1
|
Lima CDPD, Ruas CV, Blazevich AJ. Influence of Stretch Speed and Arousal State on Passive Ankle Joint Mechanics. Scand J Med Sci Sports 2024; 34:e14774. [PMID: 39639795 DOI: 10.1111/sms.14774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
Studies investigating the mechanisms influencing maximum passive joint range of motion (ROMmax) and stiffness have not objectively assessed the possible influence of stretch speed and/or arousal state. The purpose of this study was to assess the effects of arousal state and stretch speed on healthy individuals ROMmax, stiffness, gastrocnemius medialis, and soleus electromyographic activity (EMG). Fourteen participants performed one familiarization and then one testing session on separate days in the laboratory. In the familiarization (Session 1), participants practiced fast (30°/s ankle dorsiflexion) and slow (5°/s) plantar flexor stretches on an isokinetic dynamometer with the knee extended. In the experimental session (Session 2), they performed two slow, then two fast, stretches under three randomized arousal conditions: control (no music), arousing, and relaxing music. Dorsiflexion ROMmax, ankle joint stiffness, muscle activity during stretch, mean heart rate, and perception of arousal were measured. Perception of arousal was greater in the arousing than relaxing condition (p = 0.001). ROMmax was greater during fast (69.1° ± 7.8°) than slow stretches (64.9° ± 10.8°; p = 0.002) with no effect of arousal. Stiffness and EMG were higher at faster speeds, with a significantly greater percentage of stiffness observed in the arousing than the other conditions during faster stretches (p = 0.04). ROMmax was greater at the faster stretch speed despite greater stiffness and muscle activities being produced during the stretch. Thus, despite reflexive muscle activity and viscosity being higher during faster stretches, a greater, not lesser, ROMmax was observed. Arousal state, at least when altered by music, did not seem to affect ROMmax but somewhat influenced stiffness in the faster stretches.
Collapse
Affiliation(s)
- Camila de Paula de Lima
- University of Campinas, Campinas, Brazil
- School of Medical and Health Science, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Cassio Victora Ruas
- University of Campinas, Campinas, Brazil
- School of Medical and Health Science, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Anthony John Blazevich
- School of Medical and Health Science, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
2
|
Nakamura M, Scardina A, Thomas E, Warneke K, Konrad A. Chronic effects of a static stretching intervention program on range of motion and tissue hardness in older adults. Front Med (Lausanne) 2024; 11:1505775. [PMID: 39655232 PMCID: PMC11625549 DOI: 10.3389/fmed.2024.1505775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction Clinically, knowing whether a static stretching (SS) intervention program conducted for several weeks can reduce passive muscle stiffness is important. Still, only a few previous studies have evaluated the chronic effects of an SS intervention program in older adults, and the potential relationship between ROM changes and muscle stiffness changes is still unclear. This study aimed to investigate the effects of a 10- week SS intervention partially supervised program on joint range of motion (ROM) and tissue hardness in older adults. Methods The SS intervention program was conducted at least three times a week for 10 weeks in the ankle plantar flexor muscles of 24 community-dwelling older adults (73.8 ± 5.1 years; height: 156.0 ± 6.8 cm; body mass: 52.7 ± 8.0 kg). The SS intervention program consisted of 4 × 30-s repetitions. Ankle joint dorsiflexion (DF) ROM and tissue hardness of the medial gastrocnemius were measured before and after the 10-week SS intervention program. Results and discussion The results showed that the 10-week SS intervention program significantly increased DF ROM (+9°, p < 0.01, Cohen's d = 1.37) and decreased tissue hardness (-0.9, p = 0.04, Cohen's d = -0.27). However, there was no significant correlation between these changes (r = 0.086, p = 0.561). The results of this study suggest that a 10-week SS intervention program can effectively increase DF ROM and decrease tissue hardness but that the increase in DF ROM is related to stretch tolerance rather than changes in tissue hardness.
Collapse
Affiliation(s)
- Masatoshi Nakamura
- Faculty of Rehabilitation Sciences, Nishi Kyushu University, Saga, Japan
| | - Antonino Scardina
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Ewan Thomas
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Konstantin Warneke
- Institute of Psychology, Leuphana University Lüneburg, Lüneburg, Germany
- Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria
| | - Andreas Konrad
- Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria
| |
Collapse
|
3
|
Lanza MB, Prado GC, Lacerda LT, Dinardi RR, Carvalho Junior LH, Diniz RC, Lima FV, Chagas MH, Martins-Costa HC. Muscle hypertrophy response across four muscles involved in the bench press exercise: Randomized 10 weeks training intervention. J Bodyw Mov Ther 2024; 40:1417-1422. [PMID: 39593465 DOI: 10.1016/j.jbmt.2024.07.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/20/2024] [Accepted: 07/21/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND AND PURPOSE Resistance training exercise provides increases in muscle size and is used by coaches and health care professional as a tool to improve functional performance. The aim of the present study was to investigate the effect of 10 weeks of resistance training program performed on the bench press (BP) exercise on the hypertrophic responses of four different muscles (pectoralis major, anterior and medial deltoid, brachii, and pectoralis minor) involved in the task compared to controls. METHODS Twenty-four healthy males were recruited, and thirteen performed a resistance training intervention while eleven were control. RT group trained for 10 weeks and the protocol consisted of a time under tension for each set of 36s (3-4 sets) with 12 repetitions with an intensity of 50-55% of the 1RM, a training frequency of 3 times a week, with a 3 min rest between sets. Muscle cross-sectional area (CSA) was measure by magnetic resonance imaging. RESULTS Individuals in the RT group demonstrated higher changes in CSA of the pectoralis major, pectoralis minor, anterior deltoid, and triceps brachii (P ≤ 0.019) than in the Control group. It was identified in the RT group higher increases in CSA of all muscles compared to medial deltoid (P ≤ 0.016), while pectoralis major demonstrated larger increases in CSA than pectoralis minor and triceps brachii (P ≤ 0.030). CONCLUSIONS We demonstrated that 10 weeks of resistance training performed on the BP exercise led to increases in muscle size of the muscles involved in the task, but not in the same magnitude.
Collapse
Affiliation(s)
- Marcel B Lanza
- Department of Physical Therapy and Rehabilitation, School of Medicine, University of Maryland, Baltimore, United States.
| | - Gustavo C Prado
- Department of Physical Education, Pontifical Catholic University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Ricardo Reis Dinardi
- Department of Physical Education, Pontifical Catholic University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Rodrigo C Diniz
- Weight Training Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fernando V Lima
- Weight Training Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mauro H Chagas
- Weight Training Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Hugo C Martins-Costa
- Weight Training Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Belo Horizonte, Brazil; Department of Physical Education, Pontifical Catholic University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
4
|
Cesanelli L, Minderis P, Degens H, Satkunskiene D. Passive mechanical properties of adipose tissue and skeletal muscle from C57BL/6J mice. J Mech Behav Biomed Mater 2024; 155:106576. [PMID: 38744119 DOI: 10.1016/j.jmbbm.2024.106576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/01/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Skeletal muscle and adipose tissue are characterized by unique structural features finely tuned to meet specific functional demands. In this study, we investigated the passive mechanical properties of soleus (SOL), extensor digitorum longus (EDL) and diaphragm (DIA) muscles, as well as subcutaneous (SAT), visceral (VAT) and brown (BAT) adipose tissues from 13 C57BL/6J mice. Thereto, alongside stress-relaxation assessments we subjected isolated muscles and adipose tissues (ATs) to force-extension tests up to 10% and 30% of their optimal length, respectively. Peak passive stress was highest in the DIA, followed by the SOL and lowest in the EDL (p < 0.05). SOL displayed also the highest Young's modulus and hysteresis among muscles (p < 0.05). BAT demonstrated highest peak passive stress and Young's modulus followed by VAT (p < 0.05), while SAT showed the highest hysteresis (p < 0.05). When comparing data across all six biological specimens at fixed passive force intervals (i.e., 20-40 and 50-70 mN), skeletal muscles exhibited significantly higher peak stresses and strains than ATs (p < 0.05). Young's modulus was higher in skeletal muscles than in ATs (p < 0.05). Muscle specimens exhibited slower force relaxation in the first phase compared to ATs (p < 0.05), while there was no significant difference in behavior between muscles and AT in the second phase of relaxation. The study revealed distinctive mechanical behaviors specific to different tissues, and even between different muscles and ATs. These variations in mechanical properties are likely such to optimize the specific functions performed by each biological tissue.
Collapse
Affiliation(s)
- L Cesanelli
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania; Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania.
| | - P Minderis
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - H Degens
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania; Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - D Satkunskiene
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania
| |
Collapse
|
5
|
Kay AD, Blazevich AJ, Tysoe JC, Baxter BA. Cross-Education Effects of Isokinetic Eccentric Plantarflexor Training on Flexibility, Strength, and Muscle-Tendon Mechanics. Med Sci Sports Exerc 2024; 56:1242-1255. [PMID: 38451696 DOI: 10.1249/mss.0000000000003418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
INTRODUCTION Large increases in joint range of motion (ROM) have been reported after eccentric resistance training; however, limited data exist describing the associated mechanisms or potential cross-education effects in the contralateral limb. Therefore, the effects of a 6-wk isokinetic eccentric plantarflexor training program were examined in 26 participants. METHODS Before and after the training program, dorsiflexion ROM, plantarflexor strength, and muscle-tendon unit (MTU) morphology and mechanics were measured in control ( n = 13) and experimental ( n = 13) young adult groups. Training consisted of 5 sets of 12 maximal isokinetic eccentric plantarflexor contractions twice weekly on the right limb. RESULTS Significant ( P < 0.05) increases in dorsiflexion ROM (4.0-9.5°), stretch tolerance (40.3-95.9%), passive elastic energy storage (47.5-161.3%), and isometric (38.1-40.6%) and eccentric (46.7-67.0%) peak plantarflexor torques were detected in both trained and contralateral limbs in the experimental group. Significant increases in gastrocnemius medialis and soleus thickness (5.4-6.1%), gastrocnemius medialis fascicle length (7.6 ± 8.5%), passive plantarflexor MTU stiffness (30.1 ± 35.5%), and Achilles tendon stiffness (5.3 ± 4.9%) were observed in the trained limb only. Significant correlations were detected between the changes in trained and contralateral limbs for dorsiflexion ROM ( r = 0.59) and both isometric ( r = 0.79) and eccentric ( r = 0.73) peak torques. No significant changes in any metric were detected in the control group. CONCLUSIONS Large ROM increases in the trained limb were associated with neurological, mechanical, and structural adaptations, with evidence of a cross-education effect in the contralateral limb being primarily driven by neurological adaptation (stretch tolerance). The large improvements in ROM, muscle size, and strength confirm that isokinetic eccentric training is a highly effective training tool, with potential for use in athletic and clinical populations where MTU function is impaired and current therapies are ineffective.
Collapse
Affiliation(s)
- Anthony D Kay
- Centre for Physical Activity and Life Sciences, Faculty of Art, Science and Technology, University of Northampton, Northamptonshire, UNITED KINGDOM
| | - Anthony J Blazevich
- Centre for Human Performance (CHP), School of Medical and Health Sciences, Edith Cowan University, Joondalup, AUSTRALIA
| | - Jessica C Tysoe
- Centre for Physical Activity and Life Sciences, Faculty of Art, Science and Technology, University of Northampton, Northamptonshire, UNITED KINGDOM
| | - Brett A Baxter
- Centre for Physical Activity and Life Sciences, Faculty of Art, Science and Technology, University of Northampton, Northamptonshire, UNITED KINGDOM
| |
Collapse
|
6
|
Warneke K, Lohmann LH, Wilke J. Effects of Stretching or Strengthening Exercise on Spinal and Lumbopelvic Posture: A Systematic Review with Meta-Analysis. SPORTS MEDICINE - OPEN 2024; 10:65. [PMID: 38834878 DOI: 10.1186/s40798-024-00733-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Abnormal posture (e.g. loss of lordosis) has been associated with the occurrence of musculoskeletal pain. Stretching tight muscles while strengthening the antagonists represents the most common method to treat the assumed muscle imbalance. However, despite its high popularity, there is no quantitative synthesis of the available evidence examining the effectiveness of the stretch-and-strengthen approach. METHODS A systematic review with meta-analysis was conducted, searching PubMed, Web of Science and Google Scholar. We included controlled clinical trials investigating the effects of stretching or strengthening on spinal and lumbopelvic posture (e.g., pelvic tilt, lumbar lordosis, thoracic kyphosis, head tilt) in healthy individuals. Effect sizes were pooled using robust variance estimation. To rate the certainty about the evidence, the GRADE approach was applied. RESULTS A total of 23 studies with 969 participants were identified. Neither acute (d = 0.01, p = 0.97) nor chronic stretching (d=-0.19, p = 0.16) had an impact on posture. Chronic strengthening was associated with large improvements (d=-0.83, p = 0.01), but no study examined acute effects. Strengthening was superior (d = 0.81, p = 0.004) to stretching. Sub-analyses found strengthening to be effective in the thoracic and cervical spine (d=-1.04, p = 0.005) but not in the lumbar and lumbopelvic region (d=-0.23, p = 0.25). Stretching was ineffective in all locations (p > 0.05). CONCLUSION Moderate-certainty evidence does not support the use of stretching as a treatment of muscle imbalance. In contrast, therapists should focus on strengthening programs targeting weakened muscles.
Collapse
Affiliation(s)
- Konstantin Warneke
- Institute of Sport Science, Department of Movement Sciences, Alpen-Adrian-University Klagenfurt, Klagenfurt, Austria
| | - Lars Hubertus Lohmann
- Department of Human Movement Science and Exercise Physiology, Institute of Sport Science, Friedrich Schiller University, Jena, Germany.
| | - Jan Wilke
- Institute of Sport Science, Department of Movement Sciences, Alpen-Adrian-University Klagenfurt, Klagenfurt, Austria
| |
Collapse
|
7
|
Namsawang J, Srijunto W, Werasirirat P, Snieckus A, Bradauskiene K, Kamandulis S, Muanjai P. The effects of 6-week home-based static stretching, dynamic stretching, or eccentric exercise interventions on muscle-tendon properties and functional performance in older women. J Exerc Sci Fit 2024; 22:117-126. [PMID: 38283890 PMCID: PMC10820338 DOI: 10.1016/j.jesf.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 12/20/2023] [Accepted: 01/03/2024] [Indexed: 01/30/2024] Open
Abstract
Background Joint inflexibility is acknowledged as a significant contributor to functional limitations in the older adult, with lengthening-type exercises identified as a potential remedial approach. Nevertheless, the responses to eccentric exercise in female older adults have not been extensively studied especially in home-based environment. Here, we aimed to assess the effectiveness of home-based static stretching (ST), dynamic closed-chain stretching (DCS), or eccentric exercise (ECC) interventions on flexibility, musculotendinous architecture, and functional ability in healthy older women. Methods We randomly assigned 51 healthy older women (age 65.9 ± 3.4 years) to one of three interventional exercise groups: DCS (N = 17), ECC (N = 17), or ST (N = 17). The training was performed 3 times a week for 6 weeks. The participants' musculotendinous stiffness, fascicle length, eccentric strength, and functional capacities were measured before the intervention, after 6 weeks of exercise, and at a 1-month follow-up. Results The results showed that all three interventions improved hamstring flexibility and passive ankle dorsiflexion (p < 0.001), with increased biceps femoris and medial gastrocnemius fascicle length (p < 0.01). However, there was no significant change in musculotendinous stiffness. The ECC intervention produced a greater improvement in knee flexor and calf eccentric peak torque (p < 0.05), and gait speed (p = 0.024) than the other two interventions. The changes in flexibility and knee flexor strength remained for up to 4 weeks after detraining. Conclusion In conclusion, the present study suggests that home-based ECC may be more beneficial in enhancing physical capacities in older women compared with either DCS or SS interventions.
Collapse
Affiliation(s)
- Juntip Namsawang
- Department of Physical Therapy, Allied Health Sciences Faculty, Burapha University, Chonburi, Thailand
- Exercise and Nutrition Innovation and Sciences Research Unit, Burapha University, Chonburi, Thailand
| | - Wirasinee Srijunto
- Department of Physical Therapy, Allied Health Sciences Faculty, Burapha University, Chonburi, Thailand
| | - Phurichaya Werasirirat
- Department of Physical Therapy, Allied Health Sciences Faculty, Burapha University, Chonburi, Thailand
- Exercise and Nutrition Innovation and Sciences Research Unit, Burapha University, Chonburi, Thailand
| | - Audrius Snieckus
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | | | - Sigitas Kamandulis
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Pornpimol Muanjai
- Department of Physical Therapy, Allied Health Sciences Faculty, Burapha University, Chonburi, Thailand
- Exercise and Nutrition Innovation and Sciences Research Unit, Burapha University, Chonburi, Thailand
| |
Collapse
|
8
|
Nakamura M, Takeuchi K, Fukaya T, Nakao G, Konrad A, Mizuno T. Acute effects of static stretching on passive stiffness in older adults: A systematic review and meta-analysis. Arch Gerontol Geriatr 2024; 117:105256. [PMID: 37951029 DOI: 10.1016/j.archger.2023.105256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/13/2023] [Accepted: 10/29/2023] [Indexed: 11/13/2023]
Abstract
BACKGROUND Static stretching has been demonstrated to improve the health of older adults. One of its goals is to decrease passive stiffness of the muscle-tendon unit (MTU) and/or muscles. Decreased passive stiffness in older adults could increase the range of motion and movement efficiency. Herein, we conducted a meta-analysis of the acute effects of static stretching on passive stiffness in older adults as well as a meta-analysis of differences in these effects between older and young adults. BACKGROUND PubMed, Web of Science, and EBSCO were searched for studies published before June 28, 2023. Manual searches were performed to identify additional studies. All included studies were critically reviewed by five authors. Meta-analyses of muscle and tendon injuries were performed using a random effect model. Of 4643 identified studies, 6 studies were included in the systematic review. RESULTS The main meta-analysis in older adults showed that static stretching could decrease the passive stiffness of the MTU or muscles (effect size, 0.55; 95 % confidence interval, 0.27 to 0.84; p < 0.01; and I2 = 0.0 %). Moreover, for the comparison between young and old adults, three studies were included in the meta-analysis. The results revealed no significant difference in the effects of static stretching interventions on stiffness between older and young adults (effect size, 0.136; 95 % confidence interval, -0.301 to 0.5738; p = 0.541; and I2 = 17.4 %). Static stretching could decrease the passive stiffness of the MTU and/or muscles in older adults to a small magnitude, and the effects were comparable between older and young adults.
Collapse
Affiliation(s)
- Masatoshi Nakamura
- Faculty of Rehabilitation Sciences, Nishi Kyushu University, 4490-9 Ozaki, Kanzaki, Saga 842-8585, Japan.
| | - Kosuke Takeuchi
- Department of Physical Therapy, Kobe International University, Kobe-shi, Hyogo, Japan
| | - Taizan Fukaya
- Department of Physical Therapy, Faculty of Social Work Studies, Josai International University, Togane, Chiba, Japan
| | - Gakuto Nakao
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan; Professional Post-Secondary Course (Physical Therapist), Sapporo Medical Technology, Welfare and Dentistry Professional Training College of Nishino Gakuen School Foundation, Sapporo, Japan
| | - Andreas Konrad
- Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria
| | - Takamasa Mizuno
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya-shi, Aichi, Japan
| |
Collapse
|
9
|
Kay AD, Baxter BA, Hill MW, Blazevich AJ. Effects of Eccentric Resistance Training on Lower-Limb Passive Joint Range of Motion: A Systematic Review and Meta-analysis. Med Sci Sports Exerc 2023; 55:710-721. [PMID: 36730587 DOI: 10.1249/mss.0000000000003085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Substantial increases in joint range of motion (ROM) have been reported after eccentric resistance training; however, between-study variability and sample size issues complicate the interpretation of the magnitude of effect. METHODS PubMed, Medline, and SPORTDiscus databases were searched for studies examining the effects of eccentric training on lower-limb passive joint ROM in healthy human participants. Meta-analysis used an inverse-variance random-effects model to calculate the pooled standardized difference (Hedge's g ) with 95% confidence intervals. RESULTS Meta-analysis of 22 ROM outcomes (17 studies, 376 participants) revealed a large increase in lower-limb passive joint ROM ( g = 0.86 (95% confidence intervals, 0.65-1.08)). Subgroup analyses revealed a moderate increase after 4-5 wk ( g = 0.63 (0.27-0.98)), large increase after 6-8 wk ( g = 0.98 (0.73-1.24)), and moderate increase after 9-14 wk ( g = 0.75 (0.03, 1.46)) of training. Large increases were found in dorsiflexion ( g = 1.12 (0.78-1.47)) and knee extension ( g = 0.82 (0.48-1.17)), but a small increase in knee flexion was observed ( g = 0.41 (0.05-0.77)). A large increase was found after isokinetic ( g = 1.07 (0.59-1.54)) and moderate increase after isotonic ( g = 0.77 (0.56-0.99)) training. CONCLUSIONS These findings demonstrate the potential of eccentric training as an effective flexibility training intervention and provide evidence for "best practice" guidelines. The larger effect after isokinetic training despite <50% training sessions being performed is suggestive of a more effective exercise mode, although further research is needed to determine the influence of contraction intensity and to confirm the efficacy of eccentric training in clinical populations.
Collapse
Affiliation(s)
- Anthony D Kay
- Centre for Physical Activity and Life Sciences, Faculty of Art, Science and Technology, University of Northampton, Northamptonshire, UNITED KINGDOM
| | - Brett A Baxter
- Centre for Physical Activity and Life Sciences, Faculty of Art, Science and Technology, University of Northampton, Northamptonshire, UNITED KINGDOM
| | - Mathew W Hill
- Centre for Sport, Exercise and Life Sciences, School of Life Sciences, Coventry University, Warwickshire, UNITED KINGDOM
| | - Anthony J Blazevich
- Centre for Human Performance (CHP), School of Medical and Health Sciences, Edith Cowan University, Joondalup, AUSTRALIA
| |
Collapse
|
10
|
McGowen JM, Hoppes CW, Forsse JS, Albin SR, Abt J, Koppenhaver SL. The Utility of Myotonometry in Musculoskeletal Rehabilitation and Human Performance Programming. J Athl Train 2023; 58:305-318. [PMID: 37418563 PMCID: PMC11215642 DOI: 10.4085/616.21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Myotonometry is a relatively novel method used to quantify the biomechanical and viscoelastic properties (stiffness, compliance, tone, elasticity, creep, and mechanical relaxation) of palpable musculotendinous structures with portable mechanical devices called myotonometers. Myotonometers obtain these measures by recording the magnitude of radial tissue deformation that occurs in response to the amount of force that is perpendicularly applied to the tissue through a device's probe. Myotonometric parameters such as stiffness and compliance have repeatedly demonstrated strong correlations with force production and muscle activation. Paradoxically, individual muscle stiffness measures have been associated with both superior athletic performance and a higher incidence of injury. This indicates optimal stiffness levels may promote athletic performance, whereas too much or too little may lead to an increased risk of injury. Authors of numerous studies suggested that myotonometry may assist practitioners in the development of performance and rehabilitation programs that improve athletic performance, mitigate injury risk, guide therapeutic interventions, and optimize return-to-activity decision-making. Thus, the purpose of our narrative review was to summarize the potential utility of myotonometry as a clinical tool that assists musculoskeletal clinicians with the diagnosis, rehabilitation, and prevention of athletic injuries.
Collapse
Affiliation(s)
- Jared M. McGowen
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX
- US Army Medical Professional Training Brigade, San Antonio, TX
| | - Carrie W. Hoppes
- Army-Baylor University Doctoral Program in Physical Therapy, San Antonio, TX
| | - Jeff S. Forsse
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX
| | | | - John Abt
- Children’s Health Andrews Institute for Orthopaedics and Sports Medicine, Plano, TX
| | - Shane L. Koppenhaver
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX
- Doctoral Program in Physical Therapy, Baylor University, Waco, TX
| |
Collapse
|
11
|
Lévenéz M, Moeremans M, Booghs C, Vigouroux F, Leveque C, Hemelryck W, Balestra C. Architectural and Mechanical Changes after Five Weeks of Intermittent Static Stretch Training on the Medial Gastrocnemius Muscle of Active Adults. Sports (Basel) 2023; 11:sports11040073. [PMID: 37104147 PMCID: PMC10144030 DOI: 10.3390/sports11040073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
We investigated the effects of intermittent long-term stretch training (5 weeks) on the architectural and mechanical properties of the muscle–tendon unit (MTU) in healthy humans. MTU’s viscoelastic and architectural properties in the human medial gastrocnemius (MG) muscle and the contribution of muscle and tendon structures to the MTU lengthening were analyzed. Ten healthy volunteers participated in the study (four females and six males). The passive stretch of the plantar flexor muscles was achieved from 0° (neutral ankle position) to 25° of dorsiflexion. Measurements were obtained during a single passive stretch before and after the completion of the stretching protocol. During the stretch, the architectural parameters of the MG muscle were measured via ultrasonography, and the passive torque was recorded by means of a strain-gauge transducer. Repeated-measure ANOVA was applied for all parameters. When expressed as a percentage for all dorsiflexion angles, the relative torque values decreased (p < 0.001). In the same way, architectural parameters (pennation angle and fascicle length) were compared for covariance and showed a significant difference between the slopes (ANCOVA p < 0.0001 and p < 0.001, respectively) suggesting a modification in the mechanical behavior after stretch training. Furthermore, the values for passive stiffness decreased (p < 0.05). The maximum ankle range of motion (ROM) (p < 0.01) and the maximum passive torque (p < 0.05) increased. Lastly, the contribution of the free tendon increased more than fascicle elongation to the total lengthening of the MTU (ANCOVA p < 0.001). Our results suggest that five weeks of intermittent static stretch training significantly change the behavior of the MTU. Specifically, it can increase flexibility and increase tendon contribution during MTU lengthening.
Collapse
Affiliation(s)
- Morgan Lévenéz
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
| | - Matthieu Moeremans
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
| | - Cédric Booghs
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
| | - Florent Vigouroux
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
| | - Clément Leveque
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
| | - Walter Hemelryck
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
| | - Costantino Balestra
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
- Anatomical Research and Clinical Studies, Vrije Universiteit Brussel, 1090 Brussels, Belgium
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Physical Activity Teaching Unit, Motor Sciences Department, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
- Correspondence:
| |
Collapse
|
12
|
Boulard C, Gautheron V, Lapole T. Acute passive stretching has no effect on gastrocnemius medialis stiffness in children with unilateral cerebral palsy. Eur J Appl Physiol 2023; 123:467-477. [PMID: 36318307 DOI: 10.1007/s00421-022-05046-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/07/2022] [Indexed: 11/07/2022]
Abstract
PURPOSE The aim of this study was to investigate the effects of an acute high-intensity, long-duration passive stretching session of the plantar flexor muscles, on maximal dorsiflexion (DF) angle and passive stiffness at both ankle joint and gastrocnemius medialis (GM) muscle levels in children with unilateral cerebral palsy (CP). METHODS 13 children [mean age: 10 years 6 months, gross motor function classification system (GMFCS): I] with unilateral CP underwent a 5 min passive stretching session at 80% of maximal DF angle. Changes in maximal DF angle, slack angle, passive ankle joint and GM muscle stiffness from PRE- to POST-intervention were determined during passive ankle mobilization performed on a dynamometer coupled with shear wave elastography measurements (i.e., ultrasound) of the GM muscle. RESULTS Maximal DF angle and maximal passive torque were increased by 6.3° (P < 0.001; + 50.4%; 95% CI 59.9, 49.9) and 4.2 Nm (P < 0.01; + 38.9%; 95% CI 47.7, 30.1), respectively. Passive ankle joint stiffness remained unchanged (P = 0.9; 0%; 95% CI 10.6, - 10.6). GM muscle shear modulus was unchanged at maximal DF angle (P = 0.1; + 34.5%; 95% CI 44.7, 24.7) and at maximal common torque (P = 0.5; - 4%; 95% CI - 3.7, - 4.3), while it was decreased at maximal common angle (P = 0.021; - 35%; 95% CI - 11.4, - 58.5). GM slack angle was shifted in a more dorsiflexed position (P = 0.02; + 20.3%; 95% CI 22.6, 18). CONCLUSION Increased maximal DF angle can be obtained in the paretic leg in children with unilateral CP after an acute bout of stretching using controlled parameters without changes in passive stiffness at joint and GM muscle levels. CLINICAL TRIAL NUMBER NCT03714269.
Collapse
Affiliation(s)
- Clément Boulard
- Univ Lyon, UJM Saint-Etienne, Laboratoire Interuniversitaire de Biologie de La Motricité, EA 7424, 42023, Saint-Etienne, France. .,Department of Pediatrics Physical Medicine and Rehabilitation, Faculty of Medicine, University Hospital of Saint-Etienne, Saint-Etienne, France.
| | - Vincent Gautheron
- Univ Lyon, UJM Saint-Etienne, Laboratoire Interuniversitaire de Biologie de La Motricité, EA 7424, 42023, Saint-Etienne, France
| | - Thomas Lapole
- Univ Lyon, UJM Saint-Etienne, Laboratoire Interuniversitaire de Biologie de La Motricité, EA 7424, 42023, Saint-Etienne, France
| |
Collapse
|
13
|
Deng M, Zhou L, Chen Z, Yuan G, Zhou Y, Xiao Y. An ex-vivo validation of the modulus-length framework to characterize passive elastic properties of skeletal muscle. ULTRASONICS 2023; 129:106904. [PMID: 36463727 DOI: 10.1016/j.ultras.2022.106904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/09/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The passive elastic properties of skeletal muscles are related closely to muscle extensibility and flexibility. Recently, a single probe setup has been reported that measures the passive elastic properties of muscles in vivo. This uses a modulus-length framework to investigate sensitive dynamic parameters, termed as passive elastic coefficient k, slack length l0, and slack shear modulus G0 to quantify the passive elastic properties of human muscle. In particular, the parameter k calculated based on this framework reflects the change rate of the local shear modulus with respect to the muscle length, which remains constant during the entire passive stretching process. In this report, the modulus-length framework was validated in four groups of ex-vivo muscle samples (young and old chickens, pork, and beef). All the muscle samples were stretched mechanically whilst muscle length was monitored and recorded with simultaneous measurement of dynamic shear wave elastography (SWE). Agreement analyses using Bland-Altman diagrams and intraclass correlation coefficients (ICC) were then performed on coefficient k values obtained by mechanical stretching (k1) and real-time ultrasound imaging methods (k2). Bland-Altman diagrams show that the majority of the points lie within the 95 % LoA ([-1.87, 2.29]; p = 0.276) and the level of reliability was "good" to "excellent" based on the ICC results (ICC, 0.904; 95 % confidence interval, 0.813-0.953). This indicated that the ultrasound and mechanical methods produced very similar results. Meanwhile, the range of the coefficient k values in four muscle types and groups was significantly different (p < 0.05), a finding which strongly supports the potential use of this coefficient to characterize muscle quality and status.
Collapse
Affiliation(s)
- Miaoqin Deng
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China; Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liying Zhou
- Department of Obstetrics and Gynecology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, China
| | - Zengtong Chen
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Guojian Yuan
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Yongjin Zhou
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China; Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, China
| | - Yang Xiao
- National Innovation Center For Advanced Medical Devices, Shenzhen National Research Institute of High Performance Medical Devices Co, Ltd, Shenzhen, China
| |
Collapse
|
14
|
Le Sant G, Lecharte T, Goreau V, Nordez A, Gross R, Cattagni T. Motor performance, motor impairments, and quality of life after eccentric resistance training in neurological populations: A systematic review and meta-analyses. NeuroRehabilitation 2023; 53:33-50. [PMID: 37424484 DOI: 10.3233/nre-230035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
BACKGROUND Many overlapping factors impair motor performance and quality of life in neurological patients. Eccentric resistance training (ET) has potential benefits for improving motor performance and treating motor impairments better than some traditional rehabilitation approaches. OBJECTIVE To estimate the effect of ET in neurological settings. METHODS Seven databases were reviewed up to May 2022 according to PRSIMA guidelines to find randomized clinical trials involving adults with a neurological condition, who underwent ET as set by the American College of Sports Medicine. Motor performance (main outcome) was assessed as strength, power and capacities during activity. Secondary outcomes (impairments) were muscle structure, flexibility, muscle activity, tone, tremor, balance and fatigue. Tertiary outcomes were risk of fall, and self-reports of quality of life. RESULTS Ten trials were included, assessed using Risk of Bias 2.0 tool, and used to compute meta-analyses. Effective effects in favour of ET were found for strength and power, but not for capacities during activity. Mixed results were found for secondary and tertiary outcomes. CONCLUSION ET may be a promising intervention to better improve strength/power in neurological patients. More studies are needed to improve the quality of evidence underlying changes responsible for these results.
Collapse
Affiliation(s)
- Guillaume Le Sant
- Movement - Interactions - Performance (MIP), CHU Nantes, University of Nantes, Nantes, France
- School of Physiotherapy, IFM3, R, Saint-Sébastien-sur-Loire, France
| | - Thomas Lecharte
- Movement - Interactions - Performance (MIP), CHU Nantes, University of Nantes, Nantes, France
| | - Valentin Goreau
- Movement - Interactions - Performance (MIP), CHU Nantes, University of Nantes, Nantes, France
- School of Physiotherapy, IFM3, R, Saint-Sébastien-sur-Loire, France
| | - Antoine Nordez
- Movement - Interactions - Performance (MIP), CHU Nantes, University of Nantes, Nantes, France
- Institut Universitaire de France (IUF), Paris, France
| | - Raphaël Gross
- Movement - Interactions - Performance (MIP), CHU Nantes, University of Nantes, Nantes, France
| | - Thomas Cattagni
- Movement - Interactions - Performance (MIP), CHU Nantes, University of Nantes, Nantes, France
| |
Collapse
|
15
|
Andreu-Caravaca L, Ramos-Campo DJ, Chung LH, Rubio-Arias JÁ. Can strength training modify voluntary activation, contractile properties and spasticity in Multiple Sclerosis?: a randomized controlled trial. Physiol Behav 2022; 255:113932. [PMID: 35905806 DOI: 10.1016/j.physbeh.2022.113932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/18/2022] [Accepted: 07/24/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND A randomized controlled trial was conducted to analyze the effects of 10 weeks of strength training (ST) on voluntary activation, muscle activity, muscle contractile properties, and spasticity in people with MS. METHODS 30 participants were randomized to either an experimental [EG](n=18) or a control [CG](n=12) group. The EG carried out 10-weeks of ST, where the concentric phase at maximum voluntary velocity. Muscle activity of the vastus lateralis (surface electromyography (sEMG) during the first 200 ms of contraction), maximal neural drive (peak sEMG), voluntary activation (central activation ratio), and muscle contractile function (via electrical stimulation) of the knee extensor muscles, as well as spasticity, were measured pre- and post-intervention. RESULTS The EG showed a significant improvement with differences between groups in muscle activity in EMG0-200 (p=0.031;ES=-0.8) and maximal neural drive (p=0.038;ES=-0.8), as well as improvement in the ST group with a trend towards significance in EMG0-100 (p=0.068;ES=-0.6). CAR increased after intervention in ST group (p=0.010;ES=-0.4). Spasticity also improved in the ST group, with differences between group after intervention, in first swing excursion (right leg: p=0.006;ES=-1.4, left leg: p=0.031;ES=-1.2), number of oscillations (right leg: p=0.001;ES=-0.4, left leg: p=0.031;ES=-0.4) and duration of oscillations (left leg: p=0.002; ES=-0.6). Contractile properties remain unchanged in both ST group and control group. CONCLUSIONS 10 weeks of ST improves muscle activity during the first 200 ms of contraction, maximal neural conduction, and spasticity in people with MS. However, ST does not produce adaptations in muscle contractile properties in people with MS.
Collapse
Affiliation(s)
- Luis Andreu-Caravaca
- Faculty of Sport. Catholic University of Murcia. Murcia. Spain.; International Chair of Sports Medicine. Catholic University of Murcia. Murcia. Spain..
| | - Domingo J Ramos-Campo
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science-INEF. Madrid. Spain
| | - Linda H Chung
- UCAM Research Center for High Performance. Catholic University of Murcia. Murcia. Spain
| | - Jacobo Á Rubio-Arias
- Department of Education, Health Research Center, University of Almeria, Almeria, 04120 Spain..
| |
Collapse
|
16
|
Fouré A, Besson T, Stauffer E, Skinner SC, Bouvier J, Féasson L, Connes P, Hautier CA, Millet GY. Sex-related differences and effects of short and long trail running races on resting muscle-tendon mechanical properties. Scand J Med Sci Sports 2022; 32:1477-1492. [PMID: 35730335 DOI: 10.1111/sms.14203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/13/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022]
Abstract
The purpose of the study was to assess sex-related differences in resting mechanical properties and adaptations of skeletal muscles and tendons in response to trail running races of different distances using multi-site shear wave elastography assessments of the lower limb, force capacity and blood analyses. Sex differences in resting mechanical properties of knee extensor and plantar flexor muscles and tendons were characterized by shear wave velocity measurements in healthy males (N=42) and females (N=25) trained in long distance running. Effects of running distance on muscle and tendon properties were assessed in short (<60km, N=23) vs. long (>100km, N=26) distance races. Changes in isometric maximal voluntary contraction torque, serum C-reactive protein and creatine kinase activity were also quantified after running races. Higher shear wave velocity of relaxed triceps surae muscle was detected in females as compared to males before running races (+4.8%, p=0.006), but the significant increases in triceps surae muscle group (+7.0%, p=0.001) and patellar tendon shear wave velocity (+15.4%, p=0.001) after short-distance races were independent of sex. A significant decrease in triceps surae muscle shear wave velocity was found after long-distance races in the whole experimental population (-3.1%, p=0.049). Post-races increase in C-reactive protein and creatine kinase activity were significantly correlated to the relative decreases in triceps surae and quadriceps femoris skeletal muscle shear wave velocity (ρ=-0.56, p=0.001 and ρ=-0.51, p=0.001, respectively). Resting mechanical properties of muscles and tendons are affected by sex, and that adaptations to trail races are related to running distance. Exercise-induced changes in resting skeletal muscle mechanical properties are associated with enhanced indirect markers of inflammation and muscle damage.
Collapse
Affiliation(s)
- Alexandre Fouré
- Univ Lyon, Université Claude Bernard Lyon 1 (UCBL1), Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM), Villeurbanne, France
| | - Thibault Besson
- Université Jean Monnet de Saint-Etienne, Université de Lyon, Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM), Campus Santé Innovations-IRMIS, Saint Priest en Jarez, France
| | - Emeric Stauffer
- Univ Lyon, Université Claude Bernard Lyon 1 (UCBL1), Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM), Villeurbanne, France.,Hospices Civils de Lyon, Exploration Fonctionnelle Respiratoire, Médecine du Sport et de l'Activité Physique, Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Sarah C Skinner
- Univ Lyon, Université Claude Bernard Lyon 1 (UCBL1), Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM), Villeurbanne, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Jérémie Bouvier
- Univ Lyon, Université Claude Bernard Lyon 1 (UCBL1), Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM), Villeurbanne, France
| | - Léonard Féasson
- Université Jean Monnet de Saint-Etienne, Université de Lyon, Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM), Campus Santé Innovations-IRMIS, Saint Priest en Jarez, France.,CHU St Etienne, Unité de Myologie, Centre Référent Maladies Neuromusculaires Rares, Euro-NmD, Saint-Etienne, France
| | - Philippe Connes
- Univ Lyon, Université Claude Bernard Lyon 1 (UCBL1), Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM), Villeurbanne, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France.,Institut Universitaire de France, Paris, France
| | - Christophe A Hautier
- Univ Lyon, Université Claude Bernard Lyon 1 (UCBL1), Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM), Villeurbanne, France
| | - Guillaume Y Millet
- Université Jean Monnet de Saint-Etienne, Université de Lyon, Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM), Campus Santé Innovations-IRMIS, Saint Priest en Jarez, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
17
|
The Possible Impact of COVID-19 on Respiratory Muscles Structure and Functions: A Literature Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14127446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The impact of SARS-CoV-2 infection on respiratory muscle functions is an important area of recent enquiry. COVID-19 has effects on the respiratory muscles. The diaphragm muscle is perturbed indirectly due to the mechanical-ventilation-induced-disuse, but also by direct mechanisms linked with SARS-CoV-2 viral infection. In this sense, a deeper understanding of the possible links between COVID-19 and alterations in structure and functions of the respiratory muscles may increase the success rate of preventive and supportive strategies. Ultrasound imaging alongside respiratory muscle strength tests and pulmonary function assessment are valid approaches to the screening and monitoring of disease, for mild to severe patients. The aim of the present review is to highlight the current literature regarding the links between COVID-19 and respiratory muscle functions. We examine from the pathophysiological aspects of disease, up to approaches taken to monitor and rehabilitate diseased muscle. We hope this work will add to a greater understanding of the pathophysiology and disease management of respiratory muscle pathology subsequent to SARS-CoV-2 infection.
Collapse
|
18
|
Bolsterlee B. A new framework for analysis of three-dimensional shape and architecture of human skeletal muscles from in vivo imaging data. J Appl Physiol (1985) 2022; 132:712-725. [PMID: 35050794 DOI: 10.1152/japplphysiol.00638.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A new framework is presented for comprehensive analysis of the three-dimensional shape and architecture of human skeletal muscles from magnetic resonance and diffusion tensor imaging data. The framework comprises three key features: (1) identification of points on the surface of and inside a muscle that have a correspondence to points on and inside another muscle, (2) reconstruction of average muscle shape and average muscle fibre orientations, and (3) utilization of data on between-muscle variation to visualize and make statistical inferences about changes or differences in muscle shape and architecture. The general use of the framework is demonstrated by its application to three case studies. Analysis of data obtained before and after eight weeks of strength training revealed there was little regional variation in hypertrophy of the vastus medialis and vastus lateralis, and no systematic change in pennation angle. Analysis of passive muscle lengthening revealed heterogeneous changes in shape of the medial gastrocnemius, and confirmed the ability of the methods to detect subtle changes in muscle fibre orientation. Analysis of the medial gastrocnemius of children with unilateral cerebral palsy showed that muscles in the more-affected limb were shorter, thinner and less wide than muscles in the less-affected limb, and had slightly more pennate muscle fibres in the central and proximal part of the muscle. Amongst other applications, the framework can be used to explore the mechanics of muscle contraction, investigate adaptations of muscle architecture, build anatomically realistic computational models of skeletal muscles, and compare muscle shape and architecture between species.
Collapse
Affiliation(s)
- Bart Bolsterlee
- Neuroscience Research Australia (NeuRA), Randwick, Sydney, New South Wales, Australia.,University of New South Wales, Randwick, New South Wales, Australia.,Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
19
|
Differences in Knee Extensors’ Muscle–Tendon Unit Passive Stiffness, Architecture, and Force Production in Competitive Cyclists Versus Runners. J Appl Biomech 2022; 38:412-423. [DOI: 10.1123/jab.2022-0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/01/2022] [Accepted: 10/03/2022] [Indexed: 11/18/2022]
Abstract
To describe the possible effects of chronic specific exercise training, the present study compared the anthropometric variables, muscle–tendon unit (MTU) architecture, passive stiffness, and force production capacity between a group of competitive cyclists and runners. Twenty-seven competitive male cyclists (n = 16) and runners (n = 11) participated. B-mode ultrasound evaluation of the vastus lateralis muscle and patellar tendon as well as passive stiffness of the knee extensors MTU were assessed. The athletes then performed a test of knee extensor maximal voluntary isometric contractions. Cyclists displayed greater thigh girths, vastus lateralis pennation angle and muscle thickness, patellar tendon cross-sectional area, and MTU passive stiffness than runners (P < .05). Knee extensor force production capacity also differed significantly, with cyclists showing greater values compared with runners (P < .05). Overall, the direct comparison of these 2 populations revealed specific differences in the MTU, conceivably related to the chronic requirements imposed through the training for the different disciplines.
Collapse
|
20
|
Friede MC, Innerhofer G, Fink C, Alegre LM, Csapo R. Conservative treatment of iliotibial band syndrome in runners: Are we targeting the right goals? Phys Ther Sport 2021; 54:44-52. [PMID: 35007886 DOI: 10.1016/j.ptsp.2021.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Iliotibial band syndrome (ITBS) is presumably caused by excessive tension in the iliotibial band (ITB) leading to compression and inflammation of tissues lying beneath it. Usually managed conservatively, there is a lack of scientific evidence supporting the treatment recommendations, and high symptom recurrence rates cast doubt on their causal effectiveness. This review discusses the influence of common physiotherapeutic measures on risk factors contributing to tissue compression beneath the ITB. METHODS The potential pathogenic factors are presented on the basis of a simple biomechanical model showing the forces acting on the lateral aspect of the knee. Existent literature on the most commonly prescribed physiotherapeutic interventions is critically discussed against the background of this model. Practical recommendations for the optimization of physiotherapy are derived. RESULTS According to biomechanical considerations, ITBS may be promoted by anatomical predisposition, joint malalignments, aberrant activation of inserting muscles as well as excessive ITB stiffness. Hip abductor strengthening may correct excessive hip adduction but also increase ITB strain. Intermittent stretching interventions are unlikely to change the ITB's length or mechanical properties. Running retraining is a promising yet understudied intervention. CONCLUSIONS High-quality research directly testing different physiotherapeutic treatment approaches in randomized controlled trials is needed.
Collapse
Affiliation(s)
- Miriam C Friede
- Carinthia University of Applied Sciences, Department of Physiotherapy, Klagenfurt, Austria.
| | - Gunnar Innerhofer
- University of Innsbruck, Department of Sport Science, Innsbruck, Austria
| | - Christian Fink
- Gelenkpunkt Sports and Joint Surgery, Innsbruck, Austria; University for Health Sciences, Medical Informatics and Technology, Research Unit for Orthopaedic Sports Medicine and Injury Prevention, Hall, Austria
| | - Luis M Alegre
- University of Castilla-La Mancha, GENUD Toledo Research Group, Toledo, Spain; CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Robert Csapo
- University of Vienna, Department of Sport Science, Vienna, Austria
| |
Collapse
|
21
|
Binder-Markey BI, Sychowski D, Lieber RL. Systematic review of skeletal muscle passive mechanics experimental methodology. J Biomech 2021; 129:110839. [PMID: 34736082 PMCID: PMC8671228 DOI: 10.1016/j.jbiomech.2021.110839] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 01/11/2023]
Abstract
Understanding passive skeletal muscle mechanics is critical in defining structure-function relationships in skeletal muscle and ultimately understanding pathologically impaired muscle. In this systematic review, we performed an exhaustive literature search using PRISMA guidelines to quantify passive muscle mechanical properties, summarized the methods used to create these data, and make recommendations to standardize future studies. We screened over 7500 papers and found 80 papers that met the inclusion criteria. These papers reported passive muscle mechanics from single muscle fiber to whole muscle across 16 species and 54 distinct muscles. We found a wide range of methodological differences in sample selection, preparation, testing, and analysis. The systematic review revealed that passive muscle mechanics is species and scale dependent-specifically within mammals, the passive mechanics increases non-linearly with scale. However, a detailed understanding of passive mechanics is still unclear because the varied methodologies impede comparisons across studies, scales, species, and muscles. Therefore, we recommend the following: smaller scales may be maintained within storage solution prior to testing, when samples are tested statically use 2-3 min of relaxation time, stress normalization at the whole muscle level be to physiologic cross-sectional area, strain normalization be to sarcomere length when possible, and an exponential equation be used to fit the data. Additional studies using these recommendations will allow exploration of the multiscale relationship of passive force within and across species to provide the fundamental knowledge needed to improve our understanding of passive muscle mechanics.
Collapse
Affiliation(s)
- Benjamin I Binder-Markey
- Department of Physical Therapy and Rehabilitation Sciences and School of Biomedical Engineering, Sciences, and Health Systems, Drexel University, Philadelphia, PA USA
| | | | - Richard L Lieber
- Shirley Ryan AbilityLab, Chicago, IL, USA; Departments of Physical Medicine and Rehabilitation and Biomedical Engineering, Northwestern University, Chicago, IL, USA; Edward Hines V.A. Medical Center, Hines, IL, USA.
| |
Collapse
|
22
|
Fauris P, López-de-Celis C, Canet-Vintró M, Martin JC, Llurda-Almuzara L, Rodríguez-Sanz J, Labata-Lezaun N, Simon M, Pérez-Bellmunt A. Does Self-Myofascial Release Cause a Remote Hamstring Stretching Effect Based on Myofascial Chains? A Randomized Controlled Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:12356. [PMID: 34886078 PMCID: PMC8656845 DOI: 10.3390/ijerph182312356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND The hamstring muscles are described as forming part of myofascial chains or meridians, and the superficial back line (SBL) is one such chain. Good hamstring flexibility is fundamental to sporting performance and is associated with prevention of injuries of these muscles. The aim of this study was to measure the effect of self-myofascial release (SMR) on hamstring flexibility and determine which segment of the SBL resulted in the greatest increase in flexibility. METHODS 94 volunteers were randomly assigned to a control group or to one of the five intervention groups. In the intervention groups, SMR was applied to one of the five segments of the SBL (plantar fascia, posterior part of the sural fascia, posterior part of the crural fascia, lumbar fascia or epicranial aponeurosis) for 10 min. The analyzed variables were hamstring flexibility at 30 s, 2, 5, and 10 min, and dorsiflexion range of motion before and after the intervention. RESULTS Hamstring flexibility and ankle dorsiflexion improved when SMR was performed on any of the SBL segments. The segments with the greatest effect were the posterior part of the sural fascia when the intervention was brief (30 s to 2 min) or the posterior part of the crural fascia when the intervention was longer (5 or 10 min). In general, 50% of the flexibility gain was obtained during the first 2 min of SMR. CONCLUSIONS The SBL may be considered a functional structure, and SMR to any of the segments can improve hamstring flexibility and ankle dorsiflexion.
Collapse
Affiliation(s)
- Paul Fauris
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08017 Sant Cugat del Vallès, Spain; (P.F.); (C.L.-d.-C.); (M.C.-V.); (J.C.M.); (L.L.-A.); (J.R.-S.); (N.L.-L.); (M.S.)
- ACTIUM Functional Anatomy Group, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - Carlos López-de-Celis
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08017 Sant Cugat del Vallès, Spain; (P.F.); (C.L.-d.-C.); (M.C.-V.); (J.C.M.); (L.L.-A.); (J.R.-S.); (N.L.-L.); (M.S.)
- ACTIUM Functional Anatomy Group, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
- Institut Universitari per a la Recerca a I’Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), 08007 Barcelona, Spain
| | - Max Canet-Vintró
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08017 Sant Cugat del Vallès, Spain; (P.F.); (C.L.-d.-C.); (M.C.-V.); (J.C.M.); (L.L.-A.); (J.R.-S.); (N.L.-L.); (M.S.)
- ACTIUM Functional Anatomy Group, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - Juan Carlos Martin
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08017 Sant Cugat del Vallès, Spain; (P.F.); (C.L.-d.-C.); (M.C.-V.); (J.C.M.); (L.L.-A.); (J.R.-S.); (N.L.-L.); (M.S.)
| | - Luis Llurda-Almuzara
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08017 Sant Cugat del Vallès, Spain; (P.F.); (C.L.-d.-C.); (M.C.-V.); (J.C.M.); (L.L.-A.); (J.R.-S.); (N.L.-L.); (M.S.)
- ACTIUM Functional Anatomy Group, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - Jacobo Rodríguez-Sanz
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08017 Sant Cugat del Vallès, Spain; (P.F.); (C.L.-d.-C.); (M.C.-V.); (J.C.M.); (L.L.-A.); (J.R.-S.); (N.L.-L.); (M.S.)
- ACTIUM Functional Anatomy Group, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - Noé Labata-Lezaun
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08017 Sant Cugat del Vallès, Spain; (P.F.); (C.L.-d.-C.); (M.C.-V.); (J.C.M.); (L.L.-A.); (J.R.-S.); (N.L.-L.); (M.S.)
- ACTIUM Functional Anatomy Group, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - Mathias Simon
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08017 Sant Cugat del Vallès, Spain; (P.F.); (C.L.-d.-C.); (M.C.-V.); (J.C.M.); (L.L.-A.); (J.R.-S.); (N.L.-L.); (M.S.)
- ACTIUM Functional Anatomy Group, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - Albert Pérez-Bellmunt
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08017 Sant Cugat del Vallès, Spain; (P.F.); (C.L.-d.-C.); (M.C.-V.); (J.C.M.); (L.L.-A.); (J.R.-S.); (N.L.-L.); (M.S.)
- ACTIUM Functional Anatomy Group, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| |
Collapse
|
23
|
Ando R, Sato S, Hirata N, Tanimoto H, Imaizumi N, Suzuki Y, Hirata K, Akagi R. Relationship Between Drop Jump Training–Induced Changes in Passive Plantar Flexor Stiffness and Explosive Performance. Front Physiol 2021; 12:777268. [PMID: 35035358 PMCID: PMC8753453 DOI: 10.3389/fphys.2021.777268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/28/2021] [Indexed: 11/21/2022] Open
Abstract
Passive muscle stiffness is positively associated with explosive performance. Drop jump training may be a strategy to increase passive muscle stiffness in the lower limb muscles. Therefore, the purpose of this study was to examine the effect of 8-week drop jump training on the passive stiffness in the plantar flexor muscles and the association between training-induced changes in passive muscle stiffness and explosive performance. This study was a randomized controlled trial. Twenty-four healthy young men were divided into two groups, control and training. The participants in the training group performed drop jumps (five sets of 20 repetitions each) 3days per week for 8weeks. As an index of passive muscle stiffness, the shear moduli of the medial gastrocnemius and soleus were measured by shear wave elastography before and after the intervention. The participants performed maximal voluntary isometric plantar flexion at an ankle joint angle of 0° and maximal drop jumps from a 15cm high box. The rate of torque development during isometric contraction was calculated. The shear modulus of the medial gastrocnemius decreased for the training group (before: 13.5±2.1kPa, after: 10.6±2.1kPa); however, such a reduction was not observed in the control group. There was no significant group (control and training groups)×time (before and after the intervention) interaction for the shear modulus of the soleus. The drop jump performance for the training group improved, while the rate of torque development did not change. Relative changes in these measurements were not correlated with each other in the training group. These results suggest that drop jump training decreases the passive stiffness in the medial gastrocnemius, and training-induced improvement in explosive performance cannot be attributed to change in passive muscle stiffness.
Collapse
Affiliation(s)
- Ryosuke Ando
- Department of Sports Research, Japan Institute of Sports Sciences (JISS), Tokyo, Japan
- *Correspondence: Ryosuke Ando,
| | - Shinya Sato
- Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Naoya Hirata
- Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Hiroki Tanimoto
- Graduate School of Health Management, Keio University, Fujisawa, Japan
| | - Naoto Imaizumi
- College of System Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Yasuhiro Suzuki
- Department of Sports Research, Japan Institute of Sports Sciences (JISS), Tokyo, Japan
- Center for General Education, Tokyo Keizai University, Tokyo, Japan
| | - Kosuke Hirata
- Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
| | - Ryota Akagi
- Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
- College of System Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| |
Collapse
|
24
|
Nakamura M, Sato S, Kiyono R, Yoshida R, Murakami Y, Yasaka K, Yahata K, Konrad A. Acute Effect of Vibration Roller With and Without Rolling on Various Parts of the Plantar Flexor Muscle. Front Physiol 2021; 12:716668. [PMID: 34630141 PMCID: PMC8493118 DOI: 10.3389/fphys.2021.716668] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/24/2021] [Indexed: 01/29/2023] Open
Abstract
A single use of a vibration foam roller likely increases the range of motion (ROM) without decreasing muscle strength and athletic performance. However, to date, no study compared the effects of a vibration roller with and without rolling on various parts of the plantar flexor muscle. Therefore, this study aimed to compare the effects of the vibration foam roller with rolling or without rolling at the muscle-tendon junction (MTJ) or the muscle belly on dorsiflexion (DF) ROM, passive torque at DF ROM, shear elastic modulus, muscle strength, and jump performance. Fifteen healthy young males performed the following three conditions: (1) vibration rolling over the whole muscle-tendon unit, (2) static vibration on muscle belly, and (3) static vibration on MTJ for three-set 60-s vibration in random order. In this study, DF ROM, passive torque, shear elastic modulus, muscle strength, and single-leg drop jump were measured before and immediately after the interventions. The DF ROM and passive torque at DF ROM were increased after all three conditions, whereas the shear elastic modulus was decreased after vibration rolling and static vibration on the muscle belly, but not following static vibration of the MTJ. In addition, there were no significant changes in muscle strength and jump performance in any group. Our results showed that vibration with rolling or static vibration on muscle belly could be effective to improve ROM and muscle stiffness without adverse effects of muscle strength and athletic performance.
Collapse
Affiliation(s)
- Masatoshi Nakamura
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Shigeru Sato
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Ryosuke Kiyono
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Riku Yoshida
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Yuta Murakami
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Koki Yasaka
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Kaoru Yahata
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Andreas Konrad
- Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria
| |
Collapse
|
25
|
Afonso J, Olivares-Jabalera J, Andrade R. Time to Move From Mandatory Stretching? We Need to Differentiate "Can I?" From "Do I Have To?". Front Physiol 2021; 12:714166. [PMID: 34366900 PMCID: PMC8340604 DOI: 10.3389/fphys.2021.714166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/27/2021] [Indexed: 12/13/2022] Open
Affiliation(s)
- José Afonso
- Faculty of Sport of the University of Porto (FADEUP), Centre for Research, Education, Innovation and Intervention in Sport (CIFI2D), Porto, Portugal
| | - Jesús Olivares-Jabalera
- Sport Research Lab, Football Science Institute, Granada, Spain.,Department of Physical and Sports Education, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Renato Andrade
- Clínica do Dragão, Espregueira-Mendes Sports Centre - FIFA Medical Centre of Excellence, Porto, Portugal.,Dom Henrique Research Centre, Porto, Portugal.,Porto Biomechanics Laboratory (LABIOMEP), Faculty of Sport, University of Porto, Porto, Portugal
| |
Collapse
|
26
|
Vatovec R, Marušič J, Marković G, Šarabon N. Effects of Nordic hamstring exercise combined with glider exercise on hip flexion flexibility and hamstring passive stiffness. J Sports Sci 2021; 39:2370-2377. [PMID: 34074227 DOI: 10.1080/02640414.2021.1933350] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Eccentric training proved to be effective in hamstring injury prevention; however, little is known about effects of eccentric hamstring training at long muscle length on hamstring flexibility. Hence, the aim was to evaluate the effect of eccentric training at long muscle lengths on flexibility and passive properties of the hamstring muscles. 34 physically active young adults were randomized to either the control or intervention group (6 weeks of eccentric hamstring training at long muscle length; control group resumed with their usual activities). Maximal passive hip flexion range of motion (ROM), passive hamstring stiffness, shear modulus and tendon length of the biceps femoris long head (BFlh) were measured pre- and post-intervention. A significant time × group effect was observed for maximal passive hip ROM. Post-hoc testing revealed a significant increase in the intervention group (+11.2%; p < 0.001; d = 1.55). Additionally, a significant time effect was shown for shear modulus in a relaxed position (p < 0.001). No significant interaction was shown for other parameters. Results indicate that eccentric hamstring training at long muscle length elicits large gains in hamstring flexibility, which are most likely not related to changes in passive hamstring stiffness or BFlh distal tendon length.
Collapse
Affiliation(s)
- Rok Vatovec
- University of Primorska, Faculty of Health Sciences, Izola, Slovenia
| | - Jan Marušič
- University of Primorska, Faculty of Health Sciences, Izola, Slovenia
| | - Goran Marković
- University of Zagreb, Faculty of Kinesiology, Zagreb, Croatia.,Motus Melior Ltd., Zagreb, Croatia
| | - Nejc Šarabon
- University of Primorska, Faculty of Health Sciences, Izola, Slovenia.,S2P, Science to Practice, Ltd., Laboratory for Motor Control and Motor Behavior, Ljubljana, Slovenia
| |
Collapse
|
27
|
Nakamura M, Yahata K, Sato S, Kiyono R, Yoshida R, Fukaya T, Nunes JP, Konrad A. Training and Detraining Effects Following a Static Stretching Program on Medial Gastrocnemius Passive Properties. Front Physiol 2021; 12:656579. [PMID: 33868026 PMCID: PMC8049289 DOI: 10.3389/fphys.2021.656579] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
A stretching intervention program is performed to maintain and improve range of motion (ROM) in sports and rehabilitation settings. However, there is no consensus on the effects of stretching programs on muscle stiffness, likely due to short stretching durations used in each session. Therefore, a longer stretching exercise session may be required to decrease muscle stiffness in the long-term. Moreover, until now, the retention effect (detraining) of such an intervention program is not clear yet. The purpose of this study was to investigate the training (5-week) and detraining effects (5-week) of a high-volume stretching intervention on ankle dorsiflexion ROM (DF ROM) and medial gastrocnemius muscle stiffness. Fifteen males participated in this study and the plantarflexors of the dominant limb were evaluated. Static stretching intervention was performed using a stretching board for 1,800 s at 2 days per week for 5 weeks. DF ROM was assessed, and muscle stiffness was calculated from passive torque and muscle elongation during passive dorsiflexion test. The results showed significant changes in DF ROM and muscle stiffness after the stretching intervention program, but the values returned to baseline after the detraining period. Our results indicate that high-volume stretching intervention (3,600 s per week) may be beneficial for DF ROM and muscle stiffness, but the training effects are dismissed after a detraining period with the same duration of the intervention.
Collapse
Affiliation(s)
- Masatoshi Nakamura
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Kaoru Yahata
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Shigeru Sato
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Ryosuke Kiyono
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Riku Yoshida
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Taizan Fukaya
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Rehabilitation, Kyoto Kujo Hospital, Kyoto, Japan
| | - João Pedro Nunes
- Metabolism, Nutrition and Exercise Laboratory, Physical Education and Sport Center, Londrina State University, Londrina, Brazil
| | - Andreas Konrad
- Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria
| |
Collapse
|
28
|
Kodesho T, Taniguchi K, Kato T, Katayose M. Intramuscular differences in shear modulus of the rectus femoris muscle during passive knee flexion. Eur J Appl Physiol 2021; 121:1441-1449. [PMID: 33620546 DOI: 10.1007/s00421-021-04644-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 02/14/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE This study aimed to determine (1) intramuscular regional differences in the changes in the shear modulus of the rectus femoris (RF) muscle during passive knee flexion and (2) the relationship between shear modulus and passive knee extension torque. METHOD The shear modulus maps as an index of muscle stiffness and the passive torque were obtained at seven regions during passive knee flexion at 2°/s within a knee joint range of motion of 0°-130° in 16 healthy males. RESULTS The shear modulus of RF increased with the knee angle of flexion. The shear modulus of each longitudinal region was greater in the order of proximal, central, and distal region (p < 0.05). The relationship between the shear modulus and passive torque was highly fitted for all 16 subjects (p < 0.05). The mean coefficient of determination (R2) at second-order polynomial model per subject was 0.96 (± 0.03; range 0.61-0.99), and whole group was 0.58 (± 0.03; range 0.54-0.64) in all regions. CONCLUSIONS The passive stiffness of RF was higher in the proximal region than in the other regions during passive knee flexion. Furthermore, the shear modulus-passive torque was related regardless of the measurement region within a muscle, and the results suggest that the passive knee extension torque reflects passive muscle stiffness of the RF.
Collapse
Affiliation(s)
- Taiki Kodesho
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Keigo Taniguchi
- Department of Physical Therapy, School of Health Sciences, Sapporo Medical University, West 17, South 1, Chuo-ku, Sapporo City, Japan.
| | - Takuya Kato
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Masaki Katayose
- Department of Physical Therapy, School of Health Sciences, Sapporo Medical University, West 17, South 1, Chuo-ku, Sapporo City, Japan
| |
Collapse
|
29
|
Nakamura M, Sato S, Kiyono R, Yahata K, Yoshida R, Fukaya T, Konrad A. Comparison of the Acute Effects of Hold-Relax and Static Stretching among Older Adults. BIOLOGY 2021; 10:biology10020126. [PMID: 33562673 PMCID: PMC7914644 DOI: 10.3390/biology10020126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 01/24/2023]
Abstract
Simple Summary It is well known that stretching interventions are effective in improving age-related changes in range of motion (ROM) and muscle stiffness. We investigated the effects of various stretching interventions, such as static stretching and hold–relax stretching, on ROM and muscle stiffness in older adults to establish the most effective stretching technique. Our results showed that static stretching and hold–relax stretching increased ROM, which could be contributed by not change in muscle stiffness, but stretch tolerance. Conversely, medial gastrocnemius muscle stiffness decreased only after a static stretching intervention and not after hold–relax stretching. Our results indicated that static stretching intervention improved ROM and muscle stiffness in older adults. Abstract Various stretching techniques are generally recommended to counteract age-related declines in range of motion (ROM) and/or increased muscle stiffness. However, to date, an effective stretching technique has not yet been established for older adults. Consequently, we compared the acute effects of hold relax stretching (HRS) and static stretching (SS) on dorsiflexion (DF) ROM and muscle stiffness among older adults. Overall, 15 elderly men and nine elderly women (70.2 ± 3.9 years, 160.8 ± 7.8 cm, 59.6 ± 9.7 kg) were enrolled, and both legs were randomized to either HRS or SS stretching. We measured DF ROM and muscle stiffness using a dynamometer and ultrasonography before and after 120 s of HRS or SS interventions. Our multivariate analysis indicated no significant interaction effects, but a main effect for DF ROM. Post-hoc tests revealed that DF ROM was increased after both HRS and SS interventions. Moreover, multivariate analysis showed a significant interaction effect for muscle stiffness. Post-hoc tests revealed that muscle stiffness was decreased significantly after only SS intervention. Taken together, our results indicated that both HRS and SS interventions are recommended to increase ROM, and SS is recommended to decrease muscle stiffness in older adults.
Collapse
Affiliation(s)
- Masatoshi Nakamura
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata City, Niigata 950-3198, Japan; (M.N.); (S.S.); (R.K.); (K.Y.); (T.F.)
- Department of Physical Therapy, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata City, Niigata 950-3198, Japan;
| | - Shigeru Sato
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata City, Niigata 950-3198, Japan; (M.N.); (S.S.); (R.K.); (K.Y.); (T.F.)
| | - Ryosuke Kiyono
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata City, Niigata 950-3198, Japan; (M.N.); (S.S.); (R.K.); (K.Y.); (T.F.)
| | - Kaoru Yahata
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata City, Niigata 950-3198, Japan; (M.N.); (S.S.); (R.K.); (K.Y.); (T.F.)
| | - Riku Yoshida
- Department of Physical Therapy, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata City, Niigata 950-3198, Japan;
| | - Taizan Fukaya
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata City, Niigata 950-3198, Japan; (M.N.); (S.S.); (R.K.); (K.Y.); (T.F.)
- Department of Rehabilitation, Kyoto Kujo Hospital, 10 Karahashirajoumoncho, Minami-ku, Kyoto 601-8453, Japan
| | - Andreas Konrad
- Institute of Human Movement Science, Sport and Health, University of Graz, Mozartgasse 14, A-8010 Graz, Austria
- Correspondence: ; Tel.: +43-316-380-8336; Fax: +43-316-380-9790
| |
Collapse
|
30
|
Amiri M, Ghomsheh FT, Ghazalian F. Modeling the resistance mechanism of passive knee joint flexion and extension for use in rehabilitation equipment. Proc Inst Mech Eng H 2021; 235:470-479. [PMID: 33482704 DOI: 10.1177/0954411921990133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The purpose of this study was to model the resistance mechanism of Passive Knee Joint Flexion and Extension to create a similar torque mechanism in rehabilitation equipment. In order to better model the behavior of passive knee tissues, it is necessary to exactly calculate the two coefficients of elasticity of time-independent and time-dependent parts. Ten healthy male volunteers (mean height 176.4+/-4.59 cm) participated in this study. Passive knee joint flexion and extension occurred at velocities of 15, 45, and 120 (degree/s), and in five consecutive cycles and within the range of 0 to 100° of knee movement on the sagittal plane on Cybex isokinetic dynamometer. To ensure that the muscles were relaxed, the electrical activity of knee muscles was recorded. The elastic coefficient, (KS) increased with elevating the passive velocity in flexion and extension. The elastic coefficient, (KP) was observed to grow with the passive velocity increase. While, the viscous coefficient (C) diminished with passive velocity rise in extension and flexion. The heightened passive velocity of the motion resulted in increased hysteresis (at a rate of 42%). The desired of passive velocity is lower so that there is less energy lost and the viscoelastic resistance of the tissue in the movement decreases. The Coefficient of Determination, R2 between the model-responses and experimental curves in the extension was 0.96 < R2 < 0.99 and in flexion was 0.95 < R2 < 0.99. This modeling is capable of predicting the true performance of the components of passive knee movement and we can create a resistance mechanism in the rehabilitation equipment to perform knee joint movement. Quantitative measurements of two elastic coefficients of Time-independent and Time-dependent parts passive knee joint coefficients should be used for better accurate simulation the behavior of passive tissues in the knee which is not seen in other studies.
Collapse
Affiliation(s)
- Mansoor Amiri
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farhad Tabatabai Ghomsheh
- Pediatric Neurorehabilitation Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Farshad Ghazalian
- Department of Physical Education Sport Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
31
|
Pinto MD, Wilson CJ, Kay AD, Blazevich AJ. Reliability of isokinetic tests of velocity- and contraction intensity-dependent plantar flexor mechanical properties. Scand J Med Sci Sports 2021; 31:1009-1025. [PMID: 33453060 PMCID: PMC8251531 DOI: 10.1111/sms.13920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/25/2020] [Accepted: 01/11/2021] [Indexed: 12/18/2022]
Abstract
"Flexibility" tests are traditionally performed voluntarily relaxed by rotating a joint slowly; however, functional activities are performed rapidly with voluntary/reflexive muscle activity. Here, we describe the reliabilities and differences in maximum ankle range of motion (ROMmax ) and plantar flexor mechanical properties at several velocities and levels of voluntary force from a new test protocol on a commercially available dynamometer. Fifteen participants had their ankle joint dorsiflexed at 5, 30, and 60° s-1 in two conditions: voluntarily relaxed and while producing 40% and 60% of maximal eccentric torque. Commonly reported variables describing ROMmax and resistance to stretch were subsequently calculated from torque and angle data. Absolute (coefficient of variation (CV%) and typical error) and relative (ICC2,1 ) reliabilities were determined across two testing days (≥72 h). ROMmax relative reliability was good in voluntarily relaxed tests at 30 and 60° s-1 and moderate at 5° s-1 , despite CVs ≤ 10% for all velocities. Tests performed with voluntary muscle activity were only reliable when performed at 5° s-1 , and ROMmax reliability was moderate and CV ≤ 8%. For most variables, the rank order of participants differed between the slow-velocity, relaxed test, and those performed at faster speeds or with voluntary activation, indicating different information. A person's flexibility status during voluntarily relaxed fast or active stretches tended to differ from their status in the traditional voluntarily relaxed, slow-velocity test. Thus, "flexibility" tests should be completed under conditions of different stretch velocity and levels of muscle force production, and clinicians and researchers should consider the slightly larger between-day variability from slow-velocity voluntarily relaxed tests.
Collapse
Affiliation(s)
- Matheus D Pinto
- Centre for Exercise and Sports Science Research (CESSR), School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Cody J Wilson
- Centre for Exercise and Sports Science Research (CESSR), School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Anthony D Kay
- Centre for Physical Activity and Life Sciences, The University of Northampton, Northampton, UK
| | - Anthony J Blazevich
- Centre for Exercise and Sports Science Research (CESSR), School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| |
Collapse
|
32
|
Vieira DCL, Opplert J, Babault N. Acute effects of dynamic stretching on neuromechanical properties: an interaction between stretching, contraction, and movement. Eur J Appl Physiol 2021; 121:957-967. [PMID: 33417034 DOI: 10.1007/s00421-020-04583-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/10/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE The present study aimed to investigate the acute effects of dynamic stretching on neurophysiological and mechanical properties of plantar flexor muscles and to test the hypothesis that dynamic stretching resulted from an interaction between stretching, movement, and contraction. METHODS The dynamic stretching conditioning activity (DS) was compared to static stretching (SS), passive cyclic stretching (PCS), isometric contractions (IC), static stretching followed by isometric contractions (SSIC), and control (CO) conditions. Stretching amplitude (DS, SS, PCS and SSIC), contraction intensity (DS, IC and SSIC) and duration (all 6 conditions) were matched. Thirteen volunteers were included. Passive torque, fascicle length, and stiffness were evaluated from a dynamometer and ultrasonography during passive dorsiflexion. Neuromuscular electrical stimulation was used to investigate contractile properties [peak twitch torque (PTT), and rate of torque development (RTD)] and muscle voluntary activation (%VA). Gastrocnemius lateralis electromyographic activity (GL EMG/Mwave) was obtained during maximal voluntary contraction. All of these parameters were measured immediately before and 10 s after each experimental condition. RESULTS Peak twitch torque, RTD, %VA, GL EMG/Mwave remained unaltered, while passive torque was significantly reduced after DS (- 8.14 ± 2.21%). SS decreased GL EMG/Mwave (- 7.83 ± 12.01%) and passive torque (- 2.16 ± 7.25%). PCS decreased PTT (- 3.40 ± 6.03%), RTD (- 2.96 ± 5.16%), and passive torque (- 2.16 ± 2.05%). IC decreased passive torque (- 7.72 ± 1.97%) and enhanced PTT (+ 5.77 ± 5.19%) and RTD (+ 7.36 ± 8.35%). However, SSIC attenuated PTT and RTD improvements as compared to IC. CONCLUSION These results suggested that dynamic stretching is multi-component and would result from an interaction between stretching, contraction, and movement.
Collapse
Affiliation(s)
- Denis César Leite Vieira
- Center for Performance Expertise, INSERM UMR1093-CAPS, Faculty of Sports Sciences, University of Burgundy, Dijon, France.,College of Physical Education, University of Brasilia, Brasilia, Brazil
| | - Jules Opplert
- Center for Performance Expertise, INSERM UMR1093-CAPS, Faculty of Sports Sciences, University of Burgundy, Dijon, France
| | - Nicolas Babault
- Center for Performance Expertise, INSERM UMR1093-CAPS, Faculty of Sports Sciences, University of Burgundy, Dijon, France.
| |
Collapse
|
33
|
Effect of viscoelastic properties on passive torque variations at different velocities of the knee joint extension and flexion movements. Med Biol Eng Comput 2020; 58:2893-2903. [PMID: 32975707 DOI: 10.1007/s11517-020-02247-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/16/2020] [Indexed: 10/23/2022]
Abstract
This study aimed to investigate the rate of passive torque variations of human knee joint in the different velocities of knee flexion and extension movements. Ten healthy men were invited to participate in the tests. All passive torque tests were performed for the knee joint extension and flexion on the sagittal plane in three different angular velocities of 15, 45, and 120°/s; in 5 consecutive cycles; and within 0° to 100° range of motion. The electrical activity of knee joint extensor and flexor muscles was recorded until there was no muscle activity signal. A Three-element Solid Model (SLS) was used to obtain the viscose and elastic coefficients. As the velocity increases, the stretch rate in velocity-independent tissues increases, and the stretch rate in velocity-dependent tissues decreases. By increasing the velocity, the resistance of velocity-dependent parts increases, and the velocity-independent parts are not affected by velocity. Since the first torque that resists the joint movement is passive torque, the elastic and viscous torques should be simultaneously used. It is better to perform the movement at a low velocity so that less energy is lost. The viscoelastic resistance of tissues diminishes. Graphical abstract.
Collapse
|
34
|
Andrade RJ, Freitas SR, Hug F, Le Sant G, Lacourpaille L, Gross R, Quillard JB, McNair PJ, Nordez A. Chronic effects of muscle and nerve-directed stretching on tissue mechanics. J Appl Physiol (1985) 2020; 129:1011-1023. [PMID: 32853116 DOI: 10.1152/japplphysiol.00239.2019] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tissue-directed stretching interventions can preferentially load muscular or nonmuscular structures such as peripheral nerves. How these tissues adapt mechanically to long-term stretching is poorly understood. This randomized, single-blind, controlled study used ultrasonography and dynamometry to compare the effects of 12-wk nerve-directed and muscle-directed stretching programs versus control on maximal ankle dorsiflexion range of motion (ROM) and passive torque, shear wave velocity (SWV; an index of stiffness), and architecture of triceps surae and sciatic nerve. Sixty healthy adults were randomized to receive nerve-directed stretching, muscle-directed stretching, or no intervention (control). The muscle-directed protocol was designed to primarily stretch the plantar flexor muscle group, whereas the nerve-directed intervention targeted the sciatic nerve tract. Compared with the control group [mean; 95% confidence interval (CI)], muscle-directed intervention showed increased ROM (+7.3°; 95% CI: 4.1-10.5), decreased SWV of triceps surae (varied from -0.8 to -2.3 m/s across muscles), decreased passive torque (-6.8 N·m; 95% CI: -11.9 to -1.7), and greater gastrocnemius medialis fascicle length (+0.4 cm; 95% CI: 0.1-0.8). Muscle-directed intervention did not affect the SWV and size of sciatic nerve. Participants in the nerve-directed group showed a significant increase in ROM (+9.9°; 95% CI: 6.2-13.6) and a significant decrease in sciatic nerve SWV (> -1.8 m/s across nerve regions) compared with the control group. Nerve-directed intervention had no effect on the main outcomes at muscle and joint levels. These findings provide new insights into the long-term mechanical effects of stretching interventions and have relevance to clinical conditions where change in mechanical properties has occurred.NEW & NOTEWORTHY This study demonstrates that the mechanical properties of plantar flexor muscles and sciatic nerve can adapt mechanically to long-term stretching programs. Although interventions targeting muscular or nonmuscular structures are both effective at increasing maximal range of motion, the changes in tissue mechanical properties (stiffness) are specific to the structure being preferentially stretched by each program. We provide the first in vivo evidence that stiffness of peripheral nerves adapts to long-term loading stimuli using appropriate nerve-directed stretching.
Collapse
Affiliation(s)
- Ricardo J Andrade
- Laboratory of Movement, Interactions, Performance (EA 4334), Faculty of Sport Sciences, Nantes, University of Nantes, France.,School of Allied Health Sciences, Griffith University, Brisbane and Gold Coast, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Sandro R Freitas
- Universidade de Lisboa, Faculdade de Motricidade Humana, Centro Interdisciplinar de Estudo da Performance Humana (CIPER), Lisbon, Portugal
| | - François Hug
- Laboratory of Movement, Interactions, Performance (EA 4334), Faculty of Sport Sciences, Nantes, University of Nantes, France.,Institut Universitaire de France (IUF), Paris, France.,The University of Queensland, National Health and Medical Research Council (NHMRC) Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, Brisbane, Australia
| | - Guillaume Le Sant
- Laboratory of Movement, Interactions, Performance (EA 4334), Faculty of Sport Sciences, Nantes, University of Nantes, France.,School of Physiotherapy (IFM3R), Nantes, France
| | - Lilian Lacourpaille
- Laboratory of Movement, Interactions, Performance (EA 4334), Faculty of Sport Sciences, Nantes, University of Nantes, France
| | - Raphaël Gross
- Laboratory of Movement, Interactions, Performance (EA 4334), Faculty of Sport Sciences, Nantes, University of Nantes, France.,Gait Analysis Laboratory, Physical and Rehabilitation Medicine Department, University Hospital of Nantes, Nantes, France
| | - Jean-Baptiste Quillard
- Laboratory of Movement, Interactions, Performance (EA 4334), Faculty of Sport Sciences, Nantes, University of Nantes, France
| | - Peter J McNair
- Health and Rehabilitation Research Institute, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Antoine Nordez
- Laboratory of Movement, Interactions, Performance (EA 4334), Faculty of Sport Sciences, Nantes, University of Nantes, France.,Institut Universitaire de France (IUF), Paris, France.,Health and Rehabilitation Research Institute, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
35
|
Marcucci L, Reggiani C. Increase of resting muscle stiffness, a less considered component of age-related skeletal muscle impairment. Eur J Transl Myol 2020. [DOI: 10.4081/ejtm.2020.8982] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Elderly people perform more slowly movements of everyday life as rising from a chair, walking, and climbing stairs. This is in the first place due to the loss of muscle contractile force which is even more pronounced than the loss of muscle mass. In addition, a secondary, but not negligible, component is the rigidity or increased stiffness which requires greater effort to produce the same movement and limits the range of motion of the joints. In this short review, we discuss the possible determinants of the limitations of joint mobility in healthy elderly, starting with the age-dependent alterations of the articular structure and focusing on the increased stiffness of the skeletal muscles. Thereafter, the possible mechanisms of the increased stiffness of the muscle-tendon complex are considered, among them changes in the muscle fibers, alterations of the connective components (extracellular matrix or ECM, aponeurosis, fascia and tendon) and remodeling of the neural pattern of muscle activation with increased of antagonist co-activation.
Collapse
|
36
|
Marcucci L, Reggiani C. Increase of resting muscle stiffness, a less considered component of age-related skeletal muscle impairment. Eur J Transl Myol 2020; 30:8982. [PMID: 32782762 PMCID: PMC7385684 DOI: 10.4081/ejtm.2019.8982] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Elderly people perform more slowly movements of everyday life as rising from a chair, walking, and climbing stairs. This is in the first place due to the loss of muscle contractile force which is even more pronounced than the loss of muscle mass. In addition, a secondary, but not negligible, component is the rigidity or increased stiffness which requires greater effort to produce the same movement and limits the range of motion of the joints. In this short review, we discuss the possible determinants of the limitations of joint mobility in healthy elderly, starting with the age-dependent alterations of the articular structure and focusing on the increased stiffness of the skeletal muscles. Thereafter, the possible mechanisms of the increased stiffness of the muscle-tendon complex are considered, among them changes in the muscle fibers, alterations of the connective tissue components, i.e., extracellular matrix (ECM), aponeurosis, tendon and fascia, and remodeling of the neural pattern of muscle activation that increases antagonist co-activation.
Collapse
Affiliation(s)
- Lorenzo Marcucci
- Department of Biomedical Sciences, Padova University, Padova, Italy.,Center for Mechanics of Biological Materials, Padova University, Padova, Italy.,Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka, 565-0874, Japan
| | - Carlo Reggiani
- Department of Biomedical Sciences, Padova University, Padova, Italy.,Center for Mechanics of Biological Materials, Padova University, Padova, Italy.,Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia
| |
Collapse
|
37
|
Affiliation(s)
- R D Herbert
- Neuroscience Research Australia (NeuRA), Sydney , Australia.,University of New South Wales, Sydney, Australia
| | - S C Gandevia
- Neuroscience Research Australia (NeuRA), Sydney , Australia.,University of New South Wales, Sydney, Australia
| |
Collapse
|