1
|
McGarr GW, Li-Maloney C, King KE, Janetos KMT, Fujii N, Amano T, Kenny GP. Modulation of cutaneous vasodilation by reactive oxygen species during local and whole body heating in young and older adults. Am J Physiol Regul Integr Comp Physiol 2024; 327:R543-R552. [PMID: 39241006 DOI: 10.1152/ajpregu.00127.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/08/2024]
Abstract
We evaluated reactive oxygen species (ROS) modulation of cutaneous vasodilation during local and whole body passive heating in young and older adults. Cutaneous vascular conductance normalized to maximum vasodilation (%CVCmax) was assessed in young and older adults (10/group) using laser-Doppler flowmetry at four dorsal forearm sites treated with 1) Ringer solution (control), 2) 100 µM apocynin (NADPH oxidase inhibitor), 3) 10 µM allopurinol (xanthine oxidase inhibitor), or 4) 10 µM tempol (superoxide dismutase mimetic), via intradermal microdialysis during local (protocol 1) and whole body heating (protocol 2). In protocol 1, forearm skin sites were set at 33°C during baseline and then progressively increased to 39°C and 42°C (30 min each). In protocol 2, participants were immersed in warm water (35°C, midsternum) with the experimental forearm above water level, and local skin sites were maintained at 34°C. Bath temperature was increased (∼40°C) to clamp core temperature at 38.5°C for 60 min. In protocol 1, there were significant treatment site by age interactions for the 39°C (P = 0.015) and 42°C (P = 0.004) plateaus; however no significant effects were observed after post hoc adjustment. In protocol 2, there was a significant treatment site by age interaction (P < 0.001), where %CVCmax in older adults was 11.0% [7.4, 14.6] higher for apocynin (P < 0.001), 8.9% [5.3, 12.5] higher for allopurinol (P < 0.001), and 4.8% [1.3, 8.4] higher for tempol (P = 0.016) sites relative to the control site. ROS derived from NADPH oxidase and xanthine oxidase attenuate cutaneous vasodilation in older adults during passive whole body heating, but not during local skin heating, with negligible effects on their young counterparts for either heating modality.NEW & NOTEWORTHY We found that local infusion of apocynin or allopurinol improved cutaneous vasodilator responses to passive whole body heating (but not local skin heating) in healthy older adults. These findings indicate that impaired microvascular responses to whole body heating with primary aging are linked to augmented production of reactive oxygen species (ROS) from NADPH oxidase and xanthine oxidase. This study sheds new light on the specific ROS pathways that modulate age-related changes in cutaneous microvascular responses to heating.
Collapse
Affiliation(s)
- Gregory W McGarr
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Caroline Li-Maloney
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Kelli E King
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Kristina-Marie T Janetos
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Naoto Fujii
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tatsuro Amano
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Souissi A, Dergaa I, Hajri SE, Chamari K, Saad HB. A new perspective on cardiovascular function and dysfunction during endurance exercise: identifying the primary cause of cardiovascular risk. Biol Sport 2024; 41:131-144. [PMID: 39416509 PMCID: PMC11474989 DOI: 10.5114/biolsport.2024.134757] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/12/2023] [Accepted: 01/04/2024] [Indexed: 10/19/2024] Open
Abstract
Exercise mechanical efficiency typically falls within the range of approximately 20 to 25%. This means that a great part of the metabolic energy converted to generate movement is released as heat. Therefore, the rise in core temperature during endurance exercise in humans is proportional to generated work. Cutaneous vasodilation occurs when the core temperature threshold is reached. The rise in heart rate in response to thermal stress is a cardiovascular response that increases cardiac output and skin blood flow. The cardiovascular response during endurance exercise is a complex phenomenon potentially influenced by the involvement of nitric oxide in active thermoregulatory vasodilation. Excessive exercise can create high oxidative stress by disrupting the balance between free radicals' production and scavenging, resulting in impaired cardiovascular function. The above considerations are related to the severity and duration of endurance exercise. The first focus of this narrative review is to provide an updated understanding of cardiovascular function during endurance exercise. We aim to explore the potential role of oxidative stress in causing cardiovascular dysfunction during endurance exercise from a fresh perspective. Additionally, we aim to identify the primary factors contributing to cardiovascular risk during strenuous prolonged exercise by highlighting recent progress in this area, which may shed light on previously unexplained physiological responses. To ascertain the effect of endurance exercise on cardiovascular function and dysfunction, a narrative review of the literature was undertaken using PubMed, ScienceDirect, Medline, Google Scholar, and Scopus. The review highlighted that high oxidative stress (due to high levels of catecholamines, shear stress, immune system activation, and renal dysfunction) leads to a rise in platelet aggregation during endurance exercise. Importantly, we clearly revealed for the first time that endothelial damage, vasoconstriction, and blood coagulation (inducing thrombosis) are potentially the primary factors of cardiovascular dysfunction and myocardial infarction during and/or following endurance exercise.
Collapse
Affiliation(s)
- Amine Souissi
- Université de Sousse, Faculté de Médecine de Sousse, Hôpital Farhat HACHED, Laboratoire de Recherche (Insuffisance Cardiaque, LR12SP09), Sousse, Tunisie
| | - Ismail Dergaa
- Primary Health Care Corporation (PHCC), Doha, P.O. Box 26555, Qatar
| | - Samia Ernez Hajri
- Université de Sousse, Faculté de Médecine de Sousse, Hôpital Farhat HACHED, Laboratoire de Recherche (Insuffisance Cardiaque, LR12SP09), Sousse, Tunisie
| | - Karim Chamari
- High Institute of Sport and Physical Education of Ksar-Said, University of La Manouba, Tunis, Tunisia
- Naufar Wellness & Recovery Center, Doha, Qatar
| | - Helmi Ben Saad
- Université de Sousse, Faculté de Médecine de Sousse, Hôpital Farhat HACHED, Laboratoire de Recherche (Insuffisance Cardiaque, LR12SP09), Sousse, Tunisie
| |
Collapse
|
3
|
van Ruissen MCE, van Kraaij SJW, Gal P, Bakker WA, Hijma HJ, Groeneveld GJ, de Kam ML, Burggraaf J, Moerland M. Open-Label Interventional Study in Healthy Volunteers to Evaluate NO-Mediated Vasodilation by Dermal Allyl Isothiocyanate Challenge and Whole-Body Heat Stress. J Exp Pharmacol 2024; 16:285-294. [PMID: 39308849 PMCID: PMC11416113 DOI: 10.2147/jep.s473217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024] Open
Abstract
Dermal allyl isothiocyanate (AITC) administration and whole-body heat stress (WBHS) are two challenge models that are used to evaluate physiological mechanisms of vasodilation and pharmacological activity in humans. Their exact vasodilatory mechanisms in humans are not fully elucidated but are likely to be nitric oxide (NO)-mediated. This study aimed to evaluate whether there is overlap in the vasodilatory pathways of dermal AITC application and WBHS by combining the challenges. In this open-label interventional study, healthy volunteers underwent dermal administration of AITC twice: under basal conditions and during WBHS. Dermal blood flow (DBF) was non-invasively measured using laser speckle contrast imaging four times, once in each of the following situations: baseline, WBHS only, AITC only, and WBHS combined with AITC. A total of 12 male volunteers, aged 18-61 years, participated in the study. Compared to baseline, following AITC application, their DBF increased by 63.43 AU (baseline: 32.55, 95% CI [17.78, 47.31] AU, AITC only: 95.97, 95% CI [81.21, 110.7] AU, p < 0.0001). During WBHS, the increase in DBF after AITC was 42.76 AU (WBHS only: 87.25, 95% CI [72.49, 102.0] AU, WBHS+AITC: 130.0, 95% CI [115.2, 144.8] AU, p < 0.0001). The combination of WBHS and AITC resulted in a lower DBF than the sum of the DBF responses to AITC and WBHS when applied separately (ED 20.67, 95% CI [-3.532, 44.88], p = 0.0916). This might point towards the presence of an interaction in the vasodilatory mechanism of AITC application and WBHS, possibly indicating overlap in their NOS-driven vasodilatory pathways.
Collapse
Affiliation(s)
- Marella C E van Ruissen
- Center for Human Drug Research, Leiden, The Netherlands
- Leiden University Medical Center, Leiden, The Netherlands
| | - Sebastiaan J W van Kraaij
- Center for Human Drug Research, Leiden, The Netherlands
- Leiden University Medical Center, Leiden, The Netherlands
| | - Pim Gal
- Center for Human Drug Research, Leiden, The Netherlands
- Leiden University Medical Center, Leiden, The Netherlands
| | - Wouter A Bakker
- Center for Human Drug Research, Leiden, The Netherlands
- Leiden University Medical Center, Leiden, The Netherlands
| | - Hemme J Hijma
- Center for Human Drug Research, Leiden, The Netherlands
- Leiden University Medical Center, Leiden, The Netherlands
| | - Geert Jan Groeneveld
- Center for Human Drug Research, Leiden, The Netherlands
- Leiden University Medical Center, Leiden, The Netherlands
| | | | - Jacobus Burggraaf
- Center for Human Drug Research, Leiden, The Netherlands
- Leiden University Medical Center, Leiden, The Netherlands
| | - Matthijs Moerland
- Center for Human Drug Research, Leiden, The Netherlands
- Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
4
|
Wong BJ, Turner CG, Hayat MJ, Otis JS, Quyyumi AA. Inhibition of superoxide and iNOS augment cutaneous nitric oxide-dependent vasodilation in non-Hispanic black young adults. Physiol Rep 2024; 12:e16021. [PMID: 38639714 PMCID: PMC11027894 DOI: 10.14814/phy2.16021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/20/2024] Open
Abstract
We assessed the combined effect of superoxide and iNOS inhibition on microvascular function in non-Hispanic Black and non-Hispanic White participants (n = 15 per group). Participants were instrumented with four microdialysis fibers: (1) lactated Ringer's (control), (2) 10 μM tempol (superoxide inhibition), (3) 0.1 mM 1400 W (iNOS inhibition), (4) tempol + 1400 W. Cutaneous vasodilation was induced via local heating and NO-dependent vasodilation was quantified. At control sites, NO-dependent vasodilation was lower in non-Hispanic Black (45 ± 9% NO) relative to non-Hispanic White (79 ± 9% NO; p < 0.01; effect size, d = 3.78) participants. Tempol (62 ± 16% NO), 1400 W (78 ± 12% NO) and tempol +1400 W (80 ± 13% NO) increased NO-dependent vasodilation in non-Hispanic Black participants relative to control sites (all p < 0.01; d = 1.22, 3.05, 3.03, respectively). The effect of 1400 W (p = 0.04, d = 1.11) and tempol +1400 W (p = 0.03, d = 1.22) was greater than tempol in non-Hispanic Black participants. There was no difference between non-Hispanic Black and non-Hispanic White participants at 1400 W or tempol + 1400 W sites. These data suggest iNOS has a greater effect on NO-dependent vasodilation than superoxide in non-Hispanic Black participants.
Collapse
Affiliation(s)
- Brett J. Wong
- Department of Kinesiology & HealthGeorgia State UniversityAtlantaGeorgiaUSA
| | - Casey G. Turner
- Department of Kinesiology & HealthGeorgia State UniversityAtlantaGeorgiaUSA
- Molecular Cardiology Research InstituteTufts Medical CenterBostonMassachusettsUSA
| | - Matthew J. Hayat
- Department of Population Health Sciences, School of Public HealthGeorgia State UniversityAtlantaGeorgiaUSA
| | - Jeffrey S. Otis
- Department of Kinesiology & HealthGeorgia State UniversityAtlantaGeorgiaUSA
| | - Arshed A. Quyyumi
- Emory Clinical Cardiology Research InstituteEmory University School of MedicineAtlantaGeorgiaUSA
| |
Collapse
|
5
|
Yu Z, Wang H, Ying B, Mei X, Zeng D, Liu S, Qu W, Pan X, Pu S, Li R, Qin Y. Mild photothermal therapy assist in promoting bone repair: Related mechanism and materials. Mater Today Bio 2023; 23:100834. [PMID: 38024841 PMCID: PMC10643361 DOI: 10.1016/j.mtbio.2023.100834] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/21/2023] [Accepted: 10/14/2023] [Indexed: 12/01/2023] Open
Abstract
Achieving precision treatment in bone tissue engineering (BTE) remains a challenge. Photothermal therapy (PTT), as a form of precision therapy, has been extensively investigated for its safety and efficacy. It has demonstrated significant potential in the treatment of orthopedic diseases such as bone tumors, postoperative infections and osteoarthritis. However, the high temperatures associated with PTT can lead to certain limitations and drawbacks. In recent years, researchers have explored the use of biomaterials for mild photothermal therapy (MPT), which offers a promising approach for addressing these limitations. This review provides a comprehensive overview of the mechanisms underlying MPT and presents a compilation of photothermal agents and their utilization strategies for bone tissue repair. Additionally, the paper discusses the future prospects of MPT-assisted bone tissue regeneration, aiming to provide insights and recommendations for optimizing material design in this field.
Collapse
Affiliation(s)
- Zehao Yu
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Hao Wang
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Boda Ying
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Xiaohan Mei
- National & Local Joint Engineering Laboratory for Synthesis Technology of High-Performance Polymer, College of Chemistry, Jilin University, Changchun, 130012, People’s Republic of China
| | - Dapeng Zeng
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Shibo Liu
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Wenrui Qu
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Xiangjun Pan
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Si Pu
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Ruiyan Li
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| | - Yanguo Qin
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
- Jilin Provincial Key Laboratory of Orhtopeadics, Changchun, Jilin 130041 People’s Republic of China
| |
Collapse
|
6
|
Hammond ST, Baumfalk DR, Parr SK, Butenas AL, Scheuermann BC, Turpin VRG, Behnke BJ, Hashmi MH, Ade CJ. Impaired microvascular reactivity in patients treated with 5-fluorouracil chemotherapy regimens: Potential role of endothelial dysfunction. IJC HEART & VASCULATURE 2023; 49:101300. [PMID: 38173789 PMCID: PMC10761309 DOI: 10.1016/j.ijcha.2023.101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 01/05/2024]
Abstract
Background 5-fluorouracil (5-FU) is the second most common cancer chemotherapy associated with short- and long-term cardiotoxicity. Although the mechanisms mediating these toxicities are not well understood, patients often present with symptoms suggestive of microvascular dysfunction. We tested the hypotheses that patients undergoing cancer treatment with 5-FU based chemotherapy regimens would present with impaired microvascular reactivity and that these findings would be substantiated by decrements in endothelial nitric oxide synthase (eNOS) gene expression in 5-FU treated human coronary artery endothelial cells (HCAEC). Methods We first performed a cross-sectional analysis of 30 patients undergoing 5-FU based chemotherapy treatment for cancer (5-FU) and 32 controls (CON) matched for age, sex, body mass index, and prior health history (excluding cancer). Cutaneous microvascular reactivity was evaluated by laser Doppler flowmetry in response to endothelium-dependent (local skin heating; acetylcholine iontophoresis, ACh) and -independent (sodium nitroprusside iontophoresis, SNP) stimuli. In vitro experiments in HCAEC were completed to assess the effects of 5-FU on eNOS gene expression. Results 5-FU presented with diminished microvascular reactivity following eNOS-dependent local heating compared to CON (P = 0.001). Iontophoresis of the eNOS inhibitor L-NAME failed to alter the heating response in 5-FU (P = 0.95), despite significant reductions in CON (P = 0.03). These findings were corroborated by lower eNOS gene expression in 5-FU treated HCAEC (P < 0.01) compared to control. Peak vasodilation to ACh (P = 0.58) nor SNP (P = 0.39) were different between groups. Conclusions The present findings suggest diminished microvascular function along the eNOS-NO vasodilatory pathway in patients with cancer undergoing treatment with 5-FU-based chemotherapy regimens and thus, may provide insight into the underlying mechanisms of 5-FU cardiotoxicity.
Collapse
Affiliation(s)
- Stephen T. Hammond
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Shannon K. Parr
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - Alec L.E. Butenas
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | | | | | - Bradley J. Behnke
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
- Johnson Cancer Research Center, Kansas State University, Manhattan, KS, USA
| | | | - Carl J. Ade
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
- Johnson Cancer Research Center, Kansas State University, Manhattan, KS, USA
- Physicians Associates Studies, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
7
|
Fujii N, Rakwal R, Shibato J, Tanabe Y, Kenny GP, Amano T, Mündel T, Lei TH, Watanabe K, Kondo N, Nishiyasu T. Galanin receptors modulate cutaneous vasodilation elicited by whole-body and local heating but not thermal sweating in young adults. Eur J Pharmacol 2023:175904. [PMID: 37422121 DOI: 10.1016/j.ejphar.2023.175904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Galanin receptor subtypes GAL1, GAL2, and GAL3 are involved in several biological functions. We hypothesized that 1) GAL3 receptor activation contributes to sweating but limits cutaneous vasodilation induced by whole-body and local heating without a contribution of GAL2; and 2) GAL1 receptor activation attenuates both sweating and cutaneous vasodilation during whole-body heating. Young adults underwent whole-body (n = 12, 6 females) and local (n = 10, 4 females) heating. Forearm sweat rate (ventilated capsule) and cutaneous vascular conductance (CVC; ratio of laser-Doppler blood flow to mean arterial pressure) were assessed during whole-body heating (water-perfusion suit circulated with warm (35 °C) water), while CVC was also assessed by local forearm heating (33 °C-39 °C and elevated to 42 °C thereafter; each level of heating maintained for ∼30 min). Sweat rate and CVC were evaluated at four intradermal microdialysis forearm sites treated with either 1) 5% dimethyl sulfoxide (control), 2) M40, a non-selective GAL1 and GAL2 receptor antagonist, 3) M871 to selectively antagonize GAL2 receptor, or 4) SNAP398299 to selectively antagonize GAL3 receptor. Sweating was not modulated by any GAL receptor antagonist (P > 0.169), whereas only M40 reduced CVC (P ≤ 0.003) relative to control during whole-body heating. Relative to control, SNAP398299 augmented the initial and sustained increase in CVC during local heating to 39 °C, and the transient increase at 42 °C (P ≤ 0.028). We confirmed that while none of the galanin receptors modulate sweating during whole-body heating, GAL1 receptors mediate cutaneous vasodilation. Further, GAL3 receptors blunt cutaneous vasodilation during local heating.
Collapse
Affiliation(s)
- Naoto Fujii
- Advanced Research Initiative for Human High Performance (ARIHHP), Japan; Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan.
| | - Randeep Rakwal
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan.
| | - Junko Shibato
- Clinical Medicine Research Laboratory, Shonan University of Medical Sciences, Yokohama, Japan.
| | - Yoko Tanabe
- Advanced Research Initiative for Human High Performance (ARIHHP), Japan; Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan.
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada.
| | - Tatsuro Amano
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan.
| | - Toby Mündel
- Department of Kinesiology, Brock University, St. Catharines, Canada.
| | - Tze-Huan Lei
- College of Physical Education, Hubei Normal University, Huangshi, China.
| | - Koichi Watanabe
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan.
| | - Narihiko Kondo
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan.
| | - Takeshi Nishiyasu
- Advanced Research Initiative for Human High Performance (ARIHHP), Japan; Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
8
|
Turner CG, Hayat MJ, Grosch C, Quyyumi AA, Otis JS, Wong BJ. Endothelin A receptor inhibition increases nitric oxide-dependent vasodilation independent of superoxide in non-Hispanic Black young adults. J Appl Physiol (1985) 2023; 134:891-899. [PMID: 36892887 PMCID: PMC10042601 DOI: 10.1152/japplphysiol.00739.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Young non-Hispanic Black adults have reduced microvascular endothelial function compared with non-Hispanic White counterparts, but the mechanisms are not fully elucidated. The purpose of this study was to investigate the effect of endothelin-1 A receptor (ETAR) and superoxide on cutaneous microvascular function in young non-Hispanic Black (n = 10) and White (n = 10) adults. Participants were instrumented with four intradermal microdialysis fibers: 1) lactated Ringer's (control), 2) 500 nM BQ-123 (ETAR antagonist), 3) 10 μM tempol (superoxide dismutase mimetic), and 4) BQ-123 + tempol. Skin blood flow was assessed via laser-Doppler flowmetry (LDF), and each site underwent rapid local heating from 33°C to 39°C. At the plateau of local heating, 20 mM l-NAME [nitric oxide (NO) synthase inhibitor] was infused to quantify NO-dependent vasodilation. Data are means ± standard deviation. NO-dependent vasodilation was decreased in non-Hispanic Black compared with non-Hispanic White young adults (P < 0.01). NO-dependent vasodilation was increased at BQ-123 sites (73 ± 10% NO) and at BQ-123 + tempol sites (71 ± 10%NO) in non-Hispanic Black young adults compared with control (53 ± 13%NO, P = 0.01). Tempol alone had no effect on NO-dependent vasodilation in non-Hispanic Black young adults (63 ± 14%NO, P = 0.18). NO-dependent vasodilation at BQ-123 sites was not statistically different between non-Hispanic Black and White (80 ± 7%NO) young adults (P = 0.15). ETAR contributes to reduced NO-dependent vasodilation in non-Hispanic Black young adults independent of superoxide, suggesting a greater effect on NO synthesis rather than NO scavenging via superoxide.NEW & NOTEWORTHY Endothelin-1 A receptors (ETARs) have been shown to reduce endothelial function independently and through increased production of superoxide. We show that independent ETAR inhibition increases microvascular endothelial function in non-Hispanic Black young adults. However, administration of a superoxide dismutase mimetic alone and in combination with ETAR inhibition had no effect on microvascular endothelial function suggesting that, in the cutaneous microvasculature, the negative effects of ETAR in non-Hispanic Black young adults are independent of superoxide production.
Collapse
Affiliation(s)
- Casey G Turner
- Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia, United States
| | - Matthew J Hayat
- Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, Georgia, United States
| | - Caroline Grosch
- Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, Georgia, United States
| | - Arshed A Quyyumi
- Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Jeffrey S Otis
- Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia, United States
| | - Brett J Wong
- Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia, United States
| |
Collapse
|
9
|
Turner CG, Stanhewicz AE, Nielsen KE, Otis JS, Feresin RG, Wong BJ. Effects of biological sex and oral contraceptive pill use on cutaneous microvascular endothelial function and nitric oxide-dependent vasodilation in humans. J Appl Physiol (1985) 2023; 134:858-867. [PMID: 36861674 PMCID: PMC10042598 DOI: 10.1152/japplphysiol.00586.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
The purpose of this study was to evaluate in vivo endothelial function and nitric oxide (NO)-dependent vasodilation between women in either menstrual or placebo pill phases of their respective hormonal exposure [either naturally cycling (NC) or using oral contraceptive pills (OCPs)] and men. A planned subgroup analysis was then completed to assess endothelial function and NO-dependent vasodilation between NC women, women using OCP, and men. Endothelium-dependent and NO-dependent vasodilation were assessed in the cutaneous microvasculature using laser-Doppler flowmetry, a rapid local heating protocol (39°C, 0.1 °C/s), and pharmacological perfusion through intradermal microdialysis fibers. Data are represented as means ± standard deviation. Men displayed greater endothelium-dependent vasodilation (plateau, men: 71 ± 16 vs. women: 52 ± 20%CVCmax, P < 0.01), but lower NO-dependent vasodilation (men: 52 ± 11 vs. women: 63 ± 17%NO, P = 0.05) compared with all women. Subgroup analysis revealed NC women had lower endothelium-dependent vasodilation (plateau, NC women: 48 ± 21%CVCmax, P = 0.01) but similar NO-dependent vasodilation (NC women: 52 ± 14%NO, P > 0.99), compared with men. Endothelium-dependent vasodilation did not differ between women using OCP and men (P = 0.12) or NC women (P = 0.64), but NO-dependent vasodilation was significantly greater in women using OCP (74 ± 11%NO) than both NC women and men (P < 0.01 for both). This study highlights the importance of directly quantifying NO-dependent vasodilation in cutaneous microvascular studies. This study also provides important implications for experimental design and data interpretation.NEW & NOTEWORTHY This study supports differences in microvascular endothelial function and nitric oxide (NO)-dependent vasodilation between women in low hormone phases of two hormonal exposures and men. However, when separated into subgroups of hormonal exposure, women during placebo pills of oral contraceptive pill (OCP) use have greater NO-dependent vasodilation than naturally cycling women in their menstrual phase and men. These data improve knowledge of sex differences and the effect of OCP use on microvascular endothelial function.
Collapse
Affiliation(s)
- Casey G Turner
- Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia, United States
| | - Anna E Stanhewicz
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa, United States
| | - Karen E Nielsen
- Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, Georgia, United States
| | - Jeffrey S Otis
- Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia, United States
| | - Rafaela G Feresin
- Department of Nutrition, Georgia State University, Atlanta, Georgia, United States
| | - Brett J Wong
- Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia, United States
| |
Collapse
|
10
|
McGarr GW, Saci S, Akerman AP, Fujii N, Kenny GP. Reliability of laser-Doppler flowmetry derived measurements of forearm and calf cutaneous vasodilation during gradual local heating in young adults. Microvasc Res 2023; 146:104470. [PMID: 36549373 DOI: 10.1016/j.mvr.2022.104470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Evaluate reliability of laser-Doppler flowmetry derived cutaneous vasodilation on the upper and lower limbs during gradual local heating. METHODS In twenty-eight young adults (21 (SD 3) years, 14 females), absolute cutaneous vascular conductance (CVCabs) and CVC normalized to maximum vasodilation at 44 °C (%CVCmax) were assessed at two adjacent sites on each of the forearm and calf during gradual local skin heating (33-42 °C at 1 °C·5 min-1) for two identical trials (∼1 week apart). Responses were assessed for baseline, the steady-state heating plateau at 42 °C and the span (i.e. plateau-baseline). RESULTS Between-day reliability was characterized as measurement consistency across trials. Within-day reliability was characterized as within-limb measurement consistency across adjacent skin sites. Between- and within-day absolute reliability (coefficient of variation) generally improved with heating, from poor (>25 %) at baseline to good (<10 %) for %CVCmax and moderate (10-25 %) for CVCabs for plateau and span. However, relative reliability (intraclass correlation coefficient) was generally not acceptable (<0.70) for any condition. Responses were generally consistent for females and males and there were no major forearm and calf differences. CONCLUSIONS Consistency of CVC estimates improved during gradual local heating with negligible limb and sex differences, which are important considerations for experimental design and interpretation.
Collapse
Affiliation(s)
- Gregory W McGarr
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Samah Saci
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Ashley P Akerman
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Naoto Fujii
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada; Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
11
|
McGarr GW, King KE, Cassan CJM, Janetos KMT, Fujii N, Kenny GP. Involvement of nitric oxide synthase and reactive oxygen species in TRPA1-mediated cutaneous vasodilation in young and older adults. Microvasc Res 2023; 145:104443. [PMID: 36208670 DOI: 10.1016/j.mvr.2022.104443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/25/2022] [Accepted: 10/02/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To investigate the nitric oxide synthase (NOS) and reactive oxygen species (ROS) contributions of the cutaneous vasodilator response to transient receptor potential ankyrin-1 channel (TRPA1) activation in young and older adults. MATERIALS AND METHODS In sixteen young (20 ± 2 years, 8 females) and sixteen older adults (61 ± 5 years, 8 females), cutaneous vascular conductance normalized to maximum vasodilation (%CVCmax) was assessed at four dorsal forearm skin sites continuously perfused via microdialysis with: 1) vehicle solution (Control, 2 % dimethyl sulfoxide, 2 % Ringer, 96 % propylene glycol), 2) 10 mM Ascorbate (non-specific ROS inhibitor), 3) 10 mM L-NAME (non-specific NOS inhibitor), or 4) Ascorbate+L-NAME. The TRPA1 agonist cinnamaldehyde was co-administered at all sites [0 % (baseline), 2.9 %, 8.8 %, 26.4 %; ≥ 30 min per dose]. RESULTS %CVCmax was not different between groups for Control, L-NAME, and Ascorbate (all p > 0.05). However, there were significant main dose effects for each site wherein %CVCmax was greater than baseline from 2.9 % to 26.4 % cinnamaldehyde for Control and Ascorbate, and at 26.4 % cinnamaldehyde for L-NAME and Ascorbate+L-NAME (all p < 0.05). For Ascorbate+L-NAME, there was a significant main group effect, wherein perfusion was 6 %CVCmax [95% CI: 2, 11, p < 0.05] greater in the older compared to the young group across all cinnamaldehyde doses. There was a significant main site effect for area under the curve wherein L-NAME and Ascorbate+L-NAME were lower than Control and Ascorbate across groups (all p < 0.05). CONCLUSION The NOS-dependent cutaneous vasodilator response to TRPA1 activation is maintained in older adults, with no detectable contribution of ascorbate-sensitive ROS in either age group.
Collapse
Affiliation(s)
- Gregory W McGarr
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Kelli E King
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Casey J M Cassan
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Kristina-Marie T Janetos
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Naoto Fujii
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada; Advanced Research Initiative for Human High Performance (ARIHHP), University of Tsukuba, Tsukuba City, Japan; Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
12
|
Seabra AB, Pieretti JC, de Melo Santana B, Horue M, Tortella GR, Castro GR. Pharmacological applications of nitric oxide-releasing biomaterials in human skin. Int J Pharm 2022; 630:122465. [PMID: 36476664 DOI: 10.1016/j.ijpharm.2022.122465] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO) is an important endogenous molecule that plays several roles in biological systems. NO is synthesized in human skin by three isoforms of nitric oxide synthase (NOS) and, depending on the produced NO concentration, it can actuate in wound healing, dermal vasodilation, or skin defense against different pathogens, for example. Besides being endogenously produced, NO-based pharmacological formulations have been developed for dermatological applications targeting diverse pathologies such as bacterial infection, wound healing, leishmaniasis, and even esthetic issues such as acne and skin aging. Recent strategies focus mainly on developing smart NO-releasing nanomaterials/biomaterials, as they enable a sustained and targeted NO release, promoting an improved therapeutic effect. This review aims to overview and discuss the main mechanisms of NO in human skin, the recent progress in the field of dermatological formulations containing NO, and their application in several skin diseases, highlighting promising advances and future perspectives in the field.
Collapse
Affiliation(s)
- Amedea B Seabra
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil.
| | - Joana C Pieretti
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Bianca de Melo Santana
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Manuel Horue
- Laboratorio de Nanobiomateriales, CINDEFI - Facultad de Ciencias Exactas, Universidad Nacional de La Plata- CONICET (CCT La Plata), Argentina
| | - Gonzalo R Tortella
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile; Centro de Excelencia en Investigación Biotecnologica Aplicada al Medio Ambiente (CIBAMA-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Guillermo R Castro
- Nanobiotechnology Area, Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC). Partner Laboratory of the Max Planck Institute for Biophysical Chemistry (MPIbpC, MPG) - CONICET. Maipú 1065, S2000 Rosario, Santa Fe, Argentina; Nanomedicine Research Unit (Nanomed), Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), Santo André, SP, Brazil.
| |
Collapse
|
13
|
Cramer MN, Gagnon D, Laitano O, Crandall CG. Human temperature regulation under heat stress in health, disease, and injury. Physiol Rev 2022; 102:1907-1989. [PMID: 35679471 PMCID: PMC9394784 DOI: 10.1152/physrev.00047.2021] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 05/10/2022] [Accepted: 05/28/2022] [Indexed: 12/30/2022] Open
Abstract
The human body constantly exchanges heat with the environment. Temperature regulation is a homeostatic feedback control system that ensures deep body temperature is maintained within narrow limits despite wide variations in environmental conditions and activity-related elevations in metabolic heat production. Extensive research has been performed to study the physiological regulation of deep body temperature. This review focuses on healthy and disordered human temperature regulation during heat stress. Central to this discussion is the notion that various morphological features, intrinsic factors, diseases, and injuries independently and interactively influence deep body temperature during exercise and/or exposure to hot ambient temperatures. The first sections review fundamental aspects of the human heat stress response, including the biophysical principles governing heat balance and the autonomic control of heat loss thermoeffectors. Next, we discuss the effects of different intrinsic factors (morphology, heat adaptation, biological sex, and age), diseases (neurological, cardiovascular, metabolic, and genetic), and injuries (spinal cord injury, deep burns, and heat stroke), with emphasis on the mechanisms by which these factors enhance or disturb the regulation of deep body temperature during heat stress. We conclude with key unanswered questions in this field of research.
Collapse
Affiliation(s)
- Matthew N Cramer
- Defence Research and Development Canada-Toronto Research Centre, Toronto, Ontario, Canada
| | - Daniel Gagnon
- Montreal Heart Institute and School of Kinesiology and Exercise Science, Université de Montréal, Montréal, Quebec, Canada
| | - Orlando Laitano
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Craig G Crandall
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
14
|
Pyevich M, Alexander LM, Stanhewicz AE. Women with a history of preeclampsia have preserved sensory nerve-mediated dilatation in the cutaneous microvasculature. Exp Physiol 2022; 107:175-182. [PMID: 34961978 PMCID: PMC8810741 DOI: 10.1113/ep090177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/20/2021] [Indexed: 02/03/2023]
Abstract
NEW FINDINGS What is the central question of this study? Are sensory nerve-mediated vasodilatation and the NO-dependent contribution to that response attenuated in the cutaneous microvasculature of women who have had preeclampsia? What is the main finding and its importance? Women who have had preeclampsia demonstrate attenuated microvascular endothelium-dependent dilatation compared to women with a history of uncomplicated pregnancy. However, there are no differences in sensory nerve-mediated vasodilatation between groups. This suggests that the neurogenic response is not altered following preeclampsia, and that the NO-dependent vasodilatation of the neurogenic response is not related to endothelium-dependent NO-mediated dilatation in these women. ABSTRACT Women who have had preeclampsia (PE) demonstrate microvascular endothelial dysfunction, mediated in part by reduced nitric oxide (NO)-dependent mechanisms. Localized heating of the skin induces a biphasic vasodilatation response: a sensory nerve-mediated initial peak, followed by a sustained endothelium-dependent plateau. We have previously shown that the endothelium-dependent plateau is attenuated in PE. However, it is unknown if the sensory nerve-mediated initial peak is similarly attenuated. Therefore, the purpose of this study was to examine the effect of PE history on sensory nerve-mediated vasodilatation and the NO-dependent contribution to that response. We hypothesized that PE would have an attenuated initial peak and a reduced NO-dependent contribution to that response compared to women with a history of normotensive pregnancy (healthy controls, HC). Nine HC (31 ± 4 years) and nine PE (28 ± 6 years) underwent a standard local heating protocol (42°C; 0.1°C s-1 ). Two intradermal microdialysis fibres were placed in the skin of the ventral forearm for the continuous local delivery of lactated Ringer solution alone (control) or 15-mM NG -nitro-l-arginine methyl ester for nitric oxide synthase (NOS) inhibition. Red blood cell flux was measured at each site by laser Doppler flowmetry (LDF). Cutaneous vascular conductance was calculated (CVC = LDF/mean arterial pressure) and normalized to maximum (%CVCmax ; 28-mM SNP + local heat 43°C). There were no differences in the initial peak between groups (HC: 79 ± 8 vs. PE: 80 ± 10%CVCmax ; P = 0.936). NOS inhibition attenuated the initial peak in both HC (57 ± 18% CVCmax ; P = 0.003) and PE (54 ± 10%CVCmax ; P = 0.002). However, there were no differences in the NO-dependent portion of the initial peak (HC: 23 ± 16 vs. PE: 24 ± 9%; P = 0.777). The local heating plateau (HC: 99 ± 4 vs. PE: 88 ± 7%CVCmax ; P = 0.001) and NO contribution to the plateau (HC: 31 ± 9 vs. PE: 17 ± 14%; P = 0.02) were attenuated in PE. There was no relation between NO-dependent dilatation in the initial peak and NO-dependent dilatation in the plateau across groups (R2 = 0.005; P = 0.943). Women who have had PE demonstrate attenuated microvascular endothelium-dependent dilatation. However, there are no differences in sensory nerve-mediated vasodilatation following PE, suggesting that the NO-dependent vasodilatation of the neurogenic response is not related to endothelium-dependent NO-mediated dilatation in these women.
Collapse
Affiliation(s)
- Michael Pyevich
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA
| | - Lacy M Alexander
- Department of Kinesiology, Pennsylvania State University, University Park, PA
| | - Anna E. Stanhewicz
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA
| |
Collapse
|
15
|
TRPA1 channel activation with cinnamaldehyde induces cutaneous vasodilation through NOS, but not COX and KCa channel, mechanisms in humans. J Cardiovasc Pharmacol 2021; 79:375-382. [PMID: 34983913 DOI: 10.1097/fjc.0000000000001188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/06/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Transient receptor potential ankyrin 1 (TRPA1) channel activation induces cutaneous vasodilation in humans in vivo. However, the mechanisms underlying this response remains equivocal. We hypothesized that nitric oxide (NO) synthase (NOS) and Ca2+ activated K+ (KCa) channels contribute to the TRPA1 channel-induced cutaneous vasodilation with no involvement of cyclooxygenase (COX). Cutaneous vascular conductance (CVC) in 9 healthy young adults was assessed at four dorsal forearm skin sites treated by intradermal microdialysis with either: 1) vehicle control (98% propylene glycol + 1.985% dimethyl sulfoxide + 0.015% lactated Ringer solution), 2) 10 mM L-NAME, a non-selective NOS inhibitor, 3) 10 mM ketorolac, a non-selective COX inhibitor, or 4) 50 mM tetraethylammonium, a non-selective KCa channel blocker. Cinnamaldehyde, a TRPA1 channel activator, was administered to each skin site in a dose-dependent manner (2.9, 8.8, 26 and 80 %, each lasting ≥30min). Administration of ≥8.8% cinnamaldehyde increased CVC from baseline at the vehicle control site by as much as 27.4% [95 % confidence interval of 5.3] (P<0.001). NOS inhibitor attenuated the cinnamaldehyde induced-increases in CVC at the 8.8, 26.0, and 80.0% concentrations relative to the vehicle control site (all P≤0.05). In contrast, both the COX inhibitor and KCa channel blockers did not attenuate the cinnamaldehyde induced-increases in CVC relative to the vehicle control site for all concentrations (all P≥0.130). We conclude that in human skin in vivo, NOS plays a role in modulating the regulation of cutaneous vasodilation in response to TRPA1 channel activation with no detectable contributions of COX and KCa channels.
Collapse
|
16
|
Fujii N, Kenny GP, Amano T, Honda Y, Kondo N, Nishiyasu T. Na +-K +-ATPase plays a major role in mediating cutaneous thermal hyperemia achieved by local skin heating to 39°C. J Appl Physiol (1985) 2021; 131:1408-1416. [PMID: 34473573 DOI: 10.1152/japplphysiol.00073.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Na+-K+-ATPase is integrally involved in mediating cutaneous vasodilation during an exercise-heat stress, which includes an interactive role with nitric oxide synthase (NOS). Here, we assessed if Na+-K+-ATPase also contributes to cutaneous thermal hyperemia induced by local skin heating, which is commonly used to assess cutaneous endothelium-dependent vasodilation. Furthermore, we assessed the extent to which NOS contributes to this response. Cutaneous vascular conductance (CVC) was measured continuously at four forearm skin sites in 11 young adults (4 women). After baseline measurement, local skin temperature was increased from 33°C to 39°C to induce cutaneous thermal hyperemia. Once a plateau in CVC was achieved, each skin site was continuously perfused via intradermal microdialysis with either: 1) lactated Ringer solution (control), 2) 6 mM ouabain, a Na+-K+-ATPase inhibitor, 3) 20 mM l-NAME, a NOS inhibitor, or 4) a combination of both. Relative to the control site, CVC during the plateau phase of cutaneous thermal hyperemia (∼50% max) was reduced by the lone inhibition of Na+-K+-ATPase (-19 ± 8% max, P = 0.038) and NOS (-32 ± 4% max, P < 0.001), as well as the combined inhibition of both (-37 ± 9% max, P < 0.001). The magnitude of reduction was similar between NOS inhibition alone and combined inhibition (P = 1.000). The administration of both Na+-K+-ATPase and NOS inhibitors fully abolished the plateau of CVC with values returning to preheating baseline values (P = 0.439). We show that Na+-K+-ATPase contributes to cutaneous thermal hyperemia during local skin heating to 39°C, and this response is partially mediated by NOS.NEW & NOTEWORTHY Cutaneous thermal hyperemia during local skin heating to 39°C, which is highly dependent on nitric oxide synthase (NOS), is frequently used to assess endothelium-dependent cutaneous vasodilation. We showed that Na+-K+-ATPase mediates the regulation of cutaneous thermal hyperemia partly via NOS-dependent mechanisms although a component of the Na+-K+-ATPase modulation of cutaneous thermal hyperemia is NOS independent. Thus, as with NOS, Na+-K+-ATPase may be important in the regulation of cutaneous endothelial vascular function.
Collapse
Affiliation(s)
- Naoto Fujii
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| | - Tatsuro Amano
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Yasushi Honda
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Narihiko Kondo
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - Takeshi Nishiyasu
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
17
|
Bekeschus S, von Woedtke T, Emmert S, Schmidt A. Medical gas plasma-stimulated wound healing: Evidence and mechanisms. Redox Biol 2021; 46:102116. [PMID: 34474394 PMCID: PMC8408623 DOI: 10.1016/j.redox.2021.102116] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/13/2021] [Accepted: 08/23/2021] [Indexed: 12/11/2022] Open
Abstract
Defective wound healing poses a significant burden on patients and healthcare systems. In recent years, a novel reactive oxygen and nitrogen species (ROS/RNS) based therapy has received considerable attention among dermatologists for targeting chronic wounds. The multifaceted ROS/RNS are generated using gas plasma technology, a partially ionized gas operated at body temperature. This review integrates preclinical and clinical evidence into a set of working hypotheses mainly based on redox processes aiding in elucidating the mechanisms of action and optimizing gas plasmas for therapeutic purposes. These hypotheses include increased wound tissue oxygenation and vascularization, amplified apoptosis of senescent cells, redox signaling, and augmented microbial inactivation. Instead of a dominant role of a single effector, it is proposed that all mechanisms act in concert in gas plasma-stimulated healing, rationalizing the use of this technology in therapy-resistant wounds. Finally, addressable current challenges and future concepts are outlined, which may further promote the clinical utilization, efficacy, and safety of gas plasma technology in wound care in the future.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), A Member of the Leibniz Research Alliance Leibniz Health Technology, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany.
| | - Thomas von Woedtke
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), A Member of the Leibniz Research Alliance Leibniz Health Technology, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center, Sauerbruchstr., 17475, Greifswald, Germany
| | - Steffen Emmert
- Clinic for Dermatology and Venereology, Rostock University Medical Center, Strempelstr. 13, 18057, Rostock, Germany
| | - Anke Schmidt
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), A Member of the Leibniz Research Alliance Leibniz Health Technology, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| |
Collapse
|
18
|
McGarr GW, King KE, Saci S, Leduc D, Akerman AP, Fujii N, Kenny GP. Regional variation in nitric oxide-dependent cutaneous vasodilatation during local heating in young adults. Exp Physiol 2021; 106:1671-1678. [PMID: 34143517 DOI: 10.1113/ep089671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/15/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Are regional differences in nitric oxide (NO)-dependent cutaneous vasodilatation during local skin heating present in young adults? What is the main finding and its importance? NO-dependent cutaneous vasodilatation varied across the body. The abdomen demonstrated larger NO contributions, while the chest demonstrated smaller NO contributions, compared to other regions. This exploratory work is an important first step in characterizing regional heterogeneity of cutaneous microvascular control across the torso and limbs. Equally, it serves to generate hypotheses for future studies examining regional cutaneous microvascular control in ageing and disease. ABSTRACT Regional variations in cutaneous vasodilatation during local skin heating exist across the body. While nitric oxide (NO) is a well-known modulator of this response, the extent of regional differences in NO-dependent cutaneous vasodilatation during local skin heating remains uncertain. In 16 habitually active young adults (8 females; 25 ± 5 years), cutaneous vascular conductance, normalized to maximum vasodilatation (% CVCmax ), was assessed at the upper chest, abdomen, dorsal forearm, thigh and lateral calf during local skin heating. Across all regions, local skin temperatures were simultaneously increased from 33 to 42°C (1°C per 10 s), and held until a stable heating plateau was achieved (∼40 min). Next, with local skin temperature maintained at 42°C, 20 mM of NG -nitro-l-arginine methyl ester (l-NAME) was continuously infused at each site until a stable l-NAME plateau was achieved (∼40 min). The difference between heating and l-NAME plateaus was identified as the NO contribution for each region. There was no evidence for region-specific responses at baseline (P = 0.561), the heating plateau (P = 0.351) or l-NAME plateau (P = 0.082), but there was for the NO contribution (P = 0.048). Overall, point estimates for between-region differences in the NO contribution varied across the body from 0 to 19% CVCmax . The greatest effects were observed for the abdomen, wherein the NO contribution was consistently greater than for the other regions (range: 9-19% CVCmax ). The chest was consistently lower than the other regions (range: 7-19% CVCmax ). The smallest effects were observed between limb regions (range: 0-2% CVCmax ). These findings advance our understanding of the mechanisms influencing regional variations in the cutaneous vasodilator response to local skin heating in young adults.
Collapse
Affiliation(s)
- Gregory W McGarr
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Kelli E King
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Samah Saci
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Daphnee Leduc
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Ashley P Akerman
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Naoto Fujii
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada.,Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
19
|
Increased Intraplatelet ADMA Level May Promote Platelet Activation in Diabetes Mellitus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6938629. [PMID: 33062144 PMCID: PMC7542534 DOI: 10.1155/2020/6938629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022]
Abstract
Background Antiplatelet therapy has become a standard therapeutic approach in the secondary prevention of cardiovascular system disorders of thrombotic origin. Patients with concomitant diabetes mellitus (DM) obtain fewer benefits from this treatment. Hence, the pathophysiology of altered platelet function in response to glucose metabolism impairment should be of particular interest. Objectives The aim of our study was to verify if the platelet expression of the asymmetric dimethylarginine (ADMA) in diabetic patients differs in comparison to the nondiabetic ones. The correlation of platelet-ADMA with platelet activation and aggregation as well as with other risk factors was also investigated. Material and Methods. A total of 61 subjects were enrolled in this study, including thirty-one type 2 diabetic subjects without diabetes-related organ damage. Physical examination was followed by blood collection with an assessment of platelet aggregation, traditional biochemical cardiovascular risk factors, and evaluation of nitric oxide bioavailability parameters in plasma and thrombocytes. Subsequently, the assessment of endothelial function using Peripheral Arterial Tonometry and Laser Doppler Flowmetry (LDF) was performed. Results In the DM group, elevated concentration of intraplatelet ADMA and higher ADMA/SDMA ratio compared to the control group was observed. It was accompanied by higher ADP-mediated platelet aggregation and lower microvascular response to a local thermal stimulus measured by LDF in the diabetes group. Conclusions Type 2 diabetes is related to higher intraplatelet concentration of asymmetric dimethylarginine (ADMA), which may result in impaired platelet-derived nitric oxide synthesis and subsequent increased platelet activity, as assessed by the ADP-induced aggregation. Laser Doppler Flowmetry, compared to EndoPAT 2000, appears to be a more sensitive indicator of the impaired microvasculature vasodilation in diabetics without the presence of clinically significant target organ damage.
Collapse
|
20
|
McGarr GW, Fujii N, Schmidt MD, Muia CM, Kenny GP. Heat shock protein 90 modulates cutaneous vasodilation during an exercise-heat stress, but not during passive whole-body heating in young women. Physiol Rep 2020; 8:e14552. [PMID: 32845578 PMCID: PMC7448794 DOI: 10.14814/phy2.14552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 07/31/2020] [Indexed: 11/24/2022] Open
Abstract
Heat shock protein 90 (HSP90) modulates exercise-induced cutaneous vasodilation in young men via nitric oxide synthase (NOS), but only when core temperature is elevated ~1.0°C. While less is known about modulation of this heat loss response in women during exercise, sex differences may exist. Further, the mechanisms regulating cutaneous vasodilation can differ between exercise- and passive-heat stress. Therefore, in 11 young women (23 ± 3 years), we evaluated whether HSP90 contributes to NOS-dependent cutaneous vasodilation during exercise (Protocol 1) and passive heating (Protocol 2) and directly compared responses between end-exercise and a matched core temperature elevation during passive heating. Cutaneous vascular conductance (CVC%max ) was measured at four forearm skin sites continuously treated with (a) lactated Ringers solution (control), (b) 178 μM Geldanamycin (HSP90 inhibitor), (c) 10 mM L-NAME (NOS inhibitor), or (d) combined 178 μM Geldanamycin and 10 mM L-NAME. Participants completed both protocols during the early follicular (low hormone) phase of the menstrual cycle (0-7 days). Protocol 1: participants rested in the heat (35°C) for 70 min and then performed 50 min of moderate-intensity cycling (~55% VO2peak ) followed by 30 min of recovery. Protocol 2: participants were passively heated to increase rectal temperature by 1.0°C, comparable to end-exercise. HSP90 inhibition attenuated CVC%max relative to control at end-exercise (p < .05), but not during passive heating. While NOS inhibition and combined HSP90 + NOS inhibition attenuated CVC%max relative to control for both protocols (all p < .05), they did not differ from each other. We show that HSP90 modulates cutaneous vasodilation NOS-dependently during exercise in young women, with no effect during passive heating, despite a similar NOS contribution.
Collapse
Affiliation(s)
- Gregory W. McGarr
- Human and Environmental Physiology Research UnitUniversity of OttawaOttawaONCanada
| | - Naoto Fujii
- Human and Environmental Physiology Research UnitUniversity of OttawaOttawaONCanada
- Faculty of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
| | - Madison D. Schmidt
- Human and Environmental Physiology Research UnitUniversity of OttawaOttawaONCanada
| | - Caroline M. Muia
- Human and Environmental Physiology Research UnitUniversity of OttawaOttawaONCanada
| | - Glen P. Kenny
- Human and Environmental Physiology Research UnitUniversity of OttawaOttawaONCanada
| |
Collapse
|
21
|
Liu K, Duan Z, Chen L, Wen Z, Zhu S, Qu Q, Chen W, Zhang S, Yu B. Short-Term Effect of Different Taping Methods on Local Skin Temperature in Healthy Adults. Front Physiol 2020; 11:488. [PMID: 32508677 PMCID: PMC7251151 DOI: 10.3389/fphys.2020.00488] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/21/2020] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND There were limited studies on the effect of skin temperature and local blood flow using kinesio tape (KT) adhered to the skin in different taping methods. This study aimed to determine the short-term effect of KT and athletic tape (AT) on skin temperature in the lower back and explore the possible effect of different taping methods (Y-strip and fan-strip taping) on local microcirculation. MATERIALS AND METHODS Twenty-six healthy participants completed the test-retest reliability measurement of the infrared thermography (IRT), intraclass correlation coefficient (ICC), and standard error of measurement (SEM) were calculated to evaluate the reliability. Then, 21 healthy participants received different taping condition randomly for 5 times, including Y-strip of kinesio taping (KY), fan-strip of kinesio taping (Kfan), Y-strip of athletic taping (AY), fan-strip of athletic taping (Afan), and no taping (NT). Above taping methods were applied to the participants' erector spinae muscles on the same side. Skin temperature of range of interest (ROI) was measured in the taping area through IRT at pre taping and 10 min after taping. Additionally, participants completed self-perceived temperature evaluation for different taping methods through visual analog scaling. One-way repeated-measured analysis of variance was used to compare the temperature difference among different taping methods. Bonferroni test was used for post hoc analysis. RESULTS There was a good test-retest reliability (ICC = 0.82, 95% CI = 0.60-0.92; SEM = 0.33; and MD = 0.91) of the IRT. Significant differences were observed in the short-term effect on skin temperature among all different taping methods (p = 0.012, F = 3.435, and ηp 2 = 0.147), post hoc test showed a higher significantly skin temperature difference in Kfan taping compared to no taping (p = 0.026, 95% CI = 0.051-1.206); However, no significant differences were observed among self-perceived temperature (p = 0.055, F = 2.428, and ηp 2 = 0.108). CONCLUSION This study showed that the fan-strip of KT increased significantly the skin temperature of the waist after taping for 10 min. The application of KT may modify the skin temperature of the human body and promote local microcirculation, although it remained unclear for the real application.
Collapse
Affiliation(s)
- Kun Liu
- Department of Rehabilitation, School of International Medical Technology, Shanghai Sanda University, Shanghai, China
- Department of Rehabilitation, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhouying Duan
- Department of Rehabilitation, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lihua Chen
- Department of Rehabilitation, Shanghai Fifth Rehabilitation Hospital, Shanghai, China
| | - Zixing Wen
- Department of Rehabilitation, School of International Medical Technology, Shanghai Sanda University, Shanghai, China
| | - Shengqun Zhu
- Department of Rehabilitation, School of International Medical Technology, Shanghai Sanda University, Shanghai, China
| | - Qiang Qu
- Department of Rehabilitation, School of International Medical Technology, Shanghai Sanda University, Shanghai, China
| | - Wenhua Chen
- Department of Rehabilitation, School of International Medical Technology, Shanghai Sanda University, Shanghai, China
- Department of Rehabilitation, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shuxin Zhang
- Department of Rehabilitation, School of International Medical Technology, Shanghai Sanda University, Shanghai, China
| | - Bo Yu
- Department of Rehabilitation, School of International Medical Technology, Shanghai Sanda University, Shanghai, China
- Department of Rehabilitation, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
22
|
Kamijo YI, Okazaki K, Ikegawa S, Okada Y, Nose H. Rapid saline infusion and/or drinking enhance skin sympathetic nerve activity components reduced by hypovolaemia and hyperosmolality in hyperthermia. J Physiol 2019; 596:5443-5459. [PMID: 30242837 DOI: 10.1113/jp276633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/05/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS In hyperthermia, plasma hyperosmolality suppresses both cutaneous vasodilatation and sweating responses and this suppression is removed by oropharyngeal stimulation such as drinking. Hypovolaemia suppresses only cutaneous vasodilatation, which is enhanced by rapid infusion in hyperthermia. Our recent studies suggested that skin sympathetic nerve activity (SSNA) involves components synchronized and non-synchronized with the cardiac cycle, which are associated with an active vasodilator and a sudomotor, respectively. In the present study, plasma hyperosmolality suppressed both components; drinking removed the hyperosmolality-induced suppressions, simultaneously with increases in cutaneous vasodilatation and sweating, while not altering plasma volume and osmolality. Furthermore, a rapid saline infusion increased the synchronized component and cutaneous vasodilatation in hypovolaemic and hyperthermic humans. The results support our idea that SSNA involves an active cutaneous vasodilator and a sudomotor, and that a site where osmolality signals are projected to control thermoregulation is located more superior than the medulla where signals from baroreceptors are projected. ABSTRACT We reported that skin sympathetic nerve activity (SSNA) involved components synchronized and non-synchronized with the cardiac cycle; both components increased in hyperthermia and our results suggested that the components are associated with an active vasodilator and a sudomotor, respectively. In the present study, we examined whether the increases in the components in hyperthermia would be suppressed by plasma hyperosmolality simultaneously with suppression of cutaneous vasodilatation and sweating and whether this suppression was released by oropharyngeal stimulation (drinking). Also, effects of a rapid saline infusion on both components and responses of cutaneous vasodilatation and sweating were tested in hypovolaemic and hyperthermic subjects. We found that (1) plasma hyperosmolality suppressed both components in hyperthermia, (2) the suppression was released by drinking 200 mL of water simultaneously with enhanced cutaneous vasodilatation and sweating responses, and (3) a rapid infusion at 1.0 and 0.2 ml min-1 kg-1 for the first 10 min and the following 20 min, respectively, increased the synchronized component and cutaneous vasodilatation in diuretic-induced hypovolaemia greater than those in a time control; at 0.1 ml min-1 kg-1 for 30 min no greater increases in the non-synchronized component and sweating responses were observed during rapid infusion than in the time control. The results support the idea that SSNA involves components synchronized and non-synchronized with the cardiac cycle, associated with the active cutaneous vasodilator and sudomotor, and a site of osmolality-induced modulation for thermoregulation is located superior to the medulla where signals from baroreceptors are projected.
Collapse
Affiliation(s)
- Yoshi-Ichiro Kamijo
- Department of Sports Medical Sciences, Shinshu University Graduate School of Medicine, Matsumoto, Japan.,Department of Advances Medicine for Health Promotion, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan.,Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| | - Kazunobu Okazaki
- Department of Sports Medical Sciences, Shinshu University Graduate School of Medicine, Matsumoto, Japan.,Department of Environmental Physiology for Exercise, Osaka City University Graduate School of Medicine, and Research Center for Urban Health and Sports, Osaka City University, Osaka, Japan
| | - Shigeki Ikegawa
- Department of Sports Medical Sciences, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Yoshiyuki Okada
- Department of Sports Medical Sciences, Shinshu University Graduate School of Medicine, Matsumoto, Japan.,Department of Special Care Dentistry, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Nose
- Department of Sports Medical Sciences, Shinshu University Graduate School of Medicine, Matsumoto, Japan.,Department of Advances Medicine for Health Promotion, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan
| |
Collapse
|
23
|
Di Liegro CM, Schiera G, Proia P, Di Liegro I. Physical Activity and Brain Health. Genes (Basel) 2019; 10:genes10090720. [PMID: 31533339 PMCID: PMC6770965 DOI: 10.3390/genes10090720] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/12/2019] [Indexed: 12/16/2022] Open
Abstract
Physical activity (PA) has been central in the life of our species for most of its history, and thus shaped our physiology during evolution. However, only recently the health consequences of a sedentary lifestyle, and of highly energetic diets, are becoming clear. It has been also acknowledged that lifestyle and diet can induce epigenetic modifications which modify chromatin structure and gene expression, thus causing even heritable metabolic outcomes. Many studies have shown that PA can reverse at least some of the unwanted effects of sedentary lifestyle, and can also contribute in delaying brain aging and degenerative pathologies such as Alzheimer’s Disease, diabetes, and multiple sclerosis. Most importantly, PA improves cognitive processes and memory, has analgesic and antidepressant effects, and even induces a sense of wellbeing, giving strength to the ancient principle of “mens sana in corpore sano” (i.e., a sound mind in a sound body). In this review we will discuss the potential mechanisms underlying the effects of PA on brain health, focusing on hormones, neurotrophins, and neurotransmitters, the release of which is modulated by PA, as well as on the intra- and extra-cellular pathways that regulate the expression of some of the genes involved.
Collapse
Affiliation(s)
- Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy.
| | - Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy.
| | - Patrizia Proia
- Department of Psychology, Educational Science and Human Movement (Dipartimento di Scienze Psicologiche, Pedagogiche, dell'Esercizio fisico e della Formazione), University of Palermo, 90128 Palermo, Italy.
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata) (Bi.N.D.), University of Palermo, 90127 Palermo, Italy.
| |
Collapse
|
24
|
Zherebtsova AI, Dremin VV, Makovik IN, Zherebtsov EA, Dunaev AV, Goltsov A, Sokolovski SG, Rafailov EU. Multimodal Optical Diagnostics of the Microhaemodynamics in Upper and Lower Limbs. Front Physiol 2019; 10:416. [PMID: 31057417 PMCID: PMC6477060 DOI: 10.3389/fphys.2019.00416] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/27/2019] [Indexed: 12/28/2022] Open
Abstract
The introduction of optical non-invasive diagnostic methods into clinical practice can substantially advance in the detection of early microcirculatory disorders in patients with different diseases. This paper is devoted to the development and application of the optical non-invasive diagnostic approach for the detection and evaluation of the severity of microcirculatory and metabolic disorders in rheumatic diseases and diabetes mellitus. The proposed methods include the joint use of laser Doppler flowmetry, absorption spectroscopy and fluorescence spectroscopy in combination with functional tests. This technique showed the high diagnostic importance for the detection of disturbances in peripheral microhaemodynamics. These methods have been successfully tested as additional diagnostic techniques in the field of rheumatology and endocrinology. The sensitivity and specificity of the proposed diagnostic procedures have been evaluated.
Collapse
Affiliation(s)
- Angelina I. Zherebtsova
- Research and Development Center of Biomedical Photonics, Orel State University, Oryol, Russia
| | - Viktor V. Dremin
- Research and Development Center of Biomedical Photonics, Orel State University, Oryol, Russia
| | - Irina N. Makovik
- Research and Development Center of Biomedical Photonics, Orel State University, Oryol, Russia
| | - Evgeny A. Zherebtsov
- Research and Development Center of Biomedical Photonics, Orel State University, Oryol, Russia
- Optoelectronics and Measurement Techniques Unit, University of Oulu, Oulu, Finland
- Optoelectronics and Biomedical Photonics Group, Aston Institute of Photonic Technologies, School of Engineering and Applied Science, Aston University, Birmingham, United Kingdom
| | - Andrey V. Dunaev
- Research and Development Center of Biomedical Photonics, Orel State University, Oryol, Russia
| | - Alexey Goltsov
- School of Applied Sciences, Abertay University, Dundee, United Kingdom
| | - Sergei G. Sokolovski
- Optoelectronics and Biomedical Photonics Group, Aston Institute of Photonic Technologies, School of Engineering and Applied Science, Aston University, Birmingham, United Kingdom
- International Center of Critical Technologies in Medicine, Saratov State University, Saratov, Russia
| | - Edik U. Rafailov
- Optoelectronics and Biomedical Photonics Group, Aston Institute of Photonic Technologies, School of Engineering and Applied Science, Aston University, Birmingham, United Kingdom
- International Center of Critical Technologies in Medicine, Saratov State University, Saratov, Russia
| |
Collapse
|
25
|
Miyaji A, Hayashi S, Hayashi N. Regional differences in facial skin blood flow responses to thermal stimulation. Eur J Appl Physiol 2019; 119:1195-1201. [PMID: 30820660 DOI: 10.1007/s00421-019-04109-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 02/21/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE The facial skin blood flow (SkBF) shows regional differences in the responses to a given stimulation. The facial SkBFs, especially in the eyelid and nose exhibit unique response to physiological and psychological stimuli, but the mechanisms inducing those regional differences remain unclear. To investigate whether the regional differences in the local control of vasomotion in facial vessels correspond to the regional differences in facial SkBF response, we monitored the relative change of facial SkBF to regional thermal stimulation. We hypothesized that heat stimulation dilates the cutaneous vessels in the eyelid, while cold stimulation constricts those in the nose, which was based on previous findings METHODS: A thermal stimulator was used to apply temperature increase (from 20 to 40 °C at 2 °C/min) and decrease (from 40 to 20 °C at 2°C/min) in a randomized order to the right eyelid, nose, right cheek, and forehead of 14 healthy young males. The facial SkBF was measured for 10 s using laser-speckle flowgraphy when temperatures of 20 °C, 30 °C, and 40 °C had been applied for 30 s in both trials. RESULTS The SkBF in the eyelid did not change significantly during any thermal stimulation, and the nasal SkBF did not decrease significantly during cold stimulation. The SkBFs in the cheek and forehead increased significantly with the applied temperature. CONCLUSIONS These findings indicate that a large regional variation exists in facial skin blood flow response to local heating or cooling and that the regional variation did not correspond to the unique SkBF responses in the previous studies.
Collapse
Affiliation(s)
- Akane Miyaji
- Division of Medical Nutrition, Faculty of Healthcare, Tokyo Healthcare University, Setagaya, Tokyo, 154-8568, Japan.,Institute for Liberal Arts, Tokyo Institute of Technology, Meguro, Tokyo, 152-8852, Japan
| | - Shohei Hayashi
- Graduate School of Decision Science and Technology, Tokyo Institute of Technology, Meguro, Tokyo, 152-8852, Japan
| | - Naoyuki Hayashi
- Institute for Liberal Arts, Tokyo Institute of Technology, Meguro, Tokyo, 152-8852, Japan. .,Graduate School of Decision Science and Technology, Tokyo Institute of Technology, Meguro, Tokyo, 152-8852, Japan.
| |
Collapse
|
26
|
Hill T, Polk JD. BDNF, endurance activity, and mechanisms underlying the evolution of hominin brains. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 168 Suppl 67:47-62. [PMID: 30575024 DOI: 10.1002/ajpa.23762] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 10/21/2018] [Accepted: 11/05/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVES As a complex, polygenic trait, brain size has likely been influenced by a range of direct and indirect selection pressures for both cognitive and non-cognitive functions and capabilities. It has been hypothesized that hominin brain expansion was, in part, a correlated response to selection acting on aerobic capacity (Raichlen & Polk, 2013). According to this hypothesis, selection for aerobic capacity increased the activity of various signaling molecules, including those involved in brain growth. One key molecule is brain-derived neurotrophic factor (BDNF), a protein that regulates neuronal development, survival, and plasticity in mammals. This review updates, partially tests, and expands Raichlen and Polk's (2013) hypothesis by evaluating evidence for BDNF as a mediator of brain size. DISCUSSION We contend that selection for endurance capabilities in a hot climate favored changes to muscle composition, mitochondrial dynamics and increased energy budget through pathways involving regulation of PGC-1α and MEF2 genes, both of which promote BDNF activity. In addition, the evolution of hairlessness and the skin's thermoregulatory response provide other molecular pathways that promote both BDNF activity and neurotransmitter synthesis. We discuss how these pathways contributed to the evolution of brain size and function in human evolution and propose avenues for future research. Our results support Raichlen and Polk's contention that selection for non-cognitive functions has direct mechanistic linkages to the evolution of brain size in hominins.
Collapse
Affiliation(s)
- Tyler Hill
- Department of Anthropology, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - John D Polk
- Department of Anthropology, University of Illinois Urbana-Champaign, Urbana, Illinois.,Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, Urbana, Illinois
| |
Collapse
|
27
|
Hodges GJ, Mueller MC, Cheung SS, Falk B. Cutaneous vasomotor responses in boys and men. Appl Physiol Nutr Metab 2018; 43:1019-1026. [DOI: 10.1139/apnm-2018-0083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Few studies have investigated skin blood flow in children and age-related differences in the underlying mechanisms. We examined mechanisms of skin blood flow responses to local heating, postocclusive reactive hyperaemia (PORH), and isometric handgrip exercise in adult and prepubescent males, hypothesizing that skin blood flow responses would be greater in children compared with adults. We measured skin blood flow in 12 boys (age, 9 ± 1 years) and 12 men (age, 21 ± 1 years) using laser-Doppler flowmetry at rest, in response to 3-min PORH, 2-min isometric handgrip exercise, and local skin heating to 39 °C (submaximal) and 44 °C (maximal). Using wavelet analysis we assessed endothelial, neural, and myogenic activities. At rest and in response to local heating to 39 °C, children had higher skin blood flow and endothelial activity compared with men (d ≥ 1.1, p < 0.001) and similar neurogenic and myogenic activities (d < 0.2, p > 0.05). Maximal responses to 44 °C local skin heating, PORH, and isometric handgrip exercise did not differ between boys and men (all d ≤ 0.2, p > 0.05). During PORH children demonstrated greater endothelial activity compared with men (d ≥ 0.6, p < 0.05); in contrast, men had higher neurogenic activity (d = 1.0, p < 0.01). During isometric handgrip exercise there were no differences in endothelial, neurogenic, and myogenic activities (d < 0.2, p > 0.3), with boys and men demonstrating similar increases in endothelial activity and decreases in myogenic activity (d ≥ 0.8, p < 0.05). These data suggest that boys experience greater levels of skin blood flow at rest and in response to submaximal local heating compared with men, while maximal responses appear to be similar. Additionally, endothelial mediators seem to contribute more to vasodilatation in boys than in men.
Collapse
Affiliation(s)
- Gary J. Hodges
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Matthew C. Mueller
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Stephen S. Cheung
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Bareket Falk
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
28
|
Fujii N, Pastore OL, McGarr GW, Meade RD, McNeely BD, Nishiyasu T, Kenny GP. Cyclooxygenase-1 and -2 modulate sweating but not cutaneous vasodilation during exercise in the heat in young men. Physiol Rep 2018; 6:e13844. [PMID: 30175553 PMCID: PMC6119687 DOI: 10.14814/phy2.13844] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/02/2018] [Indexed: 12/16/2022] Open
Abstract
We recently reported that the nonselective cyclooxygenase (COX) inhibitor ketorolac attenuated sweating but not cutaneous vasodilation during moderate-intensity exercise in the heat. However, the specific contributions of COX-1 and COX-2 to the sweating response remained to be determined. We tested the hypothesis that COX-1 but not COX-2 contributes to sweating with no role for either COX isoform in cutaneous vasodilation during moderate-intensity exercise in the heat. In thirteen young males (22 ± 2 years), sweat rate and cutaneous vascular conductance were measured at three forearm skin sites that were continuously treated with (1) lactated Ringer's solution (Control), (2) 150 μmmol·L-1 celecoxib, a selective COX-2 inhibitor, or (3) 10 mmol L-1 ketorolac, a nonselective COX inhibitor. Participants first rested in a non heat stress condition (≥85 min, 25°C) followed by a further 70-min rest period in the heat (35°C). They then performed 50 min of moderate-intensity cycling (~55% peak oxygen uptake) followed by a 30-min recovery period. At the end of exercise, sweat rate was lower at the 150 μmol·L-1 celecoxib (1.51 ± 0.25 mg·min-1 ·cm-2 ) and 10 mmol·L-1 ketorolac (1.30 ± 0.30 mg·min-1 ·cm-2 ) treated skin sites relative to the Control site (1.89 ± 0.27 mg·min-1 ·cm-2 ) (both P ≤ 0.05). Additionally, sweat rate at the ketorolac site was attenuated relative to the celecoxib site (P ≤ 0.05). Neither celecoxib nor ketorolac influenced cutaneous vascular conductance throughout the experiment (both P > 0.05). We showed that both COX-1 and COX-2 contribute to sweating but not cutaneous vasodilation during moderate-intensity exercise in the heat in young men.
Collapse
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research UnitUniversity of OttawaOttawaCanada
- Faculty of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
| | - Olivia L. Pastore
- Human and Environmental Physiology Research UnitUniversity of OttawaOttawaCanada
| | - Gregory W. McGarr
- Human and Environmental Physiology Research UnitUniversity of OttawaOttawaCanada
| | - Robert D. Meade
- Human and Environmental Physiology Research UnitUniversity of OttawaOttawaCanada
| | - Brendan D. McNeely
- Human and Environmental Physiology Research UnitUniversity of OttawaOttawaCanada
| | - Takeshi Nishiyasu
- Faculty of Health and Sport SciencesUniversity of TsukubaTsukubaJapan
| | - Glen P. Kenny
- Human and Environmental Physiology Research UnitUniversity of OttawaOttawaCanada
| |
Collapse
|
29
|
Craighead DH, Smith CJ, Alexander LM. Blood pressure normalization via pharmacotherapy improves cutaneous microvascular function through NO-dependent and NO-independent mechanisms. Microcirculation 2018; 24. [PMID: 28510986 DOI: 10.1111/micc.12382] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/11/2017] [Indexed: 12/20/2022]
Abstract
Hypertension is associated with endothelial dysfunction and vascular remodeling. OBJECTIVE To assess effects of antihypertensive pharmacotherapy on eNOS- and iNOS-dependent mechanisms and maximal vasodilator capacity in the cutaneous microvasculature. METHODS Intradermal microdialysis fibers were placed in 15 normotensive (SBP 111±2 mm Hg), 12 unmedicated hypertensive (SBP 142±2 mm Hg), and 12 medicated hypertensive (SBP 120±2 mm Hg) subjects. Treatments were control, iNOS-inhibited (1400w), and NOS-inhibited (l-NAME). Red cell flux, measured during local heating (42°C) and ACh dose-response protocols, was normalized to CVC (flux MAP-1 ) and a percentage of maximal vasodilation (%CVCmax ). RESULTS Compared to normotensives, ACh-mediated vasodilation was attenuated in the hypertensive (P<.001), but not in medicated subjects (P=.83). NOS inhibition attenuated ACh-mediated vasodilation in normotensives compared to hypertensive (P<.001) and medicated (P<.001) subjects. With iNOS inhibition, there was no difference in ACh-mediated vasodilation between groups. Compared to the normotensives, local heat-induced vasodilation was attenuated in the hypertensives (P<.001), but iNOS inhibition augmented vasodilation in the hypertensives so this attenuation was abolished (P=.31). Compared to normotensives, maximal vasodilator capacity was reduced in the hypertensive (P=.014) and medicated subjects (P=.004). CONCLUSIONS In the cutaneous microvasculature, antihypertensive pharmacotherapy improved endothelial function through NO-dependent and NO-independent mechanisms, but did not improve maximal vasodilator capacity.
Collapse
Affiliation(s)
- Daniel H Craighead
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| | - Caroline J Smith
- Department of Health & Exercise Science, Appalachian State University, Boone, NC, USA
| | - Lacy M Alexander
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
30
|
Orbegozo D, Mongkolpun W, Stringari G, Markou N, Creteur J, Vincent JL, De Backer D. Skin microcirculatory reactivity assessed using a thermal challenge is decreased in patients with circulatory shock and associated with outcome. Ann Intensive Care 2018; 8:60. [PMID: 29725778 PMCID: PMC5934288 DOI: 10.1186/s13613-018-0393-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/12/2018] [Indexed: 11/24/2022] Open
Abstract
Background Shock states are characterized by impaired tissue perfusion and microcirculatory alterations, which are directly related to outcome. Skin perfusion can be noninvasively evaluated using skin laser Doppler (SLD), which, when coupled with a local thermal challenge, may provide a measure of microcirculatory reactivity. We hypothesized that this microvascular reactivity would be impaired in patients with circulatory shock and would be a marker of severity. Methods We first evaluated skin blood flow (SBF) using SLD on the forearm and on the palm in 18 healthy volunteers to select the site with maximal response. Measurements were taken at 37 °C (baseline) and repeated at 43 °C. The 43 °C/37 °C SBF ratio was calculated as a measure of microvascular reactivity. We then evaluated the SBF in 29 patients with circulatory shock admitted to a 35-bed department of intensive care and in a confirmatory cohort of 35 patients with circulatory shock. Results In the volunteers, baseline SBF was higher in the hand than in the forearm, but the SBF ratio was lower (11.2 [9.4–13.4] vs. 2.0 [1.7–2.6], p < 0.01) so we used the forearm for our patients. Baseline forearm SBF was similar in patients with shock and healthy volunteers, but the SBF ratio was markedly lower in the patients (2.6 [2.0–3.6] vs. 11.2 [9.4–13.4], p < 0.01). Shock survivors had a higher SBF ratio than non-survivors (3.2 [2.2–6.2] vs. 2.3 [1.7–2.8], p < 0.01). These results were confirmed in the second cohort of 35 patients. In multivariable analysis, the APACHE II score and the SBF ratio were independently associated with mortality. Conclusions Microcirculatory reactivity is decreased in patients with circulatory shock and has prognostic value. This simple, noninvasive test could help in monitoring the peripheral microcirculation in acutely ill patients. Electronic supplementary material The online version of this article (10.1186/s13613-018-0393-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Diego Orbegozo
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium
| | - Wasineenart Mongkolpun
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium
| | - Gianni Stringari
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium
| | - Nikolaos Markou
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium
| | - Jacques Creteur
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium
| | - Jean-Louis Vincent
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium.
| | - Daniel De Backer
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium.
| |
Collapse
|
31
|
Johnson JM, Kellogg DL. Skin vasoconstriction as a heat conservation thermoeffector. HANDBOOK OF CLINICAL NEUROLOGY 2018; 156:175-192. [PMID: 30454589 DOI: 10.1016/b978-0-444-63912-7.00011-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cold exposure stimulates heat production and conservation to protect internal temperature. Heat conservation is brought about via reductions in skin blood flow. The focus, here, is an exploration of the mechanisms, particularly in humans, leading to that cutaneous vasoconstriction. Local skin cooling has several effects: (1) reduction of tonic nitric oxide formation by inhibiting nitric oxide synthase and element(s) downstream of the enzyme, which removes tonic vasodilator effects, yielding a relative vasoconstriction; (2) translocation of intracellular alpha-2c adrenoceptors to the vascular smooth-muscle cell membrane, enhancing adrenergic vasoconstriction; (3) increased norepinephrine release from vasoconstrictor nerves; and (4) cold-induced vasodilation, seen more clearly in anastomoses-rich glabrous skin. Cold-induced vasodilation occurs in nonglabrous skin when nitric oxide synthase or sympathetic function is blocked. Reflex responses to general body cooling complement these local effects. Sympathetic excitation leads to the increased release of norepinephrine and its cotransmitter neuropeptide Y, each of which contributes significantly to the vasoconstriction. The contributions of these two transmitters vary with aging, disease and, in women, reproductive hormone status. Interaction between local and reflex mechanisms is in part through effects on baseline and in part through removal of the inhibitory effects of nitric oxide on adrenergic vasoconstriction.
Collapse
Affiliation(s)
- John M Johnson
- Department of Physiology, University of Texas Health Center at San Antonio, San Antonio, TX, United States.
| | - Dean L Kellogg
- Department of Physiology, University of Texas Health Center at San Antonio, San Antonio, TX, United States; Department of Medicine, University of Texas Health Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
32
|
Fujii N, Halili L, Nishiyasu T, Kenny GP. Voltage-gated potassium channels and NOS contribute to a sustained cutaneous vasodilation elicited by local heating in an interactive manner in young adults. Microvasc Res 2017; 117:22-27. [PMID: 29247720 DOI: 10.1016/j.mvr.2017.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 12/08/2017] [Accepted: 12/08/2017] [Indexed: 12/13/2022]
Abstract
Local skin heating to 42°C causes rapid increases in cutaneous perfusion (initial peak), followed by a brief nadir and subsequent sustained elevation (plateau). Several studies have demonstrated that nitric oxide synthase (NOS) largely contributes to the plateau response during local heating. In this study, we tested the hypothesis that voltage-gated potassium (Kv) channels contribute to the plateau of the cutaneous vasodilation during local heating through NOS-dependent mechanisms. Eleven young males (25±4years) participated in this study wherein cutaneous vascular conductance (CVC) was measured at four intradermal microdialysis sites that were continuously perfused with either 1) lactated Ringer (Control), 2) 10mM 4-aminopyridine (Kv channel blocker), 3) 10mM Nω-Nitro-L-arginine (NOS inhibitor), or 4) a combination of 4-aminopyridine and Nω-Nitro-L-arginine. In comparison to the Control site, the inhibition of Kv channels alone attenuated the increase in CVC observed at the initial peak, nadir, and plateau phases measured during local heating; in contrast, the inhibition of NOS alone attenuated the increase in CVC at the nadir and plateau phases only (e.g., plateau response: Control site: 59±5%max, Kv channel blockade site: 49±8%max, NOS inhibition site: 35±11%max, combined inhibition site: 40±12%max). Further, no effect of Kv channel blockade on CVC was measured at any phase of the local heating response when the modulating influence of NOS was simultaneously removed. We show that Kv channels and NOS contribute to the local heating mediated sustained increase (i.e., plateau) in cutaneous vasodilation in an interactive manner. (243/250 words).
Collapse
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada; Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Lyra Halili
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Takeshi Nishiyasu
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
33
|
McNeely BD, Meade RD, Fujii N, Seely AJE, Sigal RJ, Kenny GP. Fluid replacement modulates oxidative stress- but not nitric oxide-mediated cutaneous vasodilation and sweating during prolonged exercise in the heat. Am J Physiol Regul Integr Comp Physiol 2017; 313:R730-R739. [PMID: 28931548 PMCID: PMC5814697 DOI: 10.1152/ajpregu.00284.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/11/2017] [Accepted: 09/11/2017] [Indexed: 01/29/2023]
Abstract
The roles of nitric oxide synthase (NOS), reactive oxygen species (ROS), and angiotensin II type 1 receptor (AT1R) activation in regulating cutaneous vasodilation and sweating during prolonged (≥60 min) exercise are currently unclear. Moreover, it remains to be determined whether fluid replacement (FR) modulates the above thermoeffector responses. To investigate, 11 young men completed 90 min of continuous moderate intensity (46% V̇o2peak) cycling performed at a fixed rate of metabolic heat production of 600 W (No FR condition). On a separate day, participants completed a second session of the same protocol while receiving FR to offset sweat losses (FR condition). Cutaneous vascular conductance (CVC) and local sweat rate (LSR) were measured at four intradermal microdialysis forearm sites perfused with: 1) lactated Ringer (Control); 2) 10 mM NG-nitro-l-arginine methyl ester (l-NAME, NOS inhibition); 3) 10 mM ascorbate (nonselective antioxidant); or 4) 4.34 nM losartan (AT1R inhibition). Relative to Control (71% CVCmax at both time points), CVC with ascorbate (80% and 83% CVCmax) was elevated at 60 and 90 min of exercise during FR (both P < 0.02) but not at any time during No FR (all P > 0.31). In both conditions, CVC was reduced at end exercise with l-NAME (60% CVCmax; both P < 0.02) but was not different relative to Control at the losartan site (76% CVCmax; both P > 0.19). LSR did not differ between sites in either condition (all P > 0.10). We conclude that NOS regulates cutaneous vasodilation, but not sweating, irrespective of FR, and that ROS influence cutaneous vasodilation during prolonged exercise with FR.
Collapse
Affiliation(s)
- Brendan D McNeely
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Naoto Fujii
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
- Faculty of Health and Sports Science, University of Tsukuba, Tsukuba, Japan
| | - Andrew J E Seely
- Thoracic Surgery and Critical Care Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
| | - Ronald J Sigal
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; and
- Departments of Medicine, Cardiac Sciences and Community Health Sciences, Faculties of Medicine and Kinesiology University of Calgary, Calgary, Alberta, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada;
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; and
| |
Collapse
|
34
|
Kirkman DL, Muth BJ, Ramick MG, Townsend RR, Edwards DG. Role of mitochondria-derived reactive oxygen species in microvascular dysfunction in chronic kidney disease. Am J Physiol Renal Physiol 2017; 314:F423-F429. [PMID: 29117995 DOI: 10.1152/ajprenal.00321.2017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cardiovascular disease is the leading cause of mortality in chronic kidney disease (CKD). Mitochondrial dysfunction secondary to CKD is a potential source of oxidative stress that may impair vascular function. This study sought to determine if mitochondria-derived reactive oxygen species contribute to microvascular dysfunction in stage 3-5 CKD. Cutaneous vasodilation in response to local heating was assessed in 20 CKD patients [60 ± 13 yr; estimated glomerular filtration rate (eGFR) 46 ± 13 ml·kg-1·1.73 m-2] and 11 matched healthy participants (58 ± 2 yr; eGFR >90 ml·kg-1·1.73 m-2). Participants were instrumented with two microdialysis fibers for the delivery of 1) Ringer solution, and 2) the mitochondria- specific superoxide scavenger MitoTempo. Skin blood flow was measured via laser Doppler flowmetry during standardized local heating (42°C). Cutaneous vascular conductance (CVC) was calculated as a percentage of the maximum conductance achieved with sodium nitroprusside infusion at 43°C. Urinary isofuran/F2-isoprostane ratios were assessed by gas-chromatography mass spectroscopy. Isofuran-to-F2-isoprostane ratios were increased in CKD patients (3.08 ± 0.32 vs. 1.69 ± 0.12 arbitrary units; P < 0.01) indicative of mitochondria-derived oxidative stress. Cutaneous vasodilation was impaired in CKD compared with healthy controls (87 ± 1 vs. 92 ± 1%CVCmax; P < 0.01). Infusion of MitoTempo significantly increased the plateau phase CVC in CKD patients (CKD Ringer vs. CKD MitoTempo: 87 ± 1 vs. 93 ± 1%CVCmax; P < 0.01) to similar levels observed in healthy controls ( P = 0.9). These data provide in vivo evidence that mitochondria-derived reactive oxygen species contribute to microvascular dysfunction in CKD and suggest that mitochondrial dysfunction may be a potential therapeutic target to improve CKD-related vascular dysfunction.
Collapse
Affiliation(s)
- Danielle L Kirkman
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| | - Bryce J Muth
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| | - Meghan G Ramick
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| | - Raymond R Townsend
- Clinical and Translational Research Center, University of Pennsylvania , Philadelphia, Pennsylvania
| | - David G Edwards
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| |
Collapse
|
35
|
Kenney WL. Edward F. Adolph Distinguished Lecture: Skin-deep insights into vascular aging. J Appl Physiol (1985) 2017; 123:1024-1038. [PMID: 28729391 PMCID: PMC5792098 DOI: 10.1152/japplphysiol.00589.2017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/17/2017] [Accepted: 07/17/2017] [Indexed: 11/22/2022] Open
Abstract
The skin is an accessible model circulation for studying vascular function and dysfunction across the lifespan. Age-related changes, as well as those associated with disease progression, often appear first in the cutaneous circulation. Furthermore, impaired vascular signaling and attendant endothelial dysfunction, the earliest indicators of cardiovascular pathogenesis, occur in a similar fashion across multiple tissue beds throughout the body, including the skin. Because microvascular dysfunction is a better predictor of long-term outcomes and adverse cardiovascular events than is large vessel disease, an understanding of age-associated changes in the control of the human cutaneous microcirculation is important. This review focuses on 1) the merits of using skin-specific methods and techniques to study vascular function, 2) microvascular changes in aged skin (in particular, the role of the endothelial-derived dilator nitric oxide), and 3) the impact of aging on heat-induced changes in skin vasodilation. While skin blood flow is controlled by multiple, often redundant, mechanisms, our laboratory has used a variety of distinct thermal provocations of this model circulation to isolate specific age-associated changes in vascular function. Skin-specific approaches and techniques, such as intradermal microdialysis coupled with laser-Doppler flowmetry (in vivo) and biochemical analyses of skin biopsy samples (in vitro), have allowed for the targeted pharmacodissection of the mechanistic pathways controlling skin vasoreactivity and study of the impact of aging and disease states. Aged skin has an attenuated ability to vasodilate in response to warm stimuli and to vasoconstrict in response to cold stimuli.
Collapse
Affiliation(s)
- W Larry Kenney
- Department of Kinesiology and Intercollege Graduate Program in Physiology, Noll Laboratory, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
36
|
The role of shear stress on cutaneous microvascular endothelial function in humans. Eur J Appl Physiol 2017; 117:2457-2468. [PMID: 28986690 DOI: 10.1007/s00421-017-3732-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/30/2017] [Indexed: 12/31/2022]
Abstract
PURPOSE Previous studies suggest that exercise and heat stress improve cutaneous endothelial function, caused by increases in shear stress. However, as vasodilatation in the skin is primarily a thermogenic phenomenon, we investigated if shear stress alone without increases in skin temperature that occur with exercise and heat stress increases endothelial function. We examined the hypothesis that repeated bouts of brief occlusion would improve cutaneous endothelial function via shear stress-dependent mechanisms. METHODS Eleven males underwent a shear stress intervention (forearm occlusion 5 s rest 10 s) for 30 min, five times·week-1 for 6 weeks on one arm, the other was an untreated control. Skin blood flow was measured using laser-Doppler flowmetry, and endothelial function was assessed with and without NOS-inhibition with L-NAME in response to three levels of local heating (39, 42, and 44 °C), ACh administration, and reactive hyperaemia. Data are cutaneous vascular conductance (CVC, laser-Doppler/blood pressure). RESULTS There were no changes in the control arm (all d ≤ 0.2, p > 0.05). In the experimental arm, CVC to 39 °C was increased after 3 and 6 weeks (d = 0.6; p ≤ 0.01). Nitric oxide contribution was increased after 6 weeks compared to baseline (d = 0.85, p < 0.001). Following skin heating to 42 °C and 44 °C, CVC was not different at weeks 3 or 6 (d ≤ 0.8, p > 0.05). For both 42 and 44 °C, nitric oxide contribution was increased after weeks 3 and 6 (d ≥ 0.4, p < 0.03). Peak and area-under-the-curve responses to ACh increased following 6 weeks (p < 0.001). CONCLUSIONS Episodic increases in shear stress, without changes in skin or core temperature, elicit an increase in cutaneous microvascular reactivity and endothelial function.
Collapse
|
37
|
Fujii N, Zhang SY, McNeely BD, Nishiyasu T, Kenny GP. Heat shock protein 90 contributes to cutaneous vasodilation through activating nitric oxide synthase in young male adults exercising in the heat. J Appl Physiol (1985) 2017; 123:844-850. [PMID: 28751373 PMCID: PMC5668448 DOI: 10.1152/japplphysiol.00446.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/25/2017] [Accepted: 07/25/2017] [Indexed: 12/25/2022] Open
Abstract
While the mechanisms underlying the control of cutaneous vasodilation have been extensively studied, there remains a lack of understanding of the different factors that may modulate cutaneous perfusion during an exercise-induced heat stress. We evaluated the hypothesis that heat shock protein 90 (HSP90) contributes to the heat loss response of cutaneous vasodilation via the activation of nitric oxide synthase (NOS) during exercise in the heat. In 11 young males (25 ± 5 yr), cutaneous vascular conductance (CVC) was measured at four forearm skin sites that were continuously treated with 1) lactated Ringer solution (control), 2) NOS inhibition with 10 mM NG-nitro-l-arginine methyl ester (l-NAME), 3) HSP90 inhibition with 178 μM geldanamycin, or 4) a combination of 10 mM l-NAME and 178 μM geldanamycin. Participants rested in a moderate heat stress (35°C) condition for 70 min. Thereafter, they performed a 50-min bout of moderate-intensity cycling (~52% V̇o2peak) followed by a 30-min recovery period. We showed that NOS inhibition attenuated CVC (~40-50%) relative to the control site during pre- and postexercise rest in the heat (P ≤ 0.05); however, no effect of HSP90 inhibition was observed (P > 0.05). During exercise, we observed an attenuation of CVC with the separate inhibition of NOS (~40-50%) and HSP90 (~15-20%) compared with control (both P ≤ 0.05). However, the effect of HSP90 inhibition was absent in the presence of the coinhibition of NOS (P > 0.05). We show that HSP90 contributes to cutaneous vasodilation in young men exposed to the heat albeit during exercise only. We also show that the HSP90 contribution is due to NOS-dependent mechanisms.NEW & NOTEWORTHY We show that heat shock protein 90 functionally contributes to the heat loss response of cutaneous vasodilation during exercise in the heat, and this response is mediated through the activation of nitric oxide synthase. Therefore, interventions that may activate heat shock protein 90 may facilitate an increase in heat dissipation through an augmentation of cutaneous perfusion. In turn, this may attenuate or reduce the increase in core temperature and therefore the level of heat strain.
Collapse
Affiliation(s)
- Naoto Fujii
- Faculty of Health and Sports Science, University of Tsukuba, Tsukuba, Japan; and
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Sarah Y Zhang
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Brendan D McNeely
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Takeshi Nishiyasu
- Faculty of Health and Sports Science, University of Tsukuba, Tsukuba, Japan; and
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| |
Collapse
|
38
|
Smith CJ, Craighead DH, Alexander LM. Effects of vehicle microdialysis solutions on cutaneous vascular responses to local heating. J Appl Physiol (1985) 2017; 123:1461-1467. [PMID: 28860170 DOI: 10.1152/japplphysiol.00498.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Microdialysis is a minimally invasive technique often paired with laser Doppler flowmetry to examine cutaneous microvascular function, yet presents with several challenges, including incompatibility with perfusion of highly lipophilic compounds. The present study addresses this methodological concern, with an emphasis on the independent effects of commonly used vehicle dialysis solutions to improve solubility of pharmacological agents with otherwise low aqueous solubility. Four microdialysis fibers were placed in the ventral forearm of eight subjects (4 men, 4 women; 25 ± 1 yr) with sites randomized to serve as 1) control (lactated Ringer's), 2) Sodium carbonate-bicarbonate buffer administered at physiological pH [SCB-HCl; pH 7.4, achieved via addition of hydrochloric acid (HCl)], 3) 0.02% ethanol, and 4) 2% dimethyl sulfoxide (DMSO). After baseline (34°C), vehicle solutions were administered throughout a standardized local heating protocol to 42°C. Laser Doppler flowmetry provided an index of blood flow. Cutaneous vascular conductance was calculated and normalized to maximum (%CVCmax, sodium nitroprusside and 43°C local heat). The SCB-HCl solution increased baseline %CVCmax (control: 9.7 ± 0.8; SCB-HCl: 21.5 ± 3.5%CVCmax; P = 0.03), but no effects were observed during heating or maximal vasodilation. There were no differences with perfusion of ethanol or DMSO at any stage of the protocol ( P > 0.05). These data demonstrate the potential confounding effects of some vehicle dialysis solutions on cutaneous vascular function. Notably, this study provides evidence that 2% DMSO and 0.02% ethanol are acceptable vehicles with no confounding local vascular effects to a standardized local heating protocol at the concentrations presented. NEW & NOTEWORTHY This study examined the independent effects of common vehicle solutions on cutaneous vascular responses. A basic buffer (SCB-HCl) caused baseline vasodilation; 2% DMSO and 0.02% ethanol had no effects. This highlights the need for considering potential confounding effects of solubilizing solutions when combined with low aqueous soluble pharmacological agents. Importantly, DMSO and ethanol do not appear to influence cutaneous vascular function during baseline or local heating at the concentrations studied, allowing their use without confounding effects.
Collapse
Affiliation(s)
- Caroline J Smith
- Department of Health and Exercise Science, Appalachian State University, Boone, North Carolina
| | - Daniel H Craighead
- Department of Kinesiology, Noll Laboratory, The Pennsylvania State University , University Park, Pennsylvania
| | - Lacy M Alexander
- Department of Kinesiology, Noll Laboratory, The Pennsylvania State University , University Park, Pennsylvania
| |
Collapse
|
39
|
Dremin VV, Zherebtsov EA, Sidorov VV, Krupatkin AI, Makovik IN, Zherebtsova AI, Zharkikh EV, Potapova EV, Dunaev AV, Doronin AA, Bykov AV, Rafailov IE, Litvinova KS, Sokolovski SG, Rafailov EU. Multimodal optical measurement for study of lower limb tissue viability in patients with diabetes mellitus. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-10. [PMID: 28825287 DOI: 10.1117/1.jbo.22.8.085003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/21/2017] [Indexed: 05/22/2023]
Abstract
According to the International Diabetes Federation, the challenge of early stage diagnosis and treatment effectiveness monitoring in diabetes is currently one of the highest priorities in modern healthcare. The potential of combined measurements of skin fluorescence and blood perfusion by the laser Doppler flowmetry method in diagnostics of low limb diabetes complications was evaluated. Using Monte Carlo probabilistic modeling, the diagnostic volume and depth of the diagnosis were evaluated. The experimental study involved 76 patients with type 2 diabetes mellitus. These patients were divided into two groups depending on the degree of complications. The control group consisted of 48 healthy volunteers. The local thermal stimulation was selected as a stimulus on the blood microcirculation system. The experimental studies have shown that diabetic patients have elevated values of normalized fluorescence amplitudes, as well as a lower perfusion response to local heating. In the group of people with diabetes with trophic ulcers, these parameters also significantly differ from the control and diabetes only groups. Thus, the intensity of skin fluorescence and level of tissue blood perfusion can act as markers for various degrees of complications from the beginning of diabetes to the formation of trophic ulcers.
Collapse
Affiliation(s)
- Viktor V Dremin
- Orel State University named after I.S. Turgenev, Biomedical Photonics Laboratory of University Clini, Russia
| | - Evgeny A Zherebtsov
- Aston University, Aston Institute of Photonic Technologies, Optoelectronics and Biomedical Photonics, United Kingdom
| | | | | | - Irina N Makovik
- Orel State University named after I.S. Turgenev, Biomedical Photonics Laboratory of University Clini, Russia
| | - Angelina I Zherebtsova
- Orel State University named after I.S. Turgenev, Biomedical Photonics Laboratory of University Clini, Russia
| | - Elena V Zharkikh
- Orel State University named after I.S. Turgenev, Biomedical Photonics Laboratory of University Clini, Russia
| | - Elena V Potapova
- Orel State University named after I.S. Turgenev, Biomedical Photonics Laboratory of University Clini, Russia
| | - Andrey V Dunaev
- Orel State University named after I.S. Turgenev, Biomedical Photonics Laboratory of University Clini, Russia
| | - Alexander A Doronin
- Yale University, Department of Computer Science, Computer Graphics Group, New Haven, Connecticut, United States
| | - Alexander V Bykov
- University of Oulu, Optoelectronics and Measurement Techniques Laboratory, Faculty of Information Te, Finland
| | - Ilya E Rafailov
- Aston University, School of Engineering and Applied Sciences, Aston Institute of Photonic Technologi, United Kingdom
| | | | - Sergei G Sokolovski
- Aston University, Aston Institute of Photonic Technologies, Optoelectronics and Biomedical Photonics, United Kingdom
| | - Edik U Rafailov
- Aston University, Aston Institute of Photonic Technologies, Optoelectronics and Biomedical Photonics, United Kingdom
| |
Collapse
|
40
|
Hodges GJ, Mallette MM, Tew GA, Saxton JM, Moss J, Ruddock AD, Klonizakis M. Effect of age on cutaneous vasomotor responses during local skin heating. Microvasc Res 2017; 112:47-52. [DOI: 10.1016/j.mvr.2017.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 12/19/2022]
|
41
|
Hodges GJ, Martin ZT, Del Pozzi AT. Neuropeptide Y not involved in cutaneous vascular control in young human females taking oral contraceptive hormones. Microvasc Res 2017; 113:9-15. [PMID: 28427990 DOI: 10.1016/j.mvr.2017.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/11/2017] [Accepted: 04/15/2017] [Indexed: 11/27/2022]
Abstract
We previously reported that the cutaneous vasodilator response to local warming in males required noradrenaline (NA) and neuropeptide-Y (NPY). Animal work has shown no role for NPY in female vascular control. We investigated the contribution of NA and NPY in human female cutaneous vascular control. Nine female and nine male participants volunteered. To elucidate whether synthetic oestrogen and progesterone altered cutaneous vascular responses, females were tested in high-hormone (HH) and low-hormone (LH) phases of oral contraceptive pill (OCP). Skin blood flow was assessed by laser-Doppler flowmetry and expressed as cutaneous vascular conductance (CVC). Treatments were: control, combined yohimbine and propranolol (YP), BIBP-3226, and bretylium tosylate (BT). YP and BT increased basal CVC (p<0.05) relative to control sites in both HH and LH phases; though, BIBP-3226 had no effect in either phase (both p>0.05). Males basal CVC was increased at all treated sites compared to control sites (all p<0.05). YP and BT treated sites were higher in HH compared to LH (p<0.05). YP and BT treatment reduced the local warming-induced vasodilatation compared to control sites (p>0.05) in both HH and LH phases; whereas, BIBP-3226 treatment had no effect (p>0.05). In males, the vasodilatation achieved at all treated sites was reduced compared to the untreated control site (p<0.05). Data indicate that NA, not NPY, regulates basal skin blood flow and contributes to the vasodilator response to local warming in young females; however, both NA and NPY play a role in both basal and heat-induced cutaneous responses in males.
Collapse
Affiliation(s)
- Gary J Hodges
- Environmental Ergonomics Laboratory, Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada.
| | - Zachary T Martin
- Integrative Exercise Physiology Laboratory, School of Kinesiology, Ball State University, 2000 West University Avenue, Muncie, IN 47306, USA.
| | - Andrew T Del Pozzi
- Integrative Exercise Physiology Laboratory, School of Kinesiology, Ball State University, 2000 West University Avenue, Muncie, IN 47306, USA.
| |
Collapse
|
42
|
Sauvet F, Arnal PJ, Tardo-Dino PE, Drogou C, Van Beers P, Bougard C, Rabat A, Dispersyn G, Malgoyre A, Leger D, Gomez-Merino D, Chennaoui M. Protective effects of exercise training on endothelial dysfunction induced by total sleep deprivation in healthy subjects. Int J Cardiol 2017; 232:76-85. [DOI: 10.1016/j.ijcard.2017.01.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 11/30/2016] [Accepted: 01/04/2017] [Indexed: 12/31/2022]
|
43
|
Mallette MM, Hodges GJ, McGarr GW, Gabriel DA, Cheung SS. Spectral analysis of reflex cutaneous vasodilatation during passive heat stress. Microvasc Res 2017; 111:42-48. [PMID: 28065673 DOI: 10.1016/j.mvr.2016.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 11/19/2022]
Abstract
Previous work has demonstrated that spectral analysis is a useful tool to non-invasively ascertain the mechanisms of control of the cutaneous circulation. The majority of work using spectral analysis has focused on local control mechanisms, with none examining reflex control. Skin blood flow was analysed using spectral analysis on the dorsal aspect of the forearm of 7 males and 7 females during passive heat stress, with mean forearm and local temperature at the site of measurement maintained at thermoneutral (33°C) to minimize the effect of local control mechanisms. Participants were passively heated to ~1.2±0.1°C above baseline rectal temperature (d=4.0, P<0.001) using a water-perfused, tube lined suit, with skin blood flow assessed using a laser-Doppler probe with an integrated temperature monitor. Spectral analysis was performed using a Morlet wavelet on the entire data set, with median power extracted during 20min of data during baseline (normothermia) and hyperthermia. Passive heat stress significantly increased laser-Doppler flux above baseline (d=4.7, P<0.001). Spectral power of the endothelial nitric oxide-independent (0.005-0.01Hz; d=1.1, P=0.004), neurogenic (0.2-0.05Hz; d=0.6, P=0.025), myogenic (0.05-0.15Hz; d=1.5, P=0.002), respiratory (0.15-0.4Hz; d=1.4 P=0.002), and cardiac (0.4-2.0Hz; d=1.1, P=0.012) frequency intervals increased with passive heat stress. In contrast, the endothelial nitric oxide-dependent frequency interval did not change (0.01-0.02Hz; d=0.3, P=0.09) with passive heat stress. These data suggest that cutaneous reflex vasodilatation is neurogenic in origin and not mediated by endothelial-nitric oxide synthase, and are congruent with invasive examinations of reflex cutaneous vasodilatation.
Collapse
Affiliation(s)
- Matthew M Mallette
- Environmental Ergonomics Laboratory, Department of Kinesiology, Brock University, St. Catharines, Canada
| | - Gary J Hodges
- Environmental Ergonomics Laboratory, Department of Kinesiology, Brock University, St. Catharines, Canada
| | - Gregory W McGarr
- Environmental Ergonomics Laboratory, Department of Kinesiology, Brock University, St. Catharines, Canada
| | - David A Gabriel
- Electromyographic Kinesiology Laboratory, Department of Kinesiology, Brock University, St. Catharines, Canada
| | - Stephen S Cheung
- Environmental Ergonomics Laboratory, Department of Kinesiology, Brock University, St. Catharines, Canada.
| |
Collapse
|
44
|
Dairy cheese consumption ameliorates single-meal sodium-induced cutaneous microvascular dysfunction by reducing ascorbate-sensitive oxidants in healthy older adults. Br J Nutr 2016; 116:658-65. [PMID: 27363679 DOI: 10.1017/s0007114516002579] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic dairy product intake is associated with improved cardiovascular outcomes, whereas high dietary Na impairs endothelial function through increased oxidative stress and reduced nitric oxide (NO) bioavailability. The purpose of this study was to compare the effect of acute cheese consumption with consumption of Na from non-dairy sources on microvascular function. We hypothesised that dairy cheese ingestion would augment NO-dependent vasodilation compared with Na from non-dairy sources. On five visits, fourteen subjects (61 (sem 2) years, eight male/six female) consumed either 85 g dairy cheese (560 mg Na), 85 g soya cheese (560 mg Na), 65 g pretzels (560 mg Na), 170 g dairy cheese (1120 mg Na) or 130 g pretzels (1120 mg Na). Two intradermal microdialysis fibres were inserted in the ventral forearm for delivery of lactated Ringer's solution or 10 mm-ascorbate (antioxidant) during local skin heating (approximately 50 min). Erythrocyte flux was measured continuously by laser-Doppler flowmetry (LDF), and cutaneous vascular conductance (CVC=LDF/mean arterial pressure) was normalised as %CVCmax (28 mm-sodium nitroprusside). Following a plateau in CVC, 15 mm-N G -nitro-l-arginine-methyl-ester was perfused to quantify NO-dependent vasodilation (approximately 45 min). NO-dependent vasodilation was greater following consumption of dairy products (560 mg Na 57 (sem 3) %) (1120 mg Na 55 (sem 5) %) compared with soya (560 mg Na 42 (sem 3) %; P=0·002) or pretzels (560 mg Na 43 (sem 4) %; P=0·004) (1120 mg Na 46 (sem 3) %; P=0·04). Ascorbate augmented NO-dependent vasodilation following intake of soya (control: 42 (sem 3) v. ascorbate: 54 (sem 3) %; P=0·01) or pretzels (560 mg Na; control: 43 (sem 4) v. ascorbate: 56 (sem 3) %; P=0·006) (1120 mg Na; control: 46 (sem 5) v. ascorbate: 56 (sem 3) %; P=0·02), but not dairy products. Na ingestion via dairy products was associated with greater NO-dependent vasodilation compared with non-dairy products, a difference that was ameliorated with ascorbate perfusion. The antioxidant properties of dairy proteins may protect against Na-induced reductions in NO-dependent dilation.
Collapse
|
45
|
Wong BJ, Hollowed CG. Current concepts of active vasodilation in human skin. Temperature (Austin) 2016; 4:41-59. [PMID: 28349094 PMCID: PMC5356216 DOI: 10.1080/23328940.2016.1200203] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 10/30/2022] Open
Abstract
In humans, an increase in internal core temperature elicits large increases in skin blood flow and sweating. The increase in skin blood flow serves to transfer heat via convection from the body core to the skin surface while sweating results in evaporative cooling of the skin. Cutaneous vasodilation and sudomotor activity are controlled by a sympathetic cholinergic active vasodilator system that is hypothesized to operate through a co-transmission mechanism. To date, mechanisms of cutaneous active vasodilation remain equivocal despite many years of research by several productive laboratory groups. The purpose of this review is to highlight recent advancements in the field of cutaneous active vasodilation framed in the context of some of the historical findings that laid the groundwork for our current understanding of cutaneous active vasodilation.
Collapse
Affiliation(s)
- Brett J. Wong
- Department of Kinesiology & Health, Georgia State University, Atlanta, GA, USA
| | - Casey G. Hollowed
- Department of Kinesiology & Health, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
46
|
Acute dairy milk ingestion does not improve nitric oxide-dependent vasodilation in the cutaneous microcirculation. Br J Nutr 2016; 116:204-10. [PMID: 27180680 DOI: 10.1017/s0007114516001835] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In epidemiological studies, chronic dairy milk consumption is associated with improved vascular health and reduced age-related increases in blood pressure. Although milk protein supplementation augments conduit artery flow-mediated dilation, whether or not acute dairy milk intake may improve microvascular function remains unclear. We hypothesised that dairy milk would increase direct measurement of endothelial nitric oxide (NO)-dependent cutaneous vasodilation in response to local skin heating. Eleven men and women (61 (sem 2) years) ingested two or four servings (473 and 946 ml) of 1 % dairy milk or a rice beverage on each of 4 separate study days. In a subset of five subjects, an additional protocol was completed after 473 ml of water ingestion. Once a stable blood flow occurred, 15 mm-N G -nitro-l-arginine methyl ester was perfused (intradermal microdialysis) to quantify NO-dependent vasodilation. Red-blood-cell flux (RBF) was measured by laser-Doppler flowmetry, and cutaneous vascular conductance (CVC=RBF/mean arterial pressure) was calculated and normalised to maximum (%CVCmax; 28 mm-sodium nitroprusside). Full expression of cutaneous vasodilation was not different among dairy milk, rice beverage and water, and there was no effect of serving size on the total vasodilatory response. Contrary to our hypothesis, NO-dependent vasodilation was lower for dairy milk than rice beverage (D: 49 (sem 5), R: 55 (sem 5) %CVCmax; P<0·01). Acute dairy milk ingestion does not augment NO-dependent vasodilation in the cutaneous microcirculation compared with a rice beverage control.
Collapse
|
47
|
Hodges GJ, McGarr GW, Mallette MM, Del Pozzi AT, Cheung SS. The contribution of sensory nerves to the onset threshold for cutaneous vasodilatation during gradual local skin heating of the forearm and leg. Microvasc Res 2016; 105:1-6. [DOI: 10.1016/j.mvr.2015.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 11/03/2015] [Accepted: 12/08/2015] [Indexed: 10/22/2022]
|
48
|
Moyen NE, Ganio MS, Burchfield JM, Tucker MA, Gonzalez MA, Dougherty EK, Robinson FB, Ridings CB, Veilleux JC. Effect of passive heat stress on arterial stiffness in smokers versus non-smokers. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2016; 60:499-506. [PMID: 26266482 DOI: 10.1007/s00484-015-1046-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 06/02/2015] [Accepted: 07/27/2015] [Indexed: 06/04/2023]
Abstract
In non-smokers, passive heat stress increases shear stress and vasodilation, decreasing arterial stiffness. Smokers, who reportedly have arterial dysfunction, may have similar improvements in arterial stiffness with passive heat stress. Therefore, we examined the effects of an acute bout of whole-body passive heat stress on arterial stiffness in smokers vs. non-smokers. Thirteen smokers (8.8 ± 5.5 [median = 6] cigarettes per day for > 4 years) and 13 non-smokers matched for age, mass, height, and exercise habits (27 ± 8 years; 78.8 ± 15.4 kg; 177.6 ± 6.7 cm) were passively heated to 1.5 °C core temperature (T C) increase. At baseline and each 0.5 °C T C increase, peripheral (pPWV) and central pulse wave velocity (cPWV) were measured via Doppler ultrasound. No differences existed between smokers and non-smokers for any variables (all p > .05), except cPWV slightly increased from baseline (526.7 ± 81.7 cm · s(-1)) to 1.5 °C ΔT C (579.7 ± 69.8 cm · s(-1); p < 0.005), suggesting heat stress acutely increased central arterial stiffness. pPWV did not change with heating (grand mean: baseline = 691.9 ± 92.9 cm · s(-1); 1.5 °C ΔT C = 691.9 ± 79.5 cm · s(-1); p > 0.05). Changes in cPWV and pPWV during heating correlated (p < 0.05) with baseline PWV in smokers (cPWV: r = -0.59; pPWV: r = -0.62) and non-smokers (cPWV: r = -0.45; pPWV: r = -0.77). Independent of smoking status, baseline stiffness appears to mediate the magnitude of heating-induced changes in arterial stiffness.
Collapse
Affiliation(s)
- N E Moyen
- Human Performance Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - M S Ganio
- Human Performance Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, USA.
| | - J M Burchfield
- Human Performance Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - M A Tucker
- Human Performance Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - M A Gonzalez
- Human Performance Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - E K Dougherty
- Human Performance Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - F B Robinson
- Human Performance Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - C B Ridings
- Human Performance Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - J C Veilleux
- Department of Psychological Science, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
49
|
Fujii N, Meade RD, Alexander LM, Akbari P, Foudil-Bey I, Louie JC, Boulay P, Kenny GP. iNOS-dependent sweating and eNOS-dependent cutaneous vasodilation are evident in younger adults, but are diminished in older adults exercising in the heat. J Appl Physiol (1985) 2016; 120:318-27. [PMID: 26586908 PMCID: PMC4740499 DOI: 10.1152/japplphysiol.00714.2015] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/16/2015] [Indexed: 12/12/2022] Open
Abstract
Nitric oxide synthase (NOS) contributes to sweating and cutaneous vasodilation during exercise in younger adults. We hypothesized that endothelial NOS (eNOS) and neuronal NOS (nNOS) mediate NOS-dependent sweating, whereas eNOS induces NOS-dependent cutaneous vasodilation in younger adults exercising in the heat. Further, aging may upregulate inducible NOS (iNOS), which may attenuate sweating and cutaneous vasodilator responses. We hypothesized that iNOS inhibition would augment sweating and cutaneous vasodilation in exercising older adults. Physically active younger (n = 12, 23 ± 4 yr) and older (n = 12, 60 ± 6 yr) adults performed two 30-min bouts of cycling at a fixed rate of metabolic heat production (400 W) in the heat (35°C). Sweat rate and cutaneous vascular conductance (CVC) were evaluated at four intradermal microdialysis sites with: 1) lactated Ringer (control), 2) nNOS inhibitor (nNOS-I, NPLA), 3) iNOS inhibitor (iNOS-I, 1400W), or 4) eNOS inhibitor (eNOS-I, LNAA). In younger adults during both exercise bouts, all inhibitors decreased sweating relative to control, albeit a lower sweat rate was observed at iNOS-I compared with eNOS-I and nNOS-I sites (all P < 0.05). CVC at the eNOS-I site was lower than control in younger adults throughout the intermittent exercise protocol (all P < 0.05). In older adults, there were no differences between control and iNOS-I sites for sweating and CVC during both exercise bouts (all P > 0.05). We show that iNOS and eNOS are the main contributors to NOS-dependent sweating and cutaneous vasodilation, respectively, in physically active younger adults exercising in the heat, and that iNOS inhibition does not alter sweating or cutaneous vasodilation in exercising physically active older adults.
Collapse
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Lacy M Alexander
- Department of Kinesiology, Noll Laboratory, Pennsylvania State University, University Park, Pennsylvania; and
| | - Pegah Akbari
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Imane Foudil-Bey
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Jeffrey C Louie
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Pierre Boulay
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada;
| |
Collapse
|
50
|
Del Pozzi AT, Miller JT, Hodges GJ. The effect of heating rate on the cutaneous vasomotion responses of forearm and leg skin in humans. Microvasc Res 2016; 105:77-84. [PMID: 26808211 DOI: 10.1016/j.mvr.2016.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 11/19/2022]
Abstract
We examined skin blood flow (SkBF) and vasomotion in the forearm and leg using laser-Doppler fluxmetry (LDF) and spectral analysis to investigate endothelial, sympathetic, and myogenic activities in response to slow (0.1 °C·10 s(-1)) and fast (0.5 °C·10 s(-1)) local heating. At 33 °C (thermoneutral) endothelial activity was higher in the legs than the forearms (P ≤ 0.02). Fast-heating increased SkBF more than slow heating (P=0.037 forearm; P=0.002 leg). At onset of 42 °C, endothelial (P=0.043 forearm; P=0.48 leg) activity increased in both regions during the fast-heating protocol. Following prolonged heating (42 °C) endothelial activity was higher in both the forearm (P=0.002) and leg (P<0.001) following fast-heating. These results confirm regional differences in the response to local heating and suggest that the greater increase in SkBF in response to fast local heating is initially due to increased endothelial and sympathetic activity. Furthermore, with sustained local skin heating, greater vasodilatation was observed with fast heating compared to slow heating. These data indicate that this difference is due to greater endothelial activity following fast heating compared to slow heating, suggesting that the rate of skin heating may alter the mechanisms contributing to cutaneous vasodilatation.
Collapse
Affiliation(s)
- Andrew T Del Pozzi
- Integrative Exercise Physiology Laboratory, School of Kinesiology, Ball State University, Muncie, IN 47306, United States
| | - James T Miller
- Exercise Physiology Laboratory, Department of Kinesiology, The University of Alabama, Tuscaloosa, AL 35487, United States
| | - Gary J Hodges
- Environmental Ergonomics Laboratory, Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|