1
|
Jianfang W, Raza SHA, Pant SD, Juan Z, Prakash A, Abdelnour SA, Aloufi BH, Mahasneh ZMH, Amin AA, Shokrollahi B, Zan L. Exploring Epigenetic and Genetic Modulation in Animal Responses to Thermal Stress. Mol Biotechnol 2025; 67:942-956. [PMID: 38528286 DOI: 10.1007/s12033-024-01126-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/27/2024] [Indexed: 03/27/2024]
Abstract
There is increasing evidence indicating that global temperatures are rising significantly, a phenomenon commonly referred to as 'global warming', which in turn is believed to be causing drastic changes to the global climate. Global warming (GW) directly impacts animal health, reproduction, production, and welfare, presenting several challenges to livestock enterprises. Thermal stress (TS) is one of the key consequences of GW, and all animal species, including livestock, have diverse physiological, epigenetic and genetic mechanisms to respond to TS. As a result, TS can significantly affect an animals' health, immune responsiveness, metabolic pathways etc. which can also influence the productivity, performance, and welfare of animals. Moreover, prolonged exposure to TS can lead to transgenerational and intergenerational changes that are mediated by epigenetic changes. For example, in several animal species, the effects of TS are encoded epigenetically during the animals' growth or productive stage, and these epigenetic changes can be transmitted intergenerationally. Such epigenetic changes can affect animal productivity by changing the phenotype so that it aligns with its ancestors' environment, irrespective of its immediate environment. Furthermore, epigenetic and genetic changes can also help protect cells from the adverse effects of TS by modulating the transcriptional status of heat-responsive genes in animals. This review focuses on the genetic and epigenetic modulation and regulation that occurs in TS conditions via HSPs, histone alterations and DNA methylation.
Collapse
Affiliation(s)
- Wang Jianfang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512005, China
| | - Sameer D Pant
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Zhao Juan
- College of Animal Science and Technology, South China Agricultural University, Guangzhou, 510642, China
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina, School of Medicine, Chapel Hill, USA
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Bandar Hamad Aloufi
- Biology Department, Faculty of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Zeinab M H Mahasneh
- Department of Animal Production, School of Agriculture, University of Jordan, Amman, Jordan
| | - Ahmed A Amin
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Borhan Shokrollahi
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang-gun, 25340, Republic of Korea
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
2
|
Flury A, Aljayousi L, Park HJ, Khakpour M, Mechler J, Aziz S, McGrath JD, Deme P, Sandberg C, González Ibáñez F, Braniff O, Ngo T, Smith S, Velez M, Ramirez DM, Avnon-Klein D, Murray JW, Liu J, Parent M, Mingote S, Haughey NJ, Werneburg S, Tremblay MÈ, Ayata P. A neurodegenerative cellular stress response linked to dark microglia and toxic lipid secretion. Neuron 2025; 113:554-571.e14. [PMID: 39719704 DOI: 10.1016/j.neuron.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/22/2024] [Accepted: 11/25/2024] [Indexed: 12/26/2024]
Abstract
The brain's primary immune cells, microglia, are a leading causal cell type in Alzheimer's disease (AD). Yet, the mechanisms by which microglia can drive neurodegeneration remain unresolved. Here, we discover that a conserved stress signaling pathway, the integrated stress response (ISR), characterizes a microglia subset with neurodegenerative outcomes. Autonomous activation of ISR in microglia is sufficient to induce early features of the ultrastructurally distinct "dark microglia" linked to pathological synapse loss. In AD models, microglial ISR activation exacerbates neurodegenerative pathologies and synapse loss while its inhibition ameliorates them. Mechanistically, we present evidence that ISR activation promotes the secretion of toxic lipids by microglia, impairing neuron homeostasis and survival in vitro. Accordingly, pharmacological inhibition of ISR or lipid synthesis mitigates synapse loss in AD models. Our results demonstrate that microglial ISR activation represents a neurodegenerative phenotype, which may be sustained, at least in part, by the secretion of toxic lipids.
Collapse
Affiliation(s)
- Anna Flury
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA; Graduate Program in Biology, CUNY Graduate Center, New York, NY 10016, USA
| | - Leen Aljayousi
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA; Graduate Program in Biology, CUNY Graduate Center, New York, NY 10016, USA
| | - Hye-Jin Park
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA
| | | | - Jack Mechler
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA; Graduate Program in Biochemistry, CUNY Graduate Center, New York, NY 10016, USA
| | - Siaresh Aziz
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA; Graduate Program in Biology, CUNY Graduate Center, New York, NY 10016, USA
| | - Jackson D McGrath
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Michigan Medicine, Ann Arbor, MI 48105, USA
| | - Pragney Deme
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Colby Sandberg
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C4, Canada
| | | | - Olivia Braniff
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C4, Canada
| | - Thi Ngo
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA
| | - Simira Smith
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA
| | - Matthew Velez
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA
| | - Denice Moran Ramirez
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA; Graduate Program in Biology, CUNY Graduate Center, New York, NY 10016, USA
| | - Dvir Avnon-Klein
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA
| | - John W Murray
- Columbia Center for Human Development, Center for Stem Cell Therapies, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jia Liu
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA
| | - Martin Parent
- CERVO Brain Research Center, Québec City, QC G1E 1T2, Canada
| | - Susana Mingote
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA; Graduate Program in Biology, CUNY Graduate Center, New York, NY 10016, USA
| | - Norman J Haughey
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sebastian Werneburg
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Michigan Medicine, Ann Arbor, MI 48105, USA; Michigan Neuroscience Institute, Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C4, Canada; Department of Molecular Medicine, Université Laval, Québec City, QC G1V 0A6, Canada; Neurology and Neurosurgery Department, McGill University, Montréal, QC H3A 2B4, Canada; Canada Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 2A1, Canada; Centre for Advanced Materials and Related Technology and Institute on Aging and Lifelong Health, University of Victoria, Victoria, BC V8N 5M8, Canada
| | - Pinar Ayata
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA; Graduate Program in Biology, CUNY Graduate Center, New York, NY 10016, USA; Graduate Program in Biochemistry, CUNY Graduate Center, New York, NY 10016, USA.
| |
Collapse
|
3
|
Ambroziak W, Nencini S, Pohle J, Zuza K, Pino G, Lundh S, Araujo-Sousa C, Goetz LIL, Schrenk-Siemens K, Manoj G, Herrera MA, Acuna C, Siemens J. Thermally induced neuronal plasticity in the hypothalamus mediates heat tolerance. Nat Neurosci 2025; 28:346-360. [PMID: 39653806 PMCID: PMC11802458 DOI: 10.1038/s41593-024-01830-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/25/2024] [Indexed: 12/19/2024]
Abstract
Heat acclimation is an adaptive process that improves physiological performance and supports survival in the face of increasing environmental temperatures, but the underlying mechanisms are not well understood. Here we identified a discrete group of neurons in the mouse hypothalamic preoptic area (POA) that rheostatically increase their activity over the course of heat acclimation, a property required for mice to become heat tolerant. In non-acclimated mice, peripheral thermoafferent pathways via the parabrachial nucleus activate POA neurons and mediate acute heat-defense mechanisms. However, long-term heat exposure promotes the POA neurons to gain intrinsically warm-sensitive activity, independent of thermoafferent parabrachial input. This newly gained cell-autonomous warm sensitivity is required to recruit peripheral heat tolerance mechanisms in acclimated animals. This pacemaker-like, warm-sensitive activity is driven by a combination of increased sodium leak current and enhanced utilization of the NaV1.3 ion channel. We propose that this salient neuronal plasticity mechanism adaptively drives acclimation to promote heat tolerance.
Collapse
Affiliation(s)
- Wojciech Ambroziak
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- Department of Translational Disease Understanding, Grünenthal GmbH, Aachen, Germany
| | - Sara Nencini
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- Istituto Italiano di Tecnologia, Genoa, Italy
| | - Jörg Pohle
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- Department of Translational Disease Understanding, Grünenthal GmbH, Aachen, Germany
| | - Kristina Zuza
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Gabriela Pino
- Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Sofia Lundh
- Department of Pathology and Imaging, Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - Carolina Araujo-Sousa
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Larissa I L Goetz
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | | | - Gokul Manoj
- Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Mildred A Herrera
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Claudio Acuna
- Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Jan Siemens
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| |
Collapse
|
4
|
Laitano O, Oki K, Charkoudian N. Factors Contributing to Heat Tolerance in Humans and Experimental Models. Physiology (Bethesda) 2025; 40:0. [PMID: 39189870 DOI: 10.1152/physiol.00028.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/25/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024] Open
Abstract
Understanding physiological mechanisms of tolerance to heat exposure, and potential ways to improve such tolerance, is increasingly important in the context of ongoing climate change. We discuss the concept of heat tolerance in humans and experimental models (primarily rodents), including intracellular mechanisms and improvements in tolerance with heat acclimation.
Collapse
Affiliation(s)
- Orlando Laitano
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Kentaro Oki
- Thermal and Mountain Medicine Division, United States Army Research Institute for Environmental Medicine (USARIEM), Natick, Massachusetts, United States
| | - Nisha Charkoudian
- Thermal and Mountain Medicine Division, United States Army Research Institute for Environmental Medicine (USARIEM), Natick, Massachusetts, United States
| |
Collapse
|
5
|
Wen J, Lin Z, Cheng J, Li C, Wang L, Zou Y, Wan X, Liu J, Wu J. Heat acclimation alleviates the heat stress-induced impairment of vascular endothelial cells. Tissue Cell 2024; 90:102520. [PMID: 39137536 DOI: 10.1016/j.tice.2024.102520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
Heat acclimation (HA) is found to help decrease the incidence of heat-related illnesses such as heat syncope and exertional heat stroke. However, the response of vascular endothelial cells to HA remain to be elucidated. In this study, mouse brain microvascular endothelial cells (bEnd.3), human umbilical vein endothelial cells (HUVEC), and human aortic endothelial cells (HAEC) were selected. The cells were first subjected to HA at 40 ℃ for 2 h per day for 3 days, and then subjected to heat stress at 43 ℃ for 2 h or 4 h. After heat stress, HA-pretreated cells showed a significant increase in cell viability, cell integrity, a decrease in the proportion of S phase cells, cell apoptosis, and cytoskeletal shrinkage compared with the cells without HA pretreatment. Additionally, the expression of VEGF, ICAM-1, iNOS and EPO in HA-pretreated cells significantly increased. We also presented evidence that HA upregulated HSP70 and bcl-2, while downregulated p-p53 and bax. Notably, the suppression of HSP70 expression attenuated the protective role of heat acclimation. Furthermore, HA mitigated injuries in vital organs of mice exposed to heat stress. Conclusively, these findings indicated the HA can increase the vitality of vascular endothelial cells after heat stress, partially restore the function of vascular endothelial cells, and this protective effect may be related to the upregulation of HSP70 expression.
Collapse
Affiliation(s)
- Jirui Wen
- Department of Otolaryngology Head & Neck Surgery/Deep Underground Space Medical Center, West China Hospital, Sichuan University, No. 37 Guoxuexiang, Chengdu, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, No.24, south Section 1, 1st ring road, Chengdu, China; Med-X Center for Manufaturing, Sichuan University, No.24, south Section 1, 1st ring road, Chengdu, China
| | - Zhengdong Lin
- Department of Otolaryngology Head & Neck Surgery/Deep Underground Space Medical Center, West China Hospital, Sichuan University, No. 37 Guoxuexiang, Chengdu, China
| | - Juan Cheng
- Department of Otolaryngology Head & Neck Surgery/Deep Underground Space Medical Center, West China Hospital, Sichuan University, No. 37 Guoxuexiang, Chengdu, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, No.24, south Section 1, 1st ring road, Chengdu, China
| | - Can Li
- Department of Otolaryngology Head & Neck Surgery/Deep Underground Space Medical Center, West China Hospital, Sichuan University, No. 37 Guoxuexiang, Chengdu, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, No.24, south Section 1, 1st ring road, Chengdu, China
| | - Ling Wang
- Department of Otolaryngology Head & Neck Surgery/Deep Underground Space Medical Center, West China Hospital, Sichuan University, No. 37 Guoxuexiang, Chengdu, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, No.24, south Section 1, 1st ring road, Chengdu, China
| | - Yuhao Zou
- Department of Otolaryngology Head & Neck Surgery/Deep Underground Space Medical Center, West China Hospital, Sichuan University, No. 37 Guoxuexiang, Chengdu, China
| | - Xuehong Wan
- Department of Otolaryngology Head & Neck Surgery/Deep Underground Space Medical Center, West China Hospital, Sichuan University, No. 37 Guoxuexiang, Chengdu, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, No.24, south Section 1, 1st ring road, Chengdu, China
| | - Jifeng Liu
- Department of Otolaryngology Head & Neck Surgery/Deep Underground Space Medical Center, West China Hospital, Sichuan University, No. 37 Guoxuexiang, Chengdu, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, No.24, south Section 1, 1st ring road, Chengdu, China.
| | - Jiang Wu
- Department of Otolaryngology Head & Neck Surgery/Deep Underground Space Medical Center, West China Hospital, Sichuan University, No. 37 Guoxuexiang, Chengdu, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, No.24, south Section 1, 1st ring road, Chengdu, China; Med-X Center for Manufaturing, Sichuan University, No.24, south Section 1, 1st ring road, Chengdu, China.
| |
Collapse
|
6
|
Brink N, Lakhoo DP, Solarin I, Maimela G, von Dadelszen P, Norris S, Chersich MF. Impacts of heat exposure in utero on long-term health and social outcomes: a systematic review. BMC Pregnancy Childbirth 2024; 24:344. [PMID: 38704541 PMCID: PMC11069224 DOI: 10.1186/s12884-024-06512-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/11/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Climate change, particularly global warming, is amongst the greatest threats to human health. While short-term effects of heat exposure in pregnancy, such as preterm birth, are well documented, long-term effects have received less attention. This review aims to systematically assess evidence on the long-term impacts on the foetus of heat exposure in utero. METHODS A search was conducted in August 2019 and updated in April 2023 in MEDLINE(PubMed). We included studies on the relationship of environmental heat exposure during pregnancy and any long-term outcomes. Risk of bias was assessed using tools developed by the Joanna-Briggs Institute, and the evidence was appraised using the GRADE approach. Synthesis without Meta-Analysis (SWiM) guidelines were used. RESULTS Eighteen thousand six hundred twenty one records were screened, with 29 studies included across six outcome groups. Studies were mostly conducted in high-income countries (n = 16/25), in cooler climates. All studies were observational, with 17 cohort, 5 case-control and 8 cross-sectional studies. The timeline of the data is from 1913 to 2019, and individuals ranged in age from neonates to adults, and the elderly. Increasing heat exposure during pregnancy was associated with decreased earnings and lower educational attainment (n = 4/6), as well as worsened cardiovascular (n = 3/6), respiratory (n = 3/3), psychiatric (n = 7/12) and anthropometric (n = 2/2) outcomes, possibly culminating in increased overall mortality (n = 2/3). The effect on female infants was greater than on males in 8 of 9 studies differentiating by sex. The quality of evidence was low in respiratory and longevity outcome groups to very low in all others. CONCLUSIONS Increasing heat exposure was associated with a multitude of detrimental outcomes across diverse body systems. The biological pathways involved are yet to be elucidated, but could include epigenetic and developmental perturbations, through interactions with the placenta and inflammation. This highlights the need for further research into the long-term effects of heat exposure, biological pathways, and possible adaptation strategies in studies, particularly in neglected regions. Heat exposure in-utero has the potential to compound existing health and social inequalities. Poor study design of the included studies constrains the conclusions of this review, with heterogenous exposure measures and outcomes rendering comparisons across contexts/studies difficult. TRIAL REGISTRATION PROSPERO CRD 42019140136.
Collapse
Affiliation(s)
- Nicholas Brink
- Climate and Health Directorate, Wits RHI, University of the Witwatersrand, Johannesburg, South Africa.
| | - Darshnika P Lakhoo
- Climate and Health Directorate, Wits RHI, University of the Witwatersrand, Johannesburg, South Africa
| | - Ijeoma Solarin
- Climate and Health Directorate, Wits RHI, University of the Witwatersrand, Johannesburg, South Africa
| | - Gloria Maimela
- Climate and Health Directorate, Wits RHI, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Shane Norris
- MRC Developmental Pathways for Health Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Matthew F Chersich
- Climate and Health Directorate, Wits RHI, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
7
|
Janssens L, Asselman J, De Troch M. Effects of ocean warming on the fatty acid and epigenetic profile of Acartia tonsa: A multigenerational approach. MARINE POLLUTION BULLETIN 2024; 201:116265. [PMID: 38493676 DOI: 10.1016/j.marpolbul.2024.116265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
The effects of climate change are becoming more prevalent, and it is important to know how copepods, the most abundant class in zooplankton, will react to changing temperatures as they are the main food source for secondary consumers. They act as key transferers of nutrients from primary producers to organisms higher up the food chain. Little is known about the effects of temperature changes on copepods on the long term, i.e., over several generations. Especially the epigenetic domain seems to be understudied and the question remains whether the nutritional value of copepods will permanently change with rising water temperatures. In this research, the effects of temperature on the fatty acid and epigenetic profiles of the abundant planktonic copepod Acartia tonsa were investigated, since we expect to see a link between these two. Indeed, changing methylation patterns helped copepods to deal with higher temperatures, which is in line with the relative abundance of the most important fatty acids, e.g., DHA. However, this pattern was only observed when temperature increased slowly. A sudden increase in temperature showed the opposite effect; Acartia tonsa did not show deviant methylation patterns and the relative abundance of DHA and other important fatty acids dropped significantly after several generations. These results suggest that local fluctuations in temperature have a greater effect on Acartia tonsa than an elevation of the global mean.
Collapse
Affiliation(s)
- Lotte Janssens
- Marine Biology Research Group, Ghent University, Campus Sterre S8, Krijgslaan 281, B-9000 Ghent, Belgium; Blue Growth Research Lab, Ghent University, Bluebridge, Wetenschapspark 1, 8400, Ostend, Belgium.
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Bluebridge, Wetenschapspark 1, 8400, Ostend, Belgium
| | - Marleen De Troch
- Marine Biology Research Group, Ghent University, Campus Sterre S8, Krijgslaan 281, B-9000 Ghent, Belgium
| |
Collapse
|
8
|
Wilson TE, Metzler-Wilson K. Physiological adaptation/phenotypic plasticity: a vital core concept from the medical and health care perspective. ADVANCES IN PHYSIOLOGY EDUCATION 2024; 48:112-113. [PMID: 38259038 DOI: 10.1152/advan.00268.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024]
Affiliation(s)
- Thad E Wilson
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Department of Epidemiology & Environmental Health, University of Kentucky College of Public Health, Lexington, Kentucky, United States
| | - Kristen Metzler-Wilson
- Department of Physical Therapy, University of Kentucky College of Health Sciences, Lexington, Kentucky, United States
| |
Collapse
|
9
|
Willmott AGB, Diment AG, Chung HC, James CA, Maxwell NS, Roberts JD, Gibson OR. Cross-adaptation from heat stress to hypoxia: A systematic review and exploratory meta-analysis. J Therm Biol 2024; 120:103793. [PMID: 38471285 DOI: 10.1016/j.jtherbio.2024.103793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 03/14/2024]
Abstract
Cross-adaptation (CA) refers to the successful induction of physiological adaptation under one environmental stressor (e.g., heat), to enable subsequent benefit in another (e.g., hypoxia). This systematic review and exploratory meta-analysis investigated the effect of heat acclimation (HA) on physiological, perceptual and physical performance outcome measures during rest, and submaximal and maximal intensity exercise in hypoxia. Database searches in Scopus and MEDLINE were performed. Studies were included when they met the Population, Intervention, Comparison, and Outcome criteria, were of English-language, peer-reviewed, full-text original articles, using human participants. Risk of bias and study quality were assessed using the COnsensus based Standards for the selection of health status Measurement INstruments checklist. Nine studies were included, totalling 79 participants (100 % recreationally trained males). The most common method of HA included fixed-intensity exercise comprising 9 ± 3 sessions, 89 ± 24-min in duration and occurred within 39 ± 2 °C and 32 ± 13 % relative humidity. CA induced a moderate, beneficial effect on physiological measures at rest (oxygen saturation: g = 0.60) and during submaximal exercise (heart rate: g = -0.65, core temperature: g = -0.68 and skin temperature: g = -0.72). A small effect was found for ventilation (g = 0.24) and performance measures (peak power: g = 0.32 and time trial time: g = -0.43) during maximal intensity exercise. No effect was observed for perceptual outcome measures. CA may be appropriate for individuals, such as occupational or military workers, whose access to altitude exposure prior to undertaking submaximal activity in hypoxic conditions is restricted. Methodological variances exist within the current literature, and females and well-trained individuals have yet to be investigated. Future research should focus on these cohorts and explore the mechanistic underpinnings of CA.
Collapse
Affiliation(s)
- Ashley G B Willmott
- The Cambridge Centre for Sport and Exercise Sciences (CCSES), Anglia Ruskin University, East Road, Cambridge, United Kingdom; Environmental Extremes Laboratory, University of Brighton, Eastbourne, East Sussex, United Kingdom; Para-Monte Altitude Awareness Charity, Eastbourne, East Sussex, United Kingdom.
| | - Alicia G Diment
- The Cambridge Centre for Sport and Exercise Sciences (CCSES), Anglia Ruskin University, East Road, Cambridge, United Kingdom; Pulmonary Function Laboratory, Norfolk and Norwich University Hospital, Colney Lane, Norwich, Norfolk, United Kingdom.
| | - Henry C Chung
- School of Sport, Rehabilitation and Exercise Sciences (SRES), University of Essex, Colchester, Essex, United Kingdom.
| | - Carl A James
- Hong Kong Sports Institute, Sha Tin, Hong Kong, China; Department of Sport, Physical Education and Health, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Neil S Maxwell
- Environmental Extremes Laboratory, University of Brighton, Eastbourne, East Sussex, United Kingdom; Para-Monte Altitude Awareness Charity, Eastbourne, East Sussex, United Kingdom.
| | - Justin D Roberts
- The Cambridge Centre for Sport and Exercise Sciences (CCSES), Anglia Ruskin University, East Road, Cambridge, United Kingdom.
| | - Oliver R Gibson
- Centre for Physical Activity in Health and Disease (CPAHD), Division of Sport, Health and Exercise Sciences, Brunel University London, Uxbridge, United Kingdom.
| |
Collapse
|
10
|
Notley SR, Mitchell D, Taylor NAS. A century of exercise physiology: concepts that ignited the study of human thermoregulation. Part 4: evolution, thermal adaptation and unsupported theories of thermoregulation. Eur J Appl Physiol 2024; 124:147-218. [PMID: 37796290 DOI: 10.1007/s00421-023-05262-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/13/2023] [Indexed: 10/06/2023]
Abstract
This review is the final contribution to a four-part, historical series on human exercise physiology in thermally stressful conditions. The series opened with reminders of the principles governing heat exchange and an overview of our contemporary understanding of thermoregulation (Part 1). We then reviewed the development of physiological measurements (Part 2) used to reveal the autonomic processes at work during heat and cold stresses. Next, we re-examined thermal-stress tolerance and intolerance, and critiqued the indices of thermal stress and strain (Part 3). Herein, we describe the evolutionary steps that endowed humans with a unique potential to tolerate endurance activity in the heat, and we examine how those attributes can be enhanced during thermal adaptation. The first of our ancestors to qualify as an athlete was Homo erectus, who were hairless, sweating specialists with eccrine sweat glands covering almost their entire body surface. Homo sapiens were skilful behavioural thermoregulators, which preserved their resource-wasteful, autonomic thermoeffectors (shivering and sweating) for more stressful encounters. Following emigration, they regularly experienced heat and cold stress, to which they acclimatised and developed less powerful (habituated) effector responses when those stresses were re-encountered. We critique hypotheses that linked thermoregulatory differences to ancestry. By exploring short-term heat and cold acclimation, we reveal sweat hypersecretion and powerful shivering to be protective, transitional stages en route to more complete thermal adaptation (habituation). To conclude this historical series, we examine some of the concepts and hypotheses of thermoregulation during exercise that did not withstand the tests of time.
Collapse
Affiliation(s)
- Sean R Notley
- Defence Science and Technology Group, Department of Defence, Melbourne, Australia
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Duncan Mitchell
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Nigel A S Taylor
- Research Institute of Human Ecology, College of Human Ecology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Gagnon D, Barry H, Barhdadi A, Oussaid E, Mongrain I, Lemieux Perreault LP, Dubé MP. A dataset of proteomic changes during human heat stress and heat acclimation. Sci Data 2023; 10:877. [PMID: 38062080 PMCID: PMC10703874 DOI: 10.1038/s41597-023-02809-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Hotter climates have important impacts on human health and performance. Yet, the cellular and molecular responses involved in human heat stress and acclimation remain understudied. This dataset includes physiological measurements and the plasma concentration of 2,938 proteins collected from 10 healthy adults, before and during passive heat stress that was performed both prior to and after a 7-day heat acclimation protocol. Physiological measurements included body temperatures, sweat rate, cutaneous vascular conductance, blood pressure, and skin sympathetic nerve activity. The proteomic dataset was generated using the Olink Explore 3072 assay, enabling a high-multiplex antibody-based assessment of protein changes based on proximity extension assay technology. The data need to be interpreted in the context of the moderate level of body hyperthermia attained and the specific demographic of young, healthy adults. We have made this dataset publicly available to facilitate research into the cellular and molecular mechanisms involved in human heat stress and acclimation, crucial for addressing the health and performance challenges posed by rising temperatures.
Collapse
Affiliation(s)
- Daniel Gagnon
- Montreal Heart Institute, Montreal, QC, Canada.
- School of Kinesiology and Exercise Science, Université de Montréal, Montreal, QC, Canada.
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada.
| | - Hadiatou Barry
- Montreal Heart Institute, Montreal, QC, Canada
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada
| | - Amina Barhdadi
- Montreal Heart Institute, Montreal, QC, Canada
- Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, QC, Canada
| | - Essaid Oussaid
- Montreal Heart Institute, Montreal, QC, Canada
- Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, QC, Canada
| | - Ian Mongrain
- Montreal Heart Institute, Montreal, QC, Canada
- Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, QC, Canada
| | - Louis-Philippe Lemieux Perreault
- Montreal Heart Institute, Montreal, QC, Canada
- Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, QC, Canada
| | - Marie-Pierre Dubé
- Montreal Heart Institute, Montreal, QC, Canada.
- Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, QC, Canada.
- Department of Medicine and Department of Social and Preventive Medicine, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
12
|
Corbett J, Young JS, Tipton MJ, Costello JT, Williams TB, Walker EF, Lee BJ, Stevens CE. Molecular biomarkers for assessing the heat-adapted phenotype: a narrative scoping review. J Physiol Sci 2023; 73:26. [PMID: 37848829 PMCID: PMC10717221 DOI: 10.1186/s12576-023-00882-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023]
Abstract
Heat acclimation/acclimatisation (HA) mitigates heat-related decrements in physical capacity and heat-illness risk and is a widely advocated countermeasure for individuals operating in hot environments. The efficacy of HA is typically quantified by assessing the thermo-physiological responses to a standard heat acclimation state test (i.e. physiological biomarkers), but this can be logistically challenging, time consuming, and expensive. A valid molecular biomarker of HA would enable evaluation of the heat-adapted state through the sampling and assessment of a biological medium. This narrative review examines candidate molecular biomarkers of HA, highlighting the poor sensitivity and specificity of these candidates and identifying the current lack of a single 'standout' biomarker. It concludes by considering the potential of multivariable approaches that provide information about a range of physiological systems, identifying a number of challenges that must be overcome to develop a valid molecular biomarker of the heat-adapted state, and highlighting future research opportunities.
Collapse
Affiliation(s)
- J Corbett
- Extreme Environments Laboratory, School of Sport Health and Exercise Sciences, University of Portsmouth, Portsmouth, UK.
| | - J S Young
- National Horizons Centre, Teesside University, Darlington, UK
| | - M J Tipton
- Extreme Environments Laboratory, School of Sport Health and Exercise Sciences, University of Portsmouth, Portsmouth, UK
| | - J T Costello
- Extreme Environments Laboratory, School of Sport Health and Exercise Sciences, University of Portsmouth, Portsmouth, UK
| | - T B Williams
- Extreme Environments Laboratory, School of Sport Health and Exercise Sciences, University of Portsmouth, Portsmouth, UK
| | - E F Walker
- Defence Science and Technology Laboratory, Porton Down, Salisbury, UK
| | - B J Lee
- Occupational and Environmental Physiology Group, Centre for Sport, Exercise and Life Sciences, Faculty of Health and Life Sciences, Coventry University, Coventry, UK
| | - C E Stevens
- Extreme Environments Laboratory, School of Sport Health and Exercise Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
13
|
Yezli S, Khan AH, Yassin YM, Khan AA, Alotaibi BM, Bouchama A. Human tolerance to extreme heat: evidence from a desert climate population. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023:10.1038/s41370-023-00549-7. [PMID: 37138035 DOI: 10.1038/s41370-023-00549-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Ambient temperatures exceeding 40 °C are projected to become common in many temperate climatic zones due to global warming. Therefore, understanding the health effects of continuous exposure to high ambient temperatures on populations living in hot climatic regions can help identify the limits of human tolerance. OBJECTIVE We studied the relationship between ambient temperature and non-accidental mortality in the hot desert city of Mecca, Saudi Arabia, between 2006 and 2015. METHODS We used a distributed lag nonlinear model to estimate the mortality-temperature association over 25 days of lag. We determined the minimum mortality temperature (MMT) and the deaths that are attributable to heat and cold. RESULTS We analyzed 37,178 non-accidental deaths reported in the ten-year study period among Mecca residents. The median average daily temperature was 32 °C (19-42 °C) during the same study period. We observed a U-shaped relationship between daily temperature and mortality with an MMT of 31.8 °C. The total temperature-attributable mortality of Mecca residents was 6.9% (-3.2; 14.8) without reaching statistical significance. However, extreme heat, higher than 38 °C, was significantly associated with increased risk of mortality. The lag structure effect of the temperature showed an immediate impact, followed by a decline in mortality over many days of heat. No effect of cold on mortality was observed. IMPACT STATEMENT High ambient temperatures are projected to become future norms in temperate climates. Studying populations familiar with desert climates for generations with access to air-conditioning would inform on the mitigation measures to protect other populations from heat and on the limits of human tolerance to extreme temperatures. We studied the relationship between ambient temperature and all-cause mortality in the hot desert city of Mecca. We found that Mecca population is adapted to high temperatures, although there was a limit to tolerance to extreme heat. This implies that mitigation measures should be directed to accelerate individual adaptation to heat and societal reorganization.
Collapse
Affiliation(s)
- Saber Yezli
- Biostatistics, Epidemiology and Scientific Computing Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
- Global Centre for Mass Gathering Medicine, Ministry of Health, Riyadh, 12341, Saudi Arabia.
- Experimental Medicine Department, King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences 11481, Riyadh, Saudi Arabia.
| | - Altaf H Khan
- Department of Biostatistics and Bioinformatics, King Abdullah International Center for Medical Research / King Saud bin Abdulaziz University for Health Sciences 11481, Riyadh, Saudi Arabia
| | - Yara M Yassin
- Global Centre for Mass Gathering Medicine, Ministry of Health, Riyadh, 12341, Saudi Arabia
| | - Anas A Khan
- Global Centre for Mass Gathering Medicine, Ministry of Health, Riyadh, 12341, Saudi Arabia
- Department of Emergency Medicine, College of Medicine, King Saud University, Riyadh, 12372, Saudi Arabia
| | - Badriah M Alotaibi
- Global Centre for Mass Gathering Medicine, Ministry of Health, Riyadh, 12341, Saudi Arabia
| | - Abderrezak Bouchama
- Experimental Medicine Department, King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences 11481, Riyadh, Saudi Arabia.
| |
Collapse
|
14
|
Zhang X, Wang D, Liu J. Hypoxia-inducible factor-1α is involved in the response to heat stress in lactating dairy cows. J Therm Biol 2023; 112:103460. [PMID: 36796905 DOI: 10.1016/j.jtherbio.2023.103460] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is important in maintaining cellular oxygen homeostasis and cellular heat tolerance. To explore the role of HIF-1α in the response to heat stress (HS) in dairy cows, 16 Chinese Holstein cows (milk yield: 32 ± 4 kg/d, days in milk: 272 ± 7 d, parity: 2-3) were used to collect coccygeal vein blood and milk samples when cows were under mild (temperature-humidity index = 77) and moderate HS (temperature-humidity index = 84), respectively. Compared to cows under mild HS, the respiratory rate (P < 0.01), rectal temperature (P < 0.01), and blood concentrations of heat shock protein (HSP)70 (P < 0.01) and HSP27 (P < 0.01) were higher, but oxygen saturation (P = 0.02) and hemoglobin (P < 0.01) were lower in cows under moderate HS. Blood HIF-1α concentration was greater (P < 0.01) during moderate HS, indicating that HIF-1α is involved in lactating cows' response to HS. To confirm these findings, we collected coccygeal vein blood and milk samples from 59 dairy cows under moderate HS. The HIF-1α levels were correlated with the levels of heat shock transcription factor (HSF) (r = 0.7857, P < 0.01), HSP70 (r = 0.4543, P < 0.01) and HSP27 (r = 0.8782, P < 0.01). A comparison of 15 cows with higher HIF-1α (>482 ng/L) and 15 cows with lower HIF-1α levels (<439 ng/L) showed that reactive oxidative species were higher (P = 0.02), but superoxide dismutase (P < 0.01), total antioxidation capacity (P = 0.02) and glutathione peroxidase (P < 0.01) were lower in higher HIF-1α cows. These results suggested that HIF-1α may be indicative of the risk of oxidative stress in heat-stressed cows and may participate in the response of cows to HS by synergistically activating the expression of the HSP family with HSF.
Collapse
Affiliation(s)
- Xu Zhang
- Institute of Dairy Science, College of Animal Sciences, China; Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, 310058, Hangzhou, China
| | - Diming Wang
- Institute of Dairy Science, College of Animal Sciences, China; Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, 310058, Hangzhou, China
| | - Jianxin Liu
- Institute of Dairy Science, College of Animal Sciences, China; Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
15
|
Bueno EM, McIlhenny CL, Chen YH. Cross-protection interactions in insect pests: Implications for pest management in a changing climate. PEST MANAGEMENT SCIENCE 2023; 79:9-20. [PMID: 36127854 PMCID: PMC10092685 DOI: 10.1002/ps.7191] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/07/2022] [Accepted: 09/21/2022] [Indexed: 05/20/2023]
Abstract
Agricultural insect pests display an exceptional ability to adapt quickly to natural and anthropogenic stressors. Emerging evidence suggests that frequent and varied sources of stress play an important role in driving protective physiological responses; therefore, intensively managed agroecosystems combined with climatic shifts might be an ideal crucible for stress adaptation. Cross-protection, where responses to one stressor offers protection against another type of stressor, has been well documented in many insect species, yet the molecular and epigenetic underpinnings that drive overlapping protective responses in insect pests remain unclear. In this perspective, we discuss cross-protection mechanisms and provide an argument for its potential role in increasing tolerance to a wide range of natural and anthropogenic stressors in agricultural insect pests. By drawing from existing literature on single and multiple stressor studies, we outline the processes that facilitate cross-protective interactions, including epigenetic modifications, which are understudied in insect stress responses. Finally, we discuss the implications of cross-protection for insect pest management, focusing on the consequences of cross-protection between insecticides and elevated temperatures associated with climate change. Given the multiple ways that insect pests are intensively managed in agroecosystems, we suggest that examining the role of multiple stressors can be important in understanding the wide adaptability of agricultural insect pests. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Erika M. Bueno
- Department of Plant and Soil ScienceUniversity of VermontBurlingtonVTUSA
| | - Casey L. McIlhenny
- Department of Plant and Soil ScienceUniversity of VermontBurlingtonVTUSA
| | - Yolanda H. Chen
- Department of Plant and Soil ScienceUniversity of VermontBurlingtonVTUSA
- Gund Institute for EnvironmentUniversity of VermontBurlingtonVTUSA
| |
Collapse
|
16
|
Individual variability in achievement of short-term heat acclimation during a fixed intensity protocol. J Therm Biol 2022; 110:103373. [DOI: 10.1016/j.jtherbio.2022.103373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 12/05/2022]
|
17
|
Murray KO, Brant JO, Kladde MP, Clanton TL. Long-term epigenetic and metabolomic changes in the mouse ventricular myocardium after exertional heat stroke. Physiol Genomics 2022; 54:486-500. [PMID: 36215393 PMCID: PMC9705024 DOI: 10.1152/physiolgenomics.00147.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 12/15/2022] Open
Abstract
Evidence from human epidemiological studies suggests that exertional heat stroke (EHS) results in an elevated risk of long-term cardiovascular and systemic disease. Previous results using a preclinical mouse model of EHS demonstrated severe metabolic imbalances in ventricular myocardium developing at 9-14 days of recovery. Whether this resolves over time is unknown. We hypothesized that the long-term effects of EHS on the heart reflect retained maladaptive epigenetic responses. In this study, we evaluated genome-wide DNA methylation, RNA-Seq, and metabolomic profiles of the left ventricular myocardium in female C57BL/6 mice, 30 days after EHS (exercise in 37.5°C; n = 7-8), compared with exercise controls. EHS mice ran to loss of consciousness, reaching core temperatures of 42.4 ± 0.2°C. All mice recovered quickly. After 30 days, the left ventricles were rapidly frozen for DNA methyl sequencing, RNA-Seq, and untargeted metabolomics. Ventricular DNA from EHS mice revealed >13,000 differentially methylated cytosines (DMCs) and >900 differentially methylated regions (DMRs; ≥5 DMCs with ≤300 bp between each CpG). Pathway analysis using DMRs revealed alterations in genes regulating basic cell functions, DNA binding, transcription, and metabolism. Metabolomics and mRNA expression revealed modest changes that are consistent with a return to homeostasis. Methylation status did not predict RNA expression or metabolic state at 30 days. We conclude that EHS induces a sustained DNA methylation memory lasting over 30 days of recovery, but ventricular gene expression and metabolism return to a relative homeostasis at rest. Such long-lasting alterations to the DNA methylation landscape could alter responsiveness to environmental or clinical challenges later in life.
Collapse
Affiliation(s)
- Kevin O Murray
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida
| | - Jason O Brant
- Department of Biostatistics, University of Florida, Gainesville, Florida
- University of Florida Health Cancer Center, University of Florida, Gainesville, Florida
| | - Michael P Kladde
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida
- University of Florida Health Cancer Center, University of Florida, Gainesville, Florida
| | - Thomas L Clanton
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida
| |
Collapse
|
18
|
Murray KO, Clanton TL, Horowitz M. Epigenetic responses to heat: From adaptation to maladaptation. Exp Physiol 2022; 107:1144-1158. [PMID: 35413138 PMCID: PMC9529784 DOI: 10.1113/ep090143] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/25/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the topic of this review? This review outlines the history of research on epigenetic adaptations to heat exposure. The perspective taken is that adaptations reflect properties of hormesis, whereby low, repeated doses of heat induce adaptation (acclimation/acclimatization); whereas brief, life-threatening exposures can induce maladaptive responses. What advances does it highlight? The epigenetic mechanisms underlying acclimation/acclimatization comprise specific molecular programmes on histones that regulate heat shock proteins transcriptionally and protect the organism from subsequent heat exposures, even after long delays. The epigenetic signalling underlying maladaptive responses might rely, in part, on extensive changes in DNA methylation that are sustained over time and might contribute to later health challenges. ABSTRACT Epigenetics plays a strong role in molecular adaptations to heat by producing a molecular memory of past environmental exposures. Moderate heat, over long periods of time, induces an 'adaptive' epigenetic memory, resulting in a condition of 'resilience' to future heat exposures or cross-tolerance to other forms of toxic stress. In contrast, intense, life-threatening heat exposures, such as severe heat stroke, can result in a 'maladaptive' epigenetic memory that can place an organism at risk of later health complications. These cellular memories are coded by post-translational modifications of histones on the nucleosomes and/or by changes in DNA methylation. They operate by inducing changes in the level of gene transcription and therefore phenotype. The adaptive response to heat acclimation functions, in part, by facilitating transcription of essential heat shock proteins and exhibits a biphasic short programme (maintaining DNA integrity, followed by a long-term consolidation). The latter accelerates acclimation responses after de-acclimation. Although less studied, the maladaptive responses to heat stroke appear to be coded in long-lasting changes in DNA methylation near the promoter region of genes involved with basic cell function. Whether these memories are also encoded in histone modifications is not yet known. There is considerable evidence that both adaptive and maladaptive epigenetic responses to heat can be inherited, although most evidence comes from lower organisms. Future challenges include understanding the signalling mechanisms responsible and discovering new ways to promote adaptive responses while suppressing maladaptive responses to heat, as all life forms adapt to life on a warming planet.
Collapse
Affiliation(s)
- Kevin O. Murray
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Thomas L. Clanton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Michal Horowitz
- Laboratory of Environmental Physiology, Faculty of Dentistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
19
|
Laitano O, Clanton TL, Leon LR. Heat stroke: physiological challenges and breakthroughs. Exp Physiol 2022; 107:1109-1110. [PMID: 36178301 DOI: 10.1113/ep090566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Orlando Laitano
- College of Health and Human Performance, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Thomas L Clanton
- College of Health and Human Performance, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Lisa R Leon
- College of Health and Human Performance, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
20
|
Bouchama A, Abuyassin B, Lehe C, Laitano O, Jay O, O'Connor FG, Leon LR. Classic and exertional heatstroke. Nat Rev Dis Primers 2022; 8:8. [PMID: 35115565 DOI: 10.1038/s41572-021-00334-6] [Citation(s) in RCA: 186] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/20/2021] [Indexed: 12/28/2022]
Abstract
In the past two decades, record-breaking heatwaves have caused an increasing number of heat-related deaths, including heatstroke, globally. Heatstroke is a heat illness characterized by the rapid rise of core body temperature above 40 °C and central nervous system dysfunction. It is categorized as classic when it results from passive exposure to extreme environmental heat and as exertional when it develops during strenuous exercise. Classic heatstroke occurs in epidemic form and contributes to 9-37% of heat-related fatalities during heatwaves. Exertional heatstroke sporadically affects predominantly young and healthy individuals. Under intensive care, mortality reaches 26.5% and 63.2% in exertional and classic heatstroke, respectively. Pathological studies disclose endothelial cell injury, inflammation, widespread thrombosis and bleeding in most organs. Survivors of heatstroke may experience long-term neurological and cardiovascular complications with a persistent risk of death. No specific therapy other than rapid cooling is available. Physiological and morphological factors contribute to the susceptibility to heatstroke. Future research should identify genetic factors that further describe individual heat illness risk and form the basis of precision-based public health response. Prioritizing research towards fundamental mechanism and diagnostic biomarker discovery is crucial for the design of specific management approaches.
Collapse
Affiliation(s)
- Abderrezak Bouchama
- King Abdullah International Medical Research Center, Experimental Medicine Department, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia.
| | - Bisher Abuyassin
- King Abdullah International Medical Research Center, Experimental Medicine Department, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia
| | - Cynthia Lehe
- King Abdullah International Medical Research Center, Experimental Medicine Department, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia
| | - Orlando Laitano
- Department of Nutrition & Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, USA
| | - Ollie Jay
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Francis G O'Connor
- Military and Emergency Medicine, Uniformed Services University, Bethesda, MD, USA
| | - Lisa R Leon
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| |
Collapse
|
21
|
Caldwell AR, Oki K, Ward SM, Ward JA, Mayer TA, Plamper ML, King MA, Leon LR. Impact of successive exertional heat injuries on thermoregulatory and systemic inflammatory responses in mice. J Appl Physiol (1985) 2021; 131:1469-1485. [PMID: 34528459 DOI: 10.1152/japplphysiol.00160.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The purpose of the study was to determine if repeated exertional heat injuries (EHIs) worsen the inflammatory response. We assessed the impact of a single EHI bout (EHI0) or two separate EHI episodes separated by 1 (EHI1), 3 (EHI3), and 7 (EHI7) days in male C57BL/6J mice (n = 236). To induce EHI, mice underwent a forced running protocol until loss of consciousness or core temperature reached ≥ 42.7°C. Blood and tissue samples were obtained 30 min, 3 h, 1 day, or 7 days after the EHI. We observed that mice undergoing repeated EHI (EHI1, EHI3, and EHI7) had longer running distances before collapse (∼528 m), tolerated higher core temperatures (∼0.18°C higher) before collapse, and had higher minimum core temperature (indicative of injury severity) during recovery relative to EHI0 group (∼2.18°C higher; all P < 0.05). Heat resilience was most pronounced when latency was shortest between EHI episodes (i.e., thermal load and running duration highest in EHI1), suggesting the response diminishes with longer recoveries between EHI events. Furthermore, mice experiencing a second EHI exhibited increased serum and liver HSP70, and lower corticosterone, FABP2, MIP-1β, MIP-2, and IP-10 relative to mice experiencing a single EHI typically at 30 min to 3 h after EHI. Our findings indicate that an EHI event may initiate some adaptive processes that provide acute heat resilience to subsequent EHI conditions. NEW & NOTEWORTHY Mice undergoing repeated exertional heat injuries, within 1 wk of an initial heat injury, appear to have some protective adaptations. During the second exertional heat injury, mice were able to run longer and sustain higher body temperatures before collapse. Despite this, the mice undergoing a second exertional heat injury were more resilient to the heat as evidenced by attenuated minimum body temperature, higher HPS70 (serum and liver), lower corticosterone, and lower FABP2.
Collapse
Affiliation(s)
- Aaron R Caldwell
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts.,Oak Ridge Institute of Science and Education, Oak Ridge, Tennessee
| | - Kentaro Oki
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Shauna M Ward
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Jermaine A Ward
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Thomas A Mayer
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts.,Oak Ridge Institute of Science and Education, Oak Ridge, Tennessee
| | - Mark L Plamper
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Michelle A King
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Lisa R Leon
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| |
Collapse
|
22
|
Georgoulis I, Feidantsis K, Giantsis IA, Kakale A, Bock C, Pörtner HO, Sokolova IM, Michaelidis B. Heat hardening enhances mitochondrial potential for respiration and oxidative defence capacity in the mantle of thermally stressed Mytilus galloprovincialis. Sci Rep 2021; 11:17098. [PMID: 34429490 PMCID: PMC8384858 DOI: 10.1038/s41598-021-96617-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Ectotherms are exposed to a range of environmental temperatures and may face extremes beyond their upper thermal limits. Such temperature extremes can stimulate aerobic metabolism toward its maximum, a decline in aerobic substrate oxidation, and a parallel increase of anaerobic metabolism, combined with ROS generation and oxidative stress. Under these stressful conditions, marine organisms recruit several defensive strategies for their maintenance and survival. However, thermal tolerance of ectothermic organisms may be increased after a brief exposure to sub-lethal temperatures, a process known as "hardening". In our study, we examined the ability of M. galloprovincialis to increase its thermal tolerance under the effect of elevated temperatures (24, 26 and 28 °C) through the "hardening" process. Our results demonstrate that this process can increase the heat tolerance and antioxidant defense of heat hardened mussels through more efficient ETS activity when exposed to temperatures beyond 24 °C, compared to non-hardened individuals. Enhanced cell protection is reflected in better adaptive strategies of heat hardened mussels, and thus decreased mortality. Although hardening seems a promising process for the maintenance of aquacultured populations under increased seasonal temperatures, further investigation of the molecular and cellular mechanisms regulating mussels' heat resistance is required.
Collapse
Affiliation(s)
- Ioannis Georgoulis
- grid.4793.90000000109457005Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos Feidantsis
- grid.4793.90000000109457005Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis A. Giantsis
- grid.184212.c0000 0000 9364 8877Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece
| | - Asimina Kakale
- grid.4793.90000000109457005Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Christian Bock
- grid.10894.340000 0001 1033 7684Alfred-Wegener-Institut, Helmholtz-Center for Polar and Marine Research, Integrative Ecophysiology, Postfach 120161, 27515 Bremerhaven, Germany
| | - Hans O. Pörtner
- grid.10894.340000 0001 1033 7684Alfred-Wegener-Institut, Helmholtz-Center for Polar and Marine Research, Integrative Ecophysiology, Postfach 120161, 27515 Bremerhaven, Germany
| | - Inna M. Sokolova
- grid.10493.3f0000000121858338Department of Marine Biology, Institute for Biological Sciences, University of Rostock, A.-Einstein Str., 3, 18055 Rostock, Germany
| | - Basile Michaelidis
- grid.4793.90000000109457005Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
23
|
Verma N, Alyethodi RR, Kathuria A, Alex R, Hussain S, Singh U, Tyagi S, Sirohi AS, Kumar S, Sengar GS, Raja TV, Prakash B. Comparative CpG methylation kinetic patterns of cis-regulatory regions of heat stress-related genes in Sahiwal and Frieswal cattle upon persistent heat stress. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2021; 65:1025-1032. [PMID: 33683454 DOI: 10.1007/s00484-021-02084-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/24/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
The kinetic patterns of CpG methylation of the cis-regulatory region of heat stress-related genes on exposed to heat stress (at 42 °C) between the Sahiwal and Frieswal cattle was compared in the present study. Using an in vitro whole blood culture model, cells were continuously exposed to heat stress (at 42 °C) for 6 h. Methylation levels of five genes, viz., GPX1, HSP70, HSP90, c-FOS, and JUN were estimated by SyberGreen-based quantitative methylation-specific PCR (qMSP) assay. CpG methylation kinetics at different time points of heat stress (0.5, 1, 2, 4, 6 h) were analyzed using mixed ANOVA. The initial methylation level, estimated at 37 °C, of HSP70 was significantly high in the Sahiwal breed. A significant (p<0.001) time-dependent hypomethylation of an antioxidant gene (GPX1) CpG islands was detected at the acute phase of the stress. Heat shock protein gene (HSP70) showed a similar CpG methylation kinetics where the hypomethylation was prominent from 1 h and persisted up to 4 h. The heat stress responses of both Sahiwal and Frieswal cattle were identical as there was no distinctiveness in the methylation kinetics of CpG islands of studied genes. The acclimatization of Frieswal cattle-a breed developed in India over the years to the tropical climatic conditions, maybe one of the reasons for this similarity. Thus, the present study results could pave a path to understand the molecular mechanism of heat stress and adaptation of indigenous and crossbred cattle populations to the changing scenario in tropical climate conditions.
Collapse
Affiliation(s)
- Nitika Verma
- Department of Biotechnology and Microbiology, MIET, Meerut, India
| | - Rafeeque R Alyethodi
- ICAR-Central Island Agricultural Research Institute, Port Blair, Andaman and Nicobar Islands, India.
| | - Ashima Kathuria
- Department of Biotechnology and Microbiology, MIET, Meerut, India
| | - Rani Alex
- ICAR-National Dairy Research Institute, Karnal, India
| | - Shaziya Hussain
- Department of Biotechnology and Microbiology, MIET, Meerut, India
| | - Umesh Singh
- ICAR-Central Institute for Research on Cattle, Meerut, UP, India
| | - S Tyagi
- ICAR-Central Institute for Research on Cattle, Meerut, UP, India
| | | | - Sushil Kumar
- ICAR-Central Institute for Research on Cattle, Meerut, UP, India
| | | | - T V Raja
- ICAR-Central Institute for Research on Cattle, Meerut, UP, India
| | - B Prakash
- ICAR-Central Institute for Research on Cattle, Meerut, UP, India
| |
Collapse
|
24
|
Périard JD, Eijsvogels TMH, Daanen HAM. Exercise under heat stress: thermoregulation, hydration, performance implications, and mitigation strategies. Physiol Rev 2021; 101:1873-1979. [PMID: 33829868 DOI: 10.1152/physrev.00038.2020] [Citation(s) in RCA: 195] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A rise in body core temperature and loss of body water via sweating are natural consequences of prolonged exercise in the heat. This review provides a comprehensive and integrative overview of how the human body responds to exercise under heat stress and the countermeasures that can be adopted to enhance aerobic performance under such environmental conditions. The fundamental concepts and physiological processes associated with thermoregulation and fluid balance are initially described, followed by a summary of methods to determine thermal strain and hydration status. An outline is provided on how exercise-heat stress disrupts these homeostatic processes, leading to hyperthermia, hypohydration, sodium disturbances, and in some cases exertional heat illness. The impact of heat stress on human performance is also examined, including the underlying physiological mechanisms that mediate the impairment of exercise performance. Similarly, the influence of hydration status on performance in the heat and how systemic and peripheral hemodynamic adjustments contribute to fatigue development is elucidated. This review also discusses strategies to mitigate the effects of hyperthermia and hypohydration on exercise performance in the heat by examining the benefits of heat acclimation, cooling strategies, and hyperhydration. Finally, contemporary controversies are summarized and future research directions are provided.
Collapse
Affiliation(s)
- Julien D Périard
- University of Canberra Research Institute for Sport and Exercise, Bruce, Australia
| | - Thijs M H Eijsvogels
- Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hein A M Daanen
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Brunt VE, Minson CT. Heat therapy: mechanistic underpinnings and applications to cardiovascular health. J Appl Physiol (1985) 2021; 130:1684-1704. [PMID: 33792402 DOI: 10.1152/japplphysiol.00141.2020] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide, and novel therapies are drastically needed to prevent or delay the onset of CVD to reduce the societal and healthcare burdens associated with these chronic diseases. One such therapy is "heat therapy," or chronic, repeated use of hot baths or saunas. Although using heat exposure to improve health is not a new concept, it has received renewed attention in recent years as a growing number of studies have demonstrated robust and widespread beneficial effects of heat therapy on cardiovascular health. Here, we review the existing literature, with particular focus on the molecular mechanisms that underscore the cardiovascular benefits of this practice.
Collapse
Affiliation(s)
- Vienna E Brunt
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado.,Department of Human Physiology, University of Oregon, Eugene, Oregon
| | | |
Collapse
|
26
|
Laitano O, Oki K, Leon LR. The Role of Skeletal Muscles in Exertional Heat Stroke Pathophysiology. Int J Sports Med 2021; 42:673-681. [PMID: 33772503 DOI: 10.1055/a-1400-9754] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The active participation of skeletal muscles is a unique characteristic of exertional heat stroke. Nevertheless, the only well-documented link between skeletal muscle activities and exertional heat stroke pathophysiology is the extensive muscle damage (e. g., rhabdomyolysis) and subsequent leakage of intramuscular content into the circulation of exertional heat stroke victims. Here, we will present and discuss rarely explored roles of skeletal muscles in the context of exertional heat stroke pathophysiology and recovery. This includes an overview of heat production that contributes to severe hyperthermia and the synthesis and secretion of bioactive molecules, such as cytokines, chemokines and acute phase proteins. These molecules can alter the overall inflammatory status from pro- to anti-inflammatory, affecting other organ systems and influencing recovery. The activation of innate immunity can determine whether a victim is ready to return to physical activity or experiences a prolonged convalescence. We also provide a brief discussion on whether heat acclimation can shift skeletal muscle secretory phenotype to prevent or aid recovery from exertional heat stroke. We conclude that skeletal muscles should be considered as a key organ system in exertional heat stroke pathophysiology.
Collapse
Affiliation(s)
- Orlando Laitano
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, United States
| | - Kentaro Oki
- Thermal & Mountain Medicine Devision, United States Army Research Institute of Environmental Medicine, Natick, United States
| | - Lisa R Leon
- Thermal & Mountain Medicine Devision, United States Army Research Institute of Environmental Medicine, Natick, United States
| |
Collapse
|
27
|
Tibenska V, Marvanova A, Elsnicova B, Hejnova L, Vebr P, Novotný J, Kolar F, Novakova O, M Zurmanova J. The cardioprotective effect persisting during recovery from cold acclimation is mediated by the β 2-adrenoceptor pathway and Akt activation. J Appl Physiol (1985) 2021; 130:746-755. [PMID: 33332989 DOI: 10.1152/japplphysiol.00756.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The infarct size-limiting effect elicited by cold acclimation (CA) is accompanied by increased mitochondrial resistance and unaltered β1-adrenergic receptor (AR) signaling persisting for 2 wk at room temperature. As the mechanism of CA-elicited cardioprotection is not fully understood, we examined the role of the salvage β2-AR/Gi/Akt pathway. Male Wistar rats were exposed to CA (8°C, 5 wk), whereas the recovery group (CAR) was kept at 24°C for additional 2 wk. We show that the total number of myocardial β-ARs in the left ventricular myocardium did not change after CA but decreased after CAR. We confirmed the infarct size-limiting effect in both CA and CAR groups. Acute administration of β2-AR inhibitor ICI-118551 abolished the protective effect in the CAR group but had no effect in the control and CA groups. The inhibitory Giα1/2 and Giα3 proteins increased in the membrane fraction of the CAR group, and the phospho-Akt (Ser473)-to-Akt ratio also increased. Expression, phosphorylation, and mitochondrial location of the Akt target glycogen synthase kinase (GSK-3β) were affected neither by CA nor by CAR. However, GSK-3β translocated from the Z-disk to the H-zone after CA, and acquired its original location after CAR. Our data indicate that the cardioprotection observed after CAR is mediated by the β2-AR/Gi pathway and Akt activation. Further studies are needed to unravel downstream targets of the central regulators of the CA process and the downstream targets of the Akt protein after CAR.NEW & NOTEWORTHY Cardioprotective effect of cold acclimation and that persisting for 2 wk after recovery engage in different mechanisms. The β2-adrenoceptor/Gi pathway and Akt are involved only in the mechanism of infarct size-limiting effect occurring during the recovery phase. GSK-3β translocated from the Z-line to the H-zone of sarcomeres by cold acclimation returns back to the original position after the recovery phase. The results provide new insights potentially useful for the development of cardiac therapies.
Collapse
Affiliation(s)
- Veronika Tibenska
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Aneta Marvanova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbara Elsnicova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Lucie Hejnova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pavel Vebr
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jiri Novotný
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Frantisek Kolar
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Olga Novakova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic.,Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jitka M Zurmanova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
28
|
Cao Y, Liu Y, Dong Q, Wang T, Niu C. Alterations in the gut microbiome and metabolic profile in rats acclimated to high environmental temperature. Microb Biotechnol 2021; 15:276-288. [PMID: 33620148 PMCID: PMC8719808 DOI: 10.1111/1751-7915.13772] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 01/26/2021] [Accepted: 01/30/2021] [Indexed: 12/29/2022] Open
Abstract
Heat acclimation (HA) is the best strategy to improve heat stress tolerance by inducing positive physiological adaptations. Evidence indicates that the gut microbiome plays a fundamental role in the development of HA, and modulation of gut microbiota can improve tolerance to heat exposure and decrease the risks of heat illness. In this study, for the first time, we applied 16S rRNA gene sequencing and untargeted liquid chromatography–mass spectrometry (LC‐MS) metabolomics to explore variations in the gut microbiome and faecal metabolic profiles in rats after HA. The gut microbiota of HA subjects exhibited higher diversity and richer microbes. HA altered the gut microbiota composition with significant increases in the genera Lactobacillus (a major probiotic) and Oscillospira alongside significant decreases in the genera Blautia and Allobaculum. The faecal metabolome was also significantly changed after HA, and among the 13 perturbed metabolites, (S)‐AL 8810 and celastrol were increased. Moreover, the two increased genera were positively correlated with the two upregulated metabolites and negatively correlated with the other 11 downregulated metabolites, while the correlations between the two decreased genera and the upregulated/downregulated metabolites were completely contrary. In summary, both the structure of the gut microbiome community and the faecal metabolome were improved after 28 days of HA. These findings provide novel insights regarding the improvement of the gut microbiome and its functions as a potential mechanism by which HA confers protection against heat stress.
Collapse
Affiliation(s)
- Yang Cao
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Ying Liu
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Qingyang Dong
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Tao Wang
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Chao Niu
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| |
Collapse
|
29
|
McCaw BA, Stevenson TJ, Lancaster LT. Epigenetic Responses to Temperature and Climate. Integr Comp Biol 2020; 60:1469-1480. [PMID: 32470117 DOI: 10.1093/icb/icaa049] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Epigenetics represents a widely accepted set of mechanisms by which organisms respond to the environment by regulating phenotypic plasticity and life history transitions. Understanding the effects of environmental control on phenotypes and fitness, via epigenetic mechanisms, is essential for understanding the ability of organisms to rapidly adapt to environmental change. This review highlights the significance of environmental temperature on epigenetic control of phenotypic variation, with the aim of furthering our understanding of how epigenetics might help or hinder species' adaptation to climate change. It outlines how epigenetic modifications, including DNA methylation and histone/chromatin modification, (1) respond to temperature and regulate thermal stress responses in different kingdoms of life, (2) regulate temperature-dependent expression of key developmental processes, sex determination, and seasonal phenotypes, (3) facilitate transgenerational epigenetic inheritance of thermal adaptation, (4) adapt populations to local and global climate gradients, and finally (5) facilitate in biological invasions across climate regions. Although the evidence points towards a conserved role of epigenetics in responding to temperature change, there appears to be an element of temperature- and species-specificity in the specific effects of temperature change on epigenetic modifications and resulting phenotypic responses. The review identifies areas of future research in epigenetic responses to environmental temperature change.
Collapse
Affiliation(s)
- Beth A McCaw
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Tyler J Stevenson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
30
|
Chen Y, Yu T. Involvement of p53 in the Responses of Cardiac Muscle Cells to Heat Shock Exposure and Heat Acclimation. J Cardiovasc Transl Res 2020; 13:928-937. [PMID: 32314164 DOI: 10.1007/s12265-020-10003-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/07/2020] [Indexed: 11/28/2022]
Abstract
Intense heat stress induces damage to the heart, whereas mild to moderate heat stress protects the heart against subsequent ischemic injury. The mechanisms underlying the detrimental and beneficial effects of heat stress remain unclear. In this study, we investigated the role of p53 in the responses of cardiac muscle cells to acute heat exposure and heat acclimation (HA). Heat exposure increased the levels of caspase and annexin, and levels of cytosolic, nuclear, and mitochondrial p53 protein in H9c2 cells. Pifithrin-α or pifithrin-μ reduced heat-induced apoptotic response in these cells. HA reduced localization of p53 in the mitochondria and improved cell viability during heat exposure. The effects of heat exposure and HA on p53 were further verified in vivo in mouse heart tissue. These results suggest that p53 plays a role in heat-induced apoptosis in cardiac muscle cells. The protective effect of HA against heat injury likely involves a p53-dependent mechanism.
Collapse
Affiliation(s)
- Yifan Chen
- Department of Military and Emergency Medicine, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - Tianzheng Yu
- Department of Military and Emergency Medicine, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| |
Collapse
|
31
|
Ashworth ET, Cotter JD, Kilding AE. Methods for improving thermal tolerance in military personnel prior to deployment. Mil Med Res 2020; 7:58. [PMID: 33248459 PMCID: PMC7700709 DOI: 10.1186/s40779-020-00287-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
Acute exposure to heat, such as that experienced by people arriving into a hotter or more humid environment, can compromise physical and cognitive performance as well as health. In military contexts heat stress is exacerbated by the combination of protective clothing, carried loads, and unique activity profiles, making them susceptible to heat illnesses. As the operational environment is dynamic and unpredictable, strategies to minimize the effects of heat should be planned and conducted prior to deployment. This review explores how heat acclimation (HA) prior to deployment may attenuate the effects of heat by initiating physiological and behavioural adaptations to more efficiently and effectively protect thermal homeostasis, thereby improving performance and reducing heat illness risk. HA usually requires access to heat chamber facilities and takes weeks to conduct, which can often make it impractical and infeasible, especially if there are other training requirements and expectations. Recent research in athletic populations has produced protocols that are more feasible and accessible by reducing the time taken to induce adaptations, as well as exploring new methods such as passive HA. These protocols use shorter HA periods or minimise additional training requirements respectively, while still invoking key physiological adaptations, such as lowered core temperature, reduced heart rate and increased sweat rate at a given intensity. For deployments of special units at short notice (< 1 day) it might be optimal to use heat re-acclimation to maintain an elevated baseline of heat tolerance for long periods in anticipation of such an event. Methods practical for military groups are yet to be fully understood, therefore further investigation into the effectiveness of HA methods is required to establish the most effective and feasible approach to implement them within military groups.
Collapse
Affiliation(s)
- Edward Tom Ashworth
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, 17 Antares Place, Rosedale, Auckland, 0632 New Zealand
| | - James David Cotter
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, Otago 9016 New Zealand
| | - Andrew Edward Kilding
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, 17 Antares Place, Rosedale, Auckland, 0632 New Zealand
| |
Collapse
|
32
|
Klutstein M. Cause and effect in epigenetics - where lies the truth, and how can experiments reveal it?: Epigenetic self-reinforcing loops obscure causation in cancer and aging. Bioessays 2020; 43:e2000262. [PMID: 33236359 DOI: 10.1002/bies.202000262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022]
Abstract
Epigenetic changes are implicated in aging and cancer. Sometimes, it is clear whether the causing agent of the condition is a genetic factor or epigenetic. In other cases, the causative factor is unclear, and could be either genetic or epigenetic. Is there a general role for epigenetic changes in cancer and aging? Here, I present the paradigm of causative roles executed by epigenetic changes. I discuss cases with clear roles of the epigenome in cancer and aging, and other cases showing involvement of other factors. I also present the possibility that sometimes causality is difficult to assign because of the presence of self-reinforcing loops in epigenetic regulation. Such loops hinder the identification of the causative factor. I provide an experimental framework by which the role of the epigenome can be examined in a better setting and where the presence of such loops could be investigated in more detail.
Collapse
Affiliation(s)
- Michael Klutstein
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem, Israel
| |
Collapse
|
33
|
Murray KO, Brant JO, Iwaniec JD, Sheikh LH, de Carvalho L, Garcia CK, Robinson GP, Alzahrani JM, Riva A, Laitano O, Kladde MP, Clanton TL. Exertional heat stroke leads to concurrent long-term epigenetic memory, immunosuppression and altered heat shock response in female mice. J Physiol 2020; 599:119-141. [PMID: 33037634 DOI: 10.1113/jp280518] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/07/2020] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Exposure to exertional heat stroke (EHS) has been linked to increased long-term decrements of health. Epigenetic reprogramming is involved in the response to heat acclimation; however, whether the long-term effects of EHS are mediated by epigenetic reprogramming is unknown. In female mice, we observed DNA methylation reprogramming in bone marrow-derived (BMD) monocytes as early as 4 days of recovery from EHS and as late as 30 days compared with sham exercise controls. Whole blood, collected after 30 days of recovery from EHS, exhibited an immunosuppressive phenotype when challenged in vitro by lipopolysaccharide. After 30 days of recovery from EHS, BMD monocytes exhibited an altered in vitro heat shock response. The location of differentially methylated CpGs are predictive of both the immunosuppressive phenotype and altered heat shock responses. ABSTRACT Exposure to exertional heat stroke (EHS) has been linked to increased susceptibility to a second heat stroke, infection and cardiovascular disease. Whether these clinical outcomes are mediated by an epigenetic memory is unknown. Using a preclinical mouse model of EHS, we investigated whether EHS exposure produces a lasting epigenetic memory in monocytes and whether there are phenotypic alterations that may be consistent with these epigenetic changes. Female mice underwent forced wheel running at 37.5°C/40% relative humidity until symptom limitation, characterized by CNS dysfunction. Results were compared with matched exercise controls at 22.5°C. Monocytes were isolated from bone marrow after 4 or 30 days of recovery to extract DNA and analyse methylation. Broad-ranging alterations to the DNA methylome were observed at both time points. At 30 days, very specific alterations were observed to the promoter regions of genes involved with immune responsiveness. To test whether these changes might be related to phenotype, whole blood at 30 days was challenged with lipopolysaccharide (LPS) to measure cytokine secretion; monocytes were also challenged with heat shock to quantify mRNA expression. Whole blood collected from EHS mice showed markedly attenuated inflammatory responses to LPS challenge. Furthermore, monocyte mRNA from EHS mice showed significantly altered responses to heat shock challenge. These results demonstrate that EHS leads to a unique DNA methylation pattern in monocytes and altered immune and heat shock responsiveness after 30 days. These data support the hypothesis that EHS exposure can induce long-term physiological changes that may be linked to altered epigenetic profiles.
Collapse
Affiliation(s)
- Kevin O Murray
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| | - Jason O Brant
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - John D Iwaniec
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| | - Laila H Sheikh
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| | - Lucas de Carvalho
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| | - Christian K Garcia
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| | - Gerard P Robinson
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| | - Jamal M Alzahrani
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| | - Alberto Riva
- Bioinformatics Core, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA
| | - Orlando Laitano
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| | - Michael P Kladde
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Thomas L Clanton
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| |
Collapse
|
34
|
Renaudeau D. Impact of single or repeated short-term heat challenges mimicking summer heat waves on thermoregulatory responses and performances in finishing pigs. Transl Anim Sci 2020; 4:txaa192. [PMID: 34164611 PMCID: PMC8216432 DOI: 10.1093/tas/txaa192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/08/2020] [Indexed: 11/14/2022] Open
Abstract
The objectives of this study were to determine the effects of single or repeated short heat stress (HS) challenges that mimicked summer heat waves on performance and thermoregulatory responses in finishing pigs. A total of 45 crossbred castrated males were tested in three consecutive replicates of 15 pigs. Within each replicate, pigs were assigned to one of five treatments. Pigs in treatment group TTT were maintained in thermoneutral conditions (22 °C) for the entire experiment (45 d). Pigs in treatment group HHH were subjected to an HS challenge (32 °C for 5 d) at 113, 127, and 141 d of age (in experimental periods P1, P2, and P3, respectively). Pigs in treatment groups HTT, THT, and TTH were subjected to the HS challenge at 113, 127, or 141 d of age, respectively. Each 5-d challenge was preceded by a 3-d prechallenge period and followed by a 7-d recovery period. Pigs were housed in individual pens and fed ad libitum. HS significantly reduced average daily feed intake (ADFI) and the average daily gain (ADG). Expressed as a percentage of the performance observed during the prechallenge period, ADFI decreased by 12%, 22%, and 26% and ADG decreased by 12%, 43%, and 72% in the HTT, THT, and TTH groups, respectively. Regardless of the experimental group, no compensatory performance was observed during the recovery period, suggesting that HS has a long-lasting effect on animal performance. Pigs subjected to HS had an immediate increase in core body temperature (Tcore), skin temperature, and respiratory rate, all of which gradually decreased during the HS challenge. Based on Tcore measurements, hypothermia was observed during the recovery period in each of the three experimental periods, especially for pigs in the HHH and the HTT groups but only during the first HS cycle. Repeated exposure to HS for the HHH group resulted in heat acclimation responses characterized by a lower increase in Tcore and lower decrease in ADFI during P2 and P3 than during P1.
Collapse
Affiliation(s)
- David Renaudeau
- PEGASE UMR1348, Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'Élevage, INRAE, Institut Agro, St Gilles, France
| |
Collapse
|
35
|
Foster J, Hodder SG, Lloyd AB, Havenith G. Individual Responses to Heat Stress: Implications for Hyperthermia and Physical Work Capacity. Front Physiol 2020; 11:541483. [PMID: 33013476 PMCID: PMC7516259 DOI: 10.3389/fphys.2020.541483] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
Background Extreme heat events are increasing in frequency, severity, and duration. It is well known that heat stress can have a negative impact on occupational health and productivity, particularly during physical work. However, there are no up-to-date reviews on how vulnerability to heat changes as a function of individual characteristics in relation to the risk of hyperthermia and work capacity loss. The objective of this narrative review is to examine the role of individual characteristics on the human heat stress response, specifically in relation to hyperthermia risk and productivity loss in hot workplaces. Finally, we aim to generate practical guidance for industrial hygienists considering our findings. Factors included in the analysis were body mass, body surface area to mass ratio, body fat, aerobic fitness and training, heat adaptation, aging, sex, and chronic health conditions. Findings We found the relevance of any factor to be dynamic, based on the work-type (fixed pace or relative to fitness level), work intensity (low, moderate, or heavy work), climate type (humidity, clothing vapor resistance), and variable of interest (risk of hyperthermia or likelihood of productivity loss). Heat adaptation, high aerobic fitness, and having a large body mass are the most protective factors during heat exposure. Primary detrimental factors include low fitness, low body mass, and lack of heat adaptation. Aging beyond 50 years, being female, and diabetes are less impactful negative factors, since their independent effect is quite small in well matched participants. Skin surface area to mass ratio, body composition, hypertension, and cardiovascular disease are not strong independent predictors of the heat stress response. Conclusion Understanding how individual factors impact responses to heat stress is necessary for the prediction of heat wave impacts on occupational health and work capacity. The recommendations provided in this report could be utilized to help curtail hyperthermia risk and productivity losses induced by heat.
Collapse
Affiliation(s)
- Josh Foster
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| | - Simon G Hodder
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| | - Alex B Lloyd
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| | - George Havenith
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
36
|
Mreisat A, Kanaani H, Saada A, Horowitz M. Heat acclimation mediated cardioprotection is controlled by mitochondrial metabolic remodeling involving HIF-1α. J Therm Biol 2020; 93:102691. [PMID: 33077115 DOI: 10.1016/j.jtherbio.2020.102691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/02/2020] [Accepted: 08/06/2020] [Indexed: 01/27/2023]
Abstract
Heat acclimation (HA) induces metabolic plasticity to resist the effects of environmental heat with cross-tolerance to novel stressors such as oxygen supply perturbations, exercise, and alike. Our previous results indicated that hypoxia inducible transcription factor (HIF-1α) contributes to this adaptive process. In the present study, we link functional studies in isolated cardiomyocytes, with molecular and biochemical studies of cardiac mitochondria and demonstrate that HA remodels mitochondrial metabolism and performance. We observed the significant role that HIF-1α plays in the HA heart, as HA reduces oxidative stress during ischemia by shifting mitochondrial substrate preference towards pyruvate, with elevated level and activity of mitochondrial LDH (LDHb), acting a pivotal role. Increased antioxidative capacity to encounter hazards is implicated. These results deepen our understanding of heat acclimation-mediated cross tolerance (HACT), in which adaptive bioenergetic-mechanisms counteract the hazards of oxidative stress.
Collapse
Affiliation(s)
- A Mreisat
- Laboratory of Environmental Physiology, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Israel
| | - H Kanaani
- Laboratory of Environmental Physiology, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Israel
| | - A Saada
- Department of Genetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; Faculty of Medicine, The Hebrew University of Jerusalem, Israel.
| | - M Horowitz
- Laboratory of Environmental Physiology, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
37
|
Yanovich R, Ketko I, Charkoudian N. Sex Differences in Human Thermoregulation: Relevance for 2020 and Beyond. Physiology (Bethesda) 2020; 35:177-184. [PMID: 32293229 DOI: 10.1152/physiol.00035.2019] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The participation of women in physically strenuous athletic and occupational tasks has increased substantially in the past decade. Female sex steroids have influences on thermoregulatory processes that could impact physical performance in the heat. Here, we summarize and evaluate the current literature regarding sex differences in thermoregulation and provide recommendations for heat-illness risk-mitigation strategies.
Collapse
Affiliation(s)
- R Yanovich
- The Institute of Military Physiology, Israel Defense Forces, Medical Corps, Tel-Hashomer, Israel
- Heller Institute of Medical Research, Sheba Medical Center, Tel-Hashomer, Israel
- Department of Military Medicine, Faculty of Medicine, Hebrew University, Jerusalem, Israel
- The Academic College at Wingate, Wingate Institute, Netanya, Israel
| | - I Ketko
- The Institute of Military Physiology, Israel Defense Forces, Medical Corps, Tel-Hashomer, Israel
- Heller Institute of Medical Research, Sheba Medical Center, Tel-Hashomer, Israel
| | - N Charkoudian
- U.S. Army Research Institute of Environmental Medicine, Natick, Massachussetts
| |
Collapse
|
38
|
Fleischmann C, Bar-Ilan N, Horowitz M, Bruchim Y, Deuster P, Heled Y. Astaxanthin supplementation impacts the cellular HSP expression profile during passive heating. Cell Stress Chaperones 2020; 25:549-558. [PMID: 31970694 PMCID: PMC7192986 DOI: 10.1007/s12192-019-01061-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 12/26/2022] Open
Abstract
Astaxanthin is a powerful carotenoid antioxidant prevalent in marine organisms and approved as a food supplement. Recent studies have demonstrated Astaxanthin's beneficial attributes in various health states. Following initial reports of potential heat protective properties in Astaxanthin supplemented rats, we present here results of a novel study examining the effect of Astaxanthin supplementation on the heat shock response in rats in relation to core temperature (Tc) and the ensuing physiological strain. Two hours of heat stress at 41 °C during which rats developed their thermoregulatory hyperthermic plateau resulted in progressive increases in HSP72 and HSP27 in the Astaxanthin (Oleoresin)-treated group but not in the control (Olive oil) group. Enhanced elevation in HSPs suggests that Astaxanthin supplementation may augment the cellular stress protective response to heat stress.
Collapse
Affiliation(s)
- Chen Fleischmann
- The Institute of Military Physiology, IDF Medical Corps, Tel Hashomer, Israel.
- Heller Institute of Medical Research, Sheba Medical Center, Tel Hashomer, Israel.
- Laboratory of Environmental Physiology, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Netta Bar-Ilan
- Laboratory of Environmental Physiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Horowitz
- Laboratory of Environmental Physiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yaron Bruchim
- Laboratory of Environmental Physiology, The Hebrew University of Jerusalem, Jerusalem, Israel
- Human Performance Resource Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Patricia Deuster
- Emergency and Specialist Veterinary Center, Ben-Shemen Youth Village, Israel
| | - Yuval Heled
- Heller Institute of Medical Research, Sheba Medical Center, Tel Hashomer, Israel
- The Kibbutzim College, Tel Aviv, Israel
| |
Collapse
|
39
|
Tower J, Pomatto LCD, Davies KJA. Sex differences in the response to oxidative and proteolytic stress. Redox Biol 2020; 31:101488. [PMID: 32201219 PMCID: PMC7212483 DOI: 10.1016/j.redox.2020.101488] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 02/20/2020] [Accepted: 02/29/2020] [Indexed: 12/16/2022] Open
Abstract
Sex differences in diseases involving oxidative and proteolytic stress are common, including greater ischemic heart disease, Parkinson disease and stroke in men, and greater Alzheimer disease in women. Sex differences are also observed in stress response of cells and tissues, where female cells are generally more resistant to heat and oxidative stress-induced cell death. Studies implicate beneficial effects of estrogen, as well as cell-autonomous effects including superior mitochondrial function and increased expression of stress response genes in female cells relative to male cells. The p53 and forkhead box (FOX)-family genes, heat shock proteins (HSPs), and the apoptosis and autophagy pathways appear particularly important in mediating sex differences in stress response.
Collapse
Affiliation(s)
- John Tower
- Molecular and Computational Biology Program, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, USA; Leonard Davis School of Gerontology, Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA90089, USA.
| | - Laura C D Pomatto
- National Institute on General Medical Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kelvin J A Davies
- Molecular and Computational Biology Program, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, USA; Leonard Davis School of Gerontology, Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA90089, USA; Department of Biochemistry & Molecular Medicine, Keck School of Medicine of USC, University of Southern California, USA
| |
Collapse
|
40
|
Gibson OR, James CA, Mee JA, Willmott AG, Turner G, Hayes M, Maxwell NS. Heat alleviation strategies for athletic performance: A review and practitioner guidelines. Temperature (Austin) 2019; 7:3-36. [PMID: 32166103 PMCID: PMC7053966 DOI: 10.1080/23328940.2019.1666624] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 12/19/2022] Open
Abstract
International competition inevitably presents logistical challenges for athletes. Events such as the Tokyo 2020 Olympic Games require further consideration given historical climate data suggest athletes will experience significant heat stress. Given the expected climate, athletes face major challenges to health and performance. With this in mind, heat alleviation strategies should be a fundamental consideration. This review provides a focused perspective of the relevant literature describing how practitioners can structure male and female athlete preparations for performance in hot, humid conditions. Whilst scientific literature commonly describes experimental work, with a primary focus on maximizing magnitudes of adaptive responses, this may sacrifice ecological validity, particularly for athletes whom must balance logistical considerations aligned with integrating environmental preparation around training, tapering and travel plans. Additionally, opportunities for sophisticated interventions may not be possible in the constrained environment of the athlete village or event arenas. This review therefore takes knowledge gained from robust experimental work, interprets it and provides direction on how practitioners/coaches can optimize their athletes' heat alleviation strategies. This review identifies two distinct heat alleviation themes that should be considered to form an individualized strategy for the athlete to enhance thermoregulatory/performance physiology. First, chronic heat alleviation techniques are outlined, these describe interventions such as heat acclimation, which are implemented pre, during and post-training to prepare for the increased heat stress. Second, acute heat alleviation techniques that are implemented immediately prior to, and sometimes during the event are discussed. Abbreviations: CWI: Cold water immersion; HA: Heat acclimation; HR: Heart rate; HSP: Heat shock protein; HWI: Hot water immersion; LTHA: Long-term heat acclimation; MTHA: Medium-term heat acclimation; ODHA: Once-daily heat acclimation; RH: Relative humidity; RPE: Rating of perceived exertion; STHA: Short-term heat acclimation; TCORE: Core temperature; TDHA: Twice-daily heat acclimation; TS: Thermal sensation; TSKIN: Skin temperature; V̇O2max: Maximal oxygen uptake; WGBT: Wet bulb globe temperature.
Collapse
Affiliation(s)
- Oliver R. Gibson
- Centre for Human Performance, Exercise and Rehabilitation (CHPER), Division of Sport, Health and Exercise Sciences, Brunel University London, Uxbridge, UK
| | - Carl A. James
- Institut Sukan Negara (National Sports Institute), Kuala Lumpur, Malaysia
| | - Jessica A. Mee
- School of Sport and Exercise Sciences, University of Worcester, Worcester, UK
| | - Ashley G.B. Willmott
- Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, Cambridge, UK
| | - Gareth Turner
- Bisham Abbey National High-Performance Centre, English Institute of Sport, EIS Performance Centre, Marlow, UK
| | - Mark Hayes
- Environmental Extremes Laboratory, School of Sport and Service Management, University of Brighton, Eastbourne, UK
| | - Neil S. Maxwell
- Environmental Extremes Laboratory, School of Sport and Service Management, University of Brighton, Eastbourne, UK
| |
Collapse
|
41
|
Zurawlew MJ, Mee JA, Walsh NP. Post-exercise Hot Water Immersion Elicits Heat Acclimation Adaptations That Are Retained for at Least Two Weeks. Front Physiol 2019. [PMID: 31555140 DOI: 10.3389/fphys.2019.01080, 10.3389/fpls.2019.01080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Heat acclimation by post-exercise hot water immersion (HWI) on six consecutive days reduces thermal strain and improves exercise performance during heat stress. However, the retention of adaptations by this method remains unknown. Typically, adaptations to short-term, exercise-heat-acclimation (<7 heat exposures) decay rapidly and are lost within 2 weeks. Short-term protocols should therefore be completed within 2 weeks of relocating to the heat; potentially compromising pre-competition/deployment training. To establish whether adaptations from post-exercise HWI are retained for up to 2 weeks, participants completed a 40-min treadmill run at 65% max in the heat (33°C, 40% RH) before (PRE) and 24 h after (POST) the HWI intervention (n = 13) and then at 1 week (WK 1) and 2 weeks (WK 2) after the HWI intervention (n = 9). Heat acclimation involved a 40-min treadmill run (65% max) on six consecutive days in temperate conditions (20°C), followed by ≤40 min HWI (40°C). Post-exercise HWI induced heat acclimation adaptations that were retained for at least 2 weeks, evidenced by reductions from PRE to WK 2 in: resting rectal core temperature (T re, -0.36 ± 0.25°C), T re at sweating onset (-0.26 ± 0.24°C), and end-exercise T re (-0.36 ± 0.37°C). Furthermore, mean skin temperature (T sk) (-0.77 ± 0.70°C), heart rate (-14 ± 10 beats⋅min-1), rating of perceived exertion (-1 ± 2), and thermal sensation (-1 ± 1) were reduced from PRE to WK 2 (P < 0.05). However, PRE to POST changes in total hemoglobin mass, blood volume, plasma volume, the drive for sweating onset, sweating sensitivity and whole body sweating rate did not reach significance (P > 0.05). As such, the reduction in thermal strain during exercise-heat stress appears likely due to the reduction in resting T re evident at POST, WK 1, and WK 2. In summary, 6 days of post-exercise HWI is an effective, practical and accessible heat acclimation strategy that induces adaptations, which are retained for at least 2 weeks. Therefore, post-exercise HWI can be completed during an athlete's pre-taper phase and does not suffer from the same practical limitations as short-term, exercise-heat-acclimation.
Collapse
Affiliation(s)
| | - Jessica A Mee
- School of Sport and Exercise Science, University of Worcester, Worcester, United Kingdom
| | - Neil P Walsh
- College of Human Sciences, Bangor University, Bangor, United Kingdom
| |
Collapse
|
42
|
Zurawlew MJ, Mee JA, Walsh NP. Post-exercise Hot Water Immersion Elicits Heat Acclimation Adaptations That Are Retained for at Least Two Weeks. Front Physiol 2019; 10:1080. [PMID: 31555140 PMCID: PMC6722194 DOI: 10.3389/fphys.2019.01080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/06/2019] [Indexed: 11/13/2022] Open
Abstract
Heat acclimation by post-exercise hot water immersion (HWI) on six consecutive days reduces thermal strain and improves exercise performance during heat stress. However, the retention of adaptations by this method remains unknown. Typically, adaptations to short-term, exercise-heat-acclimation (<7 heat exposures) decay rapidly and are lost within 2 weeks. Short-term protocols should therefore be completed within 2 weeks of relocating to the heat; potentially compromising pre-competition/deployment training. To establish whether adaptations from post-exercise HWI are retained for up to 2 weeks, participants completed a 40-min treadmill run at 65% max in the heat (33°C, 40% RH) before (PRE) and 24 h after (POST) the HWI intervention (n = 13) and then at 1 week (WK 1) and 2 weeks (WK 2) after the HWI intervention (n = 9). Heat acclimation involved a 40-min treadmill run (65% max) on six consecutive days in temperate conditions (20°C), followed by ≤40 min HWI (40°C). Post-exercise HWI induced heat acclimation adaptations that were retained for at least 2 weeks, evidenced by reductions from PRE to WK 2 in: resting rectal core temperature (T re, -0.36 ± 0.25°C), T re at sweating onset (-0.26 ± 0.24°C), and end-exercise T re (-0.36 ± 0.37°C). Furthermore, mean skin temperature (T sk) (-0.77 ± 0.70°C), heart rate (-14 ± 10 beats⋅min-1), rating of perceived exertion (-1 ± 2), and thermal sensation (-1 ± 1) were reduced from PRE to WK 2 (P < 0.05). However, PRE to POST changes in total hemoglobin mass, blood volume, plasma volume, the drive for sweating onset, sweating sensitivity and whole body sweating rate did not reach significance (P > 0.05). As such, the reduction in thermal strain during exercise-heat stress appears likely due to the reduction in resting T re evident at POST, WK 1, and WK 2. In summary, 6 days of post-exercise HWI is an effective, practical and accessible heat acclimation strategy that induces adaptations, which are retained for at least 2 weeks. Therefore, post-exercise HWI can be completed during an athlete's pre-taper phase and does not suffer from the same practical limitations as short-term, exercise-heat-acclimation.
Collapse
Affiliation(s)
| | - Jessica A Mee
- School of Sport and Exercise Science, University of Worcester, Worcester, United Kingdom
| | - Neil P Walsh
- College of Human Sciences, Bangor University, Bangor, United Kingdom
| |
Collapse
|
43
|
Zurawlew MJ, Mee JA, Walsh NP. Post-exercise Hot Water Immersion Elicits Heat Acclimation Adaptations That Are Retained for at Least Two Weeks. Front Physiol 2019. [PMID: 31555140 PMCID: PMC6722194 DOI: 10.3389/fphys.2019.01080,+10.3389/fpls.2019.01080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Heat acclimation by post-exercise hot water immersion (HWI) on six consecutive days reduces thermal strain and improves exercise performance during heat stress. However, the retention of adaptations by this method remains unknown. Typically, adaptations to short-term, exercise-heat-acclimation (<7 heat exposures) decay rapidly and are lost within 2 weeks. Short-term protocols should therefore be completed within 2 weeks of relocating to the heat; potentially compromising pre-competition/deployment training. To establish whether adaptations from post-exercise HWI are retained for up to 2 weeks, participants completed a 40-min treadmill run at 65% max in the heat (33°C, 40% RH) before (PRE) and 24 h after (POST) the HWI intervention (n = 13) and then at 1 week (WK 1) and 2 weeks (WK 2) after the HWI intervention (n = 9). Heat acclimation involved a 40-min treadmill run (65% max) on six consecutive days in temperate conditions (20°C), followed by ≤40 min HWI (40°C). Post-exercise HWI induced heat acclimation adaptations that were retained for at least 2 weeks, evidenced by reductions from PRE to WK 2 in: resting rectal core temperature (T re, -0.36 ± 0.25°C), T re at sweating onset (-0.26 ± 0.24°C), and end-exercise T re (-0.36 ± 0.37°C). Furthermore, mean skin temperature (T sk) (-0.77 ± 0.70°C), heart rate (-14 ± 10 beats⋅min-1), rating of perceived exertion (-1 ± 2), and thermal sensation (-1 ± 1) were reduced from PRE to WK 2 (P < 0.05). However, PRE to POST changes in total hemoglobin mass, blood volume, plasma volume, the drive for sweating onset, sweating sensitivity and whole body sweating rate did not reach significance (P > 0.05). As such, the reduction in thermal strain during exercise-heat stress appears likely due to the reduction in resting T re evident at POST, WK 1, and WK 2. In summary, 6 days of post-exercise HWI is an effective, practical and accessible heat acclimation strategy that induces adaptations, which are retained for at least 2 weeks. Therefore, post-exercise HWI can be completed during an athlete's pre-taper phase and does not suffer from the same practical limitations as short-term, exercise-heat-acclimation.
Collapse
Affiliation(s)
- Michael J. Zurawlew
- College of Human Sciences, Bangor University, Bangor, United Kingdom,*Correspondence: Michael J. Zurawlew,
| | - Jessica A. Mee
- School of Sport and Exercise Science, University of Worcester, Worcester, United Kingdom
| | - Neil P. Walsh
- College of Human Sciences, Bangor University, Bangor, United Kingdom
| |
Collapse
|
44
|
Condelli V, Crispo F, Pietrafesa M, Lettini G, Matassa DS, Esposito F, Landriscina M, Maddalena F. HSP90 Molecular Chaperones, Metabolic Rewiring, and Epigenetics: Impact on Tumor Progression and Perspective for Anticancer Therapy. Cells 2019; 8:cells8060532. [PMID: 31163702 PMCID: PMC6627532 DOI: 10.3390/cells8060532] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 12/31/2022] Open
Abstract
Heat shock protein 90 (HSP90) molecular chaperones are a family of ubiquitous proteins participating in several cellular functions through the regulation of folding and/or assembly of large multiprotein complexes and client proteins. Thus, HSP90s chaperones are, directly or indirectly, master regulators of a variety of cellular processes, such as adaptation to stress, cell proliferation, motility, angiogenesis, and signal transduction. In recent years, it has been proposed that HSP90s play a crucial role in carcinogenesis as regulators of genotype-to-phenotype interplay. Indeed, HSP90 chaperones control metabolic rewiring, a hallmark of cancer cells, and influence the transcription of several of the key-genes responsible for tumorigenesis and cancer progression, through either direct binding to chromatin or through the quality control of transcription factors and epigenetic effectors. In this review, we will revise evidence suggesting how this interplay between epigenetics and metabolism may affect oncogenesis. We will examine the effect of metabolic rewiring on the accumulation of specific metabolites, and the changes in the availability of epigenetic co-factors and how this process can be controlled by HSP90 molecular chaperones. Understanding deeply the relationship between epigenetic and metabolism could disclose novel therapeutic scenarios that may lead to improvements in cancer treatment.
Collapse
Affiliation(s)
- Valentina Condelli
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy.
| | - Fabiana Crispo
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy.
| | - Michele Pietrafesa
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy.
| | - Giacomo Lettini
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy.
| | - Danilo Swann Matassa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy.
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy.
| | - Matteo Landriscina
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy.
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy.
| | - Francesca Maddalena
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy.
| |
Collapse
|
45
|
Watkins ER, Hayes M, Watt P, Richardson AJ. Heat tolerance of Fire Service Instructors. J Therm Biol 2019; 82:1-9. [DOI: 10.1016/j.jtherbio.2019.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/21/2019] [Accepted: 03/12/2019] [Indexed: 12/19/2022]
|
46
|
Sugimoto N, Matsuzaki K, Katakura M, Nakamura H, Ueda Y, Yachie A, Shido O. Heat attenuates sensitivity of mammalian cells to capsaicin. J Biochem Mol Toxicol 2019; 33:e22288. [PMID: 30672650 DOI: 10.1002/jbt.22288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/14/2018] [Accepted: 12/21/2019] [Indexed: 12/12/2022]
Abstract
The transient receptor potential (TRP) channels are thermo-sensors, and transient receptor potential vanilloid (TRPV)1 and V4 are widely expressed in primary afferent neurons and nonneuronal cells. Although heat acclimation is considered as changes of thermoregulatory responses by thermo-effectors to heat, functional changes of TRP channels in heat acclimation has not been fully elucidated. Here, we investigated whether heat acclimation induces capsaicin tolerance. NIH3T3 cells were incubated at 39.5°C. We determined the expression level of TRPV1 and TRPV4 messenger RNA (mRNA), performed cellular staining of TRPV1 and TRPV4, and investigated actin assembly and activation of the extracellular signal-regulated kinase (ERK). Exposure to moderate heat decreased the levels of TRPV1 but not TRPV4 mRNA. It also induced stress fiber formation and the intensity of TRPV1 seemed to be decreased by chronic heat stimuli. In addition, heat acclimation attenuated the capsaicin-induced activation of ERK. Heat acclimation may induce capsaicin tolerance via the downregulation of TRPV1.
Collapse
Affiliation(s)
- Naotoshi Sugimoto
- Department of Physiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.,Department of Environmental Physiology, School of Medicine, Shimane University, Izumo, Japan.,Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Kentaro Matsuzaki
- Department of Environmental Physiology, School of Medicine, Shimane University, Izumo, Japan
| | - Masanori Katakura
- Department of Environmental Physiology, School of Medicine, Shimane University, Izumo, Japan.,Department of Nutritional Physiology, Faculty of Pharmaceutical Sciences, Josai University, Sakado, Japan
| | - Hiroyuki Nakamura
- Department of Public Health, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Yoshibumi Ueda
- Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan.,AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Akihiro Yachie
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Osamu Shido
- Department of Environmental Physiology, School of Medicine, Shimane University, Izumo, Japan
| |
Collapse
|
47
|
Coombs GB, Tremblay JC. Passive heat therapy for cerebral protection: new ideas of age-old concepts. J Physiol 2018; 597:371-372. [PMID: 30367732 DOI: 10.1113/jp277314] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Geoff B Coombs
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Joshua C Tremblay
- Cardiovascular Stress Response Laboratory, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
48
|
Gibson OR, Taylor L, Watt PW, Maxwell NS. Cross-Adaptation: Heat and Cold Adaptation to Improve Physiological and Cellular Responses to Hypoxia. Sports Med 2018; 47:1751-1768. [PMID: 28389828 PMCID: PMC5554481 DOI: 10.1007/s40279-017-0717-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
To prepare for extremes of heat, cold or low partial pressures of oxygen (O2), humans can undertake a period of acclimation or acclimatization to induce environment-specific adaptations, e.g. heat acclimation (HA), cold acclimation (CA), or altitude training. While these strategies are effective, they are not always feasible due to logistical impracticalities. Cross-adaptation is a term used to describe the phenomenon whereby alternative environmental interventions, e.g. HA or CA, may be a beneficial alternative to altitude interventions, providing physiological stress and inducing adaptations observable at altitude. HA can attenuate physiological strain at rest and during moderate-intensity exercise at altitude via adaptations allied to improved O2 delivery to metabolically active tissue, likely following increases in plasma volume and reductions in body temperature. CA appears to improve physiological responses to altitude by attenuating the autonomic response to altitude. While no cross-acclimation-derived exercise performance/capacity data have been measured following CA, post-HA improvements in performance underpinned by aerobic metabolism, and therefore dependent on O2 delivery at altitude, are likely. At a cellular level, heat shock protein responses to altitude are attenuated by prior HA, suggesting that an attenuation of the cellular stress response and therefore a reduced disruption to homeostasis at altitude has occurred. This process is known as cross-tolerance. The effects of CA on markers of cross-tolerance is an area requiring further investigation. Because much of the evidence relating to cross-adaptation to altitude has examined the benefits at moderate to high altitudes, future research examining responses at lower altitudes should be conducted, given that these environments are more frequently visited by athletes and workers. Mechanistic work to identify the specific physiological and cellular pathways responsible for cross-adaptation between heat and altitude, and between cold and altitude, is warranted, as is exploration of benefits across different populations and physical activity profiles.
Collapse
Affiliation(s)
- Oliver R Gibson
- Centre for Human Performance, Exercise and Rehabilitation (CHPER), Brunel University London, Uxbridge, UK. .,Welkin Human Performance Laboratories, Centre for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Denton Road, Eastbourne, UK.
| | - Lee Taylor
- Athlete Health and Performance Research Centre, ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar.,School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Peter W Watt
- Welkin Human Performance Laboratories, Centre for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Denton Road, Eastbourne, UK
| | - Neil S Maxwell
- Welkin Human Performance Laboratories, Centre for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Denton Road, Eastbourne, UK
| |
Collapse
|
49
|
Patton MG, Gillum TL, Szymanski MC, Gould LM, Lauterbach CJ, Vaughan RA, Kuennen MR. Heat acclimation increases inflammatory and apoptotic responses to subsequent LPS challenge in C2C12 myotubes. Cell Stress Chaperones 2018; 23:1117-1128. [PMID: 29907924 PMCID: PMC6111074 DOI: 10.1007/s12192-018-0923-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/26/2018] [Accepted: 05/28/2018] [Indexed: 01/12/2023] Open
Abstract
This work investigated the ability of a 6-day heat acclimation protocol to impart heat acclimation-mediated cross-tolerance (HACT) in C2C12 myotubes, as indicated by changes in inflammatory and apoptotic responses to subsequent lipopolysaccharide (LPS) challenge. Myotubes were incubated at 40 °C for 2 h/day over 6 days (HA) or maintained for 6 days at 37 °C (C). Following 24 h recovery, myotubes from each group received either no stimulation or 500 ng/ml LPS for 2 h (HA + LPS and C + LPS, respectively). Cell lysates were collected and analyzed for protein markers of the heat shock response, inflammation, and apoptosis. As compared to C, HA exhibited an elevated heat shock response [HSP70 (+ 99%); HSP60 (+ 216%); HSP32 (+ 40%); all p < 0.01] and reduced inflammatory and apoptotic signaling [p-NF-ĸB:NF-ĸB (- 99%%); p-JNK (- 49%); all p < 0.01]. When compared to C + LPS, HA + LPS also exhibited an elevated heat shock response [HSP70 (+ 68%); HSP60 (+ 32%); HSP32 (+ 38%); all p < 0.01]. However, inflammatory and apoptotic responses in HA + LPS were increased [p-IKBa:IKBa (+ 432%); p-NF-ĸB:NF-ĸB (+ 283%); caspase-8p18 (+ 53%); p-JNK (+ 41%); all p < 0.05]. This unanticipated finding may be due to increased TLR4-mediated signaling capacity in HA + LPS, as indicated by upregulation of TLR4 [(+ 24%); MyD88 (+ 308%); p-NIK (+ 199%); and p-IKKα/b (+ 81%); all p < 0.05]. Data suggest HA reduces inflammatory and apoptotic signaling in skeletal muscle cells that are maintained under basal conditions. However, HACT is selective and does not apply to TLR4 signaling in the present model.
Collapse
Affiliation(s)
- Meghan G Patton
- Department of Exercise Science, High Point University, One University Parkway, High Point, NC, 27268, USA
| | - Trevor L Gillum
- Department of Kinesiology, California Baptist University, Riverside, CA, USA
| | - Mandy C Szymanski
- Department of Exercise Science, High Point University, One University Parkway, High Point, NC, 27268, USA
| | - Lacey M Gould
- Department of Exercise Science, High Point University, One University Parkway, High Point, NC, 27268, USA
| | - Claire J Lauterbach
- Department of Exercise Science, High Point University, One University Parkway, High Point, NC, 27268, USA
| | - Roger A Vaughan
- Department of Exercise Science, High Point University, One University Parkway, High Point, NC, 27268, USA
| | - Matthew R Kuennen
- Department of Exercise Science, High Point University, One University Parkway, High Point, NC, 27268, USA.
| |
Collapse
|
50
|
Stacey MJ, Woods DR, Brett SJ, Britland SE, Fallowfield JL, Allsopp AJ, Delves SK. Heat acclimatization blunts copeptin responses to hypertonicity from dehydrating exercise in humans. Physiol Rep 2018; 6:e13851. [PMID: 30221840 PMCID: PMC6139708 DOI: 10.14814/phy2.13851] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/04/2018] [Accepted: 08/10/2018] [Indexed: 11/24/2022] Open
Abstract
Acclimatization favors greater extracellular tonicity from lower sweat sodium, yet hyperosmolality may impair thermoregulation during heat stress. Enhanced secretion or action of vasopressin could mitigate this through increased free water retention. Aims were to determine responses of the vasopressin surrogate copeptin to dehydrating exercise and investigate its relationships with tonicity during short and long-term acclimatization. Twenty-three participants completed a structured exercise programme following arrival from a temperate to a hot climate. A Heat Tolerance Test (HTT) was conducted on Day-2, 6, 9 and 23, consisting of 60-min block-stepping at 50% VO2 peak, with no fluid intake. Resting sweat [Na+ ] was measured by iontophoresis. Changes in body mass (sweat loss), core temperature, heart rate, osmolality (serum and urine) and copeptin and aldosterone (plasma) were measured with each Test. From Day 2 to Day 23, sweat [Na+ ] decreased significantly (adjusted P < 0.05) and core temperature and heart rate fell. Over the same interval, HTT-associated excursions were increased for serum osmolality (5 [-1, 9] vs. 9 [5, 12] mosm·kg-1 ), did not differ for copeptin (9.6 [6.0, 15.0] vs. 7.9 [4.3, 14.7] pmol·L-1 ) and were reduced for aldosterone (602 [415, 946] vs. 347 [263, 537] pmol·L-1 ). Urine osmolality was unchanging and related consistently to copeptin at end-exercise, whereas the association between copeptin and serum osmolality was right-shifted (P = 0.0109) with acclimatization. Unchanging urine:serum osmolality argued against increased renal action of vasopressin. In conclusion, where exercise in the heat is performed without fluid replacement, heat acclimatization does not appear to enhance AVP-mediated free water retention in humans.
Collapse
Affiliation(s)
- Michael J. Stacey
- Department of Surgery and CancerImperial College LondonLondonUnited Kingdom
- Department of Military MedicineRoyal Centre for Defence MedicineBirminghamUnited Kingdom
| | - David R. Woods
- Department of Surgery and CancerImperial College LondonLondonUnited Kingdom
- Carnegie Research InstituteLeeds Beckett UniversityLeedsUnited Kingdom
| | - Stephen J. Brett
- Department of Surgery and CancerImperial College LondonLondonUnited Kingdom
| | | | | | | | - Simon K. Delves
- Institute of Naval MedicineAlverstokeHampshireUnited Kingdom
| |
Collapse
|