1
|
Wakeham DJ, Pierce GL, Heffernan KS. Effect of Acute Resistance Exercise and Resistance Exercise Training on Central Pulsatile Hemodynamics and Large Artery Stiffness: Part I. Pulse (Basel) 2025; 13:31-44. [PMID: 39991443 PMCID: PMC11842066 DOI: 10.1159/000543313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/16/2024] [Indexed: 02/25/2025] Open
Abstract
Background Engaging in habitual resistance exercise training (RET; also known as strength training) causes systemic health effects beyond those caused by aerobic/endurance exercise training alone. Despite the resoundingly favorable effect of habitual RET on measures of cardiovascular disease risk, controversy still exists regarding the vascular health effects of this exercise modality largely because some studies find increases in large artery stiffness and central pulsatile hemodynamics with RET. In this two-part series, we examine the effect of acute resistance exercise (RE) and RET on large artery stiffness and pulsatile hemodynamics. We perform a historical overview of seminal/classic studies and report on key findings that have shaped the field. We provide personal commentary on the studies and potential implications of findings related to the acute effects of RE on large artery stiffness and central pulsatile hemodynamics. For part one of this two-part series, we perform a detailed analysis of the hemodynamic signature produced during RE and discuss the sub-acute effects on short-term modulation of large artery stiffness and central pulsatile hemodynamics. Summary Acute RE elicits marked ("extreme") elevations in arterial pressure, mediated primarily by increases in vascular resistance and intrathoracic pressure (ITP). Vascular compression from muscular contraction contributes to increases in afterload via increased vascular resistance and pressure from wave reflections. However, as a result of the higher ITP associated with breath holds (Valsalva maneuver) during high relative efforts (>80%), the change in pressure across the aortic wall (transmural pressure) is less than the change in intra-arterial pressure. Key Messages The high arterial pressures during some heavy weight lifting exercises are associated with positive swings with ITP related to the Valsalva maneuver and elevations in vascular resistance. The pressure oscillations lead to marked stress within the vascular wall and likely contribute to elevations in large artery stiffness over the subsequent hour.
Collapse
Affiliation(s)
- Denis J Wakeham
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX, USA
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gary L Pierce
- Department of Health and Human Physiology, University of Iowa, Iowa City, TX, USA
| | - Kevin S Heffernan
- Department of Biobehavioral Sciences, Movement Science and Applied Physiology, Teachers College, Columbia University, New York, NY, USA
| |
Collapse
|
2
|
Wakeham DJ, Pierce GL, Heffernan KS. Effect of Acute Resistance Exercise and Resistance Exercise Training on Central Pulsatile Hemodynamics and Large Artery Stiffness: Part II. Pulse (Basel) 2025; 13:45-61. [PMID: 39991442 PMCID: PMC11842081 DOI: 10.1159/000543314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/16/2024] [Indexed: 02/25/2025] Open
Abstract
Background In part one of this two-part series, we performed a detailed analysis of the hemodynamic signature produced during resistance exercise (RE) and discussed the subacute effects on short-term modulation of large artery stiffness and central pulsatile hemodynamics. In this second part of our two-part series, we consider the subacute recovery window as the driver of resistance exercise training (RET) adaptations. We then discuss the results of RET interventions and corroborate these findings against the information gleaned from cross-sectional studies in habitually strength-trained athletes. Finally, we explore associations between muscular strength and arterial stiffness. Summary Our reanalysis of key studies assessing arterial stiffness in the hour post-RE suggests changes in both load-dependent and load-independent indices of arterial (aortic) stiffness. Regarding adaptations to habitual RET, a growing body of evidence contradicts earlier findings that suggested RET increases large artery stiffness. Recent meta-analyses conclude that longitudinal RET has no effect or may even reduce large artery stiffness. However, cross-sectional studies continue to support early RET intervention studies and note that habitual RET may increase large artery stiffness and central pulsatile hemodynamics. Complex interactions between vascular smooth muscle cells and the extracellular matrix may offer insight into inter-individual heterogeneity in subacute responses and chronic adaptations to acute RE and habitual RET. Key Messages Habitual RET is fundamentally important for skeletal muscle quality and quantity as well as cardiovascular function. Recent literature suggests that habitual RET has negligible effects on large artery stiffness and central hemodynamic pressure pulsatility, but cross-sectional observations still raise questions about the chronic large artery effects of habitual RET.
Collapse
Affiliation(s)
- Denis J. Wakeham
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX, USA
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gary L. Pierce
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA, USA
| | - Kevin S. Heffernan
- Department of Biobehavioral Sciences, Movement Science and Applied Physiology, Teachers College, Columbia University, New York, NY, USA
| |
Collapse
|
3
|
Morishima T, Kasai N. Circulating catecholamines, endothelin-1, and nitric oxide releases do not explain the preserved FMD following acute resistance exercise in strength-trained men. Eur J Appl Physiol 2024; 124:2417-2425. [PMID: 38536440 DOI: 10.1007/s00421-024-05468-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/09/2024] [Indexed: 09/25/2024]
Abstract
PURPOSE Acute resistance exercise decreases endothelial function in sedentary individuals but not in strength-trained (ST) individuals. However, the underlying mechanism(s) of vascular protection in ST individuals remains unclear. Herein, we compared catecholamines, endothelin-1 (ET-1), and nitric oxide (NOx) releases after acute resistance exercise between sedentary and ST individuals. METHODS The untrained (UT) group comprised 12 male individuals with no regular training, while the ST group comprised 12 male individuals. Participants performed a session of resistance exercise, which consisted of 3 sets of 10 repetitions at 75% of one repetition maximum. Heart rate (HR) and blood pressure were measured during resistance exercise. Brachial artery flow-mediated dilation (FMD), blood pressure, HR, and blood collection were undertaken before and 10, 30, and 60 min after the resistance exercise. RESULTS No significant difference was found in baseline brachial artery FMD between the groups (P > 0.05). Brachial artery FMD was significantly reduced in the UT group (P < 0.05) but it was prevented in the ST group after the resistance exercise. Significant differences were found at 10, 30, and 60 min after the resistance exercise in brachial artery ΔFMD from baseline between groups (P < 0.05). Blood pressure, HR, plasma epinephrine, norepinephrine, dopamine, serum endothelin-1, and plasma NOx responses did not differ between groups throughout the experimental period. CONCLUSION In conclusion, preserved endothelial function in response to acute resistance exercise in ST male individuals is independent of catecholamines, ET-1, and NOx responses.
Collapse
Affiliation(s)
- Takuma Morishima
- Faculty of Liberal Arts and Sciences, Chukyo University, 101-2, Yagoto-honmachi Showa, Nagoya, Aichi, 466-8666, Japan.
| | - Nobukazu Kasai
- Faculty of Health and Medical Sciences, Aichi Shukutoku University, Aichi, Japan
| |
Collapse
|
4
|
McIntosh MC, Anglin DA, Robinson AT, Beck DT, Roberts MD. Making the case for resistance training in improving vascular function and skeletal muscle capillarization. Front Physiol 2024; 15:1338507. [PMID: 38405119 PMCID: PMC10884331 DOI: 10.3389/fphys.2024.1338507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/26/2024] [Indexed: 02/27/2024] Open
Abstract
Through decades of empirical data, it has become evident that resistance training (RT) can improve strength/power and skeletal muscle hypertrophy. Yet, until recently, vascular outcomes have historically been underemphasized in RT studies, which is underscored by several exercise-related reviews supporting the benefits of endurance training on vascular measures. Several lines of evidence suggest large artery diameter and blood flow velocity increase after a single bout of resistance exercise, and these events are mediated by vasoactive substances released from endothelial cells and myofibers (e.g., nitric oxide). Weeks to months of RT can also improve basal limb blood flow and arterial diameter while lowering blood pressure. Although several older investigations suggested RT reduces skeletal muscle capillary density, this is likely due to most of these studies being cross-sectional in nature. Critically, newer evidence from longitudinal studies contradicts these findings, and a growing body of mechanistic rodent and human data suggest skeletal muscle capillarity is related to mechanical overload-induced skeletal muscle hypertrophy. In this review, we will discuss methods used by our laboratories and others to assess large artery size/function and skeletal muscle capillary characteristics. Next, we will discuss data by our groups and others examining large artery and capillary responses to a single bout of resistance exercise and chronic RT paradigms. Finally, we will discuss RT-induced mechanisms associated with acute and chronic vascular outcomes.
Collapse
Affiliation(s)
| | - Derick A. Anglin
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | | | - Darren T. Beck
- School of Kinesiology, Auburn University, Auburn, AL, United States
- Edward Via College of Osteopathic Medicine–Auburn Campus, Auburn, AL, United States
| | - Michael D. Roberts
- School of Kinesiology, Auburn University, Auburn, AL, United States
- Edward Via College of Osteopathic Medicine–Auburn Campus, Auburn, AL, United States
| |
Collapse
|
5
|
Sakamoto R, Sato K, Ogoh S, Kamoda T, Neki T, Katayose M, Iwamoto E. Dynamic resistance exercise-induced pressor response does not alter hypercapnia-induced cerebral vasodilation in young adults. Eur J Appl Physiol 2023; 123:781-796. [PMID: 36454281 DOI: 10.1007/s00421-022-05096-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/12/2022] [Indexed: 12/05/2022]
Abstract
Excessive arterial pressure elevation induced by resistance exercise (RE) attenuates peripheral vasodilatory function, but its effect on cerebrovascular function is unknown. We aimed to evaluate the effect of different pressor responses to RE on hypercapnia-induced vasodilation of the internal carotid artery (ICA), an index of cerebrovascular function. To manipulate pressor responses to RE, 15 healthy young adults (11M/4F) performed two RE: high intensity with low repetitions (HL) and low intensity with high repetitions (LH) dynamic knee extension. ICA dilation, induced by 3 min of hypercapnia, was measured before and 10 min after RE using Doppler ultrasound. HL exercise elicited a greater pressor response than LH exercise. In relaxation phases of RE, ICA blood velocity increased in both HL and LH trials. However, ICA shear rate did not significantly increase in either trial (P = 0.06). Consequently, neither exercise altered post-exercise hypercapnia-induced ICA dilation (HL, 3.9 ± 1.9% to 5.1 ± 1.7%; LH, 4.6 ± 1.4% to 4.8 ± 1.8%; P > 0.05 for all). When viewed individually, the changes in ICA shear rate were positively correlated with changes in end-tidal partial pressure of carbon dioxide (PETCO2) (r = 0.46, P < 0.01) than with mean arterial pressure (r = 0.32, P = 0.02). These findings suggest that the effects of RE-induced pressor response on cerebrovascular function may be different from peripheral arteries. An increase in PETCO2 during the relaxation phase may play a more crucial role than elevated pressure in increasing cerebral shear during dynamic RE.
Collapse
Affiliation(s)
- Rintaro Sakamoto
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Kohei Sato
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, Kawagoe, Japan
| | - Tatsuki Kamoda
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Toru Neki
- Department of Physical Therapy, School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Masaki Katayose
- Department of Physical Therapy, School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Erika Iwamoto
- Department of Physical Therapy, School of Health Sciences, Sapporo Medical University, Sapporo, Japan.
| |
Collapse
|
6
|
Smith JA, Soares RN, McMillan NJ, Jurrissen TJ, Martinez-Lemus LA, Padilla J, Manrique-Acevedo C. Young Women Are Protected Against Vascular Insulin Resistance Induced by Adoption of an Obesogenic Lifestyle. Endocrinology 2022; 163:bqac137. [PMID: 35974454 PMCID: PMC10233280 DOI: 10.1210/endocr/bqac137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Indexed: 01/16/2023]
Abstract
Vascular insulin resistance is a feature of obesity and type 2 diabetes that contributes to the genesis of vascular disease and glycemic dysregulation. Data from preclinical models indicate that vascular insulin resistance is an early event in the disease course, preceding the development of insulin resistance in metabolically active tissues. Whether this is translatable to humans requires further investigation. To this end, we examined if vascular insulin resistance develops when young healthy individuals (n = 18 men, n = 18 women) transition to an obesogenic lifestyle that would ultimately cause whole-body insulin resistance. Specifically, we hypothesized that short-term (10 days) exposure to reduced ambulatory activity (from >10 000 to <5000 steps/day) and increased consumption of sugar-sweetened beverages (6 cans/day) would be sufficient to prompt vascular insulin resistance. Furthermore, given that incidence of insulin resistance and cardiovascular disease is lower in premenopausal women than in men, we postulated that young females would be protected against vascular insulin resistance. Consistent with this hypothesis, we report that after reduced ambulation and increased ingestion of carbonated beverages high in sugar, young healthy men, but not women, exhibited a blunted leg blood flow response to insulin and suppressed skeletal muscle microvascular perfusion. These findings were associated with a decrease in plasma adropin and nitrite concentrations. This is the first evidence in humans that vascular insulin resistance can be provoked by short-term adverse lifestyle changes. It is also the first documentation of a sexual dimorphism in the development of vascular insulin resistance in association with changes in adropin levels.
Collapse
Affiliation(s)
- James A Smith
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Rogerio N Soares
- Department of Medicine, University of Missouri, Columbia, MO, USA
| | - Neil J McMillan
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Thomas J Jurrissen
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Luis A Martinez-Lemus
- Department of Medicine, University of Missouri, Columbia, MO, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
| | - Camila Manrique-Acevedo
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
7
|
Lefferts WK, Davis MM, Valentine RJ. Exercise as an Aging Mimetic: A New Perspective on the Mechanisms Behind Exercise as Preventive Medicine Against Age-Related Chronic Disease. Front Physiol 2022; 13:866792. [PMID: 36045751 PMCID: PMC9420936 DOI: 10.3389/fphys.2022.866792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022] Open
Abstract
Age-related chronic diseases are among the most common causes of mortality and account for a majority of global disease burden. Preventative lifestyle behaviors, such as regular exercise, play a critical role in attenuating chronic disease burden. However, the exact mechanism behind exercise as a form of preventative medicine remains poorly defined. Interestingly, many of the physiological responses to exercise are comparable to aging. This paper explores an overarching hypothesis that exercise protects against aging/age-related chronic disease because the physiological stress of exercise mimics aging. Acute exercise transiently disrupts cardiovascular, musculoskeletal, and brain function and triggers a substantial inflammatory response in a manner that mimics aging/age-related chronic disease. Data indicate that select acute exercise responses may be similar in magnitude to changes seen with +10-50 years of aging. The initial insult of the age-mimicking effects of exercise induces beneficial adaptations that serve to attenuate disruption to successive "aging" stimuli (i.e., exercise). Ultimately, these exercise-induced adaptations reduce the subsequent physiological stress incurred from aging and protect against age-related chronic disease. To further examine this hypothesis, future work should more intricately describe the physiological signature of different types/intensities of acute exercise in order to better predict the subsequent adaptation and chronic disease prevention with exercise training in healthy and at-risk populations.
Collapse
Affiliation(s)
- Wesley K. Lefferts
- Department of Kinesiology, Iowa State University, Ames, IA, United States
| | | | | |
Collapse
|
8
|
Tsuchiya Y, Morishima T, Ochi E. Slow-Speed Low-Intensity but Not Normal-Speed High-Intensity Resistance Exercise Maintains Endothelial Function. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2022:1-8. [PMID: 35446201 DOI: 10.1080/02701367.2021.2022586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Purpose: High-intensity resistance exercise two or three times a week has been considered optimal for muscle hypertrophy, although it can remarkably elevate blood pressure (BP). In contrast, slow-speed resistance exercise with low intensity and tonic force generation (slow-low) can induce muscle hypertrophy without elevating BP. However, it is unclear how endothelial function changes after slow-low. Therefore, this study examined whether slow-low would maintain brachial artery endothelial function in comparison with normal-speed with high intensity resistance exercise (normal-high) and normal-speed with low-intensity resistance exercise (normal-low). Methods: Eleven healthy young men performed leg-extensions with slow-low (3 sets of 8 repetitions at 50% of 1RM), normal-high (3 sets of 8 repetitions at 80% of 1RM), and normal-low (3 sets of 8 repetitions at 50% of 1RM). Flow-mediated dilation (FMD) in the brachial artery was evaluated at pre-exercise and at 10, 30, and 60 min after exercise. Result: The results showed that normal-high caused significant impairment of FMD at 30 (3.7 ± 2.7%) and 60 (3.7 ± 2.8%) min after exercise (P < .05). In contrast, slow-low and normal-low showed no significant difference from baseline. FMD was significantly lower in normal-high compared with slow-low and normal-low at 30 and 60 min after exercise (P < .05). Additionally, systolic BP was significantly higher during normal-high compared with slow-low and normal-low (P < .05). Conclusion: We concluded that slow-low did not impair brachial artery FMD concomitant with lower systolic BP, and may therefore be a useful mode of exercise training to improve muscle hypertrophy without provoking transient endothelial dysfunction.
Collapse
|
9
|
Morishima T, Ochi E. Impact of a single bout of resistance exercise on serum Klotho in healthy young men. Physiol Rep 2021; 9:e15087. [PMID: 34713986 PMCID: PMC8554772 DOI: 10.14814/phy2.15087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND It has been shown that Klotho protects vascular endothelial function. Given that a single bout of resistance-exercise-induced hypertensive stimulus causes endothelial dysfunction, we postulated that acute resistance exercise would reduce serum Klotho levels. In this respect, the reduction in serum Klotho levels would be associated with the response of flow-mediated dilation (FMD). Therefore, the purpose of this study was to investigate the impact of acute resistance exercise on the Klotho response in serum. In addition, we examined the relationship between the serum Klotho and FMD responses following acute resistance exercise. METHODS Twelve untrained men participated in this study (20.4 ± 0.3 years). Following baseline measurements (blood pressure, blood collection, FMD), subjects performed leg extensions, which consisted of 10 repetitions for five sets at 70% of one-repetition maximum. After the exercise, measurement of blood pressure, blood collection, and FMD assessment were repeated for 60 min. We analyzed Klotho and endothelin-1 (ET-1) concentrations in blood serum. RESULTS As expected, the exercise significantly elevated blood pressure and led to decreased FMD (p < 0.05). However, Klotho concentrations were significantly increased following exercise (p < 0.05). No correlation was observed in Klotho and FMD responses following acute resistance exercise. However, there was a significant positive correlation between Klotho and ET-1 in response to resistance exercise (p < 0.05). CONCLUSION In conclusion, the present study reveals that serum Klotho significantly increased following a single bout of resistance exercise. However, the increase in Klotho may not associate with the acute reduction in endothelial function.
Collapse
Affiliation(s)
| | - Eisuke Ochi
- Faculty of Bioscience and Applied ChemistryHosei UniversityTokyoJapan
| |
Collapse
|
10
|
Dora K, Suga T, Tomoo K, Sugimoto T, Mok E, Tsukamoto H, Takada S, Hashimoto T, Isaka T. Effect of very low-intensity resistance exercise with slow movement and tonic force generation on post-exercise inhibitory control. Heliyon 2021; 7:e06261. [PMID: 33665431 PMCID: PMC7903307 DOI: 10.1016/j.heliyon.2021.e06261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/05/2021] [Accepted: 02/08/2021] [Indexed: 11/30/2022] Open
Abstract
Background The extremely low loads (e.g., <30% of one-repetition maximum) involved in performing resistance exercise are effective in preventing musculoskeletal injury and enhancing exercise adherence in various populations, especially older individuals and patients with chronic diseases. Nevertheless, long-term intervention using this type of protocol is known to have little effects on muscle size and strength adaptations. Despite this knowledge, very low-intensity resistance exercise (VLRE) with slow movement and tonic force generation (ST) significantly increases muscle size and strength. To further explore efficacy of ST-VLRE in the clinical setting, this study examined the effect of ST-VLRE on post-exercise inhibitory control (IC). Methods Twenty healthy, young males (age: 21 ± 0 years, body height: 173.4 ± 1.2 cm, body weight: 67.4 ± 2.2 kg) performed both ST-VLRE and normal VLRE in a crossover design. The load for both protocols was set at 30% of one-repetition maximum. Both protocols were programmed with bilateral knee extension for six sets with ten repetitions per set. The ST-VLRE and VLRE were performed with slow (3-sec concentric, 3-sec eccentric, and 1-sec isometric actions with no rest between each repetition) and normal contractile speeds (1-sec concentric and 1-sec eccentric actions and 1-sec rests between each repetition), respectively. IC was assessed using the color-word Stroop task at six time points: baseline, pre-exercise, immediate post-exercise, and every 10 min during the 30-min post-exercise recovery period. Results The reverse-Stroop interference score, a parameter of IC, significantly decreased immediately after both ST-VLRE and VLRE compared to that before each exercise (decreasing rate >32 and 25%, respectively, vs. baseline and/or pre-exercise for both protocols; all Ps < 0.05). The improved IC following ST-VLRE, but not following VLRE, remained significant until the 20-min post-exercise recovery period (decreasing rate >48% vs. baseline and pre-exercise; both Ps < 0.001). The degree of post-exercise IC improvements was significantly higher for ST-VLRE than for VLRE (P = 0.010 for condition × time interaction effect). Conclusions These findings suggest that ST-VLRE can improve post-exercise IC effectively. Therefore, ST-VLRE may be an effective resistance exercise protocol for improving cognitive function.
Collapse
Affiliation(s)
- Kento Dora
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Tadashi Suga
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Keigo Tomoo
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Takeshi Sugimoto
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Ernest Mok
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Hayato Tsukamoto
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Shingo Takada
- Faculty of Lifelong Sport, Department of Sports Education, Hokusho University, Ebetsu, Hokkaido, Japan
| | - Takeshi Hashimoto
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Tadao Isaka
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| |
Collapse
|
11
|
Kume D, Nishiwaki M, Hotta N, Endoh H. Acute mental stress-caused arterial stiffening can be counteracted by brief aerobic exercise. Eur J Appl Physiol 2021; 121:1359-1366. [PMID: 33604696 DOI: 10.1007/s00421-021-04618-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/05/2021] [Indexed: 01/25/2023]
Abstract
PURPOSE Acute mental stress (MS) causes an elevation in pulse wave velocity (PWV), an index of arterial stiffness. In contrast, aerobic exercise acutely decreases arterial stiffness, even in the short term. The present study aimed to examine whether acute MS-caused arterial stiffening can be counteracted by brief aerobic exercise. METHODS Thirteen young healthy men (mean age, 20 ± 1 years) participated in two randomized experimental visits where they were subjected to acute MS followed by seated rest (RE) or cycling exercise (EX) trials. Following a 5-min MS task, the participants in the RE trial rested on a chair for 10 min (from 10 to 20 min after the cessation of the task), whereas those in the EX trial cycled at 35% of heart rate reserve for the same duration. Heart-brachial PWV (hbPWV), brachial-ankle PWV (baPWV), heart-ankle PWV (haPWV), and the cardio-ankle vascular index (CAVI) were simultaneously measured at baseline and 5, 30, and 45 min after the task. RESULTS Both trials caused significant elevations (P < 0.05) in hbPWV, haPWV, and CAVI at 5 min after the task; subsequently, this persisted until 45 min after the task in the RE trial, whereas the elevations in the EX trial were eliminated. In the RE trial, baPWV significantly increased (P < 0.05) at 30 and 45 min after the task, whereas such an increase was not observed in the EX trial. CONCLUSION The findings of the present study reveal that brief aerobic exercise counteracts arterial stiffening caused by acute MS.
Collapse
Affiliation(s)
- Daisuke Kume
- Department of Health, Sports and Welfare, Okinawa University, 555 Kokuba, Naha, Okinawa, 902-8521, Japan.
| | - Masato Nishiwaki
- Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
| | - Norio Hotta
- Department of Lifelong Sports and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan
| | - Hiroshi Endoh
- Department of Health and Physical Education, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| |
Collapse
|
12
|
Thomas KN, Kissling LS, Gibbons TD, Akerman AP, Rij AM, Cotter JD. The acute effect of resistance exercise on limb blood flow. Exp Physiol 2020; 105:2099-2109. [DOI: 10.1113/ep088743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Kate N. Thomas
- Department of Surgical Sciences Dunedin School of Medicine University of Otago Dunedin New Zealand
| | - Lorenz S. Kissling
- School of Physical Education Sport and Exercise Sciences University of Otago Dunedin New Zealand
| | - Travis D. Gibbons
- School of Physical Education Sport and Exercise Sciences University of Otago Dunedin New Zealand
| | - Ashley P. Akerman
- School of Physical Education Sport and Exercise Sciences University of Otago Dunedin New Zealand
- Human and Environmental Physiology Research Unit University of Ottawa Ottawa Ontario Canada
| | - Andre M. Rij
- Department of Surgical Sciences Dunedin School of Medicine University of Otago Dunedin New Zealand
| | - James D. Cotter
- School of Physical Education Sport and Exercise Sciences University of Otago Dunedin New Zealand
| |
Collapse
|