1
|
Weizman L, Sharon H, Dayan L, Espaniol J, Brill S, Nahman-Averbuch H, Hendler T, Jacob G. Oral Delta-9-Tetrahydrocannabinol (THC) Increases Parasympathetic Activity and Supraspinal Conditioned Pain Modulation in Chronic Neuropathic Pain Male Patients: A Crossover, Double-Blind, Placebo-Controlled Trial. CNS Drugs 2024; 38:375-385. [PMID: 38597988 PMCID: PMC11026292 DOI: 10.1007/s40263-024-01085-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Disordered autonomic nervous system regulation and supraspinal pain inhibition have been repeatedly described in chronic pain. We aimed to explore the effects of δ-9-tetrahydrocannabinol (THC), an emerging treatment option, on autonomic nervous system and central pain modulation measures in patients with chronic pain. METHODS Twelve male patients with chronic radicular neuropathic pain participated in a randomized, double-blind, crossover, placebo-controlled, single-administration trial. Low/high frequency (LF/HF) heart rate variability (HRV) ratio and conditioned pain modulation (CPM) response were measured and resting-state functional magnetic resonance imaging (MRI) was performed at baseline and after sublingual administration of either 0.2 mg/kg oral THC or placebo. RESULTS THC significantly reduced the LF/HF ratio compared with placebo (interaction effect F(1,11) = 20.5; p < 0.005) and significantly improved CPM responses (interaction effect F(1,9) = 5.2; p = 0.048). The THC-induced reduction in LF/HF ratio correlated with increased functional connectivity between the rostral ventrolateral medulla and the dorsolateral prefrontal cortex [T(10) = 6.4, cluster p-FDR < 0.005]. CONCLUSIONS THC shifts the autonomic balance towards increased parasympathetic tone and improves inhibitory pain mechanisms in chronic pain. The increase in vagal tone correlates with connectivity changes in higher-order regulatory brain regions, suggesting THC exerts top-down effects. These changes may reflect a normalizing effect of THC on multiple domains of supraspinal pain dysregulation. CLINICAL TRIAL REGISTRY NUMBER NCT02560545.
Collapse
Affiliation(s)
- Libat Weizman
- Sagol Brain Institute, Wohl Institute for Advanced Imaging, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Haggai Sharon
- Sagol Brain Institute, Wohl Institute for Advanced Imaging, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Anesthesiology and Critical Care Medicine, Institute of Pain Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Lior Dayan
- Department of Anesthesiology and Critical Care Medicine, Institute of Pain Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Joumana Espaniol
- Department of Internal Medicine F, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Recanati Autonomic Dysfunction Center, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Silviu Brill
- Department of Anesthesiology and Critical Care Medicine, Institute of Pain Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Hadas Nahman-Averbuch
- Division of Clinical and Translational Research, Department of Anesthesiology, Washington University Pain Center, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Talma Hendler
- Sagol Brain Institute, Wohl Institute for Advanced Imaging, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
- School of Psychological Sciences, Tel Aviv University, Tel-Aviv, Israel
| | - Giris Jacob
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
- School of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Department of Internal Medicine F, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
- Recanati Autonomic Dysfunction Center, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel.
| |
Collapse
|
2
|
Yorita A, Kawayama T, Inoue M, Kinoshita T, Oda H, Tokunaga Y, Tateishi T, Shoji Y, Uchimura N, Abe T, Hoshino T, Taniwaki T. Altered Functional Connectivity during Mild Transient Respiratory Impairment Induced by a Resistive Load. J Clin Med 2024; 13:2556. [PMID: 38731091 PMCID: PMC11084533 DOI: 10.3390/jcm13092556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Background: Previous neuroimaging studies have identified brain regions related to respiratory motor control and perception. However, little is known about the resting-state functional connectivity (FC) associated with respiratory impairment. We aimed to determine the FC involved in mild respiratory impairment without altering transcutaneous oxygen saturation. Methods: We obtained resting-state functional magnetic resonance imaging data from 36 healthy volunteers during normal respiration and mild respiratory impairment induced by resistive load (effort breathing). ROI-to-ROI and seed-to-voxel analyses were performed using Statistical Parametric Mapping 12 and the CONN toolbox. Results: Compared to normal respiration, effort breathing activated FCs within and between the sensory perceptual area (postcentral gyrus, anterior insular cortex (AInsula), and anterior cingulate cortex) and visual cortex (the visual occipital, occipital pole (OP), and occipital fusiform gyrus). Graph theoretical analysis showed strong centrality in the visual cortex. A significant positive correlation was observed between the dyspnoea score (modified Borg scale) and FC between the left AInsula and right OP. Conclusions: These results suggested that the FCs within the respiratory sensory area via the network hub may be neural mechanisms underlying effort breathing and modified Borg scale scores. These findings may provide new insights into the visual networks that contribute to mild respiratory impairments.
Collapse
Affiliation(s)
- Akiko Yorita
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; (A.Y.); (T.K.); (T.K.); (H.O.); (Y.T.); (T.T.); (T.H.)
| | - Tomotaka Kawayama
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; (A.Y.); (T.K.); (T.K.); (H.O.); (Y.T.); (T.T.); (T.H.)
| | - Masayuki Inoue
- Cognitive and Molecular Research Institute of Brain Disease, Kurume University, Kurume 830-0011, Japan; (M.I.); (Y.S.); (N.U.)
| | - Takashi Kinoshita
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; (A.Y.); (T.K.); (T.K.); (H.O.); (Y.T.); (T.T.); (T.H.)
| | - Hanako Oda
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; (A.Y.); (T.K.); (T.K.); (H.O.); (Y.T.); (T.T.); (T.H.)
| | - Yoshihisa Tokunaga
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; (A.Y.); (T.K.); (T.K.); (H.O.); (Y.T.); (T.T.); (T.H.)
| | - Takahisa Tateishi
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; (A.Y.); (T.K.); (T.K.); (H.O.); (Y.T.); (T.T.); (T.H.)
| | - Yoshihisa Shoji
- Cognitive and Molecular Research Institute of Brain Disease, Kurume University, Kurume 830-0011, Japan; (M.I.); (Y.S.); (N.U.)
| | - Naohisa Uchimura
- Cognitive and Molecular Research Institute of Brain Disease, Kurume University, Kurume 830-0011, Japan; (M.I.); (Y.S.); (N.U.)
| | - Toshi Abe
- Department of Radiology, Kurume University School of Medicine, Kurume 830-0011, Japan;
| | - Tomoaki Hoshino
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; (A.Y.); (T.K.); (T.K.); (H.O.); (Y.T.); (T.T.); (T.H.)
| | - Takayuki Taniwaki
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; (A.Y.); (T.K.); (T.K.); (H.O.); (Y.T.); (T.T.); (T.H.)
| |
Collapse
|
3
|
Braun J, Patel M, Kameneva T, Keatch C, Lambert G, Lambert E. Central stress pathways in the development of cardiovascular disease. Clin Auton Res 2024; 34:99-116. [PMID: 38104300 DOI: 10.1007/s10286-023-01008-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/02/2023] [Indexed: 12/19/2023]
Abstract
PURPOSE Mental stress is of essential consideration when assessing cardiovascular pathophysiology in all patient populations. Substantial evidence indicates associations among stress, cardiovascular disease and aberrant brain-body communication. However, our understanding of the flow of stress information in humans, is limited, despite the crucial insights this area may offer into future therapeutic targets for clinical intervention. METHODS Key terms including mental stress, cardiovascular disease and central control, were searched in PubMed, ScienceDirect and Scopus databases. Articles indicative of heart rate and blood pressure regulation, or central control of cardiovascular disease through direct neural innervation of the cardiac, splanchnic and vascular regions were included. Focus on human neuroimaging research and the flow of stress information is described, before brain-body connectivity, via pre-motor brainstem intermediates is discussed. Lastly, we review current understandings of pathophysiological stress and cardiovascular disease aetiology. RESULTS Structural and functional changes to corticolimbic circuitry encode stress information, integrated by the hypothalamus and amygdala. Pre-autonomic brain-body relays to brainstem and spinal cord nuclei establish dysautonomia and lead to alterations in baroreflex functioning, firing of the sympathetic fibres, cellular reuptake of norepinephrine and withdrawal of the parasympathetic reflex. The combined result is profoundly adrenergic and increases the likelihood of cardiac myopathy, arrhythmogenesis, coronary ischaemia, hypertension and the overall risk of future sudden stress-induced heart failure. CONCLUSIONS There is undeniable support that mental stress contributes to the development of cardiovascular disease. The emerging accumulation of large-scale multimodal neuroimaging data analytics to assess this relationship promises exciting novel therapeutic targets for future cardiovascular disease detection and prevention.
Collapse
Affiliation(s)
- Joe Braun
- School of Health Sciences, Swinburne University of Technology, PO Box 218, Hawthorn, Melbourne, VIC, 3122, Australia.
| | - Mariya Patel
- School of Health Sciences, Swinburne University of Technology, PO Box 218, Hawthorn, Melbourne, VIC, 3122, Australia
| | - Tatiana Kameneva
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Australia
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Australia
| | - Charlotte Keatch
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Australia
| | - Gavin Lambert
- School of Health Sciences, Swinburne University of Technology, PO Box 218, Hawthorn, Melbourne, VIC, 3122, Australia
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Australia
| | - Elisabeth Lambert
- School of Health Sciences, Swinburne University of Technology, PO Box 218, Hawthorn, Melbourne, VIC, 3122, Australia
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Australia
| |
Collapse
|
4
|
Ciumas C, Rheims S, Ryvlin P. fMRI studies evaluating central respiratory control in humans. Front Neural Circuits 2022; 16:982963. [PMID: 36213203 PMCID: PMC9537466 DOI: 10.3389/fncir.2022.982963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
A plethora of neural centers in the central nervous system control the fundamental respiratory pattern. This control is ensured by neurons that act as pacemakers, modulating activity through chemical control driven by changes in the O2/CO2 balance. Most of the respiratory neural centers are located in the brainstem, but difficult to localize on magnetic resonance imaging (MRI) due to their small size, lack of visually-detectable borders with neighboring areas, and significant physiological noise hampering detection of its activity with functional MRI (fMRI). Yet, several approaches make it possible to study the normal response to different abnormal stimuli or conditions such as CO2 inhalation, induced hypercapnia, volitional apnea, induced hypoxia etc. This review provides a comprehensive overview of the majority of available studies on central respiratory control in humans.
Collapse
Affiliation(s)
- Carolina Ciumas
- Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Lyon Neuroscience Research Center, Institut National de la Santé et de la Recherche Médicale U1028/CNRS UMR 5292 Lyon 1 University, Bron, France
- IDEE Epilepsy Institute, Lyon, France
| | - Sylvain Rheims
- Lyon Neuroscience Research Center, Institut National de la Santé et de la Recherche Médicale U1028/CNRS UMR 5292 Lyon 1 University, Bron, France
- IDEE Epilepsy Institute, Lyon, France
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon, Lyon, France
| | - Philippe Ryvlin
- Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Groenland EH, van Kleef MEAM, Hendrikse J, Spiering W, Siero JCW. The effect of endovascular baroreflex amplification on central sympathetic nerve circuits and cerebral blood flow in patients with resistant hypertension: A functional MRI study. FRONTIERS IN NEUROIMAGING 2022; 1:924724. [PMID: 37555165 PMCID: PMC10406262 DOI: 10.3389/fnimg.2022.924724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/28/2022] [Indexed: 08/10/2023]
Abstract
BACKGROUND Endovascular baroreflex amplification (EVBA) by implantation of the MobiusHD is hypothesized to lower blood pressure by decreasing sympathetic activity through the mechanism of the baroreflex. In the present exploratory study we investigated the impact of MobiusHD implantation on central sympathetic nerve circuits and cerebral blood flow (CBF) in patients with resistant hypertension. MATERIALS AND METHODS In thirteen patients, we performed blood oxygenation level-dependent functional magnetic resonance imaging (BOLD fMRI) at rest and during Valsalva maneuvers, before and 3 months after EVBA. Data were analyzed using a whole-brain approach and a brainstem-specific analysis. CBF was assessed using arterial spin labeling MRI. RESULTS Resting-state fMRI analysis did not reveal significant differences in functional connectivity at 3 months after EVBA. For the Valsalva maneuver data, the whole-brain fMRI analysis revealed significantly increased activation in the posterior and anterior cingulate, the insular cortex, the precuneus, the left thalamus and the anterior cerebellum. The brainstem-specific fMRI analysis showed a significant increase in BOLD activity in the right midbrain 3 months after EVBA. Mean gray matter CBF (partial volume corrected) decreased significantly from 48.9 (9.9) ml/100 gr/min at baseline to 43.4 (13.0) ml/100 gr/min (p = 0.02) at 3 months. CONCLUSIONS This first fMRI pilot study in patients with resistant hypertension treated with EVBA showed a significant increase in BOLD activity during the Valsalva maneuver in brain regions related to sympathetic activity. No notable signal intensity changes were observed in brain areas involved in the baroreflex circuit. Future randomized controlled studies are needed to investigate whether the observed changes are directly caused by EVBA. CLINICAL TRIAL REGISTRATION www.clinicaltrials.gov, identifier: NCT02827032.
Collapse
Affiliation(s)
- Eline H. Groenland
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Monique E. A. M. van Kleef
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jeroen Hendrikse
- Department of Radiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Wilko Spiering
- Department of Vascular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jeroen C. W. Siero
- Department of Radiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Spinoza Centre for Neuroimaging Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
6
|
Zheng JH, Sun WH, Ma JJ, Wang ZD, Chang QQ, Dong LR, Shi XX, Li MJ. Resting-state functional magnetic resonance imaging in patients with Parkinson’s disease with and without constipation: a prospective study. Clin Auton Res 2022; 32:51-58. [DOI: 10.1007/s10286-022-00851-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/12/2022] [Indexed: 02/07/2023]
|
7
|
Marullo AL, Bruce CD, Pfoh JR, Chauhan UV, Abrosimova M, Berg ERV, Skow RJ, Davenport MH, Strzalkowski NDJ, Steinback CD, Day TA. Cerebrovascular and blood pressure responses during voluntary apneas are larger than rebreathing. Eur J Appl Physiol 2022; 122:735-743. [PMID: 34978604 DOI: 10.1007/s00421-021-04864-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/29/2021] [Indexed: 11/03/2022]
Abstract
Both voluntary rebreathing (RB) of expired air and voluntary apneas (VA) elicit changes in arterial carbon dioxide and oxygen (CO2 and O2) chemostimuli. These chemostimuli elicit synergistic increases in cerebral blood flow (CBF) and sympathetic nervous system activation, with the latter increasing systemic blood pressure. The extent that simultaneous and inverse changes in arterial CO2 and O2 and associated increases in blood pressure affect the CBF responses during RB versus VAs are unclear. We instrumented 21 healthy participants with a finometer (beat-by-beat mean arterial blood pressure; MAP), transcranial Doppler ultrasound (middle and posterior cerebral artery velocity; MCAv, PCAv) and a mouthpiece with sample line attached to a dual gas analyzer to assess pressure of end-tidal (PET)CO2 and PETO2. Participants performed two protocols: RB and a maximal end-inspiratory VA. A second-by-second stimulus index (SI) was calculated as PETCO2/PETO2 during RB. For VA, where PETCO2 and PETO2 could not be measured throughout, SI values were calculated using interpolated end-tidal gas values before and at the end of the apneas. MAP reactivity (MAPR) was calculated as the slope of the MAP/SI, and cerebrovascular reactivity (CVR) was calculated as the slope of MCAv or PCAv/SI. We found that compared to RB, VA elicited ~ fourfold increases in MAPR slope (P < 0.001), translating to larger anterior and posterior CVR (P ≤ 0.01). However, cerebrovascular conductance (MCAv or PCAv/MAP) was unchanged between interventions (P ≥ 0.2). MAP responses during VAs are larger than those during RB across similar chemostimuli, and differential CVR may be driven by increases in perfusion pressure.
Collapse
Affiliation(s)
- Anthony L Marullo
- Department of Biology, Faculty of Science and Technology, Mount Royal University, 4825 Mount Royal Gate SW, Calgary, AB, T3E 6K6, Canada
| | - Christina D Bruce
- Department of Biology, Faculty of Science and Technology, Mount Royal University, 4825 Mount Royal Gate SW, Calgary, AB, T3E 6K6, Canada
| | - Jamie R Pfoh
- Department of Biology, Faculty of Science and Technology, Mount Royal University, 4825 Mount Royal Gate SW, Calgary, AB, T3E 6K6, Canada
| | - Uday V Chauhan
- Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Maria Abrosimova
- Department of Biology, Faculty of Science and Technology, Mount Royal University, 4825 Mount Royal Gate SW, Calgary, AB, T3E 6K6, Canada
| | - Emily R Vanden Berg
- Department of Biology, Faculty of Science and Technology, Mount Royal University, 4825 Mount Royal Gate SW, Calgary, AB, T3E 6K6, Canada
| | - Rachel J Skow
- Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Margie H Davenport
- Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Nicholas D J Strzalkowski
- Department of Biology, Faculty of Science and Technology, Mount Royal University, 4825 Mount Royal Gate SW, Calgary, AB, T3E 6K6, Canada
| | - Craig D Steinback
- Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Trevor A Day
- Department of Biology, Faculty of Science and Technology, Mount Royal University, 4825 Mount Royal Gate SW, Calgary, AB, T3E 6K6, Canada.
| |
Collapse
|
8
|
Bigalke JA, Carter JR. Sympathetic Neural Control in Humans with Anxiety-Related Disorders. Compr Physiol 2021; 12:3085-3117. [PMID: 34964121 DOI: 10.1002/cphy.c210027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Numerous conceptual models are used to describe the dynamic responsiveness of physiological systems to environmental pressures, originating with Claude Bernard's milieu intérieur and extending to more recent models such as allostasis. The impact of stress and anxiety upon these regulatory processes has both basic science and clinical relevance, extending from the pioneering work of Hans Selye who advanced the concept that stress can significantly impact physiological health and function. Of particular interest within the current article, anxiety is independently associated with cardiovascular risk, yet mechanisms underlying these associations remain equivocal. This link between anxiety and cardiovascular risk is relevant given the high prevalence of anxiety in the general population, as well as its early age of onset. Chronically anxious populations, such as those with anxiety disorders (i.e., generalized anxiety disorder, panic disorder, specific phobias, etc.) offer a human model that interrogates the deleterious effects that chronic stress and allostatic load can have on the nervous system and cardiovascular function. Further, while many of these disorders do not appear to exhibit baseline alterations in sympathetic neural activity, reactivity to mental stress offers insights into applicable, real-world scenarios in which heightened sympathetic reactivity may predispose those individuals to elevated cardiovascular risk. This article also assesses behavioral and lifestyle modifications that have been shown to concurrently improve anxiety symptoms, as well as sympathetic control. Lastly, future directions of research will be discussed, with a focus on better integration of psychological factors within physiological studies examining anxiety and neural cardiovascular health. © 2022 American Physiological Society. Compr Physiol 12:1-33, 2022.
Collapse
Affiliation(s)
- Jeremy A Bigalke
- Department of Psychology, Montana State University, Bozeman, Montana, USA
| | - Jason R Carter
- Department of Psychology, Montana State University, Bozeman, Montana, USA.,Department of Health and Human Development, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
9
|
Dayan E, Sklerov M. Autonomic disorders in Parkinson disease: Disrupted hypothalamic connectivity as revealed from resting-state functional magnetic resonance imaging. HANDBOOK OF CLINICAL NEUROLOGY 2021; 182:211-222. [PMID: 34266593 DOI: 10.1016/b978-0-12-819973-2.00014-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Converging evidence from diverse methodologies implicate the hypothalamus in the pathophysiology of Parkinson's disease (PD). Pathology in the hypothalamus and in hypothalamic pathways has been linked primarily to autonomic dysfunction, routinely experienced by individuals with PD throughout the course of the disease, sometimes predating onset of motor symptoms. Postmortem and molecular imaging studies have delineated pathologic changes in the hypothalamus and demonstrated alterations in neurotransmitter systems within this structure and associated pathways, which track the progression of the disease. More recently, functional interactions between the hypothalamus, thalamus, and striatum, as assessed using resting-state functional magnetic resonance imaging, were shown to be reduced in PD patients with high in comparison to those with low autonomic symptom burden. These functional changes may relate to micro- and macrostructural alterations which are also observed in PD. An examination of the hypothalamus and hypothalamic pathways can also shed light on atypical parkinsonian disorders and their distinct pathophysiologic characteristics relative to idiopathic PD. Altogether, the current state of knowledge on the involvement of the hypothalamus in PD is profound, yet emerging methodological advances are likely to move our understanding of hypothalamic pathology in PD significantly forward.
Collapse
Affiliation(s)
- Eran Dayan
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| | - Miriam Sklerov
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
10
|
He B, Li W, Zhang X, Wu Y, Liu J, Brewer LM, Yu L. The Analysis of How Apnea Influences the Autonomic Nervous System Using Short-Term Heart Rate Variability Indices. JOURNAL OF HEALTHCARE ENGINEERING 2020; 2020:6503715. [PMID: 33381291 PMCID: PMC7765716 DOI: 10.1155/2020/6503715] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 11/02/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022]
Abstract
Objective Frequent cessations of respiration can greatly increase the prevalence rate of arrhythmia. It has been confirmed that cardiac modulation is regulated by the autonomic nervous system (ANS). And heart rate variability (HRV) is widely used as a method to evaluate the function of the ANS. Therefore, we analyzed whether apnea can affect the balance and normal function of the ANS using short-term HRV indices. Methods Forty-five healthy subjects were asked to breathe normally and hold their breathing to simulate 10 times apnea. Thirty-six patients from the dataset of a sleep laboratory for the diagnosis of sleep disorders with 10 times apnea were included in analysis. We calculated short-term HRV indices of subjects in normal respiratory and apneic states, respectively. Results Compared with the normal respiratory state, respiration cease would lead to the values of Mean-RR, nLF, LF/HF, and α1 which significantly increased, whereas the values of rMSSD and nHF significantly decreased. Conclusions Cessations of respiration would lead to an imbalance in the function of the ANS, as well as an increase in fractal characteristics of the heart. These changes in the physiological state are likely to induce and cause the occurrence of arrhythmia, which is regulated by the ANS.
Collapse
Affiliation(s)
- Baolin He
- Department of Biomedical Engineering, School of Fundamental Sciences, China Medical University, Shenyang, Liaoning, China
| | - Wenyu Li
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiaotong Zhang
- Department of Biomedical Engineering, School of Fundamental Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yanan Wu
- Department of Biomedical Engineering, School of Fundamental Sciences, China Medical University, Shenyang, Liaoning, China
| | - Jing Liu
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lara M Brewer
- Department of Anesthesiology, University of Utah, Salt Lake, UT, USA
| | - Lu Yu
- Department of Biomedical Engineering, School of Fundamental Sciences, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
11
|
Valenza G, Passamonti L, Duggento A, Toschi N, Barbieri R. Uncovering complex central autonomic networks at rest: a functional magnetic resonance imaging study on complex cardiovascular oscillations. J R Soc Interface 2020; 17:20190878. [PMID: 32183642 DOI: 10.1098/rsif.2019.0878] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
This study aims to uncover brain areas that are functionally linked to complex cardiovascular oscillations in resting-state conditions. Multi-session functional magnetic resonance imaging (fMRI) and cardiovascular data were gathered from 34 healthy volunteers recruited within the human connectome project (the '100-unrelated subjects' release). Group-wise multi-level fMRI analyses in conjunction with complex instantaneous heartbeat correlates (entropy and Lyapunov exponent) revealed the existence of a specialized brain network, i.e. a complex central autonomic network (CCAN), reflecting what we refer to as complex autonomic control of the heart. Our results reveal CCAN areas comprised the paracingulate and cingulate gyri, temporal gyrus, frontal orbital cortex, planum temporale, temporal fusiform, superior and middle frontal gyri, lateral occipital cortex, angular gyrus, precuneous cortex, frontal pole, intracalcarine and supracalcarine cortices, parahippocampal gyrus and left hippocampus. The CCAN visible at rest does not include the insular cortex, thalamus, putamen, amygdala and right caudate, which are classical CAN regions peculiar to sympatho-vagal control. Our results also suggest that the CCAN is mainly involved in complex vagal control mechanisms, with possible links with emotional processing networks.
Collapse
Affiliation(s)
- Gaetano Valenza
- Bioengineering and Robotics Research Centre 'E. Piaggio', University of Pisa, Pisa, Italy.,Deparment of Information Engineering, University of Pisa, Pisa, Italy
| | - Luca Passamonti
- Institute of Bioimaging and Molecular Physiology, National Research Council, Milano, Italy.,Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Andrea Duggento
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy
| | - Riccardo Barbieri
- Department of Electronics, Informatics and Bioengineering, Politecnico di Milano, Milano, Italy
| |
Collapse
|
12
|
McIntosh RC, Hoshi RA, Timpano KR. Take my breath away: Neural activation at breath-hold differentiates individuals with panic disorder from healthy controls. Respir Physiol Neurobiol 2020; 277:103427. [PMID: 32120012 DOI: 10.1016/j.resp.2020.103427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 02/12/2020] [Accepted: 02/24/2020] [Indexed: 01/04/2023]
Abstract
There is neuroanatomical evidence of an "extended fear network" of brain structures involved in the etiology of panic disorder (PD). Although ventilatory distrubance is a primary symptom of PD these sensations may also trigger onset of a panic attack (PA). Here, a voluntary breath-holding paradigm was used to mimic the hypercapnia state in order to compare blood oxygen level-dependent (BOLD) response, at the peak of a series of 18 s breath-holds, of 21 individuals with PD to 21 low anxiety matched controls. Compared to the rest condition, BOLD activity at the peak (12 - 18 s) of the breath-hold was greater for PD versus controls within a number of structures implicated in the extended fear network, including hippocampus, thalamus, and brainstem. Activation was also observed in cortical structures that are shown to be involved in interoceptive and self-referential processing, such as right insula, middle frontal gyrus, and precuneus/posterior cingulate. In lieu of amygdala activation, our findings show elevated activity throughout an extended network of cortical and subcortical structures involved in contextual, interoceptive and self-referential processing when individuals with PD engage in voluntary breath-holding.
Collapse
Affiliation(s)
- R C McIntosh
- Department of Psychology, University of Miami, 1120 NW 14th Street, Miami, FL, 33136, United States.
| | - R A Hoshi
- Clinical and Epidemiological Research Center, Sao Paulo University. 2565 Professor Lineu Prestes Ave, Sao Paulo, 05508-000, Brazil
| | - K R Timpano
- Department of Psychology, University of Miami, 1120 NW 14th Street, Miami, FL, 33136, United States
| |
Collapse
|
13
|
Macefield VG, Henderson LA. Identifying Increases in Activity of the Human RVLM Through MSNA-Coupled fMRI. Front Neurosci 2020; 13:1369. [PMID: 32038124 PMCID: PMC6985468 DOI: 10.3389/fnins.2019.01369] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/04/2019] [Indexed: 11/13/2022] Open
Abstract
AIM We initially developed concurrent recording of muscle sympathetic nerve activity (MSNA) and functional magnetic resonance imaging (fMRI) of the brain to functionally identify the human homolog of the rostral ventrolateral medulla (RVLM). Here we summarize the cortical and subcortical connections to the RVLM, as identified using MSNA-coupled fMRI. METHODS MSNA was recorded via tungsten microelectrodes inserted into the peroneal nerve. Gradient echo, echo-planar fMRI was performed at 3T (Philips Achieva). 200 volumes (46 axial slices (TR = 8 s, TE = 4 s, flip angle = 90°, raw voxel size = 1.5 × 1.5 × 2.75 mm) were collected in a 4 s-ON, 4 s-OFF sparse sampling protocol and MSNA measured in each 1 s epoch in the 4-s period between scans. Blood oxygen level dependent (BOLD) signal intensity was measured in the corresponding 1 s epoch 4 s later to account for peripheral neural conduction and central neurovascular coupling delays. RESULTS BOLD signal intensity was positively related to bursts of MSNA in the RVLM, dorsomedial hypothalamus (DMH), ventromedial hypothalamus (VMH), insula, dorsolateral prefrontal cortex (dlPFC), posterior cingulate cortex (PCC), and precuneus, and negatively related in the caudal ventrolateral medulla (CVLM), nucleus tractus solitarius (NTS), and the midbrain periaqueductal gray (PAG). During physiological increases in MSNA (tonic muscle pain), MSNA-coupled BOLD signal intensity was greater in RVLM, NTS, PAG, DMH, dlPFC, medial prefrontal cortex (mPFC), precuneus, and anterior cingulate cortex (ACC) than at rest. During pathophysiological increases in MSNA [obstructive sleep apnoea (OSA)] signal intensity was also higher in dlPFC, mPFC, ACC, and precuneus than in controls. Conversely, signal intensity was lower in RVLM in OSA than in controls, which we interpret as reflecting a withdrawal of active inhibition of the RVLM. CONCLUSION These results suggest that multiple cortical and subcortical areas are functionally coupled to the RVLM, which in turn is functionally coupled to the generation of spontaneous bursts of MSNA and their augmentation during physiological and pathophysiological increase in vasoconstrictor drive.
Collapse
Affiliation(s)
- Vaughan G. Macefield
- Human Autonomic Neurophysiology Laboratory, School of Medicine, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Luke A. Henderson
- Discipline of Anatomy and Histology, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
14
|
Macefield VG, Henderson LA. Identification of the human sympathetic connectome involved in blood pressure regulation. Neuroimage 2019; 202:116119. [PMID: 31446130 DOI: 10.1016/j.neuroimage.2019.116119] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/12/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023] Open
Abstract
We review our recent data obtained on the cortical and subcortical components of the human sympathetic connectome - the network of regions involved in the sympathetic control of blood pressure. Specifically, we functionally identified the human homologue of the rostral ventrolateral medulla (RVLM), the primary premotor sympathetic nucleus in the medulla responsible for generating sympathetic vasoconstrictor drive. By performing functional magnetic resonance imaging (fMRI) of the brain at the same time as recording muscle sympathetic nerve activity (MSNA), via a microlectrode inserted into the common peroneal nerve, we are able to identify areas of the brain involved in the generation of sympathetic outflow to the muscle vascular bed, a major contributor to blood pressure regulation. Together with functional connectivity analysis of areas identified through MSNA-coupled fMRI, we have established key components of the human sympathetic connectome and their roles in the control of blood pressure. Whilst our studies confirm the role of lower brainstem regions such as the NTS, CVLM and RVLM in baroreflex control of MSNA, our findings indicate that the insula - hypothalamus - PAG - RVLM circuitry is tightly coupled to MSNA at rest. This fits with data obtained from experimental animals, but also emphasizes the role of areas above the brainstem in the regulation of blood pressure.
Collapse
Affiliation(s)
| | - Luke A Henderson
- Department of Anatomy & Histology, University of Sydney, Sydney, Australia
| |
Collapse
|
15
|
|
16
|
Gerlach DA, Manuel J, Hoff A, Kronsbein H, Hoffmann F, Heusser K, Ehmke H, Diedrich A, Jordan J, Tank J, Beissner F. Novel Approach to Elucidate Human Baroreflex Regulation at the Brainstem Level: Pharmacological Testing During fMRI. Front Neurosci 2019; 13:193. [PMID: 30890917 PMCID: PMC6411827 DOI: 10.3389/fnins.2019.00193] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/19/2019] [Indexed: 11/13/2022] Open
Abstract
Introduction: Brainstem nuclei govern the arterial baroreflex, which is crucial for heart rate and blood pressure control. Yet, brainstem function is difficult to explore in living humans and is therefore mostly studied using animal models or postmortem human anatomy studies. We developed a methodology to identify brainstem nuclei involved in baroreflex cardiovascular control in humans by combining pharmacological baroreflex testing with functional magnetic resonance imaging. Materials and Methods: In 11 healthy men, we applied eight repeated intravenous phenylephrine bolus doses of 25 and 75 μg followed by a saline flush using a remote-controlled injector during multiband functional magnetic resonance imaging (fMRI) acquisition of the whole brain including the brainstem. Continuous finger arterial blood pressure, respiration, and electrocardiogram (ECG) were monitored. fMRI data were preprocessed with a brainstem-specific pipeline and analyzed with a general linear model (GLM) to identify brainstem nuclei involved in central integration of the baroreceptor input. Results: Phenylephrine elicited a pressor response followed by a baroreflex-mediated lengthening of the RR interval (25 μg: 197 ± 15 ms; 75 μg: 221 ± 33 ms). By combining fMRI responses during both phenylephrine doses, we identified significant signal changes in the nucleus tractus solitarii (t = 5.97), caudal ventrolateral medulla (t = 4.59), rostral ventrolateral medulla (t = 7.11), nucleus ambiguus (t = 5.6), nucleus raphe obscurus (t = 6.45), and several other brainstem nuclei [p < 0.0005 family-wise error (few)-corr.]. Conclusion: Pharmacological baroreflex testing during fMRI allows characterizing central baroreflex regulation at the level of the brainstem in humans. Baroreflex-mediated activation and deactivation patterns are consistent with previous investigations in animal models. The methodology has the potential to elucidate human physiology and mechanisms of autonomic cardiovascular disease.
Collapse
Affiliation(s)
- Darius A Gerlach
- Department of Cardiovascular Aerospace Medicine, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Jorge Manuel
- Somatosensory and Autonomic Therapy Research, Institute for Neuroradiology, Hannover Medical School, Hanover, Germany
| | - Alex Hoff
- Department of Cardiovascular Aerospace Medicine, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Hendrik Kronsbein
- Department of Cardiovascular Aerospace Medicine, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany.,Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Hoffmann
- Department of Cardiovascular Aerospace Medicine, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany.,Division of Cardiology, Angiology and Pneumology, Cologne Heart Center, University Hospital Cologne, Cologne, Germany
| | - Karsten Heusser
- Department of Cardiovascular Aerospace Medicine, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Heimo Ehmke
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - André Diedrich
- Division of Clinical Pharmacology, Department of Medicine, Autonomic Dysfunction Service, Vanderbilt University, Nashville, TN, United States
| | - Jens Jordan
- Chair of Aerospace Medicine, Institute of Aerospace Medicine, German Aerospace Center (DLR), Helmholtz Association of German Research Centers, Cologne, Germany
| | - Jens Tank
- Department of Cardiovascular Aerospace Medicine, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Florian Beissner
- Somatosensory and Autonomic Therapy Research, Institute for Neuroradiology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
17
|
Busch SA, Bruce CD, Skow RJ, Pfoh JR, Day TA, Davenport MH, Steinback CD. Mechanisms of sympathetic regulation during Apnea. Physiol Rep 2019; 7:e13991. [PMID: 30693670 PMCID: PMC6349657 DOI: 10.14814/phy2.13991] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 12/26/2018] [Indexed: 12/11/2022] Open
Abstract
Volitional Apnea produces a robust peak sympathetic response through several interacting mechanisms. However, the specific contribution of each mechanism has not been elucidated. Muscle sympathetic activity was collected in participants (n = 10; 24 ± 3 years) that performed four maximal volitional apneas aimed at isolating lung-stretch (mechanical) and chemoreflex drive: (Ainslie and Duffin ) end-expiratory breath-hold, (Ainslie et al. ) end-inspiratory breath-hold, (Alpher et al. ) prehyperventilation breath-hold, and (Andersson and Schagatay ) prehyperoxia breath-hold. A final repeated rebreathe breath-hold protocol was performed to measure the peak sympathetic response during successive breath-holds at increasing chemoreflex stress. Finally, the influence of dynamic ventilation was assessed through asphyxic rebreathe. Muscle sympathetic activity was calculated as the change in burst frequency (burst/min), burst incidence (burst/100 heart-beats), and amplitude (au) between baseline and prevolitional breakpoint. Rebreathe was analyzed at similar chemoreflex stress as inspiratory breath-hold. All maneuvers increased muscle sympathetic activity compared to baseline (P < 0.01). However, prehyperoxia exhibited a smaller increase (+22.18 ± 9.13 burst/min; +25.52 ± 11.7 burst/100 heart-beats) compared to inspiratory, expiratory, and prehyperventilation breath-holds. At similar chemoreflex strain, rebreathe sympathetic activity was blunted compared to inspiratory breath-hold (P < 0.01). Finally, muscle sympathetic activity was not different between the repeated rebreathe trials, despite elevated chemoreflex stress and lower breath-hold duration with each subsequent breath-hold. We have demonstrated an obligatory role of the peripheral, but not central, chemoreflex (prehyperventilation vs. prehyperoxia) in producing peak sympathetic responses. At similar chemoreflex stresses the act of dynamic ventilation, but not static lung stretch per se, blunts muscle sympathetic activity. Finally, similar peak sympathetic responses during successive repeated breath-holds suggest a sympathetic ceiling may exist.
Collapse
Affiliation(s)
- Stephen A. Busch
- Neurovascular Health LaboratoryFaculty of Kinesiology, Sport, and RecreationUniversity of AlbertaEdmontonAlbertaCanada
| | - Christina D. Bruce
- Department of BiologyFaculty of Science and TechnologyMount Royal UniversityCalgaryAlbertaCanada
| | - Rachel J. Skow
- Neurovascular Health LaboratoryFaculty of Kinesiology, Sport, and RecreationUniversity of AlbertaEdmontonAlbertaCanada
| | - Jaime R. Pfoh
- Department of BiologyFaculty of Science and TechnologyMount Royal UniversityCalgaryAlbertaCanada
| | - Trevor A. Day
- Department of BiologyFaculty of Science and TechnologyMount Royal UniversityCalgaryAlbertaCanada
| | - Margie H. Davenport
- Neurovascular Health LaboratoryFaculty of Kinesiology, Sport, and RecreationUniversity of AlbertaEdmontonAlbertaCanada
| | - Craig D. Steinback
- Neurovascular Health LaboratoryFaculty of Kinesiology, Sport, and RecreationUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
18
|
Abstract
The midcingulate cortex (MCC) is viewed as a central node within a large-scale system devoted to adjusting behavior in the face of changing environments. Whereas the role of the MCC in interfacing action and cognition is well established, its role in regulating the autonomic nervous system is poorly understood. Yet, adaptive reactions to novel or threatening situations induce coordinated changes in the sympathetic and the parasympathetic systems. The somatomotor maps in the MCC are organized dorsoventrally. A meta-analysis of the literature reveals that the dorsoventral organization might also concern connections with the autonomic nervous system. Activation of the dorsal and ventral parts of the MCC correlate with recruitments of the sympathetic and the parasympathetic systems, respectively. Data also suggest that, in the MCC, projections toward the sympathetic system are mapped along the sensory-motor system following the same cervico-sacral organization as projections on the spinal cord for skeletal motor control.
Collapse
Affiliation(s)
- Céline Amiez
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France.
| | - Emmanuel Procyk
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France.
| |
Collapse
|
19
|
Sklerov M, Dayan E, Browner N. Functional neuroimaging of the central autonomic network: recent developments and clinical implications. Clin Auton Res 2018; 29:555-566. [PMID: 30470943 PMCID: PMC6858471 DOI: 10.1007/s10286-018-0577-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/07/2018] [Indexed: 12/08/2023]
Abstract
Purpose The central autonomic network (CAN) is an intricate system of brainstem, subcortical, and cortical structures that play key roles in the function of the autonomic nervous system. Prior to the advent of functional neuroimaging, in vivo studies of the human CAN were limited. The purpose of this review is to highlight the contribution of functional neuroimaging, specifically functional magnetic resonance imaging (fMRI), to the study of the CAN, and to discuss recent advances in this area. Additionally, we aim to emphasize exciting areas for future research. Methods We reviewed the existing literature in functional neuroimaging of the CAN. Here, we focus on fMRI research conducted in healthy human subjects, as well as research that has been done in disease states, to understand CAN function. To minimize confounding, papers examining CAN function in the context of cognition, emotion, pain, and affective disorders were excluded. Results fMRI has led to significant advances in the understanding of human CAN function. The CAN is composed of widespread brainstem and forebrain structures that are intricately connected and play key roles in reflexive and modulatory control of autonomic function. Conclusions fMRI technology has contributed extensively to current knowledge of CAN function. It holds promise to serve as a biomarker in disease states. With ongoing advancements in fMRI technology, there is great opportunity and need for future research involving the CAN.
Collapse
Affiliation(s)
- Miriam Sklerov
- Department of Neurology, University of North Carolina, 170 Manning Drive, CB# 7025, Chapel Hill, NC, 27599, USA.
| | - Eran Dayan
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina, 130 Mason Farm Road, CB# 7513, Chapel Hill, NC, 27599, USA
| | - Nina Browner
- Department of Neurology, University of North Carolina, 170 Manning Drive, CB# 7025, Chapel Hill, NC, 27599, USA
| |
Collapse
|
20
|
Cohen B, Lewis R. Editorial: Vestibular Contributions to Health and Disease. Front Neurol 2018; 9:117. [PMID: 29615952 PMCID: PMC5867307 DOI: 10.3389/fneur.2018.00117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 02/19/2018] [Indexed: 01/21/2023] Open
Affiliation(s)
- Bernard Cohen
- Department of Neurology, Mount Sinai School of Medicine, New York, NY, United States
| | - Richard Lewis
- Department of Otolaryngology, Harvard Medical School, Boston, MA, United States.,Department of Neurology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
21
|
Kobuch S, Fazalbhoy A, Brown R, Macefield VG, Henderson LA. Muscle sympathetic nerve activity-coupled changes in brain activity during sustained muscle pain. Brain Behav 2018; 8:e00888. [PMID: 29541532 PMCID: PMC5840447 DOI: 10.1002/brb3.888] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Long-lasting experimental muscle pain elicits divergent muscle sympathetic responses, with some individuals exhibiting a persistent increase in muscle sympathetic nerve activity (MSNA), and others a decrease. These divergent responses are thought to result from sustained functional changes in specific brain regions that modulate the cardiovascular responses to pain. AIM The aim of this study was to investigate brain regions that are functionally coupled to the generation of an MSNA burst at rest and to determine their behavior during tonic muscle pain. METHODS Functional magnetic resonance imaging of the brain was performed concurrently with microelectrode recording of MSNA from the common peroneal nerve during a 40 min infusion of hypertonic saline into the ipsilateral tibialis anterior muscle of 37 healthy human subjects. RESULTS At rest, blood oxygen level-dependent signal intensity coupled to bursts of MSNA increased in the rostral ventrolateral medulla, insula, dorsolateral prefrontal cortex, posterior cingulate cortex, and precuneus and decreased in the region of the midbrain periaqueductal gray. During pain, MSNA-coupled signal intensity was greater in the region of the nucleus tractus solitarius, midbrain periaqueductal gray, dorsolateral prefrontal, medial prefrontal, and anterior cingulate cortices, than at rest. Conversely, MSNA-coupled signal intensity decreased during pain in parts of the prefrontal cortex. CONCLUSIONS These results suggest that multiple brain regions are recruited in a burst-to-burst manner, and the magnitude of these signal changes is correlated to the overall change in MSNA amplitude during tonic muscle pain.
Collapse
Affiliation(s)
- Sophie Kobuch
- School of Medicine Western Sydney University Sydney NSW Australia
| | - Azharuddin Fazalbhoy
- Neuroscience Research Australia Sydney NSW Australia.,School of Health Sciences RMIT University Melbourne Vic Australia
| | - Rachael Brown
- School of Medicine Western Sydney University Sydney NSW Australia.,Neuroscience Research Australia Sydney NSW Australia
| | - Vaughan G Macefield
- School of Medicine Western Sydney University Sydney NSW Australia.,Neuroscience Research Australia Sydney NSW Australia.,College of Medicine Mohammed Bin Rashid University of Medicine & Health Sciences Dubai UAE
| | - Luke A Henderson
- Department of Anatomy and Histology University of Sydney Sydney NSW Australia
| |
Collapse
|
22
|
Taylor KS, Millar PJ, Murai H, Haruki N, Kimmerly DS, Bradley TD, Floras JS. Cortical autonomic network gray matter and sympathetic nerve activity in obstructive sleep apnea. Sleep 2017; 41:4773854. [PMID: 29309669 DOI: 10.1093/sleep/zsx208] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 05/08/2017] [Indexed: 01/08/2023] Open
Abstract
The sympathetic excitation elicited acutely by obstructive apnea during sleep (OSA) carries over into wakefulness. We hypothesized that OSA induces structural changes in the insula and cingulate, key central autonomic network elements with projections to brainstem sympathetic premotor regions. The aims of this study were to (1) apply two distinct but complementary methods (cortical thickness analysis [CTA] and voxel-based morphometry [VBM]) to compare insula and cingulate gray matter thickness in participants without and with OSA; (2) determine whether oxygen desaturation index (ODI) relates to cortical thickness; and (3) determine whether cortical thickness or volume in these regions predicts muscle sympathetic nerve activity (MSNA) burst incidence (BI). Overnight polysomnography, anatomical magnetic resonance imaging, and MSNA data were acquired in 41 participants with no or mild OSA (n = 19; 59 ± 2 years [Mean ± SE]; six females; apnea-hypopnea index [AHI] 7 ± 1 events per hour) or moderate-to-severe OSA (n = 22; 59 ± 2 years; five females; AHI 31 ± 4 events per hour). Between-group CTA analyses identified cortical thinning within the left dorsal posterior insula and thickening within the left mid-cingulate cortex (LMCC), whereas VBM identified thickening within bilateral thalami (all [p < .05]). CTA revealed inverse relationships between ODI and bilateral dpIC and left posterior cingulate cortex (LPCC) or precuneus thickness. Positive correlations between BI and LMCC gray matter thickness or volume were evident with both methods and between BI and left posterior thalamus volume using VBM. In OSA, the magnitude of insular thinning, although a function of hypoxia severity, does not influence MSNA, whereas cingulate and thalamic thickening relate directly to the intensity of sympathetic discharge during wakefulness.
Collapse
Affiliation(s)
- Keri S Taylor
- Department of Medicine, University Health Network and Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Philip J Millar
- Department of Medicine, University Health Network and Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Hisayoshi Murai
- Department of Medicine, University Health Network and Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Nobuhiko Haruki
- Department of Medicine, University Health Network and Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Derek S Kimmerly
- Department of Medicine, University Health Network and Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.,School of Health and Human Performance, Faculty of Health Professions, Dalhousie University, Halifax, Nova Scotia, Canada
| | - T Douglas Bradley
- Department of Medicine, University Health Network and Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - John S Floras
- Department of Medicine, University Health Network and Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
23
|
A review of human neuroimaging investigations involved with central autonomic regulation of baroreflex-mediated cardiovascular control. Auton Neurosci 2017; 207:10-21. [DOI: 10.1016/j.autneu.2017.05.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/10/2017] [Accepted: 05/13/2017] [Indexed: 12/30/2022]
|
24
|
Wood KN, Badrov MB, Speechley MR, Shoemaker JK. Regional cerebral cortical thickness correlates with autonomic outflow. Auton Neurosci 2017. [DOI: 10.1016/j.autneu.2017.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
25
|
Macefield VG, Henderson LA. "Real-time" imaging of cortical and subcortical sites of cardiovascular control: concurrent recordings of sympathetic nerve activity and fMRI in awake subjects. J Neurophysiol 2016; 116:1199-207. [PMID: 27334958 PMCID: PMC5018056 DOI: 10.1152/jn.00783.2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 06/03/2016] [Indexed: 11/22/2022] Open
Abstract
We review our approach to functionally identifying cortical and subcortical areas involved in the generation of spontaneous fluctuations in sympathetic outflow to muscle or skin. We record muscle sympathetic nerve activity (MSNA) or skin sympathetic nerve activity (SSNA), via a tungsten microelectrode inserted percutaneously into the common peroneal nerve, at the same time as performing functional magnetic resonance imaging (fMRI) of the brain. By taking advantage of the neurovascular coupling delay associated with BOLD (blood oxygen level dependent) fMRI, and the delay associated with conduction of a burst of sympathetic impulses to the peripheral recording site, we can identify structures in which BOLD signal intensity covaries with MSNA or SSNA. Using this approach, we found MSNA-coupled increases in BOLD signal intensity in the mid-insula and dorsomedial hypothalamus on the left side, and in dorsolateral prefrontal cortex, posterior cingulate cortex, precuneus, ventromedial hypothalamus and rostral ventrolateral medulla on both sides. Conversely, spontaneous bursts of SSNA were positively correlated with BOLD signal intensity in the ventromedial thalamus and posterior insula on the left side, and in the anterior insula, orbitofrontal cortex and frontal cortex on the right side, and in the mid-cingulate cortex and precuneus on both sides. Inverse relationships were observed between MSNA and BOLD signal intensity in the right ventral insula, nucleus tractus solitarius and caudal ventrolateral medulla, and between SSNA and signal intensity in the left orbitofrontal cortex. These results emphasize the contributions of cortical regions of the brain to sympathetic outflow in awake human subjects, and the extensive interactions between cortical and subcortical regions in the ongoing regulation of sympathetic nerve activity to muscle and skin in awake human subjects.
Collapse
Affiliation(s)
- Vaughan G Macefield
- School of Medicine, Western Sydney University, Sydney, New South Wales, Australia; Neuroscience Research Australia, Sydney, New South Wales, Australia; and
| | - Luke A Henderson
- Department of Anatomy & Histology, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
26
|
Brain Responses during the Anticipation of Dyspnea. Neural Plast 2016; 2016:6434987. [PMID: 27648309 PMCID: PMC5018326 DOI: 10.1155/2016/6434987] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/06/2016] [Accepted: 08/15/2016] [Indexed: 02/07/2023] Open
Abstract
Dyspnea is common in many cardiorespiratory diseases. Already the anticipation of this aversive symptom elicits fear in many patients resulting in unfavorable health behaviors such as activity avoidance and sedentary lifestyle. This study investigated brain mechanisms underlying these anticipatory processes. We induced dyspnea using resistive-load breathing in healthy subjects during functional magnetic resonance imaging. Blocks of severe and mild dyspnea alternated, each preceded by anticipation periods. Severe dyspnea activated a network of sensorimotor, cerebellar, and limbic areas. The left insular, parietal opercular, and cerebellar cortices showed increased activation already during dyspnea anticipation. Left insular and parietal opercular cortex showed increased connectivity with right insular and anterior cingulate cortex when severe dyspnea was anticipated, while the cerebellum showed increased connectivity with the amygdala. Notably, insular activation during dyspnea perception was positively correlated with midbrain activation during anticipation. Moreover, anticipatory fear was positively correlated with anticipatory activation in right insular and anterior cingulate cortex. The results demonstrate that dyspnea anticipation activates brain areas involved in dyspnea perception. The involvement of emotion-related areas such as insula, anterior cingulate cortex, and amygdala during dyspnea anticipation most likely reflects anticipatory fear and might underlie the development of unfavorable health behaviors in patients suffering from dyspnea.
Collapse
|
27
|
Abstract
BACKGROUND Little is known about intracranial pressure (ICP)-cerebral haemodynamic interplay during repetitive apnoea. A recently developed method based on near-infrared transillumination/backscattering sounding (NIR-T/BSS) noninvasively measures changes in pial artery pulsation (cc-TQ) as well as subarachnoid width (sas-TQ) in humans. METHOD We tested the complex response of the pial artery and subarachnoid width to apnoea using this method. The pial artery and subarachnoid width response to consecutive apnoeas lasting 30, 60 s and maximal breath-hold (91.1 ± 23.1 s) were studied in 20 healthy volunteers. The cc-TQ and sas-TQ were measured using NIR-T/BSS; cerebral blood flow velocity (CBFV), pulsatility index and resistive index were measured using Doppler ultrasound of the left internal carotid artery; heart rate (HR) and beat-to-beat SBP and DBP blood pressure were recorded using a Finometer; end-tidal CO2 (EtCO2) was measured using a medical gas analyser. RESULTS Apnoea evoked a multiphasic response in blood pressure, pial artery compliance and ICP. First, SBP declined, which was accompanied by an increase in cc-TQ and sas-TQ. Directly after these changes, SBP exceeded baseline values, which was followed by a decline in cc-TQ and the return of sas-TQ to baseline. During these initial changes, CBFV remained stable. Towards the end of the apnoea, BP, cc-TQ and CBFV increased, whereas pulsatility index, resistive index and sas-TQ declined. Changes in sas-TQ were linked to changes in EtCO2, HR and SBP. CONCLUSION Apnoea is associated with ICP swings, closely reflecting changes in EtCO2, HR and peripheral BP. The baroreflex influences the pial artery response.
Collapse
|
28
|
Henderson LA, Fatouleh RH, Lundblad LC, McKenzie DK, Macefield VG. Effects of 12 Months Continuous Positive Airway Pressure on Sympathetic Activity Related Brainstem Function and Structure in Obstructive Sleep Apnea. Front Neurosci 2016; 10:90. [PMID: 27013952 PMCID: PMC4785184 DOI: 10.3389/fnins.2016.00090] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/22/2016] [Indexed: 12/21/2022] Open
Abstract
Muscle sympathetic nerve activity (MSNA) is greatly elevated in patients with obstructive sleep apnea (OSA) during normoxic daytime wakefulness. Increased MSNA is a precursor to hypertension and elevated cardiovascular morbidity and mortality. However, the mechanisms underlying the high MSNA in OSA are not well understood. In this study we used concurrent microneurography and magnetic resonance imaging to explore MSNA-related brainstem activity changes and anatomical changes in 15 control and 15 OSA subjects before and after 6 and 12 months of continuous positive airway pressure (CPAP) treatment. We found that following 6 and 12 months of CPAP treatment, resting MSNA levels were significantly reduced in individuals with OSA. Furthermore, this MSNA reduction was associated with restoration of MSNA-related brainstem activity and structural changes in the medullary raphe, rostral ventrolateral medulla, dorsolateral pons, and ventral midbrain. This restoration occurred after 6 months of CPAP treatment and was maintained following 12 months CPAP. These findings show that continual CPAP treatment is an effective long-term treatment for elevated MSNA likely due to its effects on restoring brainstem structure and function.
Collapse
Affiliation(s)
- Luke A Henderson
- Neural Imaging Laboratory, Discipline of Anatomy and Histology, The University of Sydney Sydney, NSW, Australia
| | - Rania H Fatouleh
- School of Medicine, Western Sydney University Sydney, NSW, Australia
| | - Linda C Lundblad
- Neural Imaging Laboratory, Discipline of Anatomy and Histology, The University of SydneySydney, NSW, Australia; School of Medicine, Western Sydney UniversitySydney, NSW, Australia
| | - David K McKenzie
- Department of Respiratory Medicine, Prince of Wales Private Hospital Sydney, NSW, Australia
| | - Vaughan G Macefield
- School of Medicine, Western Sydney UniversitySydney, NSW, Australia; Neuroscience Research AustraliaSydney, NSW, Australia
| |
Collapse
|
29
|
Taylor KS, Kucyi A, Millar PJ, Murai H, Kimmerly DS, Morris BL, Bradley TD, Floras JS. Association between resting-state brain functional connectivity and muscle sympathetic burst incidence. J Neurophysiol 2016; 115:662-73. [PMID: 26538607 PMCID: PMC4752303 DOI: 10.1152/jn.00675.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/31/2015] [Indexed: 12/14/2022] Open
Abstract
The insula (IC) and cingulate are key components of the central autonomic network and central nodes of the salience network (SN), a set of spatially distinct but temporally correlated brain regions identified with resting-state (task free) functional MRI (rsMRI). To examine the SN's involvement in sympathetic outflow, we tested the hypothesis that individual differences in intrinsic connectivity of the SN correlate positively with resting postganglionic muscle sympathetic nerve activity (MSNA) burst incidence (BI) in subjects without and with obstructive sleep apnea (OSA). Overnight polysomnography, 5-min rsMRI, and fibular MSNA recording were performed in 36 subjects (mean age 57 yr; 10 women, 26 men). Independent component analysis (ICA) of the entire cohort identified the SN as including bilateral IC, pregenual anterior cingulate cortex (pgACC), midcingulate cortex (MCC), and the temporoparietal junction (TPJ). There was a positive correlation between BI and the apnea-hypopnea index (AHI) (P < 0.001), but dual-regression analysis identified no differences in SN functional connectivity between subjects with no or mild OSA (n = 17) and moderate or severe (n = 19) OSA. Correlation analysis relating BI to the strength of connectivity within the SN revealed large (i.e., spatial extent) and strong correlations for the left IC (P < 0.001), right pgACC/MCC (P < 0.006), left TPJ (P < 0.004), thalamus (P < 0.035), and cerebellum (P < 0.013). Indexes of sleep apnea were unrelated to BI and the strength of SN connectivity. There were no relationships between BI and default or sensorimotor network connectivity. This study links connectivity within the SN to MSNA, demonstrating several of its nodes to be key sympathoexcitatory regions.
Collapse
Affiliation(s)
- Keri S Taylor
- University Health Network and Mount Sinai Hospital Department of Medicine, University of Toronto, Toronto, Ontario, Canada;
| | - Aaron Kucyi
- Department of Psychiatry, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts; and
| | - Philip J Millar
- University Health Network and Mount Sinai Hospital Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Hisayoshi Murai
- University Health Network and Mount Sinai Hospital Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Derek S Kimmerly
- University Health Network and Mount Sinai Hospital Department of Medicine, University of Toronto, Toronto, Ontario, Canada; School of Health and Human Performance, Faculty of Health Professions, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Beverley L Morris
- University Health Network and Mount Sinai Hospital Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - T Douglas Bradley
- University Health Network and Mount Sinai Hospital Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - John S Floras
- University Health Network and Mount Sinai Hospital Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Macey PM, Ogren JA, Kumar R, Harper RM. Functional Imaging of Autonomic Regulation: Methods and Key Findings. Front Neurosci 2016; 9:513. [PMID: 26858595 PMCID: PMC4726771 DOI: 10.3389/fnins.2015.00513] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/22/2015] [Indexed: 01/06/2023] Open
Abstract
Central nervous system processing of autonomic function involves a network of regions throughout the brain which can be visualized and measured with neuroimaging techniques, notably functional magnetic resonance imaging (fMRI). The development of fMRI procedures has both confirmed and extended earlier findings from animal models, and human stroke and lesion studies. Assessments with fMRI can elucidate interactions between different central sites in regulating normal autonomic patterning, and demonstrate how disturbed systems can interact to produce aberrant regulation during autonomic challenges. Understanding autonomic dysfunction in various illnesses reveals mechanisms that potentially lead to interventions in the impairments. The objectives here are to: (1) describe the fMRI neuroimaging methodology for assessment of autonomic neural control, (2) outline the widespread, lateralized distribution of function in autonomic sites in the normal brain which includes structures from the neocortex through the medulla and cerebellum, (3) illustrate the importance of the time course of neural changes when coordinating responses, and how those patterns are impacted in conditions of sleep-disordered breathing, and (4) highlight opportunities for future research studies with emerging methodologies. Methodological considerations specific to autonomic testing include timing of challenges relative to the underlying fMRI signal, spatial resolution sufficient to identify autonomic brainstem nuclei, blood pressure, and blood oxygenation influences on the fMRI signal, and the sustained timing, often measured in minutes of challenge periods and recovery. Key findings include the lateralized nature of autonomic organization, which is reminiscent of asymmetric motor, sensory, and language pathways. Testing brain function during autonomic challenges demonstrate closely-integrated timing of responses in connected brain areas during autonomic challenges, and the involvement with brain regions mediating postural and motoric actions, including respiration, and cardiac output. The study of pathological processes associated with autonomic disruption shows susceptibilities of different brain structures to altered timing of neural function, notably in sleep disordered breathing, such as obstructive sleep apnea and congenital central hypoventilation syndrome. The cerebellum, in particular, serves coordination roles for vestibular stimuli and blood pressure changes, and shows both injury and substantially altered timing of responses to pressor challenges in sleep-disordered breathing conditions. The insights into central autonomic processing provided by neuroimaging have assisted understanding of such regulation, and may lead to new treatment options for conditions with disrupted autonomic function.
Collapse
Affiliation(s)
- Paul M Macey
- UCLA School of Nursing, University of California at Los AngelesLos Angeles, CA, USA; Brain Research Institute, University of California at Los AngelesLos Angeles, CA, USA
| | - Jennifer A Ogren
- Department of Neurobiology, University of California at Los Angeles Los Angeles, CA, USA
| | - Rajesh Kumar
- Brain Research Institute, University of California at Los AngelesLos Angeles, CA, USA; Department of Anesthesiology, University of California at Los AngelesLos Angeles, CA, USA; Department of Radiological Sciences, David Geffen School of Medicine at University of California at Los AngelesLos Angeles, CA, USA; Department of Bioengineering, University of California at Los AngelesLos Angeles, CA, USA
| | - Ronald M Harper
- Brain Research Institute, University of California at Los AngelesLos Angeles, CA, USA; Department of Neurobiology, University of California at Los AngelesLos Angeles, CA, USA
| |
Collapse
|
31
|
Aleksandrov VG, Aleksandrova NP. The role of the insular cortex in the control of visceral functions. ACTA ACUST UNITED AC 2015. [DOI: 10.1134/s0362119715050023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Shoemaker JK, Goswami R. Forebrain neurocircuitry associated with human reflex cardiovascular control. Front Physiol 2015; 6:240. [PMID: 26388780 PMCID: PMC4555962 DOI: 10.3389/fphys.2015.00240] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/10/2015] [Indexed: 12/30/2022] Open
Abstract
Physiological homeostasis depends upon adequate integration and responsiveness of sensory information with the autonomic nervous system to affect rapid and effective adjustments in end organ control. Dysregulation of the autonomic nervous system leads to cardiovascular disability with consequences as severe as sudden death. The neural pathways involved in reflexive autonomic control are dependent upon brainstem nuclei but these receive modulatory inputs from higher centers in the midbrain and cortex. Neuroimaging technologies have allowed closer study of the cortical circuitry related to autonomic cardiovascular adjustments to many stressors in awake humans and have exposed many forebrain sites that associate strongly with cardiovascular arousal during stress including the medial prefrontal cortex, insula cortex, anterior cingulate, amygdala and hippocampus. Using a comparative approach, this review will consider the cortical autonomic circuitry in rodents and primates with a major emphasis on more recent neuroimaging studies in awake humans. A challenge with neuroimaging studies is their interpretation in view of multiple sensory, perceptual, emotive and/or reflexive components of autonomic responses. This review will focus on those responses related to non-volitional baroreflex control of blood pressure and also on the coordinated responses to non-fatiguing, non-painful volitional exercise with particular emphasis on the medial prefrontal cortex and the insula cortex.
Collapse
Affiliation(s)
- J Kevin Shoemaker
- School of Kinesiology, The University of Western Ontario London, ON, Canada ; Department of Physiology and Pharmacology, The University of Western Ontario London, ON, Canada
| | - Ruma Goswami
- School of Kinesiology, The University of Western Ontario London, ON, Canada
| |
Collapse
|
33
|
Reversal of functional changes in the brain associated with obstructive sleep apnoea following 6 months of CPAP. NEUROIMAGE-CLINICAL 2015; 7:799-806. [PMID: 26082888 PMCID: PMC4459270 DOI: 10.1016/j.nicl.2015.02.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 01/16/2015] [Accepted: 02/18/2015] [Indexed: 12/30/2022]
Abstract
Obstructive sleep apnoea (OSA) is associated with an increase in the number of bursts of muscle sympathetic nerve activity (MSNA), leading to neurogenic hypertension. Continuous positive airway pressure (CPAP) is the most effective and widely used treatment for preventing collapse of the upper airway in OSA. In addition to improving sleep, CPAP decreases daytime MSNA towards control levels. It remains unknown how this restoration of MSNA occurs, in particular whether CPAP treatment results in a simple readjustment in activity of those brain regions responsible for the initial increase in MSNA or whether other brain regions are recruited to over-ride aberrant brain activity. By recording MSNA concurrently with functional Magnetic Resonance Imaging (fMRI), we aimed to assess brain activity associated with each individual subject's patterns of MSNA prior to and following 6 months of CPAP treatment. Spontaneous fluctuations in MSNA were recorded via tungsten microelectrodes inserted into the common peroneal nerve in 13 newly diagnosed patients with OSA before and after 6 months of treatment with CPAP and in 15 healthy control subjects while lying in a 3 T MRI scanner. Blood Oxygen Level Dependent (BOLD) contrast gradient echo, echo-planar images were continuously collected in a 4 s ON, 4 s OFF (200 volumes) sampling protocol. MSNA was significantly elevated in newly diagnosed OSA patients compared to control subjects (55 ± 4 vs 26 ± 2 bursts/min). Fluctuations in BOLD signal intensity in multiple regions covaried with the intensity of the concurrently recorded bursts of MSNA. There was a significant fall in MSNA after 6 months of CPAP (39 ± 2 bursts/min). The reduction in resting MSNA was coupled with significant falls in signal intensity in precuneus bilaterally, the left and right insula, right medial prefrontal cortex, right anterior cingulate cortex, right parahippocampus and the left and right retrosplenial cortices. These data support our contention that functional changes in these suprabulbar sites are, via projections to the brainstem, driving the augmented sympathetic outflow to the muscle vascular bed in untreated OSA. Obstructive sleep apnoea increases muscle sympathetic nerve activity (MSNA). fMRI was used to identify brain sites temporally coupled to the increase in MSNA. Augmented BOLD signal intensity occurred in several cortical and subcortical sites. These changes were reversed following 6 months of CPAP, which reduced the MSNA.
Collapse
|
34
|
Eichhorn L, Erdfelder F, Kessler F, Doerner J, Thudium MO, Meyer R, Ellerkmann RK. Evaluation of near-infrared spectroscopy under apnea-dependent hypoxia in humans. J Clin Monit Comput 2015; 29:749-57. [PMID: 25649718 DOI: 10.1007/s10877-015-9662-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 01/27/2015] [Indexed: 11/25/2022]
Abstract
In this study we investigated the responsiveness of near-infrared spectroscopy (NIRS) recordings measuring regional cerebral tissue oxygenation (rSO2) during hypoxia in apneic divers. The goal was to mimic dynamic hypoxia as present during cardiopulmonary resuscitation, laryngospasm, airway obstruction, or the "cannot ventilate cannot intubate" situation. Ten experienced apneic divers performed maximal breath hold maneuvers under dry conditions. SpO2 was measured by Masimo™ pulse oximetry on the forefinger of the left hand. NIRS was measured by NONIN Medical's EQUANOX™ on the forehead or above the musculus quadriceps femoris. Following apnea median cerebral rSO2 and SpO2 values decreased significantly from 71 to 54 and from 100 to 65%, respectively. As soon as cerebral rSO2 and SpO2 values decreased monotonically the correlation between normalized cerebral rSO2 and SpO2 values was highly significant (Pearson correlation coefficient = 0.893). Prior to correlation analyses, the values were normalized by dividing them by the individual means of stable pre-apneic measurements. Cerebral rSO2 measured re-saturation after termination of apnea significantly earlier (10 s, SD = 3.6 s) compared to SpO2 monitoring (21 s, SD = 4.4 s) [t(9) = 7.703, p < 0.001, r(2) = 0.868]. Our data demonstrate that NIRS monitoring reliably measures dynamic changes in cerebral tissue oxygen saturation, and identifies successful re-saturation faster than SpO2. Measuring cerebral rSO2 may prove beneficial in case of respiratory emergencies and during pulseless situations where SpO2 monitoring is impossible.
Collapse
Affiliation(s)
- Lars Eichhorn
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany.
| | - Felix Erdfelder
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Florian Kessler
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Jonas Doerner
- Department of Radiology, University Hospital Bonn, Bonn, Germany
| | - Marcus O Thudium
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Rainer Meyer
- Institute of Physiology 2, University of Bonn, Bonn, Germany
| | - Richard K Ellerkmann
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
35
|
Chen X, Chen T, Yun F, Huang Y, Li J. Effect of repetitive end-inspiration breath holding on very short-term heart rate variability in healthy humans. Physiol Meas 2014; 35:2429-45. [PMID: 25389629 DOI: 10.1088/0967-3334/35/12/2429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Very short-term heart rate variability (HRV) is thought to reflect dynamic changes in autonomic nervous activity, which is helpful in understanding the role of autonomic nervous function (ANF) in the mechanisms underlying apnea-induced cardiac arrhythmias. The goal of this study was to investigate the effect of repetitive end-inspiration breath holding on very short-term HRV. A total of 32 young healthy participants took part in the experiments. Three trials were performed, each involving seven repetitive end-inspiration breath holding and a 30 s recovery period between breath holding. Durations of breath holding in the three trials were 1:2:3. The study first evaluated the effect of analyzed data lengths on the stability of HRV indices and determined three HRV indices suitable for very short-term analysis. The results showed that in most cases, during breath holding, the square root of the mean squared differences of successive normal RR intervals (rMSSD) was significantly lower, but normalized units of the power in the low frequency band ranging from 0.04 to 0.15 Hz (nLF) and LF/high frequency (HF) were significantly higher than those during corresponding durations under the normal breathing conditions. On the contrary, during recovery after breath holding, rMSSD was significantly higher but nLF and LF/HF were lower than normal. Moreover, the durations of breath holding had no significant influence on the variations of LF/HF. In addition, as participants repeated the breath holding, HRV indices varied non-linearly. HRV changes may indicate sympathetic activation during breath holding and parasympathetic activation during recovery after breath holding. In conjunction with the existing physiological interpretation based on changes in heart rate, the results may imply that breath holding leads to both cardiac sympathetic and parasympathetic activation simultaneously, which may be a possible pathogenic factor of apnea-induced arrhythmias.
Collapse
Affiliation(s)
- Xiang Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China. Postdoctoral Mobile Station of Electronic Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China. Solid State Lighting Engineering Research Center, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | | | | | | | | |
Collapse
|
36
|
Macefield VG, Henderson LA. Autonomic responses to exercise: cortical and subcortical responses during post-exercise ischaemia and muscle pain. Auton Neurosci 2014; 188:10-8. [PMID: 25458426 DOI: 10.1016/j.autneu.2014.10.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 08/27/2014] [Accepted: 10/13/2014] [Indexed: 11/16/2022]
Abstract
Sustained isometric contraction of skeletal muscle causes an increase in blood pressure, due to an increase in cardiac output and an increase in total peripheral resistance-brought about by an increase in sympathetically-mediated vasoconstriction. Both central command and reflex inputs from metaboreceptors in the contracting muscles have been shown to contribute to this sympathetically mediated increase in blood pressure. Occluding the blood supply and trapping the metabolites in the contracted muscle (post-exercise ischaemia) has shown that, while heart rate returns to baseline following exercise, the increase in MSNA and blood pressure persists in the absence of central command-sustained by peripheral inputs. Post-exercise ischaemia activates group III and IV muscle afferents, which are also activated during noxious stimulation. Indeed, post-exercise ischaemia is painful, so what is the role of pain in the increase in blood pressure? Intramuscular injection of hypertonic saline causes a deep dull ache, not unlike that produced by post-exercise ischaemia, and we have shown that this can cause a sustained increase in MSNA and blood pressure. We have used functional Magnetic Resonance Imaging (fMRI) of the brain to identify the cortical and subcortical sites involved in the sensory processing of muscle pain, and in the generation of the autonomic responses to muscle pain, produced either by post-exercise ischaemia or intramuscular injection of hypertonic saline. During static hand-grip exercise there were parallel increases in signal intensity in the contralateral primary motor cortex, deep cerebellar nuclei and cerebellar cortex that ceased at the end of the exercise, reflecting the start and end of central command. Progressive increases during the contraction phase occurred in the contralateral insula, as well as the contralateral primary somatosensory cortex, and continued during the period of post-exercise ischaemia. Decreases in signal intensity occurred in the perigenual anterior cingulate cortex during the contraction phase; these too were sustained during post-exercise ischaemia. That similar changes occurred with intramuscular injection of hypertonic saline suggests that much of the cortical and subcortical changes seen during post-exercise ischaemia reflect the sensory and affective attributes of the muscle pain, rather than in furnishing the cardiovascular responses per se.
Collapse
Affiliation(s)
- Vaughan G Macefield
- School of Medicine, University of Western Sydney, NSW, Australia; Neuroscience Research Australia, Sydney, NSW, Australia.
| | - Luke A Henderson
- Department of Anatomy and Histology, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
37
|
Lundblad LC, Fatouleh RH, Hammam E, McKenzie DK, Macefield VG, Henderson LA. Brainstem changes associated with increased muscle sympathetic drive in obstructive sleep apnoea. Neuroimage 2014; 103:258-266. [PMID: 25255048 DOI: 10.1016/j.neuroimage.2014.09.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 09/09/2014] [Accepted: 09/15/2014] [Indexed: 11/30/2022] Open
Abstract
Obstructive sleep apnoea (OSA) is associated with significantly increased bursts of muscle sympathetic nerve activity (MSNA), leading to hypertension and increased cardiovascular morbidity. The underlying mechanism responsible for this sympathoexcitation is unknown. The aim of this investigation was to determine brainstem sites that contribute to this increased on-going muscle vasoconstrictor drive. We measured regional grey matter volume using voxel-based morphometry of T1-weighted anatomical images in 20 subjects with OSA and 19 healthy age-matched controls. We also performed concurrent recordings of MSNA and Blood Oxygen Level Dependent (BOLD) signal intensity of the brainstem, using high-resolution functional magnetic resonance imaging, in 15 subjects with OSA and 15 controls. OSA subjects had significantly elevated MSNA, which was correlated to altered BOLD signal intensity changes in the dorsolateral pons, rostral ventrolateral medulla, medullary raphe and midbrain. The medullary raphe, rostroventrolateral medulla and dorsolateral pons also had significantly increased grey matter volumes in subjects with obstructive sleep apnoea compared with controls. Furthermore, we also found that obstructive sleep apnoea was associated with increases in grey matter volume in the region of the hypoglossal nucleus. These data suggest that the elevated muscle vasoconstrictor drive in obstructive sleep apnoea may result from functional and anatomical changes within the dorsolateral pons, rostroventrolateral medulla and medullary raphe. These brainstem regions are known to modulate sympathetic output either directly or indirectly via sympathetic preganglionic neurons within the spinal cord. In addition, the known increase in genioglossus muscle activity in OSA may reflect the increase in grey matter volume of the hypoglossal nucleus.
Collapse
Affiliation(s)
- Linda C Lundblad
- School of Medicine, University of Western Sydney, Sydney, Australia
| | - Rania H Fatouleh
- School of Medicine, University of Western Sydney, Sydney, Australia
| | - Elie Hammam
- School of Medicine, University of Western Sydney, Sydney, Australia
| | - David K McKenzie
- Department of Respiratory Medicine, Prince of Wales Hospital, Sydney, Australia
| | - Vaughan G Macefield
- School of Medicine, University of Western Sydney, Sydney, Australia; Neuroscience Research Australia, Sydney, Australia
| | - Luke A Henderson
- Department of Anatomy and Histology, University of Sydney, Sydney, Australia.
| |
Collapse
|
38
|
Fatouleh RH, Hammam E, Lundblad LC, Macey PM, McKenzie DK, Henderson LA, Macefield VG. Functional and structural changes in the brain associated with the increase in muscle sympathetic nerve activity in obstructive sleep apnoea. NEUROIMAGE-CLINICAL 2014; 6:275-83. [PMID: 25379440 PMCID: PMC4215471 DOI: 10.1016/j.nicl.2014.08.021] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/13/2014] [Accepted: 08/22/2014] [Indexed: 12/30/2022]
Abstract
Muscle sympathetic nerve activity (MSNA) is greatly elevated in patients with obstructive sleep apnoea (OSA) during daytime wakefulness, leading to hypertension, but the underlying mechanisms are poorly understood. By recording MSNA concurrently with functional Magnetic Resonance Imaging (fMRI) of the brain we aimed to identify the central processes responsible for the sympathoexcitation. Spontaneous fluctuations in MSNA were recorded via tungsten microelectrodes inserted percutaneously into the common peroneal nerve in 17 OSA patients and 15 healthy controls lying in a 3 T MRI scanner. Blood Oxygen Level Dependent (BOLD) contrast gradient echo, echo-planar images were continuously collected in a 4 s ON, 4 s OFF (200 volumes) sampling protocol. Fluctuations in BOLD signal intensity covaried with the intensity of the concurrently recorded bursts of MSNA. In both groups there was a positive correlation between MSNA and signal intensity in the left and right insulae, dorsolateral prefrontal cortex (dlPFC), dorsal precuneus, sensorimotor cortex and posterior temporal cortex, and the right mid-cingulate cortex and hypothalamus. In OSA the left and right dlPFC, medial PFC (mPFC), dorsal precuneus, anterior cingulate cortex, retrosplenial cortex and caudate nucleus showed augmented signal changes compared with controls, while the right hippocampus/parahippocampus signal intensity decreased in controls but did not change in the OSA subjects. In addition, there were significant increases in grey matter volume in the left mid-insula, the right insula, left and right primary motor cortices, left premotor cortex, left hippocampus and within the brainstem and cerebellum, and significant decreases in the mPFC, occipital lobe, right posterior cingulate cortex, left cerebellar cortex and the left and right amygdala in OSA, but there was no overlap between these structural changes and the functional changes in OSA. These data suggest that the elevated muscle vasoconstrictor drive in OSA may result from functional changes within these brain regions, which are known to be directly or indirectly involved in the modulation of sympathetic outflow via the brainstem. That there was no overlap in the structural and functional changes suggests that asphyxic damage due to repeated episodes of nocturnal obstructive apnoea is not the main cause of the sympathoexcitation. Obstructive sleep apnea increases muscle sympathetic nerve activity (MSNA). fMRI was used to identify brain sites temporally coupled to the increase in MSNA. Augmented BOLD signal intensity occurred in several cortical and subcortical sites. The elevated MSNA in OSA may result from functional changes within these sites.
Collapse
Affiliation(s)
- Rania H Fatouleh
- University of Western Sydney, School of Medicine, Sydney, Australia
| | - Elie Hammam
- University of Western Sydney, School of Medicine, Sydney, Australia
| | - Linda C Lundblad
- University of Western Sydney, School of Medicine, Sydney, Australia
| | - Paul M Macey
- UCLA School of Nursing and Brain Research Institute, Los Angeles, CA, USA
| | - David K McKenzie
- Neuroscience Research Australia, Sydney, Australia ; Prince of Wales Hospital, Department of Respiratory Medicine, Sydney, Australia
| | - Luke A Henderson
- Discipline of Anatomy and Histology, University of Sydney, Sydney, Australia
| | - Vaughan G Macefield
- University of Western Sydney, School of Medicine, Sydney, Australia ; Neuroscience Research Australia, Sydney, Australia
| |
Collapse
|
39
|
Abstract
Obstructive sleep apnea (OSA) syndrome is a surprisingly complex and highly individualized disease, with different factors contributing toward the disease process. Many factors can induce OSA disease, such as hypertrophy uvula, adenoidectomy, tonsil caused by mechanical obstruction of the airway, airway obstruction on obesity cause of decubitus, etc.; in addition, abnormal structure and function of the central nervous system (CNS) is also one of the important factors. This paper examines the relationship of the CNS with the onset of OSA. Evidence has shown that dysfunction of the CNS may be related to the occurrence of OSA. Although modification of the behaviors of the motor neurons may offer a potentially interesting means of controlling the airway, human afferent and motor pathways that regulate eupnea are still poorly understood. Combining some clinical phenomena of patients with cerebral hemorrhage or brain trauma at the temporal lobe, it seems that no close relation with OSA has been observed in clinical work and animal experiments; however, CNS damage at the temporal lobe is involved in the pathogenesis of OSA. This article examines the role of the CNS in the pathogenesis of OSA and its mechanisms. We have summarized previous findings of OSA-related brain damage, which were obtained by brain functional MRI, clinical, and animal experiment data to better understand the roles of the CNS in the pathogenesis of OSA. More specifically, this review summarizes how altered activity of the limbic system and its related structures could be associated with the occurrence of OSA. This conclusion may contribute toward our understanding of nosogenesis and the treatment of OSA.
Collapse
|
40
|
Menicucci D, Artoni F, Bedini R, Pingitore A, Passera M, Landi A, L'Abbate A, Sebastiani L, Gemignani A. Brain responses to emotional stimuli during breath holding and hypoxia: an approach based on the independent component analysis. Brain Topogr 2013; 27:771-85. [PMID: 24375284 DOI: 10.1007/s10548-013-0349-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 12/17/2013] [Indexed: 10/25/2022]
Abstract
Voluntary breath holding represents a physiological model of hypoxia. It consists of two phases of oxygen saturation dynamics: an initial slow decrease (normoxic phase) followed by a rapid drop (hypoxic phase) during which transitory neurological symptoms as well as slight impairment of integrated cerebral functions, such as emotional processing, can occur. This study investigated how breath holding affects emotional processing. To this aim we characterized the modulation of event-related potentials (ERPs) evoked by emotional-laden pictures as a function of breath holding time course. We recorded ERPs during free breathing and breath holding performed in air by elite apnea divers. We modeled brain responses during free breathing with four independent components distributed over different brain areas derived by an approach based on the independent component analysis (ICASSO). We described ERP changes during breath holding by estimating amplitude scaling and time shifting of the same components (component adaptation analysis). Component 1 included the main EEG features of emotional processing, had a posterior localization and did not change during breath holding; component 2, localized over temporo-frontal regions, was present only in unpleasant stimuli responses and decreased during breath holding, with no differences between breath holding phases; component 3, localized on the fronto-central midline regions, showed phase-independent breath holding decreases; component 4, quite widespread but with frontal prevalence, decreased in parallel with the hypoxic trend. The spatial localization of these components was compatible with a set of processing modules that affects the automatic and intentional controls of attention. The reduction of unpleasant-related ERP components suggests that the evaluation of aversive and/or possibly dangerous situations might be altered during breath holding.
Collapse
Affiliation(s)
- Danilo Menicucci
- Institute of Clinical Physiology, CNR, Via Moruzzi 1, Pisa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kimmerly DS, Morris BL, Floras JS. Apnea-induced cortical BOLD-fMRI and peripheral sympathoneural firing response patterns of awake healthy humans. PLoS One 2013; 8:e82525. [PMID: 24358198 PMCID: PMC3865029 DOI: 10.1371/journal.pone.0082525] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 11/03/2013] [Indexed: 12/30/2022] Open
Abstract
End-expiratory breath-holds (BH) and Mueller manoeuvres (MM) elicit large increases in muscle sympathetic nerve activity (MSNA). In 16 healthy humans (9♀, 35±4 years) we used functional magnetic resonance imaging with blood oxygen level-dependent (BOLD) contrast to determine the cortical network associated with such sympathoexcitation. We hypothesized that increases in MSNA evoked by these simulated apneas are accompanied by BOLD contrast changes in the insular cortex, thalamus and limbic cortex. A series of 150 whole-brain images were collected during 3 randomly performed 16-second end-expiratory BHs and MMs (-30 mmHg). The identical protocol was repeated separately with MSNA recorded from the fibular nerve. The time course of the sympathoexcitatory response to both breathing tasks were correlated with whole-brain BOLD signal changes. Brain sites demonstrating both positive (activation) and negative (deactivation) correlations with the MSNA time course were identified. Sympathetic burst incidence increased (p<0.001) from 29±6 (rest) to 49±6 (BH) and 47±6 bursts/100 heartbeats (MM). Increased neural activity (Z-scores) was identified in the right posterior and anterior insular cortices (3.74, 3.64), dorsal anterior cingulate (3.42), fastigial and dentate cerebellar nuclei (3.02, 3.34). Signal intensity decreased in the left posterior insula (3.28) and ventral anterior cingulate (3.01). Apnea both activates and inhibits elements of a cortical network involved in the generation of sympathetic outflow. These findings identify a neuroanatomical substrate to guide future investigations into central mechanisms contributing to disorders characterized by elevated basal MSNA and exaggerated sympathetic responses to simulated apneas such as sleep apnea and heart failure.
Collapse
Affiliation(s)
- Derek S. Kimmerly
- Clinical Cardiovascular Physiology Laboratory, University Health Network and Mount Sinai Hospital Division of Cardiology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- School of Health and Human Performance, Faculty of Health Professions, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail:
| | - Beverley L. Morris
- Clinical Cardiovascular Physiology Laboratory, University Health Network and Mount Sinai Hospital Division of Cardiology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - John S. Floras
- Clinical Cardiovascular Physiology Laboratory, University Health Network and Mount Sinai Hospital Division of Cardiology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
42
|
Henderson LA, Macefield VG. Functional Imaging of the Human Brainstem during Somatosensory Input and Autonomic Output. Front Hum Neurosci 2013; 7:569. [PMID: 24062670 PMCID: PMC3775150 DOI: 10.3389/fnhum.2013.00569] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 08/26/2013] [Indexed: 12/30/2022] Open
Abstract
Over the past half a century, many investigations in experimental animal have explored the functional roles of specific regions in the brainstem. Despite the accumulation of a considerable body of knowledge in, primarily, anesthetized preparations, relatively few studies have explored brainstem function in awake humans. It is important that human brainstem function is explored given that many neurological conditions, from obstructive sleep apnea, chronic pain, and hypertension, likely involve significant changes in the processing of information within the brainstem. Recent advances in the collection and processing of magnetic resonance images have resulted in the possibility of exploring brainstem activity changes in awake healthy individuals and in those with various clinical conditions. We and others have begun to explore changes in brainstem activity in humans during a number of challenges, including cutaneous and muscle pain, as well as during maneuvers that evoke increases in sympathetic nerve activity. More recently we have successfully recorded sympathetic nerve activity concurrently with functional magnetic resonance imaging of the brainstem, which will allow us, for the first time to explore brainstem sites directly responsible for conditions such as hypertension. Since many pathophysiological conditions no doubt involve changes in brainstem function and structure, defining these changes will likely result in a greater ability to develop more effective treatment regimens.
Collapse
Affiliation(s)
- Luke A Henderson
- Department of Anatomy and Histology, University of Sydney , Sydney, NSW , Australia
| | | |
Collapse
|
43
|
Macefield VG, James C, Henderson LA. Identification of sites of sympathetic outflow at rest and during emotional arousal: Concurrent recordings of sympathetic nerve activity and fMRI of the brain. Int J Psychophysiol 2013; 89:451-9. [DOI: 10.1016/j.ijpsycho.2013.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/26/2013] [Accepted: 06/03/2013] [Indexed: 01/24/2023]
|
44
|
Farrell MJ, Trevaks D, Taylor NAS, McAllen RM. Brain stem representation of thermal and psychogenic sweating in humans. Am J Physiol Regul Integr Comp Physiol 2013; 304:R810-7. [DOI: 10.1152/ajpregu.00041.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Functional MRI was used to identify regions in the human brain stem activated during thermal and psychogenic sweating. Two groups of healthy participants aged 34.4 ± 10.2 and 35.3 ± 11.8 years (both groups comprising 1 woman and 10 men) were either heated by a water-perfused tube suit or subjected to a Stroop test, while they lay supine with their head in a 3-T MRI scanner. Sweating events were recorded as electrodermal responses (increases in AC conductance) from the palmar surfaces of fingers. Each experimental session consisted of two 7.9-min runs, during which a mean of 7.3 ± 2.1 and 10.2 ± 2.5 irregular sweating events occurred during psychogenic (Stroop test) and thermal sweating, respectively. The electrodermal waveform was used as the regressor in each subject and run to identify brain stem clusters with significantly correlated blood oxygen level-dependent signals in the group mean data. Clusters of significant activation were found with both psychogenic and thermal sweating, but a voxelwise comparison revealed no brain stem cluster whose signal differed significantly between the two conditions. Bilaterally symmetric regions that were activated by both psychogenic and thermal sweating were identified in the rostral lateral midbrain and in the rostral lateral medulla. The latter site, between the facial nuclei and pyramidal tracts, corresponds to a neuron group found to drive sweating in animals. These studies have identified the brain stem regions that are activated with sweating in humans and indicate that common descending pathways may mediate both thermal and psychogenic sweating.
Collapse
Affiliation(s)
- Michael J. Farrell
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - David Trevaks
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Nigel A. S. Taylor
- Centre for Human and Applied Physiology, University of Wollongong, Wollongong, New South Wales, Australia
| | - Robin M. McAllen
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia; and
| |
Collapse
|
45
|
Shafton AD, McAllen RM. Location of cat brain stem neurons that drive sweating. Am J Physiol Regul Integr Comp Physiol 2013; 304:R804-9. [PMID: 23467325 DOI: 10.1152/ajpregu.00040.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The brain stem premotor pathways controlling most noncardiovascular sympathetic outflows are unknown. Here, we mapped the brain stem neurons that drive sweating, by microinjecting excitant amino acid (L-glutamate or D,L-homocysteate: 0.4-3 nmol) into 420 sites over the pons and medulla of eight chloralose-anesthetized cats (70 mg/kg iv). Sweating was recorded by the electrodermal potential at the ipsilateral forepaw pad. Responses were classified as immediate (<5 s latency) or delayed (>10 s latency). Immediate responses were obtained from 16 sites (1-3 per animal) and were accompanied by no change in blood pressure. Those sites were clustered between the facial nucleus and the pyramidal tract in the rostral ventromedial medulla (RVMM). Microinjections into 33 surrounding sites caused delayed electrodermal responses of lesser amplitude, while the remaining 371 sites evoked none. To retrogradely label bulbospinal neurons that may mediate electrodermal responses, fluorescent latex microspheres were injected into the region of the intermediolateral cell column in the fourth thoracic segment in an earlier preparatory procedure on six of the animals. A cluster of retrogradely labeled neurons was identified between the facial nucleus and the pyramidal tract. Neurons in this discrete region of the RVMM, thus, drive sweating in the cat's paw and may do so via direct spinal projections.
Collapse
Affiliation(s)
- Anthony D Shafton
- Florey Institute of Neuroscience and Mental Health and Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
46
|
James C, Macefield VG, Henderson LA. Real-time imaging of cortical and subcortical control of muscle sympathetic nerve activity in awake human subjects. Neuroimage 2012; 70:59-65. [PMID: 23287526 DOI: 10.1016/j.neuroimage.2012.12.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 12/18/2012] [Accepted: 12/21/2012] [Indexed: 10/27/2022] Open
Abstract
Blood pressure is controlled on a beat-to-beat basis through fluctuations in heart rate and the degree of sympathetically-mediated vasoconstriction in skeletal muscles. By recording muscle sympathetic nerve activity (MSNA) at the same time as performing functional magnetic resonance imaging (fMRI) of the brain, we aimed to identify cortical structures involved in central cardiovascular control in awake human subjects. Spontaneous bursts of MSNA were recorded via a tungsten microelectrode inserted percutaneously into the peroneal nerve of 14 healthy subjects in a 3T MRI scanner. Blood Oxygen Level Dependent (BOLD) contrast - gradient echo, echo-planar - images were continuously collected in a 4s ON, 4s OFF sampling protocol. MSNA burst amplitudes were measured during the OFF periods and BOLD signal intensity was measured during the subsequent 4s period to allow for neurovascular coupling and nerve conduction delays. Group analysis demonstrated regions showing fluctuations in BOLD signal intensity that covaried with the intensity of the concurrently recorded bursts of MSNA. Signal intensity and MSNA were positively correlated in the left mid-insula, bilateral dorsolateral prefrontal cortex, bilateral posterior cingulate cortex and bilateral precuneus. In addition, MSNA covaried with signal intensity in the left dorsomedial hypothalamus and bilateral ventromedial hypothalamus (VMH). Construction of a functional connectivity map revealed coupling between activity in VMH and the insula, dorsolateral prefrontal cortex, precuneus, and in the region of the left and right rostroventrolateral medulla (RVLM). This suggests that activity within suprabulbar regions may regulate resting MSNA by projections to the premotor sympathetic neurons in the rostroventrolateral medulla.
Collapse
Affiliation(s)
- Cheree James
- School of Medicine, University of Western Sydney, Australia
| | | | | |
Collapse
|
47
|
Henderson LA, James C, Macefield VG. Identification of sites of sympathetic outflow during concurrent recordings of sympathetic nerve activity and fMRI. Anat Rec (Hoboken) 2012; 295:1396-403. [PMID: 22851197 DOI: 10.1002/ar.22513] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 04/18/2012] [Indexed: 11/06/2022]
Abstract
The sympathetic division of the nervous system is critical for maintaining both resting arterial pressure and for producing changes in regional perfusion required by behavioral state changes. A primary determinant of arterial pressure is the level of vasoconstriction within skeletal muscle. It is well established that there is a tight relationship between dynamic changes in arterial pressure and muscle sympathetic nerve activity (MSNA) through the workings of the baroreflex. While the central circuitry underlying the baroreflex has been extensively investigated in anesthetized experimental animals, few studies have investigated the central circuitry responsible for the baroreflex in awake human subjects. Recently we were the first to record concurrently MSNA (using microneurography) and brain activity (using functional magnetic resonance imaging) in awake humans in a series of experiments designed to determine the central circuitry underlying the baroreflex in humans. We confirmed that the baroreflex involves activity changes within the nucleus tractus solitarius, caudal ventrolateral, and rostral ventrolateral medulla. Because conditions such as essential hypertension, obesity, and obstructive sleep apnea are all characterized by significant increases in resting MSNA, it is important to understand both brainstem and cortical sites involved in regulating resting levels of MSNA. Future investigations which define cortical sites involved in generating and modulating MSNA are important if we are to understand the underlying mechanisms of many conditions characterized by hypertension.
Collapse
Affiliation(s)
- Luke A Henderson
- Department of Anatomy and Histology, University of Sydney, Sydney, New South Wales 2006, Australia.
| | | | | |
Collapse
|
48
|
Zhang H, Wang X, Lin J, Sun Y, Huang Y, Yang T, Zheng S, Fan M, Zhang J. Grey and white matter abnormalities in chronic obstructive pulmonary disease: a case-control study. BMJ Open 2012; 2:e000844. [PMID: 22535793 PMCID: PMC3341600 DOI: 10.1136/bmjopen-2012-000844] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 03/06/2012] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES The irreversible airflow limitation characterised by chronic obstructive pulmonary disease (COPD) causes a decrease in the oxygen supply to the brain. The aim of the present study was to investigate brain structural damage in COPD. DESIGN Retrospective case-control study. Patients with COPD and healthy volunteers were recruited. The two groups were matched in age, gender and educational background. SETTING A hospital and a number of communities: they are all located in southern Fujian province, China. PARTICIPANTS 25 stable patients and 25 controls were enrolled from December 2009 to May 2011. METHODS Using voxel-based morphometry and tract-based spatial statistics based on MRI to analyse grey matter (GM) density and white matter fractional anisotropy (FA), respectively, and a battery of neuropsychological tests were performed. RESULTS Patients with COPD (vs controls) showed decreased GM density in the limbic and paralimbic structures, including right gyrus rectus, left precentral gyrus, bilateral anterior and middle cingulate gyri, bilateral superior temporal gyri, bilateral anterior insula extending to Rolandic operculum, bilateral thalamus/pulvinars and left caudate nucleus. Patients with COPD (vs controls) had decreased FA values in the bilateral superior corona radiata, bilateral superior and inferior longitudinal fasciculus, bilateral optic radiation, bilateral lingual gyri, left parahippocampal gyrus and fornix. Lower FA values in these regions were associated with increased radial diffusivity and no changes of longitudinal diffusivity. Patients with COPD had poor performances in the Mini-Mental State Examination, figure memory and visual reproduction. GM density in some decreased regions in COPD had positive correlations with arterial blood Po(2), negative correlations with disease duration and also positive correlations with visual tasks. CONCLUSION The authors demonstrated that COPD exhibited loss of regional GM accompanied by impairment of white matter microstructural integrity, which was associated with disease severity and may underlie the pathophysiological and psychological changes of COPD.
Collapse
Affiliation(s)
- Haiyan Zhang
- Department of Physiology, Medical College of Xiamen University, Xiamen, China
| | - Xiaochuan Wang
- Department of Neurology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Jianzhong Lin
- Magnetic Resonance Center, Zhongshan Hospital, Medical College of Xiamen University, Xiamen, China
| | - Yinchuan Sun
- Department of Physiology, Medical College of Xiamen University, Xiamen, China
| | - Yongxia Huang
- Department of Physiology, Medical College of Xiamen University, Xiamen, China
| | - Tianhe Yang
- Magnetic Resonance Center, Zhongshan Hospital, Medical College of Xiamen University, Xiamen, China
| | - Shili Zheng
- Department of Respiratory, Zhongshan Hospital, Medical College of Xiamen University, Xiamen, China
| | - Ming Fan
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Beijing, China
| | - Jiaxing Zhang
- Department of Physiology, Medical College of Xiamen University, Xiamen, China
| |
Collapse
|
49
|
Goswami R, Frances MF, Steinback CD, Shoemaker JK. Forebrain organization representing baroreceptor gating of somatosensory afferents within the cortical autonomic network. J Neurophysiol 2012; 108:453-66. [PMID: 22514285 DOI: 10.1152/jn.00764.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Somatosensory afferents are represented within the cortical autonomic network (CAN). However, the representation of somatosensory afferents, and the consequent cardiovascular effects, may be modified by levels of baroreceptor input. Thus, we examined the cortical regions involved with processing somatosensory inputs during baroreceptor unloading. Neuroimaging sessions (functional magnetic resonance imaging [fMRI]) recorded brain activity during 30 mmHg lower-body negative pressure (LBNP) alone and combined with somatosensory stimulation (LBNP+SS) of the forearm (n = 14). Somatosensory processing was also assessed during increased sympathetic outflow via end-expiratory apnea. Heart rate (HR), blood pressure (BP), cardiac output (Q), and muscle sympathetic nerve activity (MSNA) were recorded during the same protocols in a separate laboratory session. SS alone had no effect on any cardiovascular or MSNA variable at rest. Measures of HR, BP, and Q during LBNP were not different compared with LBNP+SS. The rise in MSNA burst frequency was attenuated during LBNP+SS versus LBNP alone (8 vs. 12 bursts/min, respectively, P < 0.05). SS did not affect the change in MSNA during apnea. Activations within the insula and dorsal anterior cingulate cortex (ACC) observed during LBNP were not seen during LBNP+SS. Anterior insula and ACC activations occurring during apnea were not modified by SS. Thus, the absence of insular and dorsal ACC activity during LBNP+SS along with an attenuation of MSNA burst frequency suggest sympathoinhibitory effects of sensory stimulation during decreased baroreceptor input by a mechanism that includes conjoint insula-dorsal ACC regulation. These findings reveal that the level of baroreceptor input influences the forebrain organization of somatosensory afferents.
Collapse
Affiliation(s)
- Ruma Goswami
- School of Kinesiology, Western University, London, Ontario, Canada
| | | | | | | |
Collapse
|
50
|
Beissner F, Deichmann R, Henke C, Bär KJ. Acupuncture--deep pain with an autonomic dimension? Neuroimage 2011; 60:653-60. [PMID: 22227140 DOI: 10.1016/j.neuroimage.2011.12.045] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 12/09/2011] [Accepted: 12/15/2011] [Indexed: 12/19/2022] Open
Abstract
Stimulation of acupuncture point Pc6, located above the median nerve, has been shown to be effective in treating nausea and vomiting. It has also frequently been reported to cause a heart rate reduction. The mechanism behind this autonomic reaction has not been clarified, so far. We combined brainstem-sensitive functional magnetic resonance imaging with heart rate recording and time-resolved rating of the needling sensation to measure neuronal correlates of sensations and autonomic reactions during acupuncture. On the cortical level, needling sensation activated typical pain-related areas, of which the ventromedial and dorsolateral prefrontal cortex and perigenual anterior cingulate cortex were further involved in mediating the heart rate response. In the brainstem, needling sensation activated nuclei of the descending pain control system, in which a network of hypothalamus, periaqueductal gray, rostral ventromedial medulla, and ventrolateral medulla was identified as the source of the heart rate changes. Our findings indicate that acupuncture may be a special pain stimulus, whose autonomic concomitants could explain its non-analgesic effects and in some cases even have a therapeutic potential.
Collapse
Affiliation(s)
- Florian Beissner
- Pain & Autonomics - Integrative Research (PAIR), University Hospital of Psychiatry and Psychotherapy, Jena, Germany
| | | | | | | |
Collapse
|