1
|
Zhong C, Xu M, Boral S, Summer H, Lichtenberger FB, Erdoğan C, Gollasch M, Golz S, Persson PB, Schleifenbaum J, Patzak A, Khedkar PH. Age Impairs Soluble Guanylyl Cyclase Function in Mouse Mesenteric Arteries. Int J Mol Sci 2021; 22:ijms222111412. [PMID: 34768842 PMCID: PMC8584026 DOI: 10.3390/ijms222111412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
Endothelial dysfunction (ED) comes with age, even without overt vessel damage such as that which occurs in atherosclerosis and diabetic vasculopathy. We hypothesized that aging would affect the downstream signalling of the endothelial nitric oxide (NO) system in the vascular smooth muscle (VSM). With this in mind, resistance mesenteric arteries were isolated from 13-week (juvenile) and 40-week-old (aged) mice and tested under isometric conditions using wire myography. Acetylcholine (ACh)-induced relaxation was reduced in aged as compared to juvenile vessels. Pretreatment with L-NAME, which inhibits nitrix oxide synthases (NOS), decreased ACh-mediated vasorelaxation, whereby differences in vasorelaxation between groups disappeared. Endothelium-independent vasorelaxation by the NO donor sodium nitroprusside (SNP) was similar in both groups; however, SNP bolus application (10−6 mol L−1) as well as soluble guanylyl cyclase (sGC) activation by runcaciguat (10−6 mol L−1) caused faster responses in juvenile vessels. This was accompanied by higher cGMP concentrations and a stronger response to the PDE5 inhibitor sildenafil in juvenile vessels. Mesenteric arteries and aortas did not reveal apparent histological differences between groups (van Gieson staining). The mRNA expression of the α1 and α2 subunits of sGC was lower in aged animals, as was PDE5 mRNA expression. In conclusion, vasorelaxation is compromised at an early age in mice even in the absence of histopathological alterations. Vascular smooth muscle sGC is a key element in aged vessel dysfunction.
Collapse
Affiliation(s)
- Cheng Zhong
- Institute of Vegetative Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (C.Z.); (M.X.); (F.-B.L.); (C.E.); (P.B.P.); (J.S.); (P.H.K.)
| | - Minze Xu
- Institute of Vegetative Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (C.Z.); (M.X.); (F.-B.L.); (C.E.); (P.B.P.); (J.S.); (P.H.K.)
| | - Sengül Boral
- Institute of Pathology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany;
| | - Holger Summer
- Bayer AG, Research & Development, 42113 Wuppertal, Germany; (H.S.); (S.G.)
| | - Falk-Bach Lichtenberger
- Institute of Vegetative Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (C.Z.); (M.X.); (F.-B.L.); (C.E.); (P.B.P.); (J.S.); (P.H.K.)
| | - Cem Erdoğan
- Institute of Vegetative Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (C.Z.); (M.X.); (F.-B.L.); (C.E.); (P.B.P.); (J.S.); (P.H.K.)
| | - Maik Gollasch
- Experimental and Clinical Research Center (ECRC), Charité—Universitätsmedizin Berlin, 13125 Berlin, Germany;
- Department of Internal and Geriatric Medicine, University of Greifswald, Geriatric Medicine, 17475 Greifswald, Germany
| | - Stefan Golz
- Bayer AG, Research & Development, 42113 Wuppertal, Germany; (H.S.); (S.G.)
| | - Pontus B. Persson
- Institute of Vegetative Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (C.Z.); (M.X.); (F.-B.L.); (C.E.); (P.B.P.); (J.S.); (P.H.K.)
| | - Johanna Schleifenbaum
- Institute of Vegetative Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (C.Z.); (M.X.); (F.-B.L.); (C.E.); (P.B.P.); (J.S.); (P.H.K.)
| | - Andreas Patzak
- Institute of Vegetative Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (C.Z.); (M.X.); (F.-B.L.); (C.E.); (P.B.P.); (J.S.); (P.H.K.)
- Correspondence:
| | - Pratik H. Khedkar
- Institute of Vegetative Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (C.Z.); (M.X.); (F.-B.L.); (C.E.); (P.B.P.); (J.S.); (P.H.K.)
| |
Collapse
|
2
|
Pourbagher-Shahri AM, Farkhondeh T, Talebi M, Kopustinskiene DM, Samarghandian S, Bernatoniene J. An Overview of NO Signaling Pathways in Aging. Molecules 2021; 26:4533. [PMID: 34361685 PMCID: PMC8348219 DOI: 10.3390/molecules26154533] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Nitric Oxide (NO) is a potent signaling molecule involved in the regulation of various cellular mechanisms and pathways under normal and pathological conditions. NO production, its effects, and its efficacy, are extremely sensitive to aging-related changes in the cells. Herein, we review the mechanisms of NO signaling in the cardiovascular system, central nervous system (CNS), reproduction system, as well as its effects on skin, kidneys, thyroid, muscles, and on the immune system during aging. The aging-related decline in NO levels and bioavailability is also discussed in this review. The decreased NO production by endothelial nitric oxide synthase (eNOS) was revealed in the aged cardiovascular system. In the CNS, the decline of the neuronal (n)NOS production of NO was related to the impairment of memory, sleep, and cognition. NO played an important role in the aging of oocytes and aged-induced erectile dysfunction. Aging downregulated NO signaling pathways in endothelial cells resulting in skin, kidney, thyroid, and muscle disorders. Putative therapeutic agents (natural/synthetic) affecting NO signaling mechanisms in the aging process are discussed in the present study. In summary, all of the studies reviewed demonstrate that NO plays a crucial role in the cellular aging processes.
Collapse
Affiliation(s)
- Ali Mohammad Pourbagher-Shahri
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand 9717853577, Iran;
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand 9717853577, Iran
| | - Marjan Talebi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran;
| | - Dalia M. Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu Pr. 13, LT-50161 Kaunas, Lithuania;
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur 9318614139, Iran
| | - Jurga Bernatoniene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu Pr. 13, LT-50161 Kaunas, Lithuania;
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu Pr. 13, LT-50161 Kaunas, Lithuania
| |
Collapse
|
3
|
Luttrell M, Kim H, Shin SY, Holly D, Massett MP, Woodman CR. Heterogeneous effect of aging on vasorelaxation responses in large and small arteries. Physiol Rep 2020; 8:e14341. [PMID: 31960593 PMCID: PMC6971410 DOI: 10.14814/phy2.14341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aging is associated with impaired vascular function characterized in part by attenuated vasorelaxation to acetylcholine (ACh) and sodium nitroprusside (SNP). Due to structural and functional differences between conduit and resistance arteries, the effect of aging on vasorelaxation responses may vary along the arterial tree. Our purpose was to determine age-related differences in vasorelaxation responses in large and small arteries. Responses to the endothelium-dependent vasodilator acetylcholine (ACh) and the endothelium-independent vasodilator sodium nitroprusside (SNP) were assessed in abdominal aorta (AA), iliac arteries (IA), femoral arteries (FA), and gastrocnemius feed arteries (GFA) from young and old male rats. ACh-mediated vasorelaxation was significantly impaired in old AA and IA. SNP-mediated vasorelaxation was impaired in old AA. To investigate a potential mechanism for impaired relaxation responses in AA and IA, we assessed eNOS protein content and interactions with caveolin-1 (Cav-1), and calmodulin (CaM) via immunoprecipitation and immunoblot analysis. We found no age differences in eNOS content or interactions with Cav1 and CaM. Combined data from all rats revealed that eNOS content was higher in IA compared to AA and FA (p < .001), and was higher in GFA than AA (p < .05). Cav1:eNOS interaction was greater in FA than in AA and IA (p < .01), and in GFA compared to IA (p < .05). No differences in CaM:eNOS were detected. In conclusion, age-related impairment of vasorelaxation responses occurred in the large conduit, but not small conduit or resistance arteries. These detrimental effects of age were not associated with changes in eNOS or its interactions with Cav-1 or CaM.
Collapse
Affiliation(s)
- Meredith Luttrell
- Department of Health & KinesiologyTexas A&M UniversityCollege StationTexas
| | - Hyoseon Kim
- Department of Health & KinesiologyTexas A&M UniversityCollege StationTexas
- Present address:
Department of Kinesiology and Sport ManagementTexas Tech UniversityLubbockTexas
| | - Song Yi Shin
- Department of Health & KinesiologyTexas A&M UniversityCollege StationTexas
| | - Dylan Holly
- Department of Health & KinesiologyTexas A&M UniversityCollege StationTexas
| | - Michael P. Massett
- Department of Health & KinesiologyTexas A&M UniversityCollege StationTexas
- Present address:
Department of Kinesiology and Sport ManagementTexas Tech UniversityLubbockTexas
| | - Christopher R. Woodman
- Department of Health & KinesiologyTexas A&M UniversityCollege StationTexas
- Department of Veterinary Physiology & PharmacologyTexas A&M UniversityCollege StationTexas
| |
Collapse
|
4
|
Impact of Aging on Endurance and Neuromuscular Physical Performance: The Role of Vascular Senescence. Sports Med 2018; 47:583-598. [PMID: 27459861 DOI: 10.1007/s40279-016-0596-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The portion of society aged ≥60 years is the fastest growing population in the Western hemisphere. Aging is associated with numerous changes to systemic physiology that affect physical function and performance. We present a narrative review of the literature aimed at discussing the age-related changes in various metrics of physical performance (exercise economy, anaerobic threshold, peak oxygen uptake, muscle strength, and power). It also explores aging exercise physiology as it relates to global physical performance. Finally, this review examines the vascular contributions to aging exercise physiology. Numerous studies have shown that older adults exhibit substantial reductions in physical performance. The process of decline in endurance capacity is particularly insidious over the age of 60 years and varies considerably as a function of sex, task specificity, and individual training status. Starting at the age of 50 years, aging also implicates an impressive deterioration of neuromuscular function, affecting muscle strength and power. Muscle atrophy, together with minor deficits in the structure and function of the nervous system and/or impairments in intrinsic muscle quality, plays an important role in the development of neuromotor senescence. Large artery stiffness increases as a function of age, thus triggering subsequent changes in pulsatile hemodynamics and systemic endothelial dysfunction. For this reason, we propose that vascular senescence has a negative impact on cerebral, cardiac, and neuromuscular structure and function, detrimentally affecting physical performance.
Collapse
|
5
|
Piil P, Smith Jørgensen T, Egelund J, Damsgaard R, Gliemann L, Hellsten Y, Nyberg M. Exercise training improves blood flow to contracting skeletal muscle of older men via enhanced cGMP signaling. J Appl Physiol (1985) 2017; 124:109-117. [PMID: 28982945 DOI: 10.1152/japplphysiol.00634.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Physical activity has the potential to offset age-related impairments in the regulation of blood flow and O2 delivery to the exercising muscles; however, the mechanisms underlying this effect of physical activity remain poorly understood. The present study examined the role of cGMP in training-induced adaptations in the regulation of skeletal muscle blood flow and oxidative metabolism during exercise in aging humans. We measured leg hemodynamics and oxidative metabolism during exercise engaging the knee extensor muscles in young [ n = 15, 25 ± 1 (SE) yr] and older ( n = 15, 72 ± 1 yr) subjects before and after a period of aerobic high-intensity exercise training. To determine the role of cGMP signaling, pharmacological inhibition of phosphodiesterase 5 (PDE5) was performed. Before training, inhibition of PDE5 increased ( P < 0.05) skeletal muscle blood flow and O2 uptake during moderate-intensity exercise in the older group; however, these effects of PDE5 inhibition were not detected after training. These findings suggest a role for enhanced cGMP signaling in the training-induced improvement of regulation of blood flow in contracting skeletal muscle of older men. NEW & NOTEWORTHY The present study provides evidence for enhanced cyclic GMP signaling playing an essential role in the improved regulation of blood flow in contracting skeletal muscle of older men with aerobic exercise training.
Collapse
Affiliation(s)
- Peter Piil
- Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark
| | - Tue Smith Jørgensen
- Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark.,Department of Orthopedics, Herlev and Gentofte Hospital, Copenhagen, Denmark
| | - Jon Egelund
- Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark
| | - Rasmus Damsgaard
- Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark
| | - Lasse Gliemann
- Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark
| | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark
| | - Michael Nyberg
- Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
6
|
Smith JR, Hageman KS, Harms CA, Poole DC, Musch TI. Effect of chronic heart failure in older rats on respiratory muscle and hindlimb blood flow during submaximal exercise. Respir Physiol Neurobiol 2017; 243:20-26. [PMID: 28495570 DOI: 10.1016/j.resp.2017.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 05/04/2017] [Accepted: 05/04/2017] [Indexed: 11/18/2022]
Abstract
Submaximal exercise diaphragm blood flow (BF) is elevated in young chronic heart failure (CHF) rats, while it is unknown if this occurs in older animals. Respiratory and hindlimb muscle BFs (radiolabeled microspheres) were measured at rest and during submaximal exercise (20m/min, 5% grade) in older healthy (n=7) and CHF (n=6) Fischer 344X Brown Norway rats (27-29 mo old). Older CHF, compared to healthy, rats had greater (p<0.01) left ventricular end-diastolic pressure and right ventricle and lung weight (normalized to body weight). During submaximal exercise, respiratory and hindlimb muscle BFs increased (p<0.02) in both groups, while diaphragm BF was higher (CHF: 257±32; healthy: 121±9mL/min/100g, p<0.01) and hindlimb BF lower (CHF: 111±10; healthy: 133±12mL/min/100g, p=0.04) in older CHF compared to healthy rats. Submaximal exercise hindlimb BF was negatively related (r=-0.93; p=0.03) to diaphragm BF in older CHF rats. During submaximal exercise, diaphragm BF is elevated in older CHF compared to healthy rats in proportion to the compromised hindlimb BF.
Collapse
Affiliation(s)
- Joshua R Smith
- Department of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA.
| | - K Sue Hageman
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Craig A Harms
- Department of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA
| | - David C Poole
- Department of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA; Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Timothy I Musch
- Department of Kinesiology, Kansas State University, Manhattan, KS, 66506, USA; Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
7
|
Hildebrandt W, Schwarzbach H, Pardun A, Hannemann L, Bogs B, König AM, Mahnken AH, Hildebrandt O, Koehler U, Kinscherf R. Age-related differences in skeletal muscle microvascular response to exercise as detected by contrast-enhanced ultrasound (CEUS). PLoS One 2017; 12:e0172771. [PMID: 28273102 PMCID: PMC5342194 DOI: 10.1371/journal.pone.0172771] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 12/21/2016] [Indexed: 12/20/2022] Open
Abstract
Background Aging involves reductions in exercise total limb blood flow and exercise capacity. We hypothesized that this may involve early age-related impairments of skeletal muscle microvascular responsiveness as previously reported for insulin but not for exercise stimuli in humans. Methods Using an isometric exercise model, we studied the effect of age on contrast-enhanced ultrasound (CEUS) parameters, i.e. microvascular blood volume (MBV), flow velocity (MFV) and blood flow (MBF) calculated from replenishment of Sonovue contrast-agent microbubbles after their destruction. CEUS was applied to the vastus lateralis (VLat) and intermedius (VInt) muscle in 15 middle-aged (MA, 43.6±1.5 years) and 11 young (YG, 24.1±0.6 years) healthy males before, during, and after 2 min of isometric knee extension at 15% of peak torque (PT). In addition, total leg blood flow as recorded by femoral artery Doppler-flow. Moreover, fiber-type-specific and overall capillarisation as well as fiber composition were additionally assessed in Vlat biopsies obtained from CEUS site. MA and YG had similar quadriceps muscle MRT-volume or PT and maximal oxygen uptake as well as a normal cardiovascular risk factors and intima-media-thickness. Results During isometric exercise MA compared to YG reached significantly lower levels in MFV (0.123±0.016 vs. 0.208±0.036 a.u.) and MBF (0.007±0.001 vs. 0.012±0.002 a.u.). In the VInt the (post-occlusive hyperemia) post-exercise peaks in MBV and MBF were significantly lower in MA vs. YG. Capillary density, capillary fiber contacts and femoral artery Doppler were similar between MA and YG. Conclusions In the absence of significant age-related reductions in capillarisation, total leg blood flow or muscle mass, healthy middle-aged males reveal impaired skeletal muscle microcirculatory responses to isometric exercise. Whether this limits isometric muscle performance remains to be assessed.
Collapse
Affiliation(s)
- Wulf Hildebrandt
- Department of Medical Cell Biology, Institute of Anatomy and Cell Biology, University of Marburg, Marburg, Germany
- * E-mail:
| | - Hans Schwarzbach
- Department of Medical Cell Biology, Institute of Anatomy and Cell Biology, University of Marburg, Marburg, Germany
| | - Anita Pardun
- Department of Medical Cell Biology, Institute of Anatomy and Cell Biology, University of Marburg, Marburg, Germany
| | - Lena Hannemann
- Department of Medical Cell Biology, Institute of Anatomy and Cell Biology, University of Marburg, Marburg, Germany
| | - Björn Bogs
- Department of Medical Cell Biology, Institute of Anatomy and Cell Biology, University of Marburg, Marburg, Germany
| | - Alexander M. König
- Department of Diagnostic and Interventional Radiology, University Hospital of Giessen and Marburg (UKGM) University, Baldingerstraße, Marburg, Germany
| | - Andreas H. Mahnken
- Department of Diagnostic and Interventional Radiology, University Hospital of Giessen and Marburg (UKGM) University, Baldingerstraße, Marburg, Germany
| | - Olaf Hildebrandt
- Department of Sleep Medicine, Division of Pneumology, Internal Medicine, University Hospital of Giessen and Marburg (UKGM) Baldingerstraße, Marburg, Germany
| | - Ulrich Koehler
- Department of Sleep Medicine, Division of Pneumology, Internal Medicine, University Hospital of Giessen and Marburg (UKGM) Baldingerstraße, Marburg, Germany
| | - Ralf Kinscherf
- Department of Medical Cell Biology, Institute of Anatomy and Cell Biology, University of Marburg, Marburg, Germany
| |
Collapse
|
8
|
Angulo J, El Assar M, Rodríguez-Mañas L. Frailty and sarcopenia as the basis for the phenotypic manifestation of chronic diseases in older adults. Mol Aspects Med 2016; 50:1-32. [PMID: 27370407 DOI: 10.1016/j.mam.2016.06.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/18/2016] [Indexed: 12/13/2022]
Abstract
Frailty is a functional status that precedes disability and is characterized by decreased functional reserve and increased vulnerability. In addition to disability, the frailty phenotype predicts falls, institutionalization, hospitalization and mortality. Frailty is the consequence of the interaction between the aging process and some chronic diseases and conditions that compromise functional systems and finally produce sarcopenia. Many of the clinical manifestations of frailty are explained by sarcopenia which is closely related to poor physical performance. Reduced regenerative capacity, malperfusion, oxidative stress, mitochondrial dysfunction and inflammation compose the sarcopenic skeletal muscle alterations associated to the frailty phenotype. Inflammation appears as a common determinant for chronic diseases, sarcopenia and frailty. The strategies to prevent the frailty phenotype include an adequate amount of physical activity and exercise as well as pharmacological interventions such as myostatin inhibitors and specific androgen receptor modulators. Cell response to stress pathways such as Nrf2, sirtuins and klotho could be considered as future therapeutic interventions for the management of frailty phenotype and aging-related chronic diseases.
Collapse
Affiliation(s)
- Javier Angulo
- Unidad de Investigación Cardiovascular (IRYCIS/UFV), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Mariam El Assar
- Instituto de Investigación Sanitaria de Getafe, Getafe, Madrid, Spain
| | | |
Collapse
|
9
|
Muller-Delp JM. Heterogeneous ageing of skeletal muscle microvascular function. J Physiol 2015; 594:2285-95. [PMID: 26575597 DOI: 10.1113/jp271005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/24/2015] [Indexed: 02/01/2023] Open
Abstract
The distribution of blood flow to skeletal muscle during exercise is altered with advancing age. Changes in arteriolar function that are muscle specific underlie age-induced changes in blood flow distribution. With advancing age, functional adaptations that occur in resistance arterioles from oxidative muscles differ from those that occur in glycolytic muscles. Age-related adaptations of morphology, as well as changes in both endothelial and vascular smooth muscle signalling, differ in muscle of diverse fibre type. Age-induced endothelial dysfunction has been reported in most skeletal muscle arterioles; however, unique alterations in signalling contribute to the dysfunction in arterioles from oxidative muscles as compared with those from glycolytic muscles. In resistance arterioles from oxidative muscle, loss of nitric oxide signalling contributes significantly to endothelial dysfunction, whereas in resistance arterioles from glycolytic muscle, alterations in both nitric oxide and prostanoid signalling underlie endothelial dysfunction. Similarly, adaptations of the vascular smooth muscle that occur with advancing age are heterogeneous between arterioles from oxidative and glycolytic muscles. In both oxidative and glycolytic muscle, late-life exercise training reverses age-related microvascular dysfunction, and exercise training appears to be particularly effective in reversing endothelial dysfunction. Patterns of microvascular ageing that develop among muscles of diverse fibre type and function may be attributable to changing patterns of physical activity with ageing. Importantly, aerobic exercise training, initiated even at an advanced age, restores muscle blood flow distribution patterns and vascular function in old animals to those seen in their young counterparts.
Collapse
Affiliation(s)
- Judy M Muller-Delp
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
10
|
Ferguson SK, Glean AA, Holdsworth CT, Wright JL, Fees AJ, Colburn TD, Stabler T, Allen JD, Jones AM, Musch TI, Poole DC. Skeletal Muscle Vascular Control During Exercise: Impact of Nitrite Infusion During Nitric Oxide Synthase Inhibition in Healthy Rats. J Cardiovasc Pharmacol Ther 2015; 21:201-8. [PMID: 26272082 DOI: 10.1177/1074248415599061] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/17/2015] [Indexed: 12/26/2022]
Abstract
The nitric oxide synthase (NOS)-independent pathway of nitric oxide (NO) production in which nitrite (NO2 (-)) is reduced to NO may have therapeutic applications for those with cardiovascular diseases in which the NOS pathway is downregulated. We tested the hypothesis that NO2 (-) infusion would reduce mean arterial pressure (MAP) and increase skeletal muscle blood flow (BF) and vascular conductance (VC) during exercise in the face of NOS blockade via L-NAME. Following infusion of L-NAME (10 mg kg(-1), L-NAME), male Sprague-Dawley rats (3-6 months, n = 8) exercised without N(G)-nitro-L arginine methyl ester (L-NAME) and after infusion of sodium NO2 (-) (7 mg kg(-1); L-NAME + NO2 (-)). MAP and hindlimb skeletal muscle BF (radiolabeled microsphere infusions) were measured during submaximal treadmill running (20 m min(-1), 5% grade). Across group comparisons were made with a published control data set (n = 11). Relative to L-NAME, NO2 (-) infusion significantly reduced MAP (P < 0.03). The lower MAP in L-NAME+NO2 (-) was not different from healthy control animals (control: 137 ± 3 L-NAME: 157 ± 7, L-NAME + NO2 (-): 136 ± 5 mm Hg). Also, NO2 (-) infusion significantly increased VC when compared to L-NAME (P < 0.03), ultimately negating any significant differences from control animals (control: 0.78 ± 0.05, L-NAME: 0.57 ± 0.03, L-NAME + NO2 (-); 0.69 ± 0.04 mL min(-1) 100 g(-1) mm Hg(-1)) with no apparent fiber-type preferential effect. Overall, hindlimb BF was decreased significantly by L-NAME; however, in L-NAME + NO2 (-), BF improved to a level not significantly different from healthy controls (control: 108 ± 8, L-NAME: 88 ± 3, L-NAME + NO2 (-): 94 ± 6 mL min(-1) 100 g(-1), P = 0.38 L-NAME vs L-NAME + NO2 (-)). Individuals with diseases that impair NOS activity, and thus vascular function, may benefit from a NO2 (-)-based therapy in which NO bioavailability is elevated in an NOS-independent manner.
Collapse
Affiliation(s)
- Scott K Ferguson
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Angela A Glean
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - Clark T Holdsworth
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Jennifer L Wright
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Alex J Fees
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Trenton D Colburn
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - Thomas Stabler
- Institute of Sport Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
| | - Jason D Allen
- Institute of Sport Exercise and Active Living, Victoria University, Melbourne, Victoria, Australia
| | - Andrew M Jones
- Sport and Health Sciences, University of Exeter, St Luke's Campus, Exeter, United Kingdom
| | - Timothy I Musch
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - David C Poole
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
11
|
La Favor JD, Kraus RM, Carrithers JA, Roseno SL, Gavin TP, Hickner RC. Sex differences with aging in nutritive skeletal muscle blood flow: impact of exercise training, nitric oxide, and α-adrenergic-mediated mechanisms. Am J Physiol Heart Circ Physiol 2015; 307:H524-32. [PMID: 24951753 DOI: 10.1152/ajpheart.00247.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The incidence of cardiovascular disease increases progressively with age, but aging may affect men and women differently. Age-associated changes in vascular structure and function may manifest in impaired nutritive blood flow, although the regulation of nutritive blood flow in healthy aging is not well understood. The purpose of this study was to determine if nitric oxide (NO)-mediated or α-adrenergic-mediated regulation of nutritive skeletal muscle blood flow is impaired with advanced age, and if exercise training improves age-related deficiencies. Nutritive blood flow was monitored in the vastus lateralis of healthy young and aged men and women via the microdialysis-ethanol technique prior to and following seven consecutive days of exercise training. NO-mediated and α-adrenergic-mediated regulation of nutritive blood flow was assessed by microdialysis perfusion of acetylcholine, sodium nitroprusside, N(G)-monomethyl-L-arginine, norepinephrine, or phentolamine. Pretraining nutritive blood flow was attenuated in aged compared with young women (7.39 ± 1.5 vs. 15.5 ± 1.9 ml·100 g(−1)·min(−1), P = 0.018), but not aged men (aged 13.5 ± 3.7 vs. young 9.4 ± 1.3 ml·100 g(−1)·min(−1), P = 0.747). There were no age-associated differences in NO-mediated or α-adrenergic-mediated nutritive blood flow. Exercise training increased resting nutritive blood flow only in young men (9.4 ± 1.3 vs. 19.7 ml·100 g(−1)·min(−1), P = 0.005). The vasodilatory effect of phentolamine was significantly reduced following exercise training only in young men (12.3 ± 6.14 vs. −3.68 ± 3.26 ml·100 g(−1)·min(−1), P = 0.048). In conclusion, the age-associated attenuation of resting nutritive skeletal muscle blood flow was specific to women, while the exercise-induced alleviation of α-adrenergic mediated vasoconstriction that was specific to young men suggests an age-associated modulation of the sympathetic response to exercise training.
Collapse
|
12
|
Involvement of nitric oxide and caveolins in the age-associated functional and structural changes in a heart under osmotic stress. Biomed Pharmacother 2014; 69:380-7. [PMID: 25661386 DOI: 10.1016/j.biopha.2014.12.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 12/11/2014] [Indexed: 11/22/2022] Open
Abstract
Previous work done in our laboratory showed that water restriction during 24 and 72h induced changes in cardiovascular NOS activity without altering NOS protein levels in young and adult animals. These findings indicate that the involvement of NO in the regulatory mechanisms during dehydration depends on the magnitude of the water restriction and on age. Our aim was to study whether a controlled water restriction of 1 month affects cardiac function, NO synthase (NOS) activity and NOS, and cav-1 and -3 protein levels in rats during aging. Male Sprague-Dawley rats aged 2 and 16 months were divided into 2 groups: (CR) control restriction (WR) water restriction. Measurements of arterial blood pressure, heart rate, oxidative stress, NOS activity and NOS/cav-1 and -3 protein levels were performed. Cardiac function was evaluated by echocardiography. The results showed that adult rats have greater ESV, EDV and SV than young rats with similar SBP. Decreased atria NOS activity was caused by a reduction in NOS protein levels. Adult animals showed increased cav-1. Water restriction decreased NOS activity in young and adult rats associated to an increased cav-1. TBARS levels increased in adult animals. Higher ventricular NOS activity in adulthood would be caused by a reduction in both cav. Water restriction reduced NOS activity and increased cav in both age groups. In conclusion, our results indicated that dehydration modifies cardiac NO system activity and its regulatory proteins cav in order to maintain physiological cardiac function. Functional alterations are induced by the aging process as well as hypovolemic state.
Collapse
|
13
|
Barrera G, Bunout D, de la Maza MP, Leiva L, Hirsch S. Carotid ultrasound examination as an aging and disability marker. Geriatr Gerontol Int 2013; 14:710-5. [PMID: 24118855 DOI: 10.1111/ggi.12146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2013] [Indexed: 11/29/2022]
Abstract
AIM To explore the usefulness of carotid ultrasound examination as a marker of aging and predictor of disability among older people. METHODS Carotid ultrasound, measuring carotid intima media thickness (CIMT) and recording the presence of plaques, was carried out in 152 adults aged 29-59 years (47 women) and in 107 older adults aged 61-88 years (86 women). In all, clinical routine laboratory parameters and lymphocyte telomere length as T/S ratio were measured. Among older adults, 12-min walk, timed up and go, hand grip and quadriceps strength were determined. RESULTS CIMT was significantly higher among older people and T/S ratio was significantly higher in young women. Carotid plaques were found in one adult and 17 older people. A multiple regression analysis accepted age, systolic blood pressure and T/S ratios as independent predictors of CIMT (R(2) = 0.51). Among older people, a logistic regression accepted age and the presence of carotid plaques as significant predictors of a 12-min walk speed below 1 m/s. CONCLUSIONS An abnormal 12-min walk as an indicator of functional decline among older people is associated with the presence of carotid artery plaques. CIMT is independently associated with age.
Collapse
Affiliation(s)
- Gladys Barrera
- Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
14
|
Holdsworth CT, Copp SW, Hirai DM, Ferguson SK, Sims GE, Hageman KS, Stebbins CL, Poole DC, Musch TI. The effects of dietary fish oil on exercising skeletal muscle vascular and metabolic control in chronic heart failure rats. Appl Physiol Nutr Metab 2013; 39:299-307. [PMID: 24552370 DOI: 10.1139/apnm-2013-0301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Impaired vasomotor control in chronic heart failure (CHF) is due partly to decrements in nitric oxide synthase (NOS) mediated vasodilation. Exercising muscle blood flow (BF) is augmented with polyunsaturated fatty acid (PUFA) supplementation via fish oil (FO) in healthy rats. We hypothesized that FO would augment exercising muscle BF in CHF rats via increased NO-bioavailability. Myocardial infarction (coronary artery ligation) induced CHF in Sprague-Dawley rats which were subsequently randomized to dietary FO (20% docosahexaenoic acid, 30% eicosapentaenoic acid, n = 15) or safflower oil (SO, 5%, n = 10) for 6-8 weeks. Mean arterial pressure (MAP), blood [lactate], and hindlimb muscles BF (radiolabeled microspheres) were determined at rest, during treadmill exercise (20 m·min(-1), 5% incline) and exercise + N(G)-nitro-l-arginine-methyl-ester (l-NAME) (a nonspecific NOS inhibitor). FO did not change left ventricular end-diastolic pressure (SO: 14 ± 2; FO: 11 ± 1 mm Hg, p > 0.05). During exercise, MAP (SO: 128 ± 3; FO: 132 ± 3 mm Hg) and blood [lactate] (SO: 3.8 ± 0.4; FO: 4.6 ± 0.5 mmol·L(-1)) were not different (p > 0.05). Exercising hindlimb muscle BF was lower in FO than SO (SO: 120 ± 11; FO: 93 ± 4 mL·min(-1)·100 g(-1), p < 0.05) but was not differentially affected by l-NAME. Specifically, 17 of 28 individual muscle BF's were lower (p < 0.05) in FO demonstrating that PUFA supplementation with FO in CHF rats does not augment muscle BF during exercise but may lower metabolic cost.
Collapse
Affiliation(s)
- Clark T Holdsworth
- a Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506-5802, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kelly J, Fulford J, Vanhatalo A, Blackwell JR, French O, Bailey SJ, Gilchrist M, Winyard PG, Jones AM. Effects of short-term dietary nitrate supplementation on blood pressure, O2 uptake kinetics, and muscle and cognitive function in older adults. Am J Physiol Regul Integr Comp Physiol 2013; 304:R73-83. [DOI: 10.1152/ajpregu.00406.2012] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dietary nitrate (NO3−) supplementation has been shown to reduce resting blood pressure and alter the physiological response to exercise in young adults. We investigated whether these effects might also be evident in older adults. In a double-blind, randomized, crossover study, 12 healthy, older (60–70 yr) adults supplemented their diet for 3 days with either nitrate-rich concentrated beetroot juice (BR; 2 × 70 ml/day, ∼9.6 mmol/day NO3−) or a nitrate-depleted beetroot juice placebo (PL; 2 × 70 ml/day, ∼0.01 mmol/day NO3−). Before and after the intervention periods, resting blood pressure and plasma [nitrite] were measured, and subjects completed a battery of physiological and cognitive tests. Nitrate supplementation significantly increased plasma [nitrite] and reduced resting systolic (BR: 115 ± 9 vs. PL: 120 ± 6 mmHg; P < 0.05) and diastolic (BR: 70 ± 5 vs. PL: 73 ± 5 mmHg; P < 0.05) blood pressure. Nitrate supplementation resulted in a speeding of the V̇o2 mean response time (BR: 25 ± 7 vs. PL: 28 ± 7 s; P < 0.05) in the transition from standing rest to treadmill walking, although in contrast to our hypothesis, the O2 cost of exercise remained unchanged. Functional capacity (6-min walk test), the muscle metabolic response to low-intensity exercise, brain metabolite concentrations, and cognitive function were also not altered. Dietary nitrate supplementation reduced resting blood pressure and improved V̇o2 kinetics during treadmill walking in healthy older adults but did not improve walking or cognitive performance. These results may have implications for the enhancement of cardiovascular health in older age.
Collapse
Affiliation(s)
- James Kelly
- Sport and Health Sciences, College of Life and Environmental Sciences
| | - Jonathan Fulford
- Peninsula National Institute for Health Research Clinical Research Facility, Peninsula Medical School; and
| | - Anni Vanhatalo
- Sport and Health Sciences, College of Life and Environmental Sciences
| | | | - Olivia French
- Sport and Health Sciences, College of Life and Environmental Sciences
| | - Stephen J. Bailey
- Sport and Health Sciences, College of Life and Environmental Sciences
| | - Mark Gilchrist
- Peninsula Medical School, University of Exeter, St. Luke's Campus, Exeter, United Kingdom
| | - Paul G. Winyard
- Peninsula Medical School, University of Exeter, St. Luke's Campus, Exeter, United Kingdom
| | - Andrew M. Jones
- Sport and Health Sciences, College of Life and Environmental Sciences
| |
Collapse
|
16
|
Sindler AL, Reyes R, Chen B, Ghosh P, Gurovich AN, Kang LS, Cardounel AJ, Delp MD, Muller-Delp JM. Age and exercise training alter signaling through reactive oxygen species in the endothelium of skeletal muscle arterioles. J Appl Physiol (1985) 2013; 114:681-93. [PMID: 23288555 DOI: 10.1152/japplphysiol.00341.2012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exercise training ameliorates age-related impairments in endothelium-dependent vasodilation in skeletal muscle arterioles. Additionally, exercise training is associated with increased superoxide production. The purpose of this study was to determine the role of superoxide and superoxide-derived reactive oxygen species (ROS) signaling in mediating endothelium-dependent vasodilation of soleus muscle resistance arterioles from young and old, sedentary and exercise-trained rats. Young (3 mo) and old (22 mo) male rats were either exercise trained or remained sedentary for 10 wk. To determine the impact of ROS signaling on endothelium-dependent vasodilation, responses to acetylcholine were studied under control conditions and during the scavenging of superoxide and/or hydrogen peroxide. To determine the impact of NADPH oxidase-derived ROS, endothelium-dependent vasodilation was determined following NADPH oxidase inhibition. Reactivity to superoxide and hydrogen peroxide was also determined. Tempol, a scavenger of superoxide, and inhibitors of NADPH oxidase reduced endothelium-dependent vasodilation in all groups. Similarly, treatment with catalase and simultaneous treatment with tempol and catalase reduced endothelium-dependent vasodilation in all groups. Decomposition of peroxynitrite also reduced endothelium-dependent vasodilation. Aging had no effect on arteriolar protein content of SOD-1, catalase, or glutathione peroxidase-1; however, exercise training increased protein content of SOD-1 in young and old rats, catalase in young rats, and glutathione peroxidase-1 in old rats. These data indicate that ROS signaling is necessary for endothelium-dependent vasodilation in soleus muscle arterioles, and that exercise training-induced enhancement of endothelial function occurs, in part, through an increase in ROS signaling.
Collapse
Affiliation(s)
- Amy L Sindler
- Department of Physiology and Pharmacology, and the Center for Interdisciplinary Research in Cardiovascular Sciences, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Groot HJ, Trinity JD, Layec G, Rossman MJ, Ives SJ, Richardson RS. Perfusion pressure and movement-induced hyperemia: evidence of limited vascular function and vasodilatory reserve with age. Am J Physiol Heart Circ Physiol 2012; 304:H610-9. [PMID: 23262136 DOI: 10.1152/ajpheart.00656.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To better understand the mechanisms contributing to reduced blood flow with age, this study sought to elucidate the impact of altered femoral perfusion pressure (FPP) on movement-induced hyperemia. Passive leg movement was performed in 10 young (22 ± 1 yr) and 12 old (72 ± 2 yr) healthy men for 2 min, with and without a posture-induced change in FPP (~7 ± 1 ΔmmHg). Second-by-second measurements of central and peripheral hemodynamic responses were acquired noninvasively (finger photoplethysmography and Doppler ultrasound, respectively), with FPP confirmed in a subset of four young and four old subjects with arterial and venous catheters. Central hemodynamic responses (heart rate, stroke volume, cardiac output, mean arterial pressure) were not affected by age or position. The young exhibited a ~70% greater movement-induced peak change in leg blood flow (ΔLBF(peak)) in the upright-seated posture (supine: 596±68 ml/min; upright: 1,026 ± 85 ml/min). However, in the old the posture change did not alter ΔLBF(peak) (supine: 417±42 ml/min; upright: 412±56 ml/min), despite the similar increases in FPP. Similarly, movement-induced peak change in leg vascular conductance was ~80% greater for the young in the upright-seated posture (supine: 7.1 ± 0.8 ml·min(-1)·mmHg(-1); upright: 12.8 ± 1.3 ml·min(-1)·mmHg(-1)), while the old again exhibited no difference between postures (supine: 4.7 ± 0.4 ml·min(-1)·mmHg(-1); upright: 4.8 ± 0.5 ml·min(-1)·mmHg(-1)). Thus this study reveals that, unlike the young, increased FPP does not elicit an increase in movement-induced hyperemia or vasodilation in the old. In light of recent evidence that the majority of the first minute of passive movement-induced hyperemia is predominantly nitric oxide (NO) dependent in the young, these findings in the elderly may be largely due to decreased NO bioavailability, but this remains to be definitively determined.
Collapse
Affiliation(s)
- H Jonathan Groot
- Geriatric Research, Education, and Clinical Center Salt Lake City Veterans Affairs Medical Center, Salt Lake City, UT 84148, USA
| | | | | | | | | | | |
Collapse
|
18
|
Puca AA, Carrizzo A, Ferrario A, Villa F, Vecchione C. Endothelial nitric oxide synthase, vascular integrity and human exceptional longevity. IMMUNITY & AGEING 2012; 9:26. [PMID: 23153280 PMCID: PMC3538508 DOI: 10.1186/1742-4933-9-26] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 11/13/2012] [Indexed: 12/16/2022]
Abstract
Aging is the sum of the deleterious changes that occur as time goes by. It is the main risk factor for the development of cardiovascular disease, and aging of the vasculature is the event that most often impacts on the health of elderly people. The “free-radical theory of aging” was proposed to explain aging as a consequence of the accumulation of reactive oxygen species (ROS). However, recent findings contradict this theory, and it now seems that mechanisms mediating longevity act through induction of oxidative stress. In fact, calorie restriction − a powerful way of delaying aging − increases ROS accumulation due to stimulation of the basal metabolic rate; moreover, reports show that antioxidant therapy is detrimental to healthy aging. We also now know that genetic manipulation of the insulin-like-growth-factor-1/insulin signal (IIS) has a profound impact on the rate of aging and that the IIS is modulated by calorie restriction and physical exercise. The IIS regulates activation of nitric oxide synthase (eNOS), the activity of which is essential to improving lifespan through calorie restriction, as demonstrated by experiments on eNOS knockout mice. Indeed, eNOS has a key role in maintaining vascular integrity during aging by activating vasorelaxation and allowing migration and angiogenesis. In this review, we will overview current literature on these topics and we will try to convince the reader of the importance of vascular integrity and nitric oxide production in determining healthy aging.
Collapse
|
19
|
Copp SW, Schwagerl PJ, Hirai DM, Poole DC, Musch TI. Acute ascorbic acid and hindlimb skeletal muscle blood flow distribution in old rats: rest and exercise. Can J Physiol Pharmacol 2012. [DOI: 10.1139/y2012-109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Excess reactive oxygen species are implicated in the impaired peripheral vascular function evident during exercise in older individuals. We tested the hypothesis that an acute infusion of the antioxidant ascorbic acid (AA) in old rats would improve antioxidant capacity and reduce oxidative stress and, therefore, elevate hindlimb muscle blood flow at rest and during treadmill exercise in muscles containing principally type I and IIa muscle fibers. Total and individual hindlimb skeletal muscle blood flow was measured (radiolabeled microspheres) in old rats (26–28 months) at rest (n = 8) and during treadmill exercise (n = 8; 20 m·min–1, 5% grade) before and after AA treatment (76 mg·(kg body mass)–1 intra-arterial (i.a.) injection). AA elevated total antioxidant capacity (rest, ∼37%; and exercise, 31%) and reduced oxidative stress (∼26%, exercise only). AA reduced resting total hindlimb muscle blood flow (control, 25 ± 3; AA, 16 ± 2 mL·min–1·(100 g)–1; p < 0.05) and blood flow to 8 of 28 individual muscles with no fiber-type correlation (p > 0.05). During exercise there was no effect of AA on total hindlimb muscle blood flow (control, 154 ± 14; AA, 162 ± 13 mL·min–1·(100 g)–1; p > 0.05) or blood flow to any individual muscle. This disconnect between whole-body antioxidant status and skeletal muscle blood flow in old rats mandates consideration when pursuing antioxidant treatments experimentally or clinically in older populations.
Collapse
Affiliation(s)
- Steven W. Copp
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506-5802, USA
| | - Peter J. Schwagerl
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA
| | - Daniel M. Hirai
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506-5802, USA
| | - David C. Poole
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506-5802, USA
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA
| | - Timothy I. Musch
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506-5802, USA
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
20
|
Behnke BJ, Ramsey MW, Stabley JN, Dominguez JM, Davis RT, McCullough DJ, Muller-Delp JM, Delp MD. Effects of aging and exercise training on skeletal muscle blood flow and resistance artery morphology. J Appl Physiol (1985) 2012; 113:1699-708. [PMID: 23042906 DOI: 10.1152/japplphysiol.01025.2012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
With old age, blood flow to the high-oxidative red skeletal muscle is reduced and blood flow to the low-oxidative white muscle is elevated during exercise. Changes in the number of feed arteries perforating the muscle are thought to contribute to this altered hyperemic response during exercise. We tested the hypothesis that exercise training would ameliorate age-related differences in blood flow during exercise and feed artery structure in skeletal muscle. Young (6-7 mo old, n = 36) and old (24 mo old, n = 25) male Fischer 344 rats were divided into young sedentary (Sed), old Sed, young exercise-trained (ET), and old ET groups, where training consisted of 10-12 wk of treadmill exercise. In Sed and ET rats, blood flow to the red and white portions of the gastrocnemius muscle (Gast(Red) and Gast(White)) and the number and luminal cross-sectional area (CSA) of all feed arteries perforating the muscle were measured at rest and during exercise. In the old ET group, blood flow was greater to Gast(Red) (264 ± 13 and 195 ± 9 ml · min(-1) · 100 g(-1) in old ET and old Sed, respectively) and lower to Gast(White) (78 ± 5 and 120 ± 6 ml · min(-1) · 100 g(-1) in old ET and old Sed, respectively) than in the old Sed group. There was no difference in the number of feed arteries between the old ET and old Sed group, although the CSA of feed arteries from old ET rats was larger. In young ET rats, there was an increase in the number of feed arteries perforating the muscle. Exercise training mitigated old age-associated differences in blood flow during exercise within gastrocnemius muscle. However, training-induced adaptations in resistance artery morphology differed between young (increase in feed artery number) and old (increase in artery CSA) animals. The altered blood flow pattern induced by exercise training with old age would improve the local matching of O(2) delivery to consumption within the skeletal muscle.
Collapse
Affiliation(s)
- Bradley J Behnke
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida 32611, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Casey DP, Joyner MJ. Influence of α-adrenergic vasoconstriction on the blunted skeletal muscle contraction-induced rapid vasodilation with aging. J Appl Physiol (1985) 2012; 113:1201-12. [PMID: 22961267 DOI: 10.1152/japplphysiol.00734.2012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We tested the hypothesis that elevated sympathetic tone is responsible for lower peak vasodilation after single muscle contractions in older adults. Young (n = 13, 7 men and 6 women, age: 27 ± 1 yr) and older (n = 13, 7 men and 6 women, age: 69 ± 2 yr) adults performed single forearm contractions at 10%, 20%, and 40% of maximum during 1) control, 2) sympathetic activation via lower body negative pressure (LBNP; -20 mmHg), and 3) intra-arterial infusion of phentolamine (α-adrenergic antagonist). Brachial artery diameter and velocities were measured via Doppler ultrasound, and forearm vascular conductance (FVC; in ml·min(-1)·100 mmHg(-1)) was calculated from blood flow (in ml/min) and blood pressure (in mmHg). Peak vasodilator responses [change in (Δ) FVC from baseline] were attenuated in older adults at 20% and 40% of maximum (P < 0.05). LBNP reduced peak ΔFVC at 10% (98 ± 17 vs. 70 ± 12 ml·min(-1)·100 mmHg(-1)), 20% (144 ± 12 vs. 98 ± 3 ml·min(-1)·100 mmHg(-1)), and 40% (209 ± 20 vs. 161 ± 21 ml·min(-1)·100 mmHg(-1), P < 0.01 vs. control) in younger adults but not in older adults (71 ± 11 vs. 68 ± 11, 107 ± 13 vs. 106 ± 16, and 161 ± 22 vs. 144 ± 22 ml·min(-1)·100 mmHg(-1), respectively, P = 0.22-0.99). With phentolamine, peak ΔFVC was enhanced in older adults at each contraction intensity (100 ± 14, 147 ± 22, and 200 ± 26 ml·min(-1)·100 mmHg(-1), respectively, P < 0.01 vs. control) but not in younger adults (94 ± 13, 153 ± 13, and 224 ± 27 ml·min(-1)·100 mmHg(-1), respectively, P = 0.30-0.81 vs. control). Our data indicate that α-adrenergic vasoconstriction and/or blunted functional sympatholysis might contribute to the age-related decreases in skeletal muscle contraction-induced rapid vasodilation in humans.
Collapse
Affiliation(s)
- Darren P Casey
- Department of Anesthesiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| | | |
Collapse
|
22
|
Heffernan KS, Chalé A, Hau C, Cloutier GJ, Phillips EM, Warner P, Nickerson H, Reid KF, Kuvin JT, Fielding RA. Systemic vascular function is associated with muscular power in older adults. J Aging Res 2012; 2012:386387. [PMID: 22966457 PMCID: PMC3433136 DOI: 10.1155/2012/386387] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 06/23/2012] [Accepted: 07/06/2012] [Indexed: 12/31/2022] Open
Abstract
Age-associated loss of muscular strength and muscular power is a critical determinant of loss of physical function and progression to disability in older adults. In this study, we examined the association of systemic vascular function and measures of muscle strength and power in older adults. Measures of vascular endothelial function included brachial artery flow-mediated dilation (FMD) and the pulse wave amplitude reactive hyperemia index (PWA-RHI). Augmentation index (AIx) was taken as a measure of systemic vascular function related to arterial stiffness and wave reflection. Measures of muscular strength included one repetition maximum (1RM) for a bilateral leg press. Peak muscular power was measured during 5 repetitions performed as fast as possible for bilateral leg press at 40% 1RM. Muscular power was associated with brachial FMD (r = 0.43, P < 0.05), PWA-RHI (r = 0.42, P < 0.05), and AIx (r = -0.54, P < 0.05). Muscular strength was not associated with any measure of vascular function. In conclusion, systemic vascular function is associated with lower-limb muscular power but not muscular strength in older adults. Whether loss of muscular power with aging contributes to systemic vascular deconditioning or vascular dysfunction contributes to decrements in muscular power remains to be determined.
Collapse
Affiliation(s)
- Kevin S. Heffernan
- Human Performance Laboratory, Department of Exercise Science, Syracuse University, Syracuse, NY 13244, USA
| | - Angela Chalé
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
| | - Cynthia Hau
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
| | - Gregory J. Cloutier
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
| | - Edward M. Phillips
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
| | - Patrick Warner
- The Vascular Function Study Group, Division of Cardiology and the Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Heather Nickerson
- The Vascular Function Study Group, Division of Cardiology and the Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Kieran F. Reid
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
| | - Jeffrey T. Kuvin
- The Vascular Function Study Group, Division of Cardiology and the Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Roger A. Fielding
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
| |
Collapse
|
23
|
Hirai DM, Copp SW, Holdsworth CT, Ferguson SK, Musch TI, Poole DC. Effects of neuronal nitric oxide synthase inhibition on microvascular and contractile function in skeletal muscle of aged rats. Am J Physiol Heart Circ Physiol 2012; 303:H1076-84. [PMID: 22923618 DOI: 10.1152/ajpheart.00477.2012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Advanced age is associated with derangements in skeletal muscle microvascular function during the transition from rest to contractions. We tested the hypothesis that, contrary to what was reported previously in young rats, selective neuronal nitric oxide (NO) synthase (nNOS) inhibition would result in attenuated or absent alterations in skeletal muscle microvascular oxygenation (Po(2)(mv)), which reflects the matching between muscle O(2) delivery and utilization, following the onset of contractions in old rats. Spinotrapezius muscle blood flow (radiolabeled microspheres), Po(2)(mv) (phosphorescence quenching), O(2) utilization (Vo(2); Fick calculation), and submaximal force production were measured at rest and following the onset of contractions in anesthetized old male Fischer 344 × Brown Norway rats (27 to 28 mo) pre- and postselective nNOS inhibition (2.1 μmol/kg S-methyl-l-thiocitrulline; SMTC). At rest, SMTC had no effects on muscle blood flow (P > 0.05) but reduced Vo(2) by ∼23% (P < 0.05), which elevated basal Po(2)(mv) by ∼18% (P < 0.05). During contractions, steady-state muscle blood flow, Vo(2), Po(2)(mv), and force production were not altered after SMTC (P > 0.05 for all). The overall Po(2)(mv) dynamics following onset of contractions was also unaffected by SMTC (mean response time: pre, 19.7 ± 1.5; and post, 20.0 ± 2.0 s; P > 0.05). These results indicate that the locus of nNOS-derived NO control in skeletal muscle depends on age and metabolic rate (i.e., rest vs. contractions). Alterations in nNOS-mediated regulation of contracting skeletal muscle microvascular function with aging may contribute to poor exercise capacity in this population.
Collapse
Affiliation(s)
- Daniel M Hirai
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506-5802, USA
| | | | | | | | | | | |
Collapse
|
24
|
Hirai DM, Copp SW, Ferguson SK, Holdsworth CT, McCullough DJ, Behnke BJ, Musch TI, Poole DC. Exercise training and muscle microvascular oxygenation: functional role of nitric oxide. J Appl Physiol (1985) 2012; 113:557-65. [PMID: 22678970 DOI: 10.1152/japplphysiol.00151.2012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exercise training induces multiple adaptations within skeletal muscle that may improve local O(2) delivery-utilization matching (i.e., Po(2)mv). We tested the hypothesis that increased nitric oxide (NO) function is intrinsic to improved muscle Po(2)mv kinetics from rest to contractions after exercise training. Healthy young Sprague-Dawley rats were assigned to sedentary (n = 18) or progressive treadmill exercise training (n = 10; 5 days/wk, 6-8 wk, final workload of 60 min/day at 35 m/min, -14% grade) groups. Po(2)mv was measured via phosphorescence quenching in the spinotrapezius muscle at rest and during 1-Hz twitch contractions under control (Krebs-Henseleit solution), sodium nitroprusside (SNP, NO donor; 300 μM), and N(G)-nitro-L-arginine methyl ester (l-NAME, nonspecific NO synthase blockade; 1.5 mM) superfusion conditions. Exercise-trained rats had greater peak oxygen uptake (Vo(2 peak)) than their sedentary counterparts (81 ± 1 vs. 72 ± 2 ml · kg(-1) · min(-1), respectively; P < 0.05). Exercise-trained rats had significantly slower Po(2)mv fall throughout contractions (τ(1); time constant for the first component) during control (sedentary: 8.1 ± 0.6; trained: 15.2 ± 2.8 s). Compared with control, SNP slowed τ(1) to a greater extent in sedentary rats (sedentary: 38.7 ± 5.6; trained: 26.8 ± 4.1 s; P > 0.05) whereas l-NAME abolished the differences in τ(1) between sedentary and trained rats (sedentary: 12.0 ± 1.7; trained: 11.2 ± 1.4 s; P < 0.05). Our results indicate that endurance exercise training leads to greater muscle microvascular oxygenation across the metabolic transient following the onset of contractions (i.e., slower Po(2)mv kinetics) partly via increased NO-mediated function, which likely constitutes an important mechanism for training-induced metabolic adaptations.
Collapse
Affiliation(s)
- Daniel M Hirai
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506-5802, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
The influence of autonomic dysfunction associated with aging and type 2 diabetes on daily life activities. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:657103. [PMID: 22566994 PMCID: PMC3332074 DOI: 10.1155/2012/657103] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 01/28/2012] [Accepted: 01/30/2012] [Indexed: 11/17/2022]
Abstract
Type 2 diabetes (T2D) and ageing have well documented effects on every organ in the body. In T2D the autonomic nervous system is impaired due to damage to neurons, sensory receptors, synapses and the blood vessels. This paper will concentrate on how autonomic impairment alters normal daily activities. Impairments include the response of the blood vessels to heat, sweating, heat transfer, whole body heating, orthostatic intolerance, balance, and gait. Because diabetes is more prevalent in older individuals, the effects of ageing will be examined. Beginning with endothelial dysfunction, blood vessels have impairment in their ability to vasodilate. With this and synaptic damage, the autonomic nervous system cannot compensate for effectors such as pressure on and heating of the skin. This and reduced ability of the heart to respond to stress, reduces autonomic orthostatic compensation. Diminished sweating causes the skin and core temperature to be high during whole body heating. Impaired orthostatic tolerance, impaired vision and vestibular sensing, causes poor balance and impaired gait. Overall, people with T2D must be made aware and counseled relative to the potential consequence of these impairments.
Collapse
|