1
|
Fang C, Jiang Z, Su X, Fan W. The association between body mass index and asthma in children: a cross‑sectional study from NHANES 1999 to 2020. Sci Rep 2025; 15:9448. [PMID: 40108226 PMCID: PMC11923108 DOI: 10.1038/s41598-025-92619-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 03/03/2025] [Indexed: 03/22/2025] Open
Abstract
The relationship between body mass index (BMI) and the risk of asthma in the pediatric population is not fully understood. This study aimed to investigate the association between BMI and asthma in a large nationally representative sample. The study included 35,603 pediatric participants from the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2020. The association between BMI and asthma was examined using various statistical models, including logistic regression, piece-wise linear regression, and subgroup analyses, adjusting for potential confounding factors. When analyzing BMI as a continuous variable, a one-unit increase in BMI was associated with a 4% higher odds of asthma. A clear dose-response relationship was observed, where individuals in the higher BMI quartiles had progressively higher odds of asthma compared to those in the lowest quartile. Smooth curve fitting revealed a not entirely linear relationship, with a steeper increase in asthma risk at lower BMIs (below an inflection point of 21 kg/m²) compared to higher BMIs. Subgroup analyses consistently showed a positive association between BMI and asthma across different age, gender, race, socioeconomic, and smoking-related factors. Sensitivity analyses, including multiple imputation for missing data and alternative BMI metrics, confirmed the stability of the results. This study provides robust evidence for a positive and not entirely linear association between BMI and the risk of asthma in the pediatric population. These findings enhance the existing literature and underscore the necessity of considering BMI in both asthma research and clinical practice.
Collapse
Affiliation(s)
- Cuiyun Fang
- Department of Nursing, Liyang People's Hospital, Liyang, China
| | - Zhongli Jiang
- Department of Pediatrics, Liyang People's Hospital, Liyang, China
| | - Xiaoxue Su
- Department of Pediatrics, Liyang People's Hospital, Liyang, China
| | - Wei Fan
- Department of Pediatrics, Liyang People's Hospital, Liyang, China.
| |
Collapse
|
2
|
Till S, Kaminsky DA. Utilizing data from the clinical pulmonary function laboratory to teach about respiratory physiology: illustrating airway-parenchymal interdependence. ADVANCES IN PHYSIOLOGY EDUCATION 2024; 48:279-283. [PMID: 38299212 DOI: 10.1152/advan.00149.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/04/2024] [Accepted: 01/30/2024] [Indexed: 02/02/2024]
Abstract
Here we demonstrate how data from the clinical pulmonary function lab can help students learn about the principle of airway-parenchymal interdependence. We examined the relationship between airway conductance (Gaw) and lung volume (thoracic gas volume, TGV) in 48 patients: 17 healthy; 20 with emphysema, expected to have reduced airway-parenchymal interdependence; and 11 with pulmonary fibrosis, expected to have increased airway-parenchymal interdependence. Our findings support these expectations, with the slope of Gaw vs. TGV being steeper among those with pulmonary fibrosis and flatter among those with emphysema, compared to the slope of the healthy group. This type of analytic approach, using real-world patient data readily available from any pulmonary function laboratory, can be used to explore other fundamental principles of respiratory physiology.NEW & NOTEWORTHY This report demonstrates how common data obtained from the clinical pulmonary function testing laboratory can be used to illustrate important principles of respiratory physiology. Here we show how the relationship between airway conductance and lung volume across different disease states reflects intrinsic differences in airway-parenchymal interdependence.
Collapse
Affiliation(s)
- Sean Till
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont, United States
| | - David A Kaminsky
- Pulmonary and Critical Care, University of Vermont Larner College of Medicine, Burlington, Vermont, United States
| |
Collapse
|
3
|
Ihrie MD, McQuade VL, Womble JT, Hegde A, McCravy MS, Lacuesta CVG, Tighe RM, Que LG, Walker JKL, Ingram JL. Exogenous leptin enhances markers of airway fibrosis in a mouse model of chronic allergic airways disease. Respir Res 2022; 23:131. [PMID: 35610699 PMCID: PMC9131622 DOI: 10.1186/s12931-022-02048-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Asthma patients with comorbid obesity exhibit increased disease severity, in part, due to airway remodeling, which is also observed in mouse models of asthma and obesity. A mediator of remodeling that is increased in obesity is leptin. We hypothesized that in a mouse model of allergic airways disease, mice receiving exogenous leptin would display increased airway inflammation and fibrosis. METHODS Five-week-old male and female C57BL/6J mice were challenged with intranasal house dust mite (HDM) allergen or saline 5 days per week for 6 weeks (n = 6-9 per sex, per group). Following each HDM exposure, mice received subcutaneous recombinant human leptin or saline. At 48 h after the final HDM challenge, lung mechanics were evaluated and the mice were sacrificed. Bronchoalveolar lavage was performed and differential cell counts were determined. Lung tissue was stained with Masson's trichrome, periodic acid-Schiff, and hematoxylin and eosin stains. Mouse lung fibroblasts were cultured, and whole lung mRNA was isolated. RESULTS Leptin did not affect mouse body weight, but HDM+leptin increased baseline blood glucose. In mixed-sex groups, leptin increased mouse lung fibroblast invasiveness and increased lung Col1a1 mRNA expression. Total lung resistance and tissue damping were increased with HDM+leptin treatment, but not leptin or HDM alone. Female mice exhibited enhanced airway responsiveness to methacholine with HDM+leptin treatment, while leptin alone decreased total respiratory system resistance in male mice. CONCLUSIONS In HDM-induced allergic airways disease, administration of exogenous leptin to mice enhanced lung resistance and increased markers of fibrosis, with differing effects between males and females.
Collapse
Affiliation(s)
- Mark D Ihrie
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University, Durham, NC, USA
| | - Victoria L McQuade
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University, Durham, NC, USA
| | - Jack T Womble
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University, Durham, NC, USA
| | - Akhil Hegde
- School of Nursing, Duke University, Durham, NC, USA
| | - Matthew S McCravy
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University, Durham, NC, USA
| | | | - Robert M Tighe
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University, Durham, NC, USA
| | - Loretta G Que
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University, Durham, NC, USA
| | - Julia K L Walker
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University, Durham, NC, USA
- School of Nursing, Duke University, Durham, NC, USA
| | - Jennifer L Ingram
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University, Durham, NC, USA.
- , Durham, USA.
| |
Collapse
|
4
|
Farzan S, Coyle T, Coscia G, Rebaza A, Santiago M. Clinical Characteristics and Management Strategies for Adult Obese Asthma Patients. J Asthma Allergy 2022; 15:673-689. [PMID: 35611328 PMCID: PMC9124473 DOI: 10.2147/jaa.s285738] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/05/2022] [Indexed: 11/23/2022] Open
Abstract
The rates of asthma and obesity are increasing concurrently in the United States. Epidemiologic studies demonstrate that the incidence of asthma increases with obesity. Furthermore, obese individuals have asthma that is more severe, harder to control, and resistant to standard medications. In fact, specific asthma-obesity phenotypes have been identified. Various pathophysiologic mechanisms, including mechanical, inflammatory, metabolic and microbiome-associated, are at play in promulgating the obese-asthma phenotypes. While standard asthma medications, such as inhaled corticosteroids and biologics, are currently used to treat obese asthmatics, they may have limited effectiveness. Targeting the underlying aberrant processes, such as addressing steroid resistance, microbiome, metabolic and weight loss approaches, may be helpful.
Collapse
Affiliation(s)
- Sherry Farzan
- Division of Allergy & Immunology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Great Neck, NY, USA
- Department of Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Queens, NY, USA
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Manhasett, NY, USA
- Institute of Health System Science, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, USA
- Correspondence: Sherry Farzan, Division of Allergy & Immunology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, 865 Northern Blvd, Suite 101, Great Neck, NY, 11021, USA, Tel +1 516-622-5070, Fax +1 516-622-5060, Email
| | - Tyrone Coyle
- Division of Allergy & Immunology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Great Neck, NY, USA
- Department of Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Queens, NY, USA
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Manhasett, NY, USA
| | - Gina Coscia
- Division of Allergy & Immunology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Great Neck, NY, USA
- Department of Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Queens, NY, USA
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Manhasett, NY, USA
| | - Andre Rebaza
- Department of Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Queens, NY, USA
- Division of Pediatric Pulmonology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, New York, NY, USA
| | - Maria Santiago
- Department of Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Queens, NY, USA
- Division of Pediatric Pulmonology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, New York, NY, USA
| |
Collapse
|
5
|
Gu C, Loube J, Lee R, Bevans-Fonti S, Wu TD, Barmine JH, Jun JC, McCormack MC, Hansel NN, Mitzner W, Polotsky VY. Metformin Alleviates Airway Hyperresponsiveness in a Mouse Model of Diet-Induced Obesity. Front Physiol 2022; 13:883275. [PMID: 35574481 PMCID: PMC9098833 DOI: 10.3389/fphys.2022.883275] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/14/2022] [Indexed: 12/03/2022] Open
Abstract
Obese asthma is a unique phenotype of asthma characterized by non-allergic airway hyperresponsiveness (AHR) and inflammation which responds poorly to standard asthma therapy. Metformin is an oral hypoglycemic drug with insulin-sensitizing and anti-inflammatory properties. The objective of the current study was to test the effect of metformin on AHR in a mouse model of diet-induced obesity (DIO). We fed 12-week-old C57BL/6J DIO mice with a high fat diet for 8 weeks and treated them with either placebo (control, n = 10) or metformin (n = 10) added in drinking water (300 mg/kg/day) during the last 2 weeks of the experiment. We assessed AHR, metabolic profiles, and inflammatory markers after treatments. Metformin did not affect body weight or fasting blood glucose, but significantly reduced serum insulin (p = 0.0117). Metformin reduced AHR at 30 mg/ml of methacholine challenge (p = 0.0052) without affecting baseline airway resistance. Metformin did not affect circulating white blood cell counts or lung cytokine mRNA expression, but modestly decreased circulating platelet count. We conclude that metformin alleviated AHR in DIO mice. This finding suggests metformin has the potential to become an adjuvant pharmacological therapy in obese asthma.
Collapse
Affiliation(s)
- Chenjuan Gu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jeff Loube
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Rachel Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Shannon Bevans-Fonti
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Tianshi David Wu
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Baylor College of Medicine and the Center for Innovations in Quality, Effectiveness, and Safety, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| | - Jessica H. Barmine
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jonathan C. Jun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Meredith C. McCormack
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nadia N. Hansel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Wayne Mitzner
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Vsevolod Y. Polotsky
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Vsevolod Y. Polotsky,
| |
Collapse
|
6
|
Bhatawadekar SA, Dixon AE, Peters U, Daphtary N, Hodgdon K, Kaminsky DA, Bates JHT. Positive Expiratory Pressure: A Potential Therapy to Mitigate Acute Bronchoconstriction in the Asthma of Obesity. J Appl Physiol (1985) 2021; 131:1663-1670. [PMID: 34647827 DOI: 10.1152/japplphysiol.00399.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Late-onset non-allergic (LONA) asthma in obesity is characterized by increased peripheral airway closure secondary to abnormally collapsible airways. We hypothesized that positive expiratory pressure (PEP) would mitigate the tendency to airway closure during bronchoconstriction, potentially serving as rescue therapy for LONA asthma of obesity. The PC20 dose of methacholine was determined in 18 obese participants with LONA asthma. At each of 4 subsequent visits, we used oscillometry to measure input respiratory impedance (Zrs) over 8 minutes; participants received their PC20 concentration of methacholine aerosol during the first 4.5 minutes. PEP combinations of either 0 or 10 cmH2O either during and/or after the methacholine delivery were applied, randomized between visits. Parameters characterizing respiratory system mechanics were extracted from the Zrs spectra. In 18 LONA asthma patients (14 females, BMI: 39.6±3.4 kg/m2), 10 cmH2O PEP during methacholine reduced elevations in the central airway resistance, peripheral airway resistance and elastance, and breathing frequency was also reduced. During the 3.5 min following methacholine delivery, PEP of 10 cmH2O reduced Ax and peripheral elastance compared to no PEP. PEP mitigates the onset of airway narrowing brought on by methacholine challenge, and airway closure once it is established. PEP thus might serve as a non-pharmacologic therapy to manage acute airway narrowing for obese LONA asthma.
Collapse
Affiliation(s)
- Swati A Bhatawadekar
- Pulmonary Disease and Critical Care Medicine, University of Vermont College of Medicine, Burlington, Vermont, United States
| | - Anne E Dixon
- Pulmonary Disease and Critical Care Medicine, University of Vermont College of Medicine, Burlington, Vermont, United States
| | - Ubong Peters
- Pulmonary Disease and Critical Care Medicine, University of Vermont College of Medicine, Burlington, Vermont, United States
| | - Nirav Daphtary
- Pulmonary Disease and Critical Care Medicine, University of Vermont College of Medicine, Burlington, Vermont, United States
| | - Kevin Hodgdon
- Pulmonary Disease and Critical Care Medicine, University of Vermont College of Medicine, Burlington, Vermont, United States
| | - David A Kaminsky
- Pulmonary Disease and Critical Care Medicine, University of Vermont College of Medicine, Burlington, Vermont, United States
| | - Jason H T Bates
- Pulmonary Disease and Critical Care Medicine, University of Vermont College of Medicine, Burlington, Vermont, United States
| |
Collapse
|
7
|
Hossain N, Arhi C, Borg CM. Is Bariatric Surgery Better than Nonsurgical Weight Loss for Improving Asthma Control? A Systematic Review. Obes Surg 2021; 31:1810-1832. [PMID: 33590422 DOI: 10.1007/s11695-021-05255-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 01/01/2023]
Abstract
Obesity is associated with increased severity of asthma. Bariatric surgery can be effective in weight loss and improvement in asthma. Two reviewers conducted a systematic review using search terms: 'weight loss', 'bariatric surgery', and 'asthma'. Adult studies including all bariatric procedures and nonsurgical weight loss regimes were included. Thirty-nine studies, including twenty-six bariatric studies and thirteen nonsurgical studies, were found. No study directly compared bariatric surgery to nonsurgical techniques. Bariatric surgery offered greater weight loss (22-36%) than nonsurgical programmes (4.1-14.2%) and more consistently improved medication use, airway hyperresponsiveness, hospitalisation rate or ED attendance and lung function, while change in inflammatory markers were variable. Bariatric surgery appears to be superior in treating asthma; however, further study on surgery for both mild and severe asthma is required.
Collapse
Affiliation(s)
- Naveed Hossain
- Department of General Surgery, University Hospital Lewisham, Lewisham and Greenwich NHS Trust, Lewisham High Street, London, SE13 6LH, UK. .,Department of General Surgery, Whittington Hospital, Whittington Health NHS Trust, Magdala Avenue, London, N19 5NF, UK.
| | - Chanpreet Arhi
- Department of General Surgery, University Hospital Lewisham, Lewisham and Greenwich NHS Trust, Lewisham High Street, London, SE13 6LH, UK
| | - Cynthia-Michelle Borg
- Department of General Surgery, University Hospital Lewisham, Lewisham and Greenwich NHS Trust, Lewisham High Street, London, SE13 6LH, UK
| |
Collapse
|
8
|
Bhatawadekar SA, Peters U, Walsh RR, Daphtary N, MacLean ES, Mori V, Hodgdon K, Kinsey CM, Kaminsky DA, Bates JHT, Dixon AE. Central airway collapse is related to obesity independent of asthma phenotype. Respirology 2021; 26:334-341. [PMID: 33403681 DOI: 10.1111/resp.14005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/22/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND OBJECTIVE Late-onset non-allergic asthma in obesity is characterized by an abnormally compliant, collapsible lung periphery; it is not known whether this abnormality exists in proximal airways. We sought to compare collapsibility of central airways between lean and obese individuals with and without asthma. METHODS A cross-sectional study comparing luminal area and shape (circularity) of the trachea, left mainstem bronchus, right bronchus intermedius and right inferior lobar bronchus at RV and TLC by CT was conducted. RESULTS In 11 lean controls (BMI: 22.4 (21.5, 23.8) kg/m2 ), 10 lean individuals with asthma (23.6 (22.0, 24.8) kg/m2 ), 10 obese controls (45.5 (40.3, 48.5) kg/m2 ) and 21 obese individuals with asthma (39.2 (35.8, 42.9) kg/m2 ), lumen area and circularity increased significantly with an increase in lung volume from RV to TLC for all four airways (P < 0.05 for all). Changes in area and circularity with lung volume were similar in obese individuals with and without asthma, and both obese groups had severe airway collapse at RV. In multivariate analysis, change in lumen area was related to BMI and change in circularity to waist circumference, but neither was related to asthma diagnosis. CONCLUSION Excessive collapse of the central airways is related to obesity, and occurs in both obese controls and obese asthma. Increased airway collapse could contribute to ventilation abnormalities in obese individuals particularly at lower lung volumes, and complicate asthma in obese individuals.
Collapse
Affiliation(s)
- Swati A Bhatawadekar
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - Ubong Peters
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - Ryan R Walsh
- Department of Radiology, University of Vermont College of Medicine, Burlington, VT, USA
| | - Nirav Daphtary
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - Erick S MacLean
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - Vitor Mori
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - Kevin Hodgdon
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - C Matthew Kinsey
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - David A Kaminsky
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - Jason H T Bates
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - Anne E Dixon
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| |
Collapse
|
9
|
Bates JHT, Peters U, Daphtary N, MacLean ES, Hodgdon K, Kaminsky DA, Bhatawadekar S, Dixon AE. Altered airway mechanics in the context of obesity and asthma. J Appl Physiol (1985) 2021; 130:36-47. [PMID: 33119471 PMCID: PMC7944930 DOI: 10.1152/japplphysiol.00666.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/29/2022] Open
Abstract
The obesity epidemic is causing a rise in asthma incidence due to the appearance of an obesity-specific late-onset nonallergic (LONA) phenotype. We investigated why only a subset of obese participants develop LONA asthma by determining how obesity, both alone and in combination with LONA asthma, affects the volume dependence of respiratory system impedance. We also determined how obesity and asthma affect impedance during and following challenge with the PC20 dose of methacholine. We found during passive exhalation that all obese participants, in contrast to lean controls and lean asthmatics, experienced similarly profound elevations in lung elastance as they approached functional residual capacity. We also found, however, that the LONA asthmatics had a greater negative dependence of airway resistance on lung volume over the middle of the volume range compared with the other groups. Methacholine challenge with the PC20 dose led to comparable changes in respiratory system impedance in the four study groups, but the doses themselves were substantially lower in both obese and lean asthmatic participants compared with obese and lean controls. Also, the obese LONA asthmatics had higher breathing frequencies and lower tidal volumes postchallenge compared with the other participants. Taken together, these results suggest that all obese individuals experience substantial lung collapse as they approach functional residual capacity, presumably due to the weight of the chest wall. It remains unclear why obese LONA asthmatics are hyperresponsive to methacholine while obese nonasthmatic individuals are not.NEW & NOTEWORTHY Why only a subset of severely obese subjects develop late-onset nonallergic (LONA) asthma remains unknown, although it is widely assumed that compression of the lungs by the chest wall is somehow involved. We show that lung compression is common to obese individuals both without asthma and with LONA asthma but that those with LONA asthma may have increased airway wall compliance and possibly also a reduced ability to recruit collapsed lung.
Collapse
Affiliation(s)
- Jason H T Bates
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Ubong Peters
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Nirav Daphtary
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Erick S MacLean
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Kevin Hodgdon
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - David A Kaminsky
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Swati Bhatawadekar
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Anne E Dixon
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
10
|
Abstract
This article will discuss in detail the pathophysiology of asthma from the point of view of lung mechanics. In particular, we will explain how asthma is more than just airflow limitation resulting from airway narrowing but in fact involves multiple consequences of airway narrowing, including ventilation heterogeneity, airway closure, and airway hyperresponsiveness. In addition, the relationship between the airway and surrounding lung parenchyma is thought to be critically important in asthma, especially as related to the response to deep inspiration. Furthermore, dynamic changes in lung mechanics over time may yield important information about asthma stability, as well as potentially provide a window into future disease control. All of these features of mechanical properties of the lung in asthma will be explained by providing evidence from multiple investigative methods, including not only traditional pulmonary function testing but also more sophisticated techniques such as forced oscillation, multiple breath nitrogen washout, and different imaging modalities. Throughout the article, we will link the lung mechanical features of asthma to clinical manifestations of asthma symptoms, severity, and control. © 2020 American Physiological Society. Compr Physiol 10:975-1007, 2020.
Collapse
Affiliation(s)
- David A Kaminsky
- University of Vermont Larner College of Medicine, Burlington, Vermont, USA
| | - David G Chapman
- University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Dixon AE, Peters U, Walsh R, Daphtary N, MacLean ES, Hodgdon K, Kaminsky DA, Bates JH. Physiological signature of late-onset nonallergic asthma of obesity. ERJ Open Res 2020; 6:00049-2020. [PMID: 32832525 PMCID: PMC7430141 DOI: 10.1183/23120541.00049-2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/01/2020] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Obesity can lead to a late-onset nonallergic (LONA) form of asthma for reasons that are not understood. We sought to determine whether this form of asthma is characterised by any unique physiological features. METHODS Spirometry, body plethysmography, multiple breath nitrogen washout (MBNW) and methacholine challenge were performed in four subject groups: Lean Control (n=11), Lean Asthma (n=11), Obese Control (n=11) and LONA Obese Asthma (n=10). The MBNW data were fitted with a novel computational model that estimates functional residual capacity (FRC), dead space volume (VD), the coefficient of variation of regional specific ventilation (CV,V'E) and a measure of structural asymmetry at the level of the acinus (sacin). RESULTS Body mass index and waist circumference values were similar in both obese groups, and significantly greater than in lean asthmatic individuals and controls. Forced vital capacity was significantly lower in the LONA Asthma group compared with the other groups (p<0.001). Both asthma groups exhibited similar hyperresponsiveness to methacholine. FRC was reduced in the Obese LONA Asthma group as measured by MBNW, but not in obese controls, whereas FRC was reduced in both obese groups as measured by plethysmography. VD, CV,V'E and sacin were not different between groups. CONCLUSIONS Chronic lung compression characterises all obese subjects, as reflected by reduced plethysmographic FRC. Obese LONA asthma is characterised by a reduced ability to recruit closed lung units, as seen by reduced MBNW FRC, and an increased tendency for airway closure as seen by a reduced forced vital capacity.
Collapse
Affiliation(s)
- Anne E. Dixon
- Dept of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Ubong Peters
- Dept of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Ryan Walsh
- Dept of Radiology, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Nirav Daphtary
- Dept of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Erick S. MacLean
- Dept of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Kevin Hodgdon
- Dept of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - David A. Kaminsky
- Dept of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Jason H.T. Bates
- Dept of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| |
Collapse
|
12
|
Elliot JG, Donovan GM, Wang KCW, Green FHY, James AL, Noble PB. Fatty airways: implications for obstructive disease. Eur Respir J 2019; 54:13993003.00857-2019. [PMID: 31624112 DOI: 10.1183/13993003.00857-2019] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/05/2019] [Indexed: 11/05/2022]
Abstract
Epidemiological studies report that overweight or obese asthmatic subjects have more severe disease than those of a healthy weight. We postulated that accumulation of adipose tissue within the airway wall may occur in overweight patients and contribute to airway pathology. Our aim was to determine the relationship between adipose tissue within the airway wall and body mass index (BMI) in individuals with and without asthma.Transverse airway sections were sampled in a stratified manner from post mortem lungs of control subjects (n=15) and cases of nonfatal (n=21) and fatal (n=16) asthma. The relationship between airway adipose tissue, remodelling and inflammation was assessed. The areas of the airway wall and adipose tissue were estimated by point count and expressed as area per mm of basement membrane perimeter (Pbm). The number of eosinophils and neutrophils were expressed as area densities.BMI ranged from 15 to 45 kg·m-2 and was greater in nonfatal asthma cases (p<0.05). Adipose tissue was identified in the outer wall of large airways (Pbm >6 mm), but was rarely seen in small airways (Pbm <6 mm). Adipose tissue area correlated positively with eosinophils and neutrophils in fatal asthma (Pbm >12 mm, p<0.01), and with neutrophils in control subjects (Pbm >6 mm, p=0.04).These data show that adipose tissue is present within the airway wall and is related to BMI, wall thickness and the number of inflammatory cells. Therefore, the accumulation of airway adipose tissue in overweight individuals may contribute to airway pathophysiology.
Collapse
Affiliation(s)
- John G Elliot
- West Australian Sleep Disorders Research Institute, Dept of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Nedlands, Australia .,School of Human Sciences, The University of Western Australia, Crawley, Australia
| | - Graham M Donovan
- Dept of Mathematics, University of Auckland, Auckland, New Zealand
| | - Kimberley C W Wang
- School of Human Sciences, The University of Western Australia, Crawley, Australia.,Telethon Kids Institute, University of Western Australia, Nedlands, Australia
| | - Francis H Y Green
- Dept of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Alan L James
- West Australian Sleep Disorders Research Institute, Dept of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Nedlands, Australia.,School of Medicine and Pharmacology, The University of Western Australia, Nedlands, Australia
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Crawley, Australia
| |
Collapse
|
13
|
Mizuta K, Matoba A, Shibata S, Masaki E, Emala Sr CW. Obesity-induced asthma: Role of free fatty acid receptors. JAPANESE DENTAL SCIENCE REVIEW 2019; 55:103-107. [PMID: 31516639 PMCID: PMC6728269 DOI: 10.1016/j.jdsr.2019.07.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 01/28/2019] [Accepted: 07/22/2019] [Indexed: 12/27/2022] Open
Abstract
Obesity is a major risk factor for the development of asthma, and worsens the key features of asthma including airway hyperresponsiveness, inflammation, and airway remodeling. Although pro- and anti-inflammatory adipocytokines may contribute to the pathogenesis of asthma in obesity, the mechanistic basis for the relationship between asthma and obesity remains unclear. In obese individuals, the increased amount of adipose tissue results in the release of more long-chain free fatty acids as compared to lean individuals, causing an elevation in plasma long-chain free fatty acid concentrations. Recent findings suggest that the free fatty acid receptor 1 (FFAR1), which is a sensor of medium- and long-chain free fatty acids, is expressed on airway smooth muscle and plays a pivotal role in airway contraction and airway smooth muscle cell proliferation. In contrast, FFAR4, which is a sensor for long-chain n-3 polyunsaturated fatty acids and also expressed on airway smooth muscle, does not contribute to airway contraction and airway smooth muscle cell proliferation. Functional roles for short-chain fatty acid receptors FFAR2 and FFAR3 in the pathogenesis of asthma is still under debate. Taken together, adipose-derived long-chain free fatty acids may contribute to the pathogenesis of asthma in obesity through FFAR1.
Collapse
Affiliation(s)
- Kentaro Mizuta
- Department of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Atsuko Matoba
- Department of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Sumire Shibata
- Department of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Eiji Masaki
- Department of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Charles W. Emala Sr
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York, United States
| |
Collapse
|
14
|
Chair's Summary: Obesity and Associated Changes in Metabolism, Implications for Lung Diseases. Ann Am Thorac Soc 2019; 14:S314-S315. [PMID: 29161083 DOI: 10.1513/annalsats.201702-116aw] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
15
|
Association of Obesity with Quantitative Chest CT Measured Airway Wall Thickness in WTC Workers with Lower Airway Disease. Lung 2019; 197:517-522. [PMID: 31254057 DOI: 10.1007/s00408-019-00246-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/24/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND We previously reported that wall area percent (WAP), a quantitative CT (QCT) indicator of airway wall thickness and, presumably, inflammation, is associated with adverse longitudinal expiratory flow trajectories in WTC workers, but that obesity and weight gain also seemed to be independently predictive of the latter. Previous studies have reported no association between WAP and obesity, so we investigated that association in nonsmoking WTC-exposed individuals and healthy unexposed controls. METHODS We assessed WAP using the Chest Imaging Platform QCT system in a segmental bronchus in 118 former WTC workers, and 89 COPDGene® WTC-unexposed and asymptomatic subjects. We used multiple regression to model WAP vs. body mass index (BMI) in the two groups, adjusting for important subject and CT image characteristics. RESULTS Unadjusted analyses revealed significant differences between the two groups with regards to WAP, age, gender, scan pixel spacing and slice interval, but not BMI or total lung capacity. In adjusted analysis, there was a significant interaction between BMI and WTC exposure on WAP. BMI was significantly and positively associated with WAP in the WTC group, but not in the COPDGene® group, but stratified analyses revealed that the effect was significant in WTC subjects with clinical evidence of lower airway disease (LAD). DISCUSSION Unlike non-diseased subjects, BMI was significantly associated with WAP in WTC workers and, in stratified analyses, the association was significant only among those with LAD. Our findings suggest that this adverse effect of obesity on airway structure and inflammation may be confined to already diseased individuals.
Collapse
|
16
|
Younas H, Vieira M, Gu C, Lee R, Shin MK, Berger S, Loube J, Nelson A, Bevans-Fonti S, Zhong Q, D'Alessio FR, McCormack MC, Hansel NN, Mitzner W, Polotsky VY. Caloric restriction prevents the development of airway hyperresponsiveness in mice on a high fat diet. Sci Rep 2019; 9:279. [PMID: 30670753 PMCID: PMC6342916 DOI: 10.1038/s41598-018-36651-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/22/2018] [Indexed: 12/20/2022] Open
Abstract
We have previously shown that high fat diet (HFD) for 2 weeks increases airway hyperresponsiveness (AHR) to methacholine challenge in C57BL/6J mice in association with an increase in IL-1β levels in lung tissue. We hypothesize that obesity increases AHR via the IL-1β mechanism, which can be prevented by caloric restriction and IL-1β blockade. In this study, we fed C57BL/6J mice for 8 weeks with several hypercaloric diets, including HFD, HFD supplemented with fructose, high trans-fat diet (HTFD) supplemented with fructose, either ad libitum or restricting their food intake to match body weight to the mice on a chow diet (CD). We also assessed the effect of the IL-1β receptor blocker anakinra. All mice showed the same total respiratory resistance at baseline. All obese mice showed higher AHR at 30 mg/ml of methacholine compared to CD and food restricted groups, regardless of the diet. Obese mice showed significant increases in lung IL-1 β mRNA expression, but not the protein, compared to CD and food restricted mice. Anakinra abolished an increase in AHR. We conclude that obesity leads to the airway hyperresponsiveness preventable by caloric restriction and IL-1β blockade.
Collapse
Affiliation(s)
- Haris Younas
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marcela Vieira
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chenjuan Gu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rachel Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mi-Kyung Shin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Slava Berger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeff Loube
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Andrew Nelson
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Shannon Bevans-Fonti
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qiong Zhong
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Franco R D'Alessio
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Meredith C McCormack
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nadia N Hansel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wayne Mitzner
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Vsevolod Y Polotsky
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
17
|
Abstract
Obesity affects numerous diseases, including asthma, for reasons that remain incompletely understood. Recent research suggests that the asthma of obesity is not a single disease, and that it breaks out into at least two distinct phenotypes. One phenotype is conventional allergic asthma modulated by obesity, whereas another arises solely due to the presence of obesity. The latter is postulated to be a consequence of the chronic lung compression caused by the obese chest wall in individuals with particularly collapsible lungs. Allergic obese asthma, on the other hand, appears to result from the way that obesity affects the immune system, which we hypothesize can be understood in terms of effects on the dynamic regulation of the inflammatory response.
Collapse
|
18
|
An Official American Thoracic Society Workshop Report: Obesity and Metabolism. An Emerging Frontier in Lung Health and Disease. Ann Am Thorac Soc 2018; 14:1050-1059. [PMID: 28570148 DOI: 10.1513/annalsats.201703-263ws] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The world is in the midst of an unprecedented epidemic of obesity. This epidemic has changed the presentation and etiology of common diseases. For example, steatohepatitis, directly attributable to obesity, is now the most common cause of cirrhosis in the United States. Type 2 diabetes is increasingly being diagnosed in children. Pulmonary researchers and clinicians are just beginning to appreciate the impact of obesity and altered metabolism on common pulmonary diseases. Obesity has recently been identified as a major risk factor for the development of asthma and for acute respiratory distress syndrome. Obesity is associated with profound changes in pulmonary physiology, the development of pulmonary hypertension, sleep-disordered breathing, and altered susceptibility to pulmonary infection. In short, obesity is leading to dramatic changes in lung health and disease. Simultaneously, the rapidly developing field of metabolism, including mitochondrial function, is shifting the paradigms by which the pathophysiology of many pulmonary diseases is understood. Altered metabolism can lead to profound changes in both innate and adaptive immunity, as well as the function of structural cells. To address this emerging field, a 3-day meeting on obesity, metabolism, and lung disease was convened in October 2015 to discuss recent findings, foster research initiatives, and ultimately guide clinical care. The major findings arising from this meeting are reported in this document.
Collapse
|
19
|
Matoba A, Matsuyama N, Shibata S, Masaki E, Emala CW, Mizuta K. The free fatty acid receptor 1 promotes airway smooth muscle cell proliferation through MEK/ERK and PI3K/Akt signaling pathways. Am J Physiol Lung Cell Mol Physiol 2018; 314:L333-L348. [PMID: 29097424 PMCID: PMC5900353 DOI: 10.1152/ajplung.00129.2017] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 10/27/2017] [Accepted: 10/27/2017] [Indexed: 11/22/2022] Open
Abstract
Obesity is a risk factor for asthma and influences airway hyperresponsiveness, which is in part modulated by airway smooth muscle proliferative remodeling. Plasma free fatty acids (FFAs) levels are elevated in obese individuals, and long-chain FFAs act as endogenous ligands for the free fatty acid receptor 1 (FFAR1), which couples to both Gq and Gi proteins. We examined whether stimulation of FFAR1 induces airway smooth muscle cell proliferation through classical MEK/ERK and/or phosphoinositide 3-kinase (PI3K)/Akt signaling pathways. The long-chain FFAs (oleic acid and linoleic acid) and a FFAR1 agonist (GW9508) induced human airway smooth muscle (HASM) cell proliferation, which was inhibited by the MEK inhibitor U0126 and the PI3K inhibitor LY294002 . The long-chain FFAs and GW9508 increased phosphorylation of ERK, Akt, and p70S6K in HASM cells and freshly isolated rat airway smooth muscle. Downregulation of FFAR1 in HASM cells by siRNA significantly attenuated oleic acid-induced phosphorylation of ERK and Akt. Oleic acid-induced ERK phosphorylation was blocked by either the Gαi-protein inhibitor pertussis toxin or U0126 and was partially inhibited by either the Gαq-specific inhibitor YM-254890 or the Gβγ signaling inhibitor gallein. Oleic acid significantly inhibited forskolin-stimulated cAMP activity, which was attenuated by pertussis toxin. Akt phosphorylation was inhibited by pertussis toxin, the ras inhibitor manumycin A, the Src inhibitor PP1, or LY294002 . Phosphorylation of p70S6K by oleic acid or GW9508 was significantly inhibited by LY294002 , U0126, and the mammalian target of rapamycin (mTOR) inhibitor rapamycin. In conclusion, the FFAR1 promoted airway smooth muscle cell proliferation and p70S6K phosphorylation through MEK/ERK and PI3K/Akt signaling pathways.
Collapse
Affiliation(s)
- Atsuko Matoba
- Department of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry , Sendai , Japan
| | - Nao Matsuyama
- Department of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry , Sendai , Japan
| | - Sumire Shibata
- Department of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry , Sendai , Japan
| | - Eiji Masaki
- Department of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry , Sendai , Japan
| | - Charles W Emala
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University , New York, New York
| | - Kentaro Mizuta
- Department of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry , Sendai , Japan
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University , New York, New York
| |
Collapse
|
20
|
Everaere L, Ait Yahia S, Bouté M, Audousset C, Chenivesse C, Tsicopoulos A. Innate lymphoid cells at the interface between obesity and asthma. Immunology 2017; 153:21-30. [PMID: 28880992 DOI: 10.1111/imm.12832] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/24/2017] [Accepted: 08/31/2017] [Indexed: 02/06/2023] Open
Abstract
Obesity and asthma prevalence has dramatically and concomitantly increased over the last 25 years, and many epidemiological studies have highlighted obesity as an important risk factor for asthma. Although many studies have been performed, the underlying mechanisms remain poorly understood. Innate mechanisms have been involved in both diseases, in particular through the recently described innate lymphoid cells (ILCs). ILCs are subdivided into three groups that are defined by their cytokine production and by their master transcription factor expression, in sharp correlation with their T helper counterparts. However, unlike T helper cells, ILCs do not express antigen-specific receptors, but respond to damage-induced signals. ILCs have been found in target tissues of both diseases, and data have implicated these cells in the pathogenesis of both diseases. In particular group 2 ILCs (ILC2) are activated in both the adipose and lung tissues under the effect of interleukin-33 and interleukin-25 expression. However, counter-intuitively to the well-known association between obesity and asthma, ILC2 are beneficial for obesity but deleterious for asthma. This review will examine the roles of ILCs in each disease and recent data highlighting ILCs as a putative link between obesity and asthma.
Collapse
Affiliation(s)
- Laetitia Everaere
- Institut National de la Santé et de la Recherche Médicale, Lille, France.,CNRS, UMR 8204, Centre for Infection and Immunity of Lille, Lille, France.,Institut Pasteur de Lille, Lille, France.,Université de Lille, Lille, France
| | - Saliha Ait Yahia
- Institut National de la Santé et de la Recherche Médicale, Lille, France.,CNRS, UMR 8204, Centre for Infection and Immunity of Lille, Lille, France.,Institut Pasteur de Lille, Lille, France.,Université de Lille, Lille, France
| | - Mélodie Bouté
- Institut National de la Santé et de la Recherche Médicale, Lille, France.,CNRS, UMR 8204, Centre for Infection and Immunity of Lille, Lille, France.,Institut Pasteur de Lille, Lille, France.,Université de Lille, Lille, France
| | - Camille Audousset
- Institut National de la Santé et de la Recherche Médicale, Lille, France.,CNRS, UMR 8204, Centre for Infection and Immunity of Lille, Lille, France.,Institut Pasteur de Lille, Lille, France.,Université de Lille, Lille, France.,Clinique des Maladies Respiratoires et Centre Hospitalier Régional et Universitaire de Lille, Lille, France
| | - Cécile Chenivesse
- Institut National de la Santé et de la Recherche Médicale, Lille, France.,CNRS, UMR 8204, Centre for Infection and Immunity of Lille, Lille, France.,Institut Pasteur de Lille, Lille, France.,Université de Lille, Lille, France.,Clinique des Maladies Respiratoires et Centre Hospitalier Régional et Universitaire de Lille, Lille, France
| | - Anne Tsicopoulos
- Institut National de la Santé et de la Recherche Médicale, Lille, France.,CNRS, UMR 8204, Centre for Infection and Immunity of Lille, Lille, France.,Institut Pasteur de Lille, Lille, France.,Université de Lille, Lille, France.,Clinique des Maladies Respiratoires et Centre Hospitalier Régional et Universitaire de Lille, Lille, France
| |
Collapse
|
21
|
Prakash YS, Halayko AJ, Gosens R, Panettieri RA, Camoretti-Mercado B, Penn RB. An Official American Thoracic Society Research Statement: Current Challenges Facing Research and Therapeutic Advances in Airway Remodeling. Am J Respir Crit Care Med 2017; 195:e4-e19. [PMID: 28084822 DOI: 10.1164/rccm.201611-2248st] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Airway remodeling (AR) is a prominent feature of asthma and other obstructive lung diseases that is minimally affected by current treatments. The goals of this Official American Thoracic Society (ATS) Research Statement are to discuss the scientific, technological, economic, and regulatory issues that deter progress of AR research and development of therapeutics targeting AR and to propose approaches and solutions to these specific problems. This Statement is not intended to provide clinical practice recommendations on any disease in which AR is observed and/or plays a role. METHODS An international multidisciplinary group from within academia, industry, and the National Institutes of Health, with expertise in multimodal approaches to the study of airway structure and function, pulmonary research and clinical practice in obstructive lung disease, and drug discovery platforms was invited to participate in one internet-based and one face-to-face meeting to address the above-stated goals. Although the majority of the analysis related to AR was in asthma, AR in other diseases was also discussed and considered in the recommendations. A literature search of PubMed was performed to support conclusions. The search was not a systematic review of the evidence. RESULTS Multiple conceptual, logistical, economic, and regulatory deterrents were identified that limit the performance of AR research and impede accelerated, intensive development of AR-focused therapeutics. Complementary solutions that leverage expertise of academia and industry were proposed to address them. CONCLUSIONS To date, numerous factors related to the intrinsic difficulty in performing AR research, and economic forces that are disincentives for the pursuit of AR treatments, have thwarted the ability to understand AR pathology and mechanisms and to address it clinically. This ATS Research Statement identifies potential solutions for each of these factors and emphasizes the importance of educating the global research community as to the extent of the problem as a critical first step in developing effective strategies for: (1) increasing the extent and impact of AR research and (2) developing, testing, and ultimately improving drugs targeting AR.
Collapse
|
22
|
Dixon AE, Poynter ME. Mechanisms of Asthma in Obesity. Pleiotropic Aspects of Obesity Produce Distinct Asthma Phenotypes. Am J Respir Cell Mol Biol 2017; 54:601-8. [PMID: 26886277 DOI: 10.1165/rcmb.2016-0017ps] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The majority of patients with severe or difficult-to-control asthma in the United States are obese. Epidemiological studies have clearly established that obese patients tend to have worse asthma control and increased hospitalizations and do not respond to standard controller therapy as well as lean patients with asthma. Less clear are the mechanistic underpinnings for the striking clinical differences between lean and obese patients with asthma. Because obesity is principally a disorder of metabolism and energy regulation, processes fundamental to the function of every cell and system within the body, it is not surprising that it affects the respiratory system; it is perhaps surprising that it has taken so long to appreciate how dysfunctional metabolism and energy regulation lead to severe airway disease. Although early investigations focused on identifying a common factor in obesity that could promote airway disease, an appreciation has emerged that the asthma of obesity is a manifestation of multiple anomalies related to obesity affecting all the different pathways that cause asthma, and likely also to de novo airway dysfunction. Consequently, all the phenotypes of asthma currently recognized in lean patients (which are profoundly modified by obesity), as well as those unique to one's obesity endotype, likely contribute to obese asthma in a particular individual. This perspective reviews what we have learned from clinical studies and animal models about the phenotypes of asthma in obesity, which show how specific aspects of obesity and altered metabolism might lead to de novo airway disease and profoundly modify existing airway disease.
Collapse
Affiliation(s)
- Anne E Dixon
- Department of Medicine, University of Vermont, Burlington, Vermont
| | | |
Collapse
|
23
|
Bates JHT. Physiological Mechanisms of Airway Hyperresponsiveness in Obese Asthma. Am J Respir Cell Mol Biol 2017; 54:618-23. [PMID: 26909510 DOI: 10.1165/rcmb.2016-0019ps] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Obesity affects the incidence and severity of asthma in at least two major phenotypes: an early-onset allergic (EOA) form that is complicated by obesity and a late-onset nonallergic (LONA) form that occurs only in the setting of obesity. Both groups exhibit airway hyperresponsiveness to methacholine challenge but exhibit differential effects of weight loss. Measurements of lung function in patients with LONA obese asthma suggest that this group of individuals may simply be those unlucky enough to have airways that are more compliant than average, and that this leads to airway hyperresponsiveness at the reduced lung volumes caused by excess adipose tissue around the chest wall. In contrast, the frequent exacerbations in those with EOA obese asthma can potentially be explained by episodic inflammatory thickening of the airway wall synergizing with obesity-induced reductions in lung volume. These testable hypotheses are based on the strong likelihood that LONA and EOA obese asthma are distinct diseases. Both, however, may benefit from targeted therapeutics that impose elevations in lung volume.
Collapse
Affiliation(s)
- Jason H T Bates
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont
| |
Collapse
|
24
|
Ather JL, Chung M, Hoyt LR, Randall MJ, Georgsdottir A, Daphtary NA, Aliyeva MI, Suratt BT, Bates JHT, Irvin CG, Russell SR, Forgione PM, Dixon AE, Poynter ME. Weight Loss Decreases Inherent and Allergic Methacholine Hyperresponsiveness in Mouse Models of Diet-Induced Obese Asthma. Am J Respir Cell Mol Biol 2016; 55:176-87. [PMID: 27064658 PMCID: PMC4979374 DOI: 10.1165/rcmb.2016-0070oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/03/2016] [Indexed: 12/21/2022] Open
Abstract
Obese asthma presents with inherent hyperresponsiveness to methacholine or augmented allergen-driven allergic asthma, with an even greater magnitude of methacholine hyperresponsiveness. These physiologic parameters and accompanying obese asthma symptoms can be reduced by successful weight loss, yet the underlying mechanisms remain incompletely understood. We implemented mouse models of diet-induced obesity, dietary and surgical weight loss, and environmental allergen exposure to examine the mechanisms and mediators of inherent and allergic obese asthma. We report that the methacholine hyperresponsiveness in these models of inherent obese asthma and obese allergic asthma manifests in distinct anatomical compartments but that both are amenable to interventions that induce substantial weight loss. The inherent obese asthma phenotype, with characteristic increases in distal airspace tissue resistance and tissue elastance, is associated with elevated proinflammatory cytokines that are reduced with dietary weight loss. Surprisingly, bariatric surgery-induced weight loss further elevates these cytokines while reducing methacholine responsiveness to levels similar to those in lean mice or in formerly obese mice rendered lean through dietary intervention. In contrast, the obese allergic asthma phenotype, with characteristic increases in central airway resistance, is not associated with increased adaptive immune responses, yet diet-induced weight loss reduces methacholine hyperresponsiveness without altering immunological variables. Diet-induced weight loss is effective in models of both inherent and allergic obese asthma, and our examination of the fecal microbiome revealed that the obesogenic Firmicutes/Bacteroidetes ratio was normalized after diet-induced weight loss. Our results suggest that structural, immunological, and microbiological factors contribute to the manifold presentations of obese asthma.
Collapse
Affiliation(s)
- Jennifer L. Ather
- Vermont Lung Center, Division of Pulmonary Disease and Critical Care, Department of Medicine, and
| | - Michael Chung
- Vermont Lung Center, Division of Pulmonary Disease and Critical Care, Department of Medicine, and
| | - Laura R. Hoyt
- Vermont Lung Center, Division of Pulmonary Disease and Critical Care, Department of Medicine, and
| | - Matthew J. Randall
- Vermont Lung Center, Division of Pulmonary Disease and Critical Care, Department of Medicine, and
| | - Anna Georgsdottir
- Vermont Lung Center, Division of Pulmonary Disease and Critical Care, Department of Medicine, and
| | - Nirav A. Daphtary
- Vermont Lung Center, Division of Pulmonary Disease and Critical Care, Department of Medicine, and
| | - Minara I. Aliyeva
- Vermont Lung Center, Division of Pulmonary Disease and Critical Care, Department of Medicine, and
| | - Benjamin T. Suratt
- Vermont Lung Center, Division of Pulmonary Disease and Critical Care, Department of Medicine, and
| | - Jason H. T. Bates
- Vermont Lung Center, Division of Pulmonary Disease and Critical Care, Department of Medicine, and
| | - Charles G. Irvin
- Vermont Lung Center, Division of Pulmonary Disease and Critical Care, Department of Medicine, and
| | | | | | - Anne E. Dixon
- Vermont Lung Center, Division of Pulmonary Disease and Critical Care, Department of Medicine, and
| | - Matthew E. Poynter
- Vermont Lung Center, Division of Pulmonary Disease and Critical Care, Department of Medicine, and
| |
Collapse
|
25
|
Bates JHT. Systems physiology of the airways in health and obstructive pulmonary disease. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2016; 8:423-37. [PMID: 27340818 DOI: 10.1002/wsbm.1347] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 01/10/2023]
Abstract
Fresh air entering the mouth and nose is brought to the blood-gas barrier in the lungs by a repetitively branching network of airways. Provided the individual airway branches remain patent, this airway tree achieves an enormous amplification in cross-sectional area from the trachea to the terminal bronchioles. Obstructive lung diseases such as asthma occur when airway patency becomes compromised. Understanding the pathophysiology of these obstructive diseases thus begins with a consideration of the factors that determine the caliber of an individual airway, which include the force balance between the inward elastic recoil of the airway wall, the outward tethering forces of its parenchymal attachments, and any additional forces due to contraction of airway smooth muscle. Other factors may also contribute significantly to airway narrowing, such as thickening of the airway wall and accumulation of secretions in the lumen. Airway obstruction becomes particularly severe when these various factors occur in concert. However, the effect of airway abnormalities on lung function cannot be fully understood only in terms of what happens to a single airway because narrowing throughout the airway tree is invariably heterogeneous and interdependent. Obstructive lung pathologies thus manifest as emergent phenomena arising from the way in which the airway tree behaves a system. These emergent phenomena are studied with clinical measurements of lung function made by spirometry and by mechanical impedance measured with the forced oscillation technique. Anatomically based computational models are linking these measurements to underlying anatomic structure in systems physiology terms. WIREs Syst Biol Med 2016, 8:423-437. doi: 10.1002/wsbm.1347 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Jason H T Bates
- Department of Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| |
Collapse
|
26
|
Zaihra T, Walsh CJ, Ahmed S, Fugère C, Hamid QA, Olivenstein R, Martin JG, Benedetti A. Phenotyping of difficult asthma using longitudinal physiological and biomarker measurements reveals significant differences in stability between clusters. BMC Pulm Med 2016; 16:74. [PMID: 27165150 PMCID: PMC4862112 DOI: 10.1186/s12890-016-0232-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 04/27/2016] [Indexed: 12/02/2022] Open
Abstract
Background Although the heterogeneous nature of asthma has prompted asthma phenotyping with physiological or biomarker data, these studies have been mostly cross-sectional. Longitudinal studies that assess the stability of phenotypes based on a combination of physiological, clinical and biomarker data are currently lacking. Our objective was to assess the longitudinal stability of clusters derived from repeated measures of airway and physiological data over a 1-year period in moderate and severe asthmatics. Methods A total of 125 subjects, 48 with moderate asthma (MA) and 77 with severe asthma (SA) were evaluated every 3 months and monthly, respectively, over a 1-year period. At each 3-month time point, subjects were grouped into 4 asthma clusters (A, B, C, D) based on a combination of clinical (duration of asthma), physiological (FEV1 and BMI) and biomarker (sputum eosinophil count) variables, using k-means clustering. Results Majority of subjects in clusters A and C had severe asthma (93 % of subjects in cluster A and 79.5 % of subjects in cluster C at baseline). Overall, a total of 59 subjects (47 %) had stable cluster membership, remaining in clusters with the same subjects at each evaluation time. Cluster A was the least stable (21 % stability) and cluster B was the most stable cluster (71 % stability). Cluster stability was not influenced by changes in the dosage of inhaled corticosteroids. Conclusion Asthma phenotyping based on clinical, physiologic and biomarker data identified clusters with significant differences in longitudinal stability over a 1-year period. This finding indicates that the majority of patients within stable clusters can be phenotyped with reasonable accuracy after a single measurement of lung function and sputum eosinophilia, while patients in unstable clusters will require more frequent evaluation of these variables to be properly characterized.
Collapse
Affiliation(s)
- T Zaihra
- Department of Mathematics, The College at Brockport, State University of New York, Brockport, NY, USA.,Division of Clinical Epidemiology, McGill University Health Centre, Montreal, QC, Canada.,School of Physical & Occupational Therapy, McGill University, Montreal, QC, Canada
| | - C J Walsh
- Keenan and Li Ka Shing Knowledge Institute of Saint Michael's Hospital, Toronto, ON, Canada.,Institute of Medical Sciences and Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - S Ahmed
- Division of Clinical Epidemiology, McGill University Health Centre, Montreal, QC, Canada.,School of Physical & Occupational Therapy, McGill University, Montreal, QC, Canada.,Department of Epidemiology, Biostatistics and Occupational Health, McGill University, 1020 Pine Ave. W., Montreal, QC, H3A 1A2, Canada
| | - C Fugère
- Montreal Chest Institute, McGill University Health Centre, Montreal, QC, Canada.,Meakins Christie Laboratories, and McGill University, Montreal, QC, Canada
| | - Q A Hamid
- Montreal Chest Institute, McGill University Health Centre, Montreal, QC, Canada.,Meakins Christie Laboratories, and McGill University, Montreal, QC, Canada
| | - R Olivenstein
- Montreal Chest Institute, McGill University Health Centre, Montreal, QC, Canada.,Meakins Christie Laboratories, and McGill University, Montreal, QC, Canada
| | - J G Martin
- Montreal Chest Institute, McGill University Health Centre, Montreal, QC, Canada.,Meakins Christie Laboratories, and McGill University, Montreal, QC, Canada
| | - A Benedetti
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, 1020 Pine Ave. W., Montreal, QC, H3A 1A2, Canada. .,Department of Medicine, McGill University, Montreal, QC, Canada. .,Respiratory Epidemiology and Clinical Research Unit, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
27
|
Kankaanranta H, Kauppi P, Tuomisto LE, Ilmarinen P. Emerging Comorbidities in Adult Asthma: Risks, Clinical Associations, and Mechanisms. Mediators Inflamm 2016; 2016:3690628. [PMID: 27212806 PMCID: PMC4861800 DOI: 10.1155/2016/3690628] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/01/2015] [Accepted: 12/02/2015] [Indexed: 01/07/2023] Open
Abstract
Asthma is a heterogeneous disease with many phenotypes, and age at disease onset is an important factor in separating the phenotypes. Most studies with asthma have been performed in patients being otherwise healthy. However, in real life, comorbid diseases are very common in adult patients. We review here the emerging comorbid conditions to asthma such as obesity, metabolic syndrome, diabetes mellitus type 2 (DM2), and cardiac and psychiatric diseases. Their role as risk factors for incident asthma and whether they affect clinical asthma are evaluated. Obesity, independently or as a part of metabolic syndrome, DM2, and depression are risk factors for incident asthma. In contrast, the effects of comorbidities on clinical asthma are less well-known and mostly studies are lacking. Cross-sectional studies in obese asthmatics suggest that they may have less well controlled asthma and worse lung function. However, no long-term clinical follow-up studies with these comorbidities and asthma were identified. These emerging comorbidities often occur in the same multimorbid adult patient and may have in common metabolic pathways and inflammatory or other alterations such as early life exposures, systemic inflammation, inflammasome, adipokines, hyperglycemia, hyperinsulinemia, lung mechanics, mitochondrial dysfunction, disturbed nitric oxide metabolism, and leukotrienes.
Collapse
Affiliation(s)
- Hannu Kankaanranta
- Department of Respiratory Medicine, Seinäjoki Central Hospital, 60220 Seinäjoki, Finland
- Department of Respiratory Medicine, University of Tampere, 33521 Tampere, Finland
| | - Paula Kauppi
- Department of Respiratory Medicine and Allergology, Skin and Allergy Hospital, Helsinki University Hospital and Helsinki University, 00029 Helsinki, Finland
| | - Leena E. Tuomisto
- Department of Respiratory Medicine, Seinäjoki Central Hospital, 60220 Seinäjoki, Finland
| | - Pinja Ilmarinen
- Department of Respiratory Medicine, Seinäjoki Central Hospital, 60220 Seinäjoki, Finland
| |
Collapse
|
28
|
van Huisstede A, Rudolphus A, Castro Cabezas M, Biter LU, van de Geijn GJ, Taube C, Hiemstra PS, Braunstahl GJ, van Schadewijk A. Effect of bariatric surgery on asthma control, lung function and bronchial and systemic inflammation in morbidly obese subjects with asthma. Thorax 2015; 70:659-67. [DOI: 10.1136/thoraxjnl-2014-206712] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/17/2015] [Indexed: 11/04/2022]
|
29
|
Ather JL, Poynter ME, Dixon AE. Immunological characteristics and management considerations in obese patients with asthma. Expert Rev Clin Immunol 2015; 11:793-803. [PMID: 25914932 DOI: 10.1586/1744666x.2015.1040394] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity is associated with severe, poorly controlled asthma that does not respond as well to therapy as asthma in leaner asthmatics. Important insights gained from animal models of obesity and asthma suggests that different forms of obesity may lead to different manifestations of airway disease: obesity is associated with both innate increased airway reactivity and altered responses to aeroallergen and pollutant challenges. In humans, at least two broad groups of obese asthmatics have been recognized: one that is likely unique to obesity and another that is likely lean allergic asthma much complicated by obesity. This article will discuss what we have learned about the immunological and pathophysiological basis of asthma in obesity from animal and human studies, and how this might guide therapy.
Collapse
Affiliation(s)
- Jennifer L Ather
- Pulmonary and Critical Care Medicine, University of Vermont College of Medicine, Given D208, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | | | | |
Collapse
|