect compared to control. The clinically relevant post-training reductions in resting BP suggest that MIET may be a promising additional IET method for hypertension prevention. These findings; however, must be interpreted with caution due to the small sample size and the non-clinical cohort.
Collapse
|
21
|
Stens NA, Hisdal J, Bakke EF, Kaur N, Sharma A, Stranden E, Thijssen DHJ, Høiseth LØ. Factors mediating the pressor response to isometric muscle contraction: An experimental study in healthy volunteers during lower body negative pressure. PLoS One 2020; 15:e0243627. [PMID: 33296410 PMCID: PMC7725372 DOI: 10.1371/journal.pone.0243627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/24/2020] [Indexed: 12/20/2022] Open
Abstract
Whilst both cardiac output (CO) and total peripheral resistance (TPR) determine mean arterial blood pressure (MAP), their relative importance in the pressor response to isometric exercise remains unclear. This study aimed to elucidate the relative importance of these two different factors by examining pressor responses during cardiopulmonary unloading leading to step-wise reductions in CO. Hemodynamics were investigated in 11 healthy individuals before, during and after two-minute isometric exercise during lower body negative pressure (LBNP; -20mmHg and -40mmHg). The blood pressure response to isometric exercise was similar during normal and reduced preload, despite a step-wise reduction in CO during LBNP (-20mmHg and -40mmHg). During -20mmHg LBNP, the decreased stroke volume, and consequently CO, was counteracted by an increased TPR, while heart rate (HR) was unaffected. HR was increased during -40 mmHg LBNP, although insufficient to maintain CO; the drop in CO was perfectly compensated by an increased TPR to maintain MAP. Likewise, transient application of LBNP (-20mmHg and -40mmHg) resulted in a short transient drop in MAP, caused by a decrease in CO, which was compensated by an increase in TPR. This study suggests that, in case of reductions of CO, changes in TPR are primarily responsible for maintaining the pressor response during isometric exercise. This highlights the relative importance of TPR compared to CO in mediating the pressor response during isometric exercise.
Collapse
Affiliation(s)
- Niels A. Stens
- Department of Physiology, Research Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Vascular Surgery, Division of Cardiovascular and Pulmonary Diseases, Section of Vascular Investigations, Oslo University Hospital, Oslo, Norway
| | - Jonny Hisdal
- Department of Vascular Surgery, Division of Cardiovascular and Pulmonary Diseases, Section of Vascular Investigations, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Espen F. Bakke
- Institute of Aviation Medicine, Norwegian Armed Forces Medical Service, Oslo, Norway
| | - Narinder Kaur
- Department of Vascular Surgery, Division of Cardiovascular and Pulmonary Diseases, Section of Vascular Investigations, Oslo University Hospital, Oslo, Norway
- Dermatology Center Telemark, Porsgrunn, Norway
| | - Archana Sharma
- Department of Endocrinology, Oslo University Hospital, Oslo, Norway
- Department of Anesthesiology, Oslo University Hospital, Oslo, Norway
| | - Einar Stranden
- Department of Vascular Surgery, Division of Cardiovascular and Pulmonary Diseases, Section of Vascular Investigations, Oslo University Hospital, Oslo, Norway
| | - Dick H. J. Thijssen
- Department of Physiology, Research Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Lars Øivind Høiseth
- Department of Anesthesiology, Oslo University Hospital, Oslo, Norway
- * E-mail:
| |
Collapse
|
22
|
Cooper IR, Liu S, DeLorey DS. Effects of sex and exercise training on β-adrenoreceptor-mediated opposition of evoked sympathetic vasoconstriction in resting and contracting muscle of rats. J Appl Physiol (1985) 2020; 130:114-123. [PMID: 33090912 DOI: 10.1152/japplphysiol.00726.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study investigated the hypothesis that β-adrenoreceptor-mediated inhibition of sympathetic vasoconstriction would be enhanced in female compared with male rats, and that endurance exercise training would augment β-adrenoreceptor-mediated inhibition of sympathetic vasoconstriction in male and female rats. Sprague-Dawley rats were randomized into sedentary (male: n = 7; female: n = 8) and exercise-trained (male: n = 9; female: n = 9) groups. Following 4 wk of exercise training or being sedentary, rats were anesthetized and surgically instrumented for stimulation of the lumbar sympathetic chain, muscle contraction and measurement of arterial blood pressure and femoral artery blood flow (FBF). Femoral vascular conductance (FVC) was calculated as FBF/mean arterial pressure. The percentage change of FVC in response to sympathetic stimulation delivered at 2 and 5 Hz was measured at rest and during contraction of the triceps surae muscles before and after β-adrenoreceptor blockade (propranolol: 0.075 mg·kg-1 iv). We found that, at rest, β-adrenoreceptor blockade decreased (main effect of drug, 2 Hz: P < 0.001; 5 Hz: P < 0.001) sympathetic vasoconstriction. During contraction, sympathetic vasoconstrictor responsiveness was lower (main effect of sex, 2 Hz: P = 0.001; 5 Hz: P = 0.023) in female compared with male rats, and sympatholysis was enhanced (main effect of sex, 2 Hz: P = 0.001; 5 Hz: P < 0.001) in female rats. β-adrenoreceptor blockade decreased (main effect of drug, 2 Hz: P = 0.049; 5 Hz: P < 0.001) evoked sympathetic vasoconstriction in contracting muscle. The present study demonstrated that β-adrenoreceptors do not blunt sympathetic vasoconstriction in resting or contracting skeletal muscle of male or female rats. Sympatholysis was enhanced in female rats; however, this was not attributable to β-adrenoreceptor-mediated blunting of sympathetic vasoconstriction.NEW & NOTEWORTHY β-adrenoreceptors do not inhibit sympathetic vasoconstriction in resting or contracting muscle of male or female rats, regardless of training status. Sympatholysis was enhanced in female, compared to male rats; however, β-adrenoreceptors were not responsible for the enhanced sympatholysis. These findings indicate that β-adrenoreceptors do not contribute to the regulation of sympathetic vasoconstriction in resting and contracting skeletal muscle and suggest that β-adrenoreceptors do not underlie sex differences in the neural control of the circulation.
Collapse
Affiliation(s)
- Ian R Cooper
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Sixue Liu
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Darren S DeLorey
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
23
|
Watso JC, Robinson AT, Babcock MC, Migdal KU, Witman MAH, Wenner MM, Stocker SD, Farquhar WB. Short-term water deprivation attenuates the exercise pressor reflex in older female adults. Physiol Rep 2020; 8:e14581. [PMID: 32965797 PMCID: PMC7510566 DOI: 10.14814/phy2.14581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 12/28/2022] Open
Abstract
Older adults have reduced fluid intake and impaired body fluid and electrolyte regulation. Older female adults exhibit exaggerated exercise blood pressure (BP) responses, which is associated with an increased risk of adverse cardiovascular events. However, it is unclear if dysregulated body fluid homeostasis contributes to altered exercise BP responses in older female adults. We tested the hypothesis that short-term water deprivation (WD) increases exercise BP responses in older female adults. Fifteen female adults (eight young [25 ± 6 years] and seven older [65 ± 6 years]) completed two experimental conditions in random crossover fashion; a euhydration control condition and a stepwise reduction in water intake over three days concluding with a 16-hr WD period. During both trials, beat-to-beat BP (photoplethysmography) and heart rate (electrocardiogram) were continuously assessed during rest, handgrip exercise (30% MVC), and post-exercise ischemia (metaboreflex isolation). At screening, older compared to young female adults had greater systolic and diastolic BP (p ≤ .02). Accelerometer-assessed habitual physical activity was not different between groups (p = .65). Following WD, 24-hr urine flow rate decreased, whereas thirst, urine specific gravity, and plasma osmolality increased (condition: p < .05 for all), but these WD-induced changes were not different between age groups (interaction: p ≥ .31 for all). Resting systolic and diastolic BP values were higher in older compared to young adults (p < .01 for both), but were not different between experimental conditions (p ≥ .20). In contrast to our hypothesis, WD was associated with attenuated systolic BP responses during handgrip exercise (post hoc: p < .01) and post-exercise ischemia (post hoc: p = .03) in older, but not young, female adults. These data suggest that reduced water intake-induced challenges to body fluid homeostasis do not contribute to exaggerated exercise BP responses in post-menopausal female adults.
Collapse
Affiliation(s)
- Joseph C. Watso
- Department of Kinesiology and Applied PhysiologyUniversity of DelawareNewarkDEUSA
| | - Austin T. Robinson
- Department of Kinesiology and Applied PhysiologyUniversity of DelawareNewarkDEUSA
- School of KinesiologyNeurovascular Physiology LaboratoryAuburn UniversityAuburnALUSA
| | - Matthew C. Babcock
- Department of Kinesiology and Applied PhysiologyUniversity of DelawareNewarkDEUSA
| | - Kamila U. Migdal
- Department of Kinesiology and Applied PhysiologyUniversity of DelawareNewarkDEUSA
| | - Melissa A. H. Witman
- Department of Kinesiology and Applied PhysiologyUniversity of DelawareNewarkDEUSA
| | - Megan M. Wenner
- Department of Kinesiology and Applied PhysiologyUniversity of DelawareNewarkDEUSA
| | - Sean D. Stocker
- Department of MedicineUniversity of PittsburghPittsburghPAUSA
| | - William B. Farquhar
- Department of Kinesiology and Applied PhysiologyUniversity of DelawareNewarkDEUSA
| |
Collapse
|
24
|
Samora M, Teixeira AL, Sabino-Carvalho JL, Vianna LC. Sex differences in cardiac vagal reactivation from the end of isometric handgrip exercise and at the onset of muscle metaboreflex isolation. Auton Neurosci 2020; 228:102714. [PMID: 32829151 DOI: 10.1016/j.autneu.2020.102714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/09/2020] [Accepted: 08/07/2020] [Indexed: 11/18/2022]
Abstract
A parasympathetic reactivation is an underlying mechanism mediating the rapid fall in heart rate (HR) at the onset of post-exercise ischemia (PEI) in humans. Herein, we tested the hypothesis that, compared to men, women present a slower HR recovery at the cessation of isometric handgrip exercise (i.e., onset of PEI) due to an attenuated cardiac vagal reactivation. Forty-seven (23 women) young and healthy volunteers were recruited. Subjects performed 90s of isometric handgrip exercise at 40% of maximal voluntary contraction followed by 3-min of PEI. The onset of PEI was analyzed over the first 30s in 10s windows. Cardiac vagal reactivation was indexed using the HR fall and by HR variability metrics (e.g., RMSSD and SDNN) immediately after the cessation of the exercise. HR was significantly increased from rest during exercise in men and women and increases were similar between sexes. However, following the cessation of exercise, the HR recovery was significantly slower in women compared to men regardless of the time point (women vs. men: ∆-14 ± 8 vs. ∆-18 ± 6 beats.min-1 at 10s; ∆-20 ± 9 vs. ∆-25 ± 8 beats.min-1 at 20s; ∆-22 ± 10 vs. ∆-27 ± 9 beats.min-1 at 30s; P = .027). RMSSD and SDNN increased at the cessation of exercise in greater magnitude in men compared to women. These findings demonstrate that women had a slower HR recovery at the cessation of isometric handgrip exercise and onset of PEI compared to men, suggesting a sex-related difference in cardiac vagal reactivation in healthy young humans.
Collapse
Affiliation(s)
- Milena Samora
- NeuroV̇ASQ̇ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, DF, Brazil
| | - André L Teixeira
- NeuroV̇ASQ̇ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, DF, Brazil
| | - Jeann L Sabino-Carvalho
- NeuroV̇ASQ̇ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, DF, Brazil
| | - Lauro C Vianna
- NeuroV̇ASQ̇ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, DF, Brazil; Graduate Program in Medical Sciences, Faculty of Medicine, University of Brasília, Brasília, DF, Brazil.
| |
Collapse
|
25
|
Kavanagh JJ, Smith KA, Minahan CL. Sex differences in muscle activity emerge during sustained low-intensity contractions but not during intermittent low-intensity contractions. Physiol Rep 2020; 8:e14398. [PMID: 32281749 PMCID: PMC7153036 DOI: 10.14814/phy2.14398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 01/10/2023] Open
Abstract
Sex differences in motor performance may arise depending on the mode of contraction being performed. In particular, contractions that are held for long durations, rather than contractions that are interspersed with rest periods, may induce greater levels of fatigue in men compared to women. The purpose of this study was to examine fatigue responses in a cohort of healthy men (n = 7, age [mean] = 21.6 ± [SD] 1.1 year) and women (n = 7, age: 22.0 ± 2.0 year) during sustained isometric and intermittent isometric contractions. Two contraction protocols were matched for intensity (20% MVC) and total contraction time (600-s). Biceps brachii EMG and elbow flexion torque steadiness were examined throughout each protocol, and motor nerve stimulation was used to quantify central and peripheral fatigue. Overall, there were few sex-related differences in the fatigue responses during intermittent contractions. However, men exhibited progressively lower maximal torque generation (39% versus 27% decrease), progressively greater muscle activity (220% versus 144% increase), progressively greater declines in elbow flexion steadiness (354% versus 285% decrease), and progressively greater self-perception of fatigue (Borg scale: 8.8 ± 1.2 versus 6.3 ± 1.1) throughout the sustained contractions. The mechanism underlying fatigue responses had a muscle component, as voluntary activation of the biceps brachii did not differ between sexes, but the amplitude of resting twitches decreased throughout the sustained contractions (m: 32%, w: 10% decrease). As generating large sustained forces causes a progressive increase in intramuscular pressure and mechanical occlusion-which has the effect of enhancing metabolite accumulation and peripheral fatigue-it is likely that the greater maximal strength of men contributed to their exacerbated levels of fatigue.
Collapse
Affiliation(s)
- Justin J. Kavanagh
- Menzies Health Institute QueenslandGriffith UniversityGold CoastAustralia
| | - Kristen A. Smith
- Menzies Health Institute QueenslandGriffith UniversityGold CoastAustralia
| | - Clare L. Minahan
- Menzies Health Institute QueenslandGriffith UniversityGold CoastAustralia
- Griffith Sports Physiology and PerformanceSchool of Allied Health SciencesGriffith UniversityGold CoastAustralia
| |
Collapse
|
26
|
Cristina-Oliveira M, Meireles K, Spranger MD, O'Leary DS, Roschel H, Peçanha T. Clinical safety of blood flow-restricted training? A comprehensive review of altered muscle metaboreflex in cardiovascular disease during ischemic exercise. Am J Physiol Heart Circ Physiol 2019; 318:H90-H109. [PMID: 31702969 DOI: 10.1152/ajpheart.00468.2019] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Blood flow restriction training (BFRT) is an increasingly widespread method of exercise that involves imposed restriction of blood flow to the exercising muscle. Blood flow restriction is achieved by inflating a pneumatic pressure cuff (or a tourniquet) positioned proximal to the exercising muscle before, and during, the bout of exercise (i.e., ischemic exercise). Low-intensity BFRT with resistance training promotes comparable increases in muscle mass and strength observed during high-intensity exercise without blood flow restriction. BFRT has expanded into the clinical research setting as a potential therapeutic approach to treat functionally impaired individuals, such as the elderly, and patients with orthopedic and cardiovascular disease/conditions. However, questions regarding the safety of BFRT must be fully examined and addressed before the implementation of this exercise methodology in the clinical setting. In this respect, there is a general concern that BFRT may generate abnormal reflex-mediated cardiovascular responses. Indeed, the muscle metaboreflex is an ischemia-induced, sympathoexcitatory pressor reflex originating in skeletal muscle, and the present review synthesizes evidence that BFRT may elicit abnormal cardiovascular responses resulting from increased metaboreflex activation. Importantly, abnormal cardiovascular responses are more clearly evidenced in populations with increased cardiovascular risk (e.g., elderly and individuals with cardiovascular disease). The evidence provided in the present review draws into question the cardiovascular safety of BFRT, which clearly needs to be further investigated in future studies. This information will be paramount for the consideration of BFRT exercise implementation in clinical populations.
Collapse
Affiliation(s)
- Michelle Cristina-Oliveira
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Kamila Meireles
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Marty D Spranger
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Donal S O'Leary
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Hamilton Roschel
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Tiago Peçanha
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| |
Collapse
|