1
|
Domeier C, Bissen TG, Vondrasek JD, Babcock MC, Robinson AT, Watso JC. Differential effects of female aging on sympathetic blood pressure regulation at rest and during stress in humans. Physiol Rep 2025; 13:e70347. [PMID: 40285462 PMCID: PMC12032447 DOI: 10.14814/phy2.70347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/10/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
Older female (OF) adults exhibit blunted resting sympathetic blood pressure (BP) transduction compared with young female (YF) adults, affecting BP regulation. However, studies often lack control over health factors like body composition or habitual physical activity. Therefore, we compared resting sympathetic BP transduction and neurovascular responses during cold pressor test (CPT) and end-expiratory apnea between YF (n = 12) and OF (n = 9) matched for several health factors. We measured beat-to-beat hemodynamics and muscle sympathetic nerve activity (MSNA). OF exhibited higher resting supine BP and MSNA (ps < 0.001) than YF. OF exhibited blunted increases in mean BP and diastolic BP following spontaneous MSNA bursts at rest. During the CPT, OF exhibited a smaller percent increase in total MSNA (interaction effect: p = 0.001) but not MSNA burst frequency responses. Mean BP increases were not different between groups, but OF exhibited a higher ∆mean BP/∆MSNA burst frequency ratio (p = 0.003). During apnea, OF experienced a smaller percent MSNA increase in total MSNA (p < 0.05), larger mean BP increases (interaction effect: p = 0.031), and higher ∆mean BP/∆total MSNA ratio (p = 0.003). These findings suggest attenuated signal-averaged sympathetic BP transduction at rest but increased time-averaged sympathetic transduction to mean BP during cold and apneic laboratory stressors in OF.
Collapse
Affiliation(s)
- Christin Domeier
- Cardiovascular and Applied Physiology LaboratoryFlorida State UniversityTallahasseeFloridaUSA
| | - Thomas G. Bissen
- Cardiovascular and Applied Physiology LaboratoryFlorida State UniversityTallahasseeFloridaUSA
| | - Joseph D. Vondrasek
- Cardiovascular and Applied Physiology LaboratoryFlorida State UniversityTallahasseeFloridaUSA
| | - Matthew C. Babcock
- Department of MedicineUniversity of Colorado – Anschutz Medical CampusAuroraColoradoUSA
| | - Austin T. Robinson
- Neurovascular Physiology LaboratoryIndiana UniversityBloomingtonIndianaUSA
| | - Joseph C. Watso
- Cardiovascular and Applied Physiology LaboratoryFlorida State UniversityTallahasseeFloridaUSA
| |
Collapse
|
2
|
Washio T, Takeda R, Hissen SL, Akins JD, D'Souza AW, Wakeham DJ, Brazile T, Lutz K, Hearon CM, MacNamara JP, Sarma S, Levine BD, Fadel PJ, Fu Q. Maintained sympathetic reactivity but blunted pressor response to static handgrip exercise in heart failure with preserved ejection fraction. Clin Auton Res 2025:10.1007/s10286-025-01114-y. [PMID: 40000578 DOI: 10.1007/s10286-025-01114-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/22/2025] [Indexed: 02/27/2025]
Abstract
PURPOSE Recent studies have reported blunted increases in blood pressure (BP) during static handgrip (SHG) in patients with heart failure with preserved ejection fraction (HFpEF), which may be attributed to abnormal sympathetic reactivity during exercise and/or impaired muscle metaboreflex function. However, it is unknown whether the sympathetic neural response to SHG and isolated muscle metaboreflex activation via post-exercise circulatory occlusion (PECO) are attenuated in HFpEF. METHODS Thirty-nine patients with HFpEF and 24 age-matched non-HFpEF controls were studied in the supine position. BP, heart rate (HR), and muscle sympathetic nerve activity (MSNA) were measured during SHG at 40% of maximal voluntary contraction until fatigue followed by 2-min PECO. RESULTS Resting mean arterial pressure (MAP) was lower and peak increase (Δ) in MAP was smaller in patients with HFpEF than in controls during SHG (Δ23 ± 15 [standard deviation] vs. Δ34 ± 15 mmHg; P = 0.007) and PECO (Δ15 ± 11 vs. Δ19 ± 9 mmHg; P = 0.047). HR was greater in patients at rest but did not differ between the two groups at peak SHG. Patients had higher resting MSNA burst frequency than controls (37 ± 14 vs. 27 ± 13 bursts/min; P = 0.031); however, burst incidence was not different between the groups (P = 0.226). There were no differences in MSNA responses to SHG (Δ19 ± 15 vs. Δ18 ± 10 bursts/min at peak; P = 0.841) or PECO (Δ3 ± 12 vs. Δ5 ± 7 bursts/min; P = 0.495) between groups. CONCLUSION The patients with HFpEF maintained sympathetic reactivity but had an attenuated pressor response during fatiguing SHG. Additionally, muscle metaboreflex activation of vasomotor sympathetic outflow appeared to be minimal in both groups, with no significant difference between patients and controls.
Collapse
Affiliation(s)
- Takuro Washio
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Dallas, TX, 75231, USA
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ryosuke Takeda
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Dallas, TX, 75231, USA
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sarah L Hissen
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Dallas, TX, 75231, USA
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John D Akins
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Dallas, TX, 75231, USA
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andrew W D'Souza
- Division of Pulmonary Medicine, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Denis J Wakeham
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Dallas, TX, 75231, USA
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tiffany Brazile
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Dallas, TX, 75231, USA
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kevin Lutz
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christopher M Hearon
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Dallas, TX, 75231, USA
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - James P MacNamara
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Dallas, TX, 75231, USA
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Satyam Sarma
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Dallas, TX, 75231, USA
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin D Levine
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Dallas, TX, 75231, USA
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Paul J Fadel
- University of Texas at Arlington, Arlington, TX, USA
| | - Qi Fu
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Dallas, TX, 75231, USA.
- University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
3
|
Young BE, Kissell CE, Vranish JR, Stephens BY, Holwerda SW, Fadel PJ. Sex differences in sympathetic transduction in black and white adults: implications for racial disparities in hypertension and cardiovascular disease risk. Am J Physiol Heart Circ Physiol 2024; 327:H672-H680. [PMID: 39058432 DOI: 10.1152/ajpheart.00337.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
The prevalence of hypertension in non-Hispanic black (BL) individuals is the greatest of any racial/ethnic group. Whereas women generally display lower rates of hypertension than men of the same background, BL women display a similar if not greater burden of hypertension compared with BL men. The risk for cardiovascular disease and related events is also highest in BL individuals. Given the importance of the sympathetic nervous system for the regulation of the cardiovascular system, a growing body of literature has investigated sympathetic function in BL and non-Hispanic white (WH) individuals. Here, we are focused on emerging evidence indicating that sympathetic function may be altered in BL individuals, with particular emphasis on the process by which bursts of muscle sympathetic nerve activity (MSNA) are transduced into vasoconstriction and increases in blood pressure (sympathetic vascular transduction). To synthesize this growing body of literature we discuss sex and race differences in 1) sympathetic outflow, 2) sympathetic vascular transduction, and 3) adrenergic receptor sensitivity. Sex differences are discussed foremost, to set the stage for new data indicating a sex dimorphism in sympathetic regulation in BL individuals. Specifically, we highlight evidence for a potential neurogenic phenotype including greater adiposity-independent sympathetic outflow and enhanced sympathetic vascular transduction in BL men that is not observed in BL women. The implications of these findings for the greater hypertension and cardiovascular disease risk in BL adults are discussed along with areas that require further investigation.
Collapse
Affiliation(s)
- Benjamin E Young
- Department of Kinesiology, Health Promotion and Recreation, College of Education, University of North Texas, Denton, Texas, United States
| | - Claire E Kissell
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas, United States
| | - Jennifer R Vranish
- Department of Integrative Physiology and Health Science, Alma College, Alma, Michigan, United States
| | - Brandi Y Stephens
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas, United States
| | - Seth W Holwerda
- Department of Anesthesiology, Pain and Perioperative Medicine, Kansas University Medical Center, Kansas City, Kansas, United States
| | - Paul J Fadel
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas, United States
| |
Collapse
|
4
|
Greenlund IM, Kantas D, Prakash SS, Bock JM, Covassin N, Somers VK. Nocturnal Hemodynamics in Somali Americans: Implications for Cardiovascular Risk. Am J Nephrol 2024; 55:629-637. [PMID: 39182475 PMCID: PMC11652236 DOI: 10.1159/000540987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
INTRODUCTION Cardiovascular health disparities are present within several minority communities, but it is unclear if such disparities are present in a growing African American subpopulation, Somali Americans, who differ genetically and culturally from African Americans of Western African ancestry. Ambulatory blood pressure (BP) monitoring remains a gold standard measure to examine 24-h BP patterns to stratify cardiovascular risk profile. We sought to examine differences in the 24-h BP profile in a sample of young Somali Americans and compare their BP patterns to White study participants. We hypothesized that their BP and heart rate (HR) would be higher compared to closely matched White participants. METHODS We recruited 50 participants (25 Somali) in whom BP recordings were obtained every 20 min throughout the entire 24-h monitoring period to quantify BP, HR, and ambulatory arterial stiffness. Daytime BP/HR was quantified between 10:00 a.m. and 8:00 p.m., and nighttime BP/HR was assessed between 12:00 a.m. and 6:00 a.m. RESULTS Daytime BP and HR were similar between racial groups (p > 0.05). Nighttime BP was similar between groups (p > 0.05), but Somali American individuals exhibited a higher nocturnal HR compared to White participants (p = 0.013). Nocturnal dipping in diastolic BP and HR dipping was attenuated in Somali Americans compared to White adults (p = 0.038, 0.007). Somali participants also had higher ambulatory arterial stiffness (p = 0.045). CONCLUSION Twenty four-hour hemodynamics, specifically ambulatory arterial stiffness, nocturnal BP, and nocturnal HR, differ in young Somali Americans compared to White adults. These findings provide new insight into potential cardiovascular health disparities and future cardiovascular risk within the burgeoning Somali American community.
Collapse
Affiliation(s)
- Ian M Greenlund
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA,
| | - Dimitrios Kantas
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Pulmonary and Critical Care, Mayo Clinic, Rochester, Minnesota, USA
| | - Sakthi Surya Prakash
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Internal Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Joshua M Bock
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Naima Covassin
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Virend K Somers
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
5
|
Turner CG, Hayat MJ, Otis JS, Quyyumi AA, Wong BJ. The effect of endothelin a receptor inhibition and biological sex on cutaneous microvascular function in non-Hispanic Black and White young adults. Physiol Rep 2024; 12:e16149. [PMID: 39016164 PMCID: PMC11252828 DOI: 10.14814/phy2.16149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024] Open
Abstract
The purpose of this study was to investigate whether endothelin-A receptor (ETAR) inhibition in non-Hispanic Black (NHB) and White (NHW) young adults depends on biological sex. We recruited females during low hormone (n = 22) and high hormone (n = 22) phases, and males (n = 22). Participants self-identified as NHB (n = 33) or NHW (n = 33). Participants were instrumented with two microdialysis fibers: (1) lactated Ringer's (control) and (2) 500 nM BQ-123 (ETAR antagonist). Local heating was used to elicit cutaneous vasodilation, and an infusion of 20 mM L-NAME to quantify NO-dependent vasodilation. At control sites, NO-dependent vasodilation was lowest in NHB males (46 ± 13 %NO) and NHB females during low hormone phases (47 ± 12 %NO) compared to all NHW groups. Inhibition of ETAR increased NO-dependent vasodilation in NHB males (66 ± 13 %NO), in both groups of females during low hormone phases (NHW, control: 64 ± 12 %NO, BQ-123: 85 ± 11 %NO; NHB, BQ-123: 68 ± 13 %NO), and in NHB females during high hormone phases (control: 61 ± 11 %NO, BQ-123: 83 ± 9 %NO). There was no effect for ETAR inhibition in NHW males or females during high hormone phases. These data suggest the effect of ETAR inhibition on NO-dependent vasodilation is influenced by biological sex and racial identity.
Collapse
Affiliation(s)
- Casey G. Turner
- Department of Kinesiology and HealthGeorgia State UniversityAtlantaGeorgiaUSA
- Molecular Cardiology Research InstituteTufts Medical CenterBostonMassachusettsUSA
| | - Matthew J. Hayat
- School of Public HealthGeorgia State UniversityAtlantaGeorgiaUSA
| | - Jeffrey S. Otis
- Department of Kinesiology and HealthGeorgia State UniversityAtlantaGeorgiaUSA
| | - Arshed A. Quyyumi
- Emory Clinical Cardiovascular Research InstituteEmory University School of MedicineAtlantaGeorgiaUSA
| | - Brett J. Wong
- Department of Kinesiology and HealthGeorgia State UniversityAtlantaGeorgiaUSA
| |
Collapse
|
6
|
Stavres J, Aultman RS, Newsome TA. Exercise pressor responses are exaggerated relative to force production during, but not following, thirty-minutes of rhythmic handgrip exercise. Eur J Appl Physiol 2024; 124:1547-1559. [PMID: 38155209 DOI: 10.1007/s00421-023-05390-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023]
Abstract
PURPOSE This study tested the hypothesis that blood pressure responses would increase relative to force production in response to prolonged bouts of muscular work. METHODS Fifteen individuals performed two minutes of static handgrip (SHG; 35% MVC), followed by three minutes of post-exercise-cuff-occlusion (PECO), before and after thirty minutes of rest (control), or rhythmic handgrip exercise (RHG) of the contralateral and ipsilateral forearms. Beat-by-beat recordings of mean arterial pressure (MAP), heart rate (HR), and handgrip force (kg) were averaged across one-minute periods at baseline, and minutes 5, 10, 15, 20, 25, and 30 of RHG. MAP was also normalized to handgrip force, providing a relative measure of exercise pressor responses (mmHg/kg). Hemodynamic responses to SHG and PECO were also compared before and after contralateral RHG, ipsilateral RHG, and control, respectively. Similar to the RHG trial, areas under the curve were calculated for MAP (blood pressure index; BPI) and normalized to the time tension index (BPInorm). RESULTS HR and MAP significantly increased during RHG (15.3 ± 1.4% and 20.4 ± 3.2%, respectively, both p < 0.01), while force output decreased by up to 36.6 ± 8.0% (p < 0.01). This resulted in a 51.6 ± 9.4% increase in BPInorm during 30 min of RHG (p < 0.01). In contrast, blood pressure responses to SHG and PECO were unchanged following RHG (all p ≥ 0.07), and only the mean HR (4.2 ± 1.5%, p = 0.01) and ΔHR (67.2 ± 18.1%, p < 0.01) response to SHG were exaggerated following ipsilateral RHG. CONCLUSIONS The magnitude of exercise pressor responses relative to force production progressively increases during, but not following, prolonged bouts of muscular work.
Collapse
Affiliation(s)
- Jon Stavres
- School of Kinesiology and Nutrition, University of Southern Mississippi, 118 College Drive, Hattiesburg, MS, USA.
| | - Ryan S Aultman
- School of Kinesiology and Nutrition, University of Southern Mississippi, 118 College Drive, Hattiesburg, MS, USA
| | - Ta'Quoris A Newsome
- School of Kinesiology and Nutrition, University of Southern Mississippi, 118 College Drive, Hattiesburg, MS, USA
| |
Collapse
|
7
|
Fonkoue IT, Tahsin CT, Jones TN, King KN, Tahmin CI, Jeong J, Dixon D, DaCosta DR, Park J. Sex differences in Black Veterans with PTSD: women versus men have higher sympathetic activity, inflammation, and blunted cardiovagal baroreflex sensitivity. Clin Auton Res 2023; 33:757-766. [PMID: 37898568 PMCID: PMC11256876 DOI: 10.1007/s10286-023-00995-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/14/2023] [Indexed: 10/30/2023]
Abstract
PURPOSE Post-traumatic stress disorder (PTSD) is associated with greater risk of incident hypertension and cardiovascular disease (CVD). Inflammation and autonomic derangements are suggested as contributing mechanisms. Women and Black adults have higher CVD risk associated with stress; however, whether there is a sex difference in autonomic and inflammatory mechanisms among Black individuals with PTSD is not known. We hypothesized that Black women with PTSD have higher inflammation, sympathetic nervous system (SNS) activity and impaired baroreflex sensitivity (BRS). METHODS In 42 Black Veterans with PTSD (Women, N = 18 and Men, N = 24), we measured inflammatory biomarkers, continuous blood pressure (BP), heart rate (HR) and muscle sympathetic nerve activity (MSNA) at rest and during arterial BRS testing via the modified Oxford technique. RESULTS Groups were matched for age and body mass index (BMI). Resting BP was similar between groups, but HR was higher (76 ± 12 vs. 68 ± 9 beats/min, p = 0.021) in women compared to men. Although women had lower PTSD symptoms severity (57 ± 17 vs. 68 ± 12 a.u.), resting MSNA (27 ± 13 vs. 16 ± 5 bursts/min, p = 0.003) was higher in women compared to men, respectively. Likewise, cardiovagal BRS was blunted (p = 0.002) in women (7.6 ± 4.3 ms/mmHg) compared to men (15.5 ± 8.4 ms/mmHg) while sympathetic BRS was not different between groups (p = 0.381). Black women also had higher (p = 0.020) plasma levels of interleukin-2 (IL-2). CONCLUSION Black women with PTSD have higher resting HR and MSNA, greater impairment of cardiovagal BRS and possibly higher inflammation. These findings suggest a higher burden of autonomic and inflammatory derangements in Black women compared to Black men with PTSD.
Collapse
Affiliation(s)
- Ida T Fonkoue
- Physical Therapy Division, Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
- Rehabilitation Science Division, Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Chowdhury Tasnova Tahsin
- Rehabilitation Science Division, Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Toure N Jones
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, 101 Woodruff Circle, WMB 3300, Atlanta, GA, 30322, USA
- Research Service Line, Atlanta VA Healthcare System, Decatur, GA, USA
| | - Keyona N King
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, 101 Woodruff Circle, WMB 3300, Atlanta, GA, 30322, USA
- Research Service Line, Atlanta VA Healthcare System, Decatur, GA, USA
| | - Chowdhury Ibtida Tahmin
- Rehabilitation Science Division, Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Jinhee Jeong
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, 101 Woodruff Circle, WMB 3300, Atlanta, GA, 30322, USA
- Research Service Line, Atlanta VA Healthcare System, Decatur, GA, USA
| | - Deirdre Dixon
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, 101 Woodruff Circle, WMB 3300, Atlanta, GA, 30322, USA
- Research Service Line, Atlanta VA Healthcare System, Decatur, GA, USA
| | - Dana R DaCosta
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, 101 Woodruff Circle, WMB 3300, Atlanta, GA, 30322, USA
- Research Service Line, Atlanta VA Healthcare System, Decatur, GA, USA
| | - Jeanie Park
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, 101 Woodruff Circle, WMB 3300, Atlanta, GA, 30322, USA.
- Research Service Line, Atlanta VA Healthcare System, Decatur, GA, USA.
| |
Collapse
|
8
|
Stephens BY, Young BE, Nandadeva D, Skow RJ, Greaney JL, Brothers RM, Fadel PJ. Sympathetic transduction at rest and during cold pressor test in young healthy non-Hispanic Black and White women. Am J Physiol Regul Integr Comp Physiol 2023; 325:R682-R691. [PMID: 37781734 PMCID: PMC11178294 DOI: 10.1152/ajpregu.00073.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/01/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Non-Hispanic Black (BL) individuals have the highest prevalence of hypertension and cardiovascular disease (CVD) compared with all other racial/ethnic groups. Previous work focused on racial disparities in sympathetic control and blood pressure (BP) regulation between young BL and White (WH) adults, have mainly included men. Herein, we hypothesized that BL women would exhibit augmented resting sympathetic vascular transduction and greater sympathetic and BP reactivity to cold pressor test (CPT) compared with WH women. Twenty-eight young healthy women (BL: n = 14, 22 [Formula: see text] 4 yr; WH: n = 14, 22 [Formula: see text] 4 yr) participated. Beat-to-beat BP (Finometer), common femoral artery blood flow (duplex Doppler ultrasound), and muscle sympathetic nerve activity (MSNA; microneurography) were continuously recorded. In a subset (BL n = 10, WH n = 11), MSNA and BP were recorded at rest and during a 2-min CPT. Resting sympathetic vascular transduction was quantified as changes in leg vascular conductance (LVC) and mean arterial pressure (MAP) following spontaneous bursts of MSNA using signal averaging. Sympathetic and BP reactivity were quantified as changes in MSNA and MAP during the last minute of CPT. There were no differences in nadir LVC following resting MSNA bursts between BL (-8.70 ± 3.43%) and WH women (-7.30 ± 3.74%; P = 0.394). Likewise, peak increases in MAP following MSNA bursts were not different between groups (BL: +2.80 ± 1.42 mmHg; vs. WH: +2.99 ± 1.15 mmHg; P = 0.683). During CPT, increases in MSNA and MAP were also not different between BL and WH women, with similar transduction estimates between groups (ΔMAP/ΔMSNA; P = 0.182). These findings indicate that young, healthy BL women do not exhibit exaggerated sympathetic transduction or augmented sympathetic and BP reactivity during CPT.NEW & NOTEWORTHY This study was the first to comprehensively investigate sympathetic vascular transduction and sympathetic and BP reactivity during a cold pressor test in young, healthy BL women. We demonstrated that young BL women do not exhibit exaggerated resting sympathetic vascular transduction and do not have augmented sympathetic or BP reactivity during cold stress compared with their WH counterparts. Collectively, these findings suggest that alterations in sympathetic transduction and reactivity are not apparent in young, healthy BL women.
Collapse
Affiliation(s)
- Brandi Y Stephens
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, United States
| | - Benjamin E Young
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, United States
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Damsara Nandadeva
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, United States
- Department of Physiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Rachel J Skow
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, United States
| | - Jody L Greaney
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, United States
| | - R Matthew Brothers
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, United States
| | - Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, United States
| |
Collapse
|
9
|
D'Souza AW, Hissen SL, Manabe K, Washio T, Annis MC, Sanchez B, Fu Q, Shoemaker JK. Effects of biological sex and oral contraception on the sympathetic neurocirculatory adjustments to static handgrip exercise in humans. Am J Physiol Regul Integr Comp Physiol 2023; 325:R629-R644. [PMID: 37694305 DOI: 10.1152/ajpregu.00147.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/14/2023] [Accepted: 09/02/2023] [Indexed: 09/12/2023]
Abstract
While biological sex affects the neurocirculatory adjustments to exercise, the effects of sex hormones on sympathetic action potential (AP) patterns and ensuing vascular transduction remain unknown. We tested the hypothesis that males, and females using oral contraceptive pills (OCPs), would demonstrate larger increases in sympathetic activation and sympathetic vascular transduction compared with naturally menstruating females during static handgrip exercise (SHG) and postexercise circulatory occlusion (PECO). Young males [n = 14, 25 (5) yr], females using OCPs [n = 16, 24 (6) yr], and naturally menstruating females [n = 18, 26 (4) yr] underwent assessments of multiunit muscle sympathetic nerve activity (MSNA)/AP discharge patterns (microneurography) and femoral artery blood flow (ultrasound) during fatiguing SHG at 40% maximum voluntary contraction and 2-min PECO. Sympathetic vascular transduction was determined as the quotient of the change in leg vascular conductance (LVC) and MSNA/AP discharge. Males demonstrated greater increases in APs/burst [males: Δ7 (6) vs. midluteal: Δ2 (3), P = 0.028] and total AP clusters [males: Δ5 (3) vs. midluteal: Δ2 (3), P = 0.008] compared with naturally menstruating females only but not those using OCPs during exercise (APs/burst: P = 0.171, total clusters: P = 0.455). Sympathetic vascular transduction of MSNA burst amplitude, APs/burst, and total AP clusters was greater in males and females using OCPs compared with naturally menstruating females (range: P = 0.004-0.044). In contrast, during PECO no group differences were observed in AP discharge (range: P = 0.510-0.872), and AP discharge was not related to LVC during PECO (range: P = 0.08-0.949). These data indicate that biological sex and OCP use impact the central generation of AP discharge, as well as the transduction of these neuronal messages into peripheral vasoconstriction during static exercise.
Collapse
Affiliation(s)
- Andrew W D'Souza
- Neurovascular Research Laboratory, School of Kinesiology, Western University, London, Ontario, Canada
- Women's Heart Health Laboratory, Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Sarah L Hissen
- Women's Heart Health Laboratory, Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Kazumasa Manabe
- Women's Heart Health Laboratory, Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Takuro Washio
- Women's Heart Health Laboratory, Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Meghan C Annis
- Neurovascular Research Laboratory, School of Kinesiology, Western University, London, Ontario, Canada
| | - Belinda Sanchez
- Women's Heart Health Laboratory, Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Qi Fu
- Women's Heart Health Laboratory, Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - J Kevin Shoemaker
- Neurovascular Research Laboratory, School of Kinesiology, Western University, London, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| |
Collapse
|
10
|
Stavres J, Faulkner B, Haynes H, Newsome TA, Dearmon M, Ladner KR, Luck JC. Additive influence of exercise pressor reflex activation on Valsalva responses in white and black adults. Eur J Appl Physiol 2023; 123:2259-2270. [PMID: 37269380 DOI: 10.1007/s00421-023-05240-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/20/2023] [Indexed: 06/05/2023]
Abstract
AIM This study aimed to determine if activation of the exercise pressor reflex exerts additive or redundant influences on the autonomic responses to the Valsalva maneuver (VL), and if these responses differ between White and Black or African American (B/AA) individuals. METHODS Twenty participants (B/AA n = 10, White n = 10) performed three separate experimental trials. In the first trial, participants performed two VLs in a resting condition. In a second trial, participants performed 5 min of continuous handgrip (HG) exercise at 35% of the predetermined maximal voluntary contraction. In a third and final trial, participants repeated the 5-min bout of HG while also performing two VLs during the 4th and 5th minutes. Beat by beat blood pressure and heart rate (HR) were recorded continuously and the absolute systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), pulse pressure (PP), and heart rate (HR) responses were reported for phases I-IV of each VL. RESULTS No significant group by trial interactions or main effects of group were observed for any phase of the VL (all p ≥ 0.36). However, significant main effects of time were observed for blood pressure and heart rate during phases IIa-IV (all p ≤ 0.02). Specifically, the addition of HG exercise exaggerated the hypertensive responses during phases IIb and IV (all p ≤ 0.04) and blunted the hypotensive responses during phases IIa and III (all p ≤ 0.01). CONCLUSIONS These results suggest that activation of the exercise pressor reflex exerts an additive influence on autonomic responses to the VL maneuver in both White and B/AA adults.
Collapse
Affiliation(s)
- Jon Stavres
- School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, MS, USA.
| | - Barry Faulkner
- School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Hunter Haynes
- School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Ta'Quoris A Newsome
- School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Marshall Dearmon
- School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Kenneth R Ladner
- School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, MS, USA
| | - J Carter Luck
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
11
|
Grosicki GJ, Flatt AA, Cross BL, Vondrasek JD, Blumenburg WT, Lincoln ZR, Chall A, Bryan A, Patel RP, Ricart K, Linder BA, Sanchez SO, Watso JC, Robinson AT. Acute beetroot juice reduces blood pressure in young Black and White males but not females. Redox Biol 2023; 63:102718. [PMID: 37120928 PMCID: PMC10172749 DOI: 10.1016/j.redox.2023.102718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/08/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023] Open
Abstract
A complex interplay of social, lifestyle, and physiological factors contribute to Black Americans having the highest blood pressure (BP) in America. One potential contributor to Black adult's higher BP may be reduced nitric oxide (NO) bioavailability. Therefore, we sought to determine whether augmenting NO bioavailability with acute beetroot juice (BRJ) supplementation would reduce resting BP and cardiovascular reactivity in Black and White adults, but to a greater extent in Black adults. A total of 18 Black and 20 White (∼equal split by biological sex) young adults completed this randomized, placebo-controlled (nitrate (NO3-)-depleted BRJ), crossover design study. We measured heart rate, brachial and central BP, and arterial stiffness (via pulse wave velocity) at rest, during handgrip exercise, and during post-exercise circulatory occlusion. Compared with White adults, Black adults exhibited higher pre-supplementation resting brachial and central BP (Ps ≤0.035; e.g., brachial systolic BP: 116(11) vs. 121(7) mmHg, P = 0.023). Compared with placebo, BRJ (∼12.8 mmol NO3-) reduced resting brachial systolic BP similarly in Black (Δ-4±10 mmHg) and White (Δ-4±7 mmHg) adults (P = 0.029). However, BRJ supplementation reduced BP in males (Ps ≤ 0.020) but not females (Ps ≥ 0.299). Irrespective of race or sex, increases in plasma NO3- were associated with reduced brachial systolic BP (ρ = -0.237, P = 0.042). No other treatment effects were observed for BP or arterial stiffness at rest or during physical stress (i.e., reactivity); Ps ≥ 0.075. Despite young Black adults having higher resting BP, acute BRJ supplementation reduced systolic BP in young Black and White adults by a similar magnitude, an effect that was driven by males.
Collapse
Affiliation(s)
- Gregory J. Grosicki
- Biodynamics and Human Performance Center, Georgia Southern University, Armstrong Campus, Savannah, GA, USA
| | - Andrew A. Flatt
- Biodynamics and Human Performance Center, Georgia Southern University, Armstrong Campus, Savannah, GA, USA
| | - Brett L. Cross
- Biodynamics and Human Performance Center, Georgia Southern University, Armstrong Campus, Savannah, GA, USA
| | - Joseph D. Vondrasek
- Biodynamics and Human Performance Center, Georgia Southern University, Armstrong Campus, Savannah, GA, USA
| | - Wesley T. Blumenburg
- Biodynamics and Human Performance Center, Georgia Southern University, Armstrong Campus, Savannah, GA, USA
| | - Zoe R. Lincoln
- Biodynamics and Human Performance Center, Georgia Southern University, Armstrong Campus, Savannah, GA, USA
| | - Amy Chall
- Department of Diagnostic and Therapeutic Services, Georgia Southern University, Armstrong Campus, Savannah, GA, USA
| | - Anna Bryan
- Department of Diagnostic and Therapeutic Services, Georgia Southern University, Armstrong Campus, Savannah, GA, USA
| | - Rakesh P. Patel
- Department for Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Karina Ricart
- Department for Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Braxton A. Linder
- Neurovascular Physiology Laboratory, Auburn University, Auburn, AL, USA
| | - Sofia O. Sanchez
- Neurovascular Physiology Laboratory, Auburn University, Auburn, AL, USA
| | - Joseph C. Watso
- Cardiovascular and Applied Physiology Laboratory, Florida State University, Tallahassee, FL, USA
| | | |
Collapse
|
12
|
Turner CG, Hayat MJ, Grosch C, Quyyumi AA, Otis JS, Wong BJ. Endothelin A receptor inhibition increases nitric oxide-dependent vasodilation independent of superoxide in non-Hispanic Black young adults. J Appl Physiol (1985) 2023; 134:891-899. [PMID: 36892887 PMCID: PMC10042601 DOI: 10.1152/japplphysiol.00739.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Young non-Hispanic Black adults have reduced microvascular endothelial function compared with non-Hispanic White counterparts, but the mechanisms are not fully elucidated. The purpose of this study was to investigate the effect of endothelin-1 A receptor (ETAR) and superoxide on cutaneous microvascular function in young non-Hispanic Black (n = 10) and White (n = 10) adults. Participants were instrumented with four intradermal microdialysis fibers: 1) lactated Ringer's (control), 2) 500 nM BQ-123 (ETAR antagonist), 3) 10 μM tempol (superoxide dismutase mimetic), and 4) BQ-123 + tempol. Skin blood flow was assessed via laser-Doppler flowmetry (LDF), and each site underwent rapid local heating from 33°C to 39°C. At the plateau of local heating, 20 mM l-NAME [nitric oxide (NO) synthase inhibitor] was infused to quantify NO-dependent vasodilation. Data are means ± standard deviation. NO-dependent vasodilation was decreased in non-Hispanic Black compared with non-Hispanic White young adults (P < 0.01). NO-dependent vasodilation was increased at BQ-123 sites (73 ± 10% NO) and at BQ-123 + tempol sites (71 ± 10%NO) in non-Hispanic Black young adults compared with control (53 ± 13%NO, P = 0.01). Tempol alone had no effect on NO-dependent vasodilation in non-Hispanic Black young adults (63 ± 14%NO, P = 0.18). NO-dependent vasodilation at BQ-123 sites was not statistically different between non-Hispanic Black and White (80 ± 7%NO) young adults (P = 0.15). ETAR contributes to reduced NO-dependent vasodilation in non-Hispanic Black young adults independent of superoxide, suggesting a greater effect on NO synthesis rather than NO scavenging via superoxide.NEW & NOTEWORTHY Endothelin-1 A receptors (ETARs) have been shown to reduce endothelial function independently and through increased production of superoxide. We show that independent ETAR inhibition increases microvascular endothelial function in non-Hispanic Black young adults. However, administration of a superoxide dismutase mimetic alone and in combination with ETAR inhibition had no effect on microvascular endothelial function suggesting that, in the cutaneous microvasculature, the negative effects of ETAR in non-Hispanic Black young adults are independent of superoxide production.
Collapse
Affiliation(s)
- Casey G Turner
- Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia, United States
| | - Matthew J Hayat
- Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, Georgia, United States
| | - Caroline Grosch
- Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, Georgia, United States
| | - Arshed A Quyyumi
- Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Jeffrey S Otis
- Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia, United States
| | - Brett J Wong
- Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia, United States
| |
Collapse
|
13
|
Monfredi OJ, Moore CC, Sullivan BA, Keim-Malpass J, Fairchild KD, Loftus TJ, Bihorac A, Krahn KN, Dubrawski A, Lake DE, Moorman JR, Clermont G. Continuous ECG monitoring should be the heart of bedside AI-based predictive analytics monitoring for early detection of clinical deterioration. J Electrocardiol 2023; 76:35-38. [PMID: 36434848 PMCID: PMC10061545 DOI: 10.1016/j.jelectrocard.2022.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/01/2022] [Accepted: 10/22/2022] [Indexed: 11/24/2022]
Abstract
The idea that we can detect subacute potentially catastrophic illness earlier by using statistical models trained on clinical data is now well-established. We review evidence that supports the role of continuous cardiorespiratory monitoring in these predictive analytics monitoring tools. In particular, we review how continuous ECG monitoring reflects the patient and not the clinician, is less likely to be biased, is unaffected by changes in practice patterns, captures signatures of illnesses that are interpretable by clinicians, and is an underappreciated and underutilized source of detailed information for new mathematical methods to reveal.
Collapse
Affiliation(s)
- Oliver J Monfredi
- Center for Advanced Medical Analytics, University of Virginia, United States of America; Department of Medicine, University of Virginia, United States of America
| | - Christopher C Moore
- Center for Advanced Medical Analytics, University of Virginia, United States of America; Department of Medicine, University of Virginia, United States of America
| | - Brynne A Sullivan
- Center for Advanced Medical Analytics, University of Virginia, United States of America; Department of Pediatrics, University of Virginia, United States of America
| | - Jessica Keim-Malpass
- Center for Advanced Medical Analytics, University of Virginia, United States of America; School of Nursing, University of Virginia, United States of America
| | - Karen D Fairchild
- Center for Advanced Medical Analytics, University of Virginia, United States of America; Department of Pediatrics, University of Virginia, United States of America
| | - Tyler J Loftus
- Department of Surgery, University of Florida, United States of America
| | - Azra Bihorac
- Department of Medicine, University of Florida, United States of America
| | - Katherine N Krahn
- Center for Advanced Medical Analytics, University of Virginia, United States of America; Department of Medicine, University of Virginia, United States of America
| | - Artur Dubrawski
- Robotics Institute, Carnegie Mellon University, United States of America
| | - Douglas E Lake
- Center for Advanced Medical Analytics, University of Virginia, United States of America; Department of Medicine, University of Virginia, United States of America
| | - J Randall Moorman
- Center for Advanced Medical Analytics, University of Virginia, United States of America; Department of Medicine, University of Virginia, United States of America.
| | - Gilles Clermont
- Department of Critical Care, University of Pittsburgh, United States of America
| |
Collapse
|
14
|
Hogwood AC, Decker KP, Darling AM, Weggen JB, Chiu A, Richardson J, Garten RS. Exaggerated pressor responses, but unaltered blood flow regulation and functional sympatholysis during lower limb exercise in young, non-Hispanic black males. Microvasc Res 2023; 145:104445. [PMID: 36209773 DOI: 10.1016/j.mvr.2022.104445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
PURPOSE Young non-Hispanic black (BL) males have displayed lower blood flow (BF) and vascular conductance (VC), but intact functional sympatholysis, during upper limb exercise when compared to non-Hispanic white (WH) males. This study sought to explore if similar differences were also present in the lower limbs. METHODS Thirteen young BL males and thirteen WH males completed one visit comprised of rhythmic lower limb (plantar flexion) exercise as well as upper limb (handgrip) exercise for a limb-specific comparison. Limb BF, mean arterial pressure (MAP), and VC were evaluated at three submaximal workloads (8, 16, and 24 kg). To determine potential limb differences in functional sympatholysis, the impact of sympathetic nervous system activation (via cold-pressor test (CPT)) was evaluated at rest and during steady state exercise (30 % of maximal voluntary contraction) on a subsequent visit. RESULTS MAP responses to lower and upper limb exercise were elevated in young BL males (vs WH males), resulting in significantly lower VC responses in the upper limb, but not the lower limb. Further, BL males, when compared to WH males, revealed no differences in functional sympatholysis, evident by similar responses in both the exercising leg and arm VC during CPT. CONCLUSION The findings of the current study indicate that although elevated MAP responses were observed during both lower and upper limb exercise in young BL males, vascular conductance was only hindered in the upper limbs. This may potentially highlight enhanced compensatory mechanisms in the lower limb (vs upper limb) to maintain perfusion in young BL males.
Collapse
Affiliation(s)
- Austin C Hogwood
- Department of Kinesiology, University of Virginia, Charlottesville, VA, USA
| | - Kevin P Decker
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| | - Ashley M Darling
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA
| | - Jennifer B Weggen
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA, USA
| | - Alex Chiu
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA, USA
| | - Jacob Richardson
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA, USA
| | - Ryan S Garten
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
15
|
Olver TD, Badrov MB, Allen MD, Coverdale NS, Shoemaker JK. Acute changes in forearm vascular compliance during transient sympatho-excitation. Physiol Rep 2022; 10:e15256. [PMID: 35439367 PMCID: PMC9017978 DOI: 10.14814/phy2.15256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/07/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023] Open
Abstract
The study of vascular regulation often omits important information about the elastic properties of arteries under conditions of pulsatile flow. The purpose of this study was to examine the relationship between muscle sympathetic nerve activity (MSNA), vascular bed compliance, and peripheral blood flow responses in humans. We hypothesized that increases in MSNA would correlate with reductions in vascular compliance, and that changes in compliance would correspond with changes in peripheral blood flow during sympatho-excitation. MSNA (microneurography), blood pressure (Finopres), and brachial artery blood flow (Doppler ultrasound), were monitored in six healthy males at baseline and during the last 15 s of voluntary end-inspiratory, expiratory apneas and 5 min of static handgrip exercise (SHG; 20% maximum voluntary contraction) and 3 min of post-exercise circulatory occlusion (SHG + PECO; measured in the non-exercising arm). A lumped Windkessel model was employed to examine vascular bed compliance. During apnea, indices of MSNA were inversely related with vascular compliance, and reductions in compliance correlated with decreased brachial blood flow rate. During SHG, despite increased MSNA, compliance also increased, but was unrelated to increases in blood flow. Neither during SHG nor PECO did indices of MSNA correlate with forearm vascular compliance nor did vascular compliance correlate with brachial flow. However, during PECO, a linear combination of blood pressure and total MSNA was correlated with vascular compliance. These data indicate the elastic components of the forearm vasculature are regulated by adrenergic and myogenic mechanisms during sympatho-excitation, but in a reflex-dependent manner.
Collapse
Affiliation(s)
- T. Dylan Olver
- Biomedical SciencesWestern College of Veterinary MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Mark B. Badrov
- Division of CardiologyDepartment of MedicineUniversity Health Network and Sinai HealthUniversity of TorontoTorontoOntarioCanada
| | - Matti D. Allen
- Department of Physical Medicine and RehabilitationSchool of MedicineQueen's UniversityKingstonOntarioCanada
| | - Nicole S. Coverdale
- School of Kinesiology and Health StudiesQueen’s UniversityKingstonOntarioCanada
| | - J. Kevin Shoemaker
- Neurovascular Research LaboratorySchool of KinesiologyThe University of Western OntarioLondonOntarioCanada
| |
Collapse
|
16
|
Akins JD, Martin ZT, Patik JC, Curtis BM, Campbell JC, Olvera G, Brothers RM. Young, non-hispanic black men and women exhibit divergent peripheral and cerebral vascular reactivity. Exp Physiol 2022; 107:450-461. [PMID: 35344241 PMCID: PMC9058228 DOI: 10.1113/ep090168] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 03/21/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of the study? Does peripheral and cerebral vascular function differ in young, non-Hispanic Black men and women? What is the main finding and its importance? The non-Hispanic, Black women in this study presented greater peripheral conduit artery and cerebrovascular reactivity, yet similar peripheral microvascular function relative to the non-Hispanic, Black men. These preliminary findings suggest that young, Black women and men possess divergent vascular function, possibly contributing to the unique non-Hispanic Black sex differences in cardiovascular and cerebrovascular diseases. ABSTRACT In the U.S., cardiovascular and cerebrovascular diseases remain more prominent in the non-Hispanic Black (BL) population relative to other racial/ethnic groups. Typically, sex differences emerge in the manifestation of these diseases, though these differences may not fully materialize in the BL population. While numerous mechanisms are implicated, differences in vascular function likely contribute. Research has demonstrated blunted vasodilation in several vascular regions in BL versus non-Hispanic White individuals, though much of this work did not assess sex differences. Therefore, this study aimed to ascertain if indices of vascular function are different between young, BL women (BW) and men (BM). Eleven BW and 15 BM (22 (4) vs. 23 (3) y) participated in this study. Each participant underwent testing for brachial artery flow-mediated dilation (FMD), post-occlusive reactive hyperemia (RH), and cerebral vasomotor reactivity during rebreathing-induced hypercapnia. BW exhibited greater adjusted FMD than BM (P < 0.05 for all), but similar or lower RH when assessed as blood velocity (P > 0.39 for all) or blood flow reactivity (P < 0.05 for all), respectively. Across a range of hypercapnia, BW had greater middle cerebral artery blood velocity and cerebrovascular conductance index than BM (P < 0.001 for both). These preliminary data suggest that young, BW have greater vascular function relative to young, BM, though this was inconsistent across different indices. These findings provide insight into the divergent epidemiological findings between BM and BW. Further research is needed to elucidate possible mechanisms and relate these physiological responses to epidemiological observations. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- John D Akins
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, USA
| | - Zachary T Martin
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, USA
| | - Jordan C Patik
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, USA.,Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| | - Bryon M Curtis
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, USA.,Institute for Exercise and Environmental Medicine, Dallas, TX, USA
| | - Jeremiah C Campbell
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, USA
| | - Guillermo Olvera
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, USA.,Institute for Exercise and Environmental Medicine, Dallas, TX, USA
| | - R Matthew Brothers
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
17
|
Bunsawat K, Grosicki GJ, Jeong S, Robinson AT. Racial and ethnic disparities in cardiometabolic disease and COVID-19 outcomes in White, Black/African American, and Latinx populations: Physiological underpinnings. Prog Cardiovasc Dis 2022; 71:11-19. [PMID: 35490869 PMCID: PMC9050188 DOI: 10.1016/j.pcad.2022.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 04/24/2022] [Indexed: 02/05/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a highly contagious respiratory illness caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that began spreading globally in late 2019. While most cases of COVID-19 present with mild to moderate symptoms, COVID-19 was the third leading cause of mortality in the United States in 2020 and 2021. Though COVID-19 affects individuals of all races and ethnicities, non-Hispanic Black and Hispanic/Latinx populations are facing an inequitable burden of COVID-19 characterized by an increased risk for hospitalization and mortality. Importantly, non-Hispanic Black and Hispanic/Latinx adults have also faced a greater risk of non-COVID-19-related mortality (e.g., from cardiovascular disease/CVD) during the pandemic. Contributors to the racial disparities in morbidity and mortality during the pandemic are multi-factorial as we discuss in our companion article on social determinants of health. However, profound racial variation in the prevalence of CVD and metabolic diseases may serve as a key driver of worse COVID-19-related and non-COVID-19-related health outcomes among racial and ethnic minority groups. Within this review, we provide data emphasizing the inequitable burden of CVD and metabolic diseases among non-Hispanic Black and Hispanic/Latinx populations. We also discuss the pathophysiology of these conditions, with a focus on how aberrant physiological alterations in the context of CVD and metabolic diseases manifest to increase susceptibility to severe COVID-19.
Collapse
Affiliation(s)
- Kanokwan Bunsawat
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT 84132, USA; Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT 84148, USA
| | - Gregory J Grosicki
- Department of Health Sciences and Kinesiology, Biodynamics and Human Performance Center, Georgia Southern University (Armstrong Campus), Savannah, GA 31419, USA
| | - Soolim Jeong
- Neurovascular Physiology Laboratory, School of Kinesiology, Auburn University, Auburn, AL 36849, USA
| | - Austin T Robinson
- Neurovascular Physiology Laboratory, School of Kinesiology, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
18
|
Impaired sympathetic neural recruitment during exercise pressor reflex activation in women with post-traumatic stress disorder. Clin Auton Res 2022; 32:115-129. [PMID: 35226233 DOI: 10.1007/s10286-022-00858-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/09/2022] [Indexed: 11/03/2022]
Abstract
Muscle sympathetic nerve activity (MSNA) increases during isometric exercise via increased firing of low-threshold action potentials (AP), recruitment of larger, higher-threshold APs, and synaptic delay modifications. Recent work found that women with post-traumatic stress disorder (PTSD) demonstrate exaggerated early-onset MSNA responses to exercise; however, it is unclear how PTSD affects AP recruitment patterns during fatiguing exercise. We hypothesized that women with PTSD (n = 11, 43 [11] [SD] years) would exhibit exaggerated sympathetic neural recruitment compared to women without PTSD (controls; n = 13, 40 [8] years). MSNA and AP discharge patterns (via microneurography and a continuous wavelet transform) were measured during 1 min of baseline, isometric handgrip exercise (IHG) to fatigue, 2 min of post-exercise circulatory occlusion (PECO), and 3 min of recovery. Women with PTSD were unable to increase AP content per burst compared to controls throughout IHG and PECO (main effect of group: P = 0.026). Furthermore, relative to controls, women with PTSD recruited fewer AP clusters per burst during the first (controls: ∆1.3 [1.2] vs. PTSD: ∆-0.2 [0.8]; P = 0.016) and second minute (controls: ∆1.2 [1.1] vs. PTSD: ∆-0.1 [0.8]; P = 0.022) of PECO, and fewer subpopulations of larger, previously silent axons during the first (controls: ∆5 [4] vs. PTSD: ∆1 [2]; P = 0.020) and second minute (controls: ∆4 [2] vs. PTSD: ∆1 [2]; P = 0.021) of PECO. Conversely, PTSD did not modify the AP cluster size-latency relationship during baseline, the end of IHG, or PECO (all P = 0.658-0.745). Collectively, these data indicate that women with PTSD demonstrate inherent impairments in the fundamental neural coding patterns elicited by the sympathetic nervous system during IHG and exercise pressor reflex activation.
Collapse
|
19
|
Tymko MM, Berthelsen LF, Skow RJ, Steele AR, Fraser GM, Steinback CD. Assessing static and dynamic sympathetic transduction using microneurography. J Appl Physiol (1985) 2021; 130:1626-1634. [PMID: 33792401 DOI: 10.1152/japplphysiol.00032.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The relationship between sympathetic nerve activity and the vasculature has been of great interest due to its potential role in various cardiovascular-related diseases. This relationship, termed "sympathetic transduction," has been quantified using several different laboratory and analytical techniques. The most common method is to assess the association between relative changes in muscle sympathetic nerve activity, measured via microneurography, and physiological outcomes (e.g., blood pressure, total peripheral resistance, blood flow, etc.) in response to a sympathetic stressor (e.g., exercise, cold stress, orthostatic stress). This approach, however, comes with its own caveats. For instance, elevations in blood pressure and heart rate during a sympathetic stressor can have an independent impact on muscle sympathetic nerve activity. Another assessment of sympathetic transduction was developed by Wallin and Nerhed in 1982, where alterations in blood pressure and heart rate were assessed immediately following bursts of muscle sympathetic nerve activity at rest. This approach has since been characterized and further innovated by others, including the breakdown of consecutive burst sequences (e.g., singlet, doublet, triplet, and quadruplet), and burst height (quartile analysis) on specific vascular outcomes (e.g., blood pressure, blood flow, vascular resistance). The purpose of this review is to provide an overview of the literature that has assessed sympathetic transduction using microneurography and various sympathetic stressors (static sympathetic transduction) and using the same or similar approach established by Wallin and Nerhed at rest (dynamic neurovascular transduction). Herein, we discuss the overlapping literature between these two methodologies and highlight the key physiological questions that remain.
Collapse
Affiliation(s)
- Michael M Tymko
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, & Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Lindsey F Berthelsen
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, & Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Rachel J Skow
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, & Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew R Steele
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, & Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Graham M Fraser
- The Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Craig D Steinback
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, & Recreation, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
20
|
Young BE, Greaney JL, Keller DM, Fadel PJ. Sympathetic transduction in humans: recent advances and methodological considerations. Am J Physiol Heart Circ Physiol 2021; 320:H942-H953. [PMID: 33416453 DOI: 10.1152/ajpheart.00926.2020] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ever since their origin more than one half-century ago, microneurographic recordings of sympathetic nerve activity have significantly advanced our understanding of the generation and regulation of central sympathetic outflow in human health and disease. For example, it is now appreciated that a myriad of disease states exhibit chronic sympathetic overactivity, a significant predictor of cardiovascular morbidity and mortality. Although microneurographic recordings allow for the direct quantification of sympathetic outflow, they alone do not provide information with respect to the ensuing sympathetically mediated vasoconstriction and blood pressure (BP) response. Therefore, the study of vascular and/or BP responses to sympathetic outflow (i.e., sympathetic transduction) has now emerged as an area of growing interest within the field of neural cardiovascular control in human health and disease. To date, studies have primarily examined sympathetic transduction under two distinct paradigms: when reflexively evoking sympatho-excitation through the induction of a laboratory stressor (i.e., sympathetic transduction during stress) and/or following spontaneous bursts of sympathetic outflow occurring under resting conditions (i.e., sympathetic transduction at rest). The purpose of this brief review is to highlight how our physiological understanding of sympathetic transduction has been advanced by these studies and to evaluate the primary analytical techniques developed to study sympathetic transduction in humans. We also discuss the framework by which the assessment of sympathetic transduction during stress reflects a fundamentally different process relative to sympathetic transduction at rest and why findings from investigations using these different techniques should be interpreted as such and not necessarily be considered one and the same.
Collapse
Affiliation(s)
- Benjamin E Young
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | - Jody L Greaney
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | - David M Keller
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | - Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| |
Collapse
|
21
|
Miller JT, Turner CG, Otis JS, Sebeh Y, Hayat MJ, Quyyumi AA, Wong BJ. Inhibition of iNOS augments cutaneous endothelial NO-dependent vasodilation in prehypertensive non-Hispanic Whites and in non-Hispanic Blacks. Am J Physiol Heart Circ Physiol 2020; 320:H190-H199. [PMID: 33124886 DOI: 10.1152/ajpheart.00644.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We tested the hypothesis that inducible nitric oxide synthase (iNOS) contributes to reduced nitric oxide (NO)-dependent vasodilation in non-Hispanic Blacks and prehypertensive non-Hispanic Whites. Twenty Black and twenty White participants (10 normotensive, 10 prehypertensive per group; n = 40 total) participated in this study. Participants were instrumented with two microdialysis fibers, and each site was randomized as control (lactated Ringer) or iNOS inhibition (0.1 mM 1400W). Laser-Doppler flow probes and local heaters were used to measure skin blood flow and heat the skin to induce vasodilation, respectively. Each site was heated from 33°C to 39°C (rate: 0.1°C/s). Once a plateau was established, 20 mM nitro-l-arginine methyl ester (l-NAME), a nonspecific NOS inhibitor, was infused at each site to quantify NO-dependent vasodilation. At control sites, %NO-dependent vasodilation was reduced in prehypertensive Whites (47 ± 10%NO) and in both normotensive and prehypertensive Blacks (39 ± 9%NO and 28 ± 5%NO, respectively) relative to normotensive Whites (73 ± 8%NO; P < 0.0001 for all comparisons). Compared with respective control sites, iNOS inhibition increased NO-dependent vasodilation in prehypertensive Whites (68 ± 8%NO) and in both normotensive and prehypertensive Blacks (78 ± 8%NO and 55 ± 6%NO, respectively; P < 0.0001 for all comparisons). We failed to find an effect for normotensive Whites (77 ± 7%NO). After iNOS inhibition, %NO-dependent vasodilation was similar between normotensive Whites, prehypertensive Whites, and normotensive Blacks. Inhibition of iNOS increased NO-dependent vasodilation to a lesser extent in prehypertensive Blacks. These data suggest that iNOS contributes to reduced NO-dependent vasodilation in prehypertension and in Black participants.NEW & NOTEWORTHY Inducible nitric oxide synthase (iNOS) is typically upregulated in conditions of increased oxidative stress and may have detrimental effects on the vasculature. Endothelial nitric oxide (NO), which is cardioprotective, is reduced in prehypertensive non-Hispanic Whites and in non-Hispanic Blacks. We found that inhibition of iNOS can increase endothelial NO-dependent vasodilation in prehypertensive White participants and in both normotensive and prehypertensive Black participants.Inducible nitric oxide (NO) synthase (iNOS) can be upregulated under conditions of increased oxidative stress and may have detrimental effects on the vasculature. Endothelial NO, which is cardioprotective, is reduced in prehypertensive non-Hispanic Whites and in non-Hispanic Blacks. We found that inhibition of iNOS can increase endothelial NO-dependent vasodilation in prehypertensive White participants and in both normotensive and prehypertensive Black participants.
Collapse
Affiliation(s)
- James T Miller
- Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia
| | - Casey G Turner
- Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia
| | - Jeffrey S Otis
- Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia
| | - Yesser Sebeh
- School of Public Health, Georgia State University, Atlanta, Georgia
| | - Matthew J Hayat
- School of Public Health, Georgia State University, Atlanta, Georgia
| | - Arshed A Quyyumi
- Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Brett J Wong
- Department of Kinesiology and Health, Georgia State University, Atlanta, Georgia
| |
Collapse
|
22
|
Farrell MC, Giza RJ, Shibao CA. Race and sex differences in cardiovascular autonomic regulation. Clin Auton Res 2020; 30:371-379. [PMID: 32894376 PMCID: PMC7584374 DOI: 10.1007/s10286-020-00723-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022]
Abstract
Racial and ethnic differences in cardiovascular morbidity and mortality persist despite advances in risk factor identification and implementation of evidence-based treatment strategies. African American men and women are disproportionately affected by cardiovascular risk factors, particularly hypertension. In this context, previous studies have identified sex and racial differences in autonomic cardiovascular regulation which may contribute to the development of hypertension and its high morbidity burden among African Americans. In this review, we provide a comprehensive evaluation of the potential pathophysiological mechanisms of blood pressure control and their differences based on sex and race. These mechanisms include obesity-induced sympathetic activation, sympatho-vascular transduction, baroreflex sensitivity and adrenoreceptor vascular sensitivity, which have been the subjects of prior investigation in this field. Understanding the racial differences in the pathophysiology of hypertension and its co-morbid conditions would allow us to implement better treatment strategies tailored to African Americans, with the ultimate goal of reducing cardiovascular mortality in this population.
Collapse
Affiliation(s)
| | - Richard J Giza
- Drexel University College of Medicine, Philadelphia, PA, USA
| | - Cyndya A Shibao
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt Autonomic Dysfunction Center, Vanderbilt University Medical Center, 506 Robinson Research Building, Nashville, TN, 37232-6602, USA.
| |
Collapse
|
23
|
Barbosa TC, Young BE, Stephens BY, Nandadeva D, Kaur J, Keller DM, Fadel PJ. Functional sympatholysis is preserved in healthy young Black men during rhythmic handgrip exercise. Am J Physiol Regul Integr Comp Physiol 2020; 319:R323-R328. [PMID: 32783690 DOI: 10.1152/ajpregu.00105.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Black men have attenuated increases in forearm vascular conductance (FVC) and forearm blood flow (FBF) during moderate- and high-intensity rhythmic handgrip exercise compared with White men, but the underlying mechanisms are unclear. Here, we tested for the first time the hypothesis that functional sympatholysis (i.e., attenuation of sympathetic vasoconstriction in the exercising muscles) is impaired in Black men compared with White men. Thirteen White and 14 Black healthy young men were studied. FBF (duplex Doppler ultrasound) and mean arterial pressure (MAP; Finometer) were measured at rest and during rhythmic handgrip exercise at 30% maximal voluntary contraction. FVC was calculated as FBF/MAP. Sympathetic activation was induced via lower body negative pressure (LBNP) at -20 Torr for 2 min at rest and from the 3rd to the 5th min of handgrip. Sympathetic vasoconstriction was assessed as percent reductions in FVC during LBNP. The groups presented similar resting FVC, FBF, and MAP. During LBNP at rest, reductions in FVC were not different between White (-35 ± 10%) and Black men (-32 ± 14%, P = 0.616), indicating similar reflex-induced sympathetic vasoconstriction. During handgrip exercise, there were minimal reductions in FVC with LBNP in either group (White: -1 ± 7%; Black: +1 ± 8%; P = 0.523), indicating functional sympatholysis in both groups. Thus, contrary to our hypothesis, our findings indicate a preserved functional sympatholysis in healthy young Black men compared with White men, suggesting that this mechanism does not appear to contribute to reduced exercise hyperemia during moderate-intensity rhythmic handgrip in this population.
Collapse
Affiliation(s)
- Thales C Barbosa
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas
| | - Benjamin E Young
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas
| | - Brandi Y Stephens
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas
| | - Damsara Nandadeva
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas
| | - Jasdeep Kaur
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas
| | - David M Keller
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas
| | - Paul J Fadel
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas
| |
Collapse
|
24
|
Yoo JK, Fu Q. Impact of sex and age on metabolism, sympathetic activity, and hypertension. FASEB J 2020; 34:11337-11346. [PMID: 32779294 DOI: 10.1096/fj.202001006rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022]
Abstract
In this brief review, we summarize the current knowledge on the complex interplay between metabolism, sympathetic activity and hypertension with a focus on sex differences and changes with age in humans. Evidence suggests that in premenopausal women, sex hormones, particularly estrogen exerts a profound cardioprotective effect which may be associated with favorable metabolic profiles, as well as lower sympathetic activity and blood pressure at rest and any given physiological and environmental stimuli compared with men of a similar age. Along this line, premenopausal women seem to be generally protected from obesity-induced metabolic and cardiovascular complications. However, postmenopausal estrogen deprivation during midlife and older age has a detrimental impact on metabolism, may lead to adipose tissue redistribution from the subcutaneous to abdominal area, and augments sympathetic activity. All these changes could contribute significantly to the higher prevalence of hypertension and greater cardiometabolic risk in older women than older men. It is proposed that obesity-related hypertension has a neurogenic component which is characterized by sympathetic overactivity, but the impact of sex and age remains largely unknown. Understanding sex and age-specific differences in obesity and sympathetic neural control of blood pressure is important in the prevention and/or risk reduction of cardiometabolic disorders for both men and women.
Collapse
Affiliation(s)
- Jeung-Ki Yoo
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX, USA
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qi Fu
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX, USA
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
25
|
Hissen SL, Taylor CE. Sex differences in vascular transduction of sympathetic nerve activity. Clin Auton Res 2020; 30:381-392. [PMID: 32865664 DOI: 10.1007/s10286-020-00722-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE Sympathetic vasoconstriction plays a major role in the beat-to-beat control of blood pressure. To be effective and thus avoid dangerously high or low blood pressures, this mechanism relies upon transduction of sympathetic nerve activity at the level of the vasculature. However, recent evidence suggests that considerable variability exists in beat-to-beat vascular transduction, particularly between the sexes. METHODS We reviewed the methods available for quantifying beat-to-beat transduction of muscle sympathetic nerve activity (MSNA) and explored the recent evidence for sex differences in vascular transduction. We paid specific attention to relationships between vascular transduction and factors such as resting levels of sympathetic nerve activity and baroreflex sensitivity. RESULTS There are two dominant methods now available for the quantification of beat-to-beat transduction of muscle sympathetic nerve activity at rest. Whilst there is some evidence to suggest that young females exhibit lower levels of vascular transduction, results vary depending on the method used and the direction of change in MSNA. Evidence suggests that compensatory relationships may exist between key components of neurovascular control, such as vascular transduction and resting levels of MSNA. Also consistent is the presence of such relationships in young males but not young females. CONCLUSION The lack of significant relationships in young females may reflect the influence of vasodilator mechanisms that counteract sympathetic vasoconstriction. The assessment of vascular transduction following MSNA bursts and non-bursts in males and females, both young and older, may help to gain a mechanistic understanding of the prevalence of hypotensive and hypertensive disorders across the lifespan.
Collapse
Affiliation(s)
- Sarah L Hissen
- Institute for Exercise and Environmental Medicine at Texas Health Presbyterian Hospital Dallas, Dallas, TX, USA
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chloe E Taylor
- School of Health Sciences, Western Sydney University, Campbelltown Campus, Locked Bag 1797, Penrith, Sydney, NSW, 2751, Australia.
- School of Medicine, Western Sydney University, Sydney, Australia.
| |
Collapse
|
26
|
Hissen SL, Fu Q. Neural control of blood pressure during pregnancy in humans. Clin Auton Res 2020; 30:423-431. [PMID: 32564162 DOI: 10.1007/s10286-020-00703-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/10/2020] [Indexed: 12/01/2022]
Abstract
PURPOSE Previous microneurographic studies found that muscle sympathetic nerve activity (MSNA) increased in normotensive pregnant women and was even greater in women with gestational hypertension and preeclampsia during the third trimester. It is possible that sympathetic activation during the latter months of normal pregnancy helps return arterial pressure to non-pregnant levels. However, when the increase in sympathetic activity is excessive, hypertension ensues. The key question that must be addressed is whether sympathetic activation develops early during pregnancy and remains high throughout gestation, or whether this sympathetic overactivity only occurs at term, providing the substrate for preeclampsia and other pregnancy-associated cardiovascular complications. METHODS This was a literature review of autonomic neural control during pregnancy. RESULTS Recent work from our laboratory and other laboratories showed that in healthy women resting MSNA increased in early pregnancy, increased further in late pregnancy, and returned to the pre-pregnancy levels shortly after delivery. We found that women who exhibited excessive sympathetic activation during the first trimester, before any clinical signs and symptoms appeared, developed gestational hypertension at term. We also found that the level of corin, an atrial natriuretic peptide-converting enzyme, was increased in the maternal circulation, especially during late pregnancy, as a homeostatic response to elevated sympathetic activity. CONCLUSION These findings provide important insight into the neural mechanisms underlying hypertensive disorders during pregnancy. With this knowledge, early prevention or treatment targeted to the appropriate pathophysiology may be initiated, which may reduce maternal and fetal death or morbidity, as well as cardiovascular risks in women later in life.
Collapse
Affiliation(s)
- Sarah L Hissen
- Women's Heart Health Laboratory, Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Suite 435, Dallas, TX, 75231, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, USA
| | - Qi Fu
- Women's Heart Health Laboratory, Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Suite 435, Dallas, TX, 75231, USA. .,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, USA.
| |
Collapse
|
27
|
Stuckless TJR, Vermeulen TD, Brown CV, Boulet LM, Shafer BM, Wakeham DJ, Steinback CD, Ayas NT, Floras JS, Foster GE. Acute intermittent hypercapnic hypoxia and sympathetic neurovascular transduction in men. J Physiol 2020; 598:473-487. [PMID: 31805605 DOI: 10.1113/jp278941] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/03/2019] [Indexed: 01/02/2023] Open
Abstract
KEY POINTS Intermittent hypoxia leads to long-lasting increases in muscle sympathetic nerve activity and blood pressure, contributing to increased risk for hypertension in obstructive sleep apnoea patients. We determined whether augmented vascular responses to increasing sympathetic vasomotor outflow, termed sympathetic neurovascular transduction (sNVT), accompanied changes in blood pressure following acute intermittent hypercapnic hypoxia in men. Lower body negative pressure was utilized to induce a range of sympathetic vasoconstrictor firing while measuring beat-by-beat blood pressure and forearm vascular conductance. IH reduced vascular shear stress and steepened the relationship between diastolic blood pressure and sympathetic discharge frequency, suggesting greater systemic sNVT. Our results indicate that recurring cycles of acute intermittent hypercapnic hypoxia characteristic of obstructive sleep apnoea could promote hypertension by increasing sNVT. ABSTRACT Acute intermittent hypercapnic hypoxia (IH) induces long-lasting elevations in sympathetic vasomotor outflow and blood pressure in healthy humans. It is unknown whether IH alters sympathetic neurovascular transduction (sNVT), measured as the relationship between sympathetic vasomotor outflow and either forearm vascular conductance (FVC; regional sNVT) or diastolic blood pressure (systemic sNVT). We tested the hypothesis that IH augments sNVT by exposing healthy males to 40 consecutive 1 min breathing cycles, each comprising 40 s of hypercapnic hypoxia ( P ETC O 2 : +4 ± 3 mmHg above baseline; P ET O 2 : 48 ± 3 mmHg) and 20 s of normoxia (n = 9), or a 40 min air-breathing control (n = 7). Before and after the intervention, lower body negative pressure (LBNP; 3 min at -15, -30 and -45 mmHg) was applied to elicit reflex increases in muscle sympathetic nerve activity (MSNA, fibular microneurography) when clamping end-tidal gases at baseline levels. Ventilation, arterial pressure [systolic blood pressure, diastolic blood pressure, mean arterial pressure (MAP)], brachial artery blood flow ( Q ̇ BA ), FVC ( Q ̇ BA /MAP) and MSNA burst frequency were measured continuously. Following IH, but not control, ventilation [5 L min-1 ; 95% confidence interval (CI) = 1-9] and MAP (5 mmHg; 95% CI = 1-9) were increased, whereas FVC (-0.2 mL min-1 mmHg-1 ; 95% CI = -0.0 to -0.4) and mean shear rate (-21.9 s-1 ; 95% CI = -5.8 to -38.0; all P < 0.05) were reduced. Systemic sNVT was increased following IH (0.25 mmHg burst-1 min-1 ; 95% CI = 0.01-0.49; P < 0.05), whereas changes in regional forearm sNVT were similar between IH and sham. Reductions in vessel wall shear stress and, consequently, nitric oxide production may contribute to heightened systemic sNVT and provide a potential neurovascular mechanism for elevated blood pressure in obstructive sleep apnoea.
Collapse
Affiliation(s)
- Troy J R Stuckless
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| | - Tyler D Vermeulen
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| | - Courtney V Brown
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| | - Lindsey M Boulet
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| | - Brooke M Shafer
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| | - Denis J Wakeham
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Craig D Steinback
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Najib T Ayas
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - John S Floras
- University Health Network and Mount Sinai Hospital Division of Cardiology, Toronto, ON, Canada.,Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Glen E Foster
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| |
Collapse
|
28
|
Fonkoue IT, Marvar PJ, Norrholm S, Li Y, Kankam ML, Jones TN, Vemulapalli M, Rothbaum B, Bremner JD, Le NA, Park J. Symptom severity impacts sympathetic dysregulation and inflammation in post-traumatic stress disorder (PTSD). Brain Behav Immun 2020; 83:260-269. [PMID: 31682970 PMCID: PMC6906238 DOI: 10.1016/j.bbi.2019.10.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/11/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is associated with a greater risk of incident hypertension and cardiovascular disease. Inflammation, impaired baroreflex sensitivity (BRS) decreased parasympathetic nervous system (PNS) and overactive sympathetic nervous system (SNS) activity are suggested as contributing mechanisms. Increasing severity of PTSD symptoms has been linked to greater cardiovascular risk; however, the impact of PTSD symptom severity on inflammation and autonomic control of blood pressure has not yet been explored. We hypothesized that increasing PTSD symptom severity is linked to higher inflammation, greater SNS activity, lower PNS reactivity and impaired BRS. Seventy Veterans participated in this study: 28 with severe PTSD ((Clinical Administered PTSD Scale (CAPS) > 60; S-PTSD), 16 with moderate PTSD (CAPS ≥ 45 ≤ 60; M-PTSD) and 26 Controls (CAPS < 45; NO-PTSD). We recorded continuous blood pressure (BP), heart rate (HR) via EKG, heart rate variability (HRV) markers reflecting PNS and muscle sympathetic nerve activity (MSNA) at rest, during arterial baroreflex sensitivity (BRS) testing via the modified Oxford technique, and during 3 min of mental stress via mental arithmetic. Blood samples were analyzed for 12 biomarkers of systemic and vascular inflammation. While BP was comparable between severity groups, HR tended to be higher (p = 0.055) in S-PTSD (76 ± 2 beats/min) than in Controls (67 ± 2 beats/min) but comparable to M-PTSD (70 ± 3 beats/min). There were no differences in resting HRV and MSNA between groups; however, cardiovagal BRS was blunted (p = 0.021) in S-PTSD (10 ± 1 ms/mmHg) compared to controls (16 ± 3 ms/mmHg) but comparable to M-PTSD (12 ± 2 ms/mmHg). Veterans in the S-PTSD group had a higher (p < 0.001) combined inflammatory score compared to both M-PTSD and NO-PTSD. Likewise, while mental stress induced similar SNS and cardiovascular responses between the groups, there was a greater reduction in HRV in S-PTSD compared to both M-PTSD and NO-PTSD. In summary, individuals with severe PTSD symptoms have higher inflammation, greater impairment of BRS, a trend towards higher resting HR and exaggerated PNS withdrawal at the onset of mental stress that may contribute to cardiovascular risk in severe PTSD.
Collapse
Affiliation(s)
- Ida T. Fonkoue
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA,Research Service Line, Atlanta Veterans Affairs Health Care System (VAHCS), Decatur, GA
| | - Paul J. Marvar
- Department of Pharmacology and Physiology, Institute for Neuroscience, George Washington University, Washington, DC
| | - Seth Norrholm
- Research Service Line, Atlanta Veterans Affairs Health Care System (VAHCS), Decatur, GA,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Yunxiao Li
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Melanie L. Kankam
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA,Research Service Line, Atlanta Veterans Affairs Health Care System (VAHCS), Decatur, GA
| | - Toure N. Jones
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA,Research Service Line, Atlanta Veterans Affairs Health Care System (VAHCS), Decatur, GA
| | - Monica Vemulapalli
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA,Research Service Line, Atlanta Veterans Affairs Health Care System (VAHCS), Decatur, GA
| | - Barbara Rothbaum
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - J. Douglas Bremner
- Research Service Line, Atlanta Veterans Affairs Health Care System (VAHCS), Decatur, GA,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA,Department of Radiology, Emory University School of Medicine, Atlanta, GA
| | - Ngoc-Anh Le
- Biomarker Core Laboratory, Atlanta VAHCS, Decatur, GA, USA
| | - Jeanie Park
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA; Research Service Line, Atlanta Veterans Affairs Health Care System (VAHCS), Decatur, GA, USA.
| |
Collapse
|
29
|
Drew RC, Charkoudian N, Park J. Neural control of cardiovascular function in black adults: implications for racial differences in autonomic regulation. Am J Physiol Regul Integr Comp Physiol 2019; 318:R234-R244. [PMID: 31823675 DOI: 10.1152/ajpregu.00091.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Black adults are at increased risk for developing hypertension and cardiovascular and chronic kidney disease and have greater associated morbidity/mortality than white adults who are otherwise demographically similar. Despite the key role of the autonomic nervous system in the regulation of cardiovascular function, the mechanistic contributions of sympathetic nerves to racial differences in cardiovascular dysfunction and disease remain poorly understood. In this review, we present an update and synthesis of current understanding regarding the roles of autonomic neural mechanisms in normal and pathophysiological cardiovascular control in black and white adults. At rest, many hemodynamic and autonomic variables, including blood pressure, cardiac output, and sympathetic nerve activity, are similar in healthy black and white adults. However, resting sympathetic vascular transduction and carotid baroreflex responses are altered in ways that tend to promote increased vasoconstriction and higher blood pressure, even in healthy, normotensive black adults. Acute sympathoexcitatory maneuvers, including exercise and cold pressor test, often result in augmented sympathetic and hemodynamic responses in healthy black adults. Clinically, although mechanistic evidence is scarce in this area, existing data support the idea that excessive sympathetic activation and/or transduction into peripheral vasoconstriction contribute importantly to the pathophysiology of hypertension and chronic kidney disease in black compared with white adults. Important areas for future work include more detailed study of sympathetic and hemodynamic reactivity to exercise and other stressors in male and female black adults and, particularly, sympathetic control of renal function, an important area of clinical concern in black patients.
Collapse
Affiliation(s)
- Rachel C Drew
- Department of Exercise and Health Sciences, University of Massachusetts Boston, Boston, Massachusetts
| | - Nisha Charkoudian
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Jeanie Park
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.,Atlanta Veterans Affairs Health Care System, Decatur, Georgia
| |
Collapse
|
30
|
Measurement of compensatory reserve predicts racial differences in tolerance to simulated hemorrhage in women. J Trauma Acute Care Surg 2019; 85:S77-S83. [PMID: 29443858 DOI: 10.1097/ta.0000000000001837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The compensatory reserve measurement (CRM) has been established to accurately measure the body's total integrated capacity to compensate for physiologic states of reduced central blood volume and predict hemodynamic decompensation associated with inadequate tissue oxygenation. We previously demonstrated that African American (AA) women have a higher tolerance to reductions in central blood volume. Therefore, we tested the hypothesis that the CRM would identify racial differences during simulated hemorrhage, before the onset of traditional signs/symptoms. METHODS We performed a retrospective analysis during simulated hemorrhage using lower-body negative pressure (LBNP) in 23 AA (22 ± 1 years; 24 ± 1 kg/m) and 31 white women (WW) (20 ± 1 years; 23 ± 1 kg/m). Beat-by-beat blood pressure (BP) and heart rate (HR) were recorded during progressive lower body negative pressure to presyncope. The BP waveforms were analyzed using a machine-learning algorithm to derive the CRM at each lower body negative pressure stage. RESULTS Resting mean arterial BP (AA, 78 ± 3 mm Hg vs. WW, 74 ± 2 mm Hg) and HR (AA, 68 ± 2 bpm vs. WW, 65 ± 2 bpm) were similar between groups. The CRM progressively decreased during LBNP in both groups; however, the rate of decline in the CRM was less (p < 0.05) in AA. The CRM was 4% higher in AA at -15 mm Hg LBNP and progressively increased to 21% higher at -50 mm Hg LBNP (p < 0.05). However, changes in BP and HR were not different between groups. CONCLUSION These data support the notion that the greater tolerance to simulated hemorrhage induced by LBNP in AA women can be explained by their greater capacity to protect the reserve to compensate for progressive central hypovolemia compared with WW, independent of standard vital signs. LEVEL OF EVIDENCE Diagnostic test, level II.
Collapse
|
31
|
Brothers RM, Fadel PJ, Keller DM. Racial disparities in cardiovascular disease risk: mechanisms of vascular dysfunction. Am J Physiol Heart Circ Physiol 2019; 317:H777-H789. [PMID: 31397168 DOI: 10.1152/ajpheart.00126.2019] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease (CVD) accounts for a third of all deaths in the United States making it the leading cause of morbidity and mortality. Although CVD affects individuals of all races/ethnicities, the prevalence of CVD is highest in non-Hispanic black (BL) individuals relative to other populations. The mechanism(s) responsible for elevated CVD risk in the BL population remains incompletely understood. However, impaired vascular vasodilator capacity and exaggerated vascular vasoconstrictor responsiveness are likely contributing factors, both of which are present even in young, otherwise healthy BL individuals. Within this review, we highlight some historical and recent data, collected from our laboratories, of impaired vascular function, in terms of reduced vasodilator capacity and heightened vasoconstrictor responsiveness, in the peripheral and cerebral circulations in BL individuals. We provide data that such impairments may be related to elevated oxidative stress and subsequent reduction in nitric oxide bioavailability. In addition, divergent mechanisms of impaired vasodilatory capacity between BL men and women are discussed. Finally, we propose several directions where future research is needed to fill in knowledge gaps, which will allow for better understanding of the mechanisms contributing to impaired vascular function in this population. Ultimately, this information will allow for better lifestyle and therapeutic approaches to be implemented in an effort to minimize the increased CVD burden in the BL population.
Collapse
Affiliation(s)
- R Matthew Brothers
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | - Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | - David M Keller
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| |
Collapse
|
32
|
Carnevali L, Ottaviani C, Williams DP, Kapuku G, Thayer JF, Hill LK. Hemodynamic profile and compensation deficit in African and European Americans during physical and mental stress. Biol Psychol 2018; 141:17-24. [PMID: 30599210 DOI: 10.1016/j.biopsycho.2018.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 11/09/2018] [Accepted: 12/05/2018] [Indexed: 12/21/2022]
Abstract
Increased vascular reactivity to stress has been suggested to contribute to the greater risk for developing hypertension in African Americans. Here, we examined the way (hemodynamic profile) and the extent to which (compensation deficit) cardiac output and total peripheral resistance compensate for each other in determining blood pressure responses to a physical (orthostasis) and a mental (anger recall) stress task, in normotensive African American (AA, n = 30) and European American (EA, n = 48) college students. Blood pressure stress reactivity did not differ as a function of race. However, AAs showed a prominent vascular hemodynamic profile and a significant compensation deficit in response to both tasks, while EAs showed no hemodynamic response to orthostasis and a mixed profile in response to anger recall. The present findings demonstrate a more prominent vascular hemodynamic reactivity to stress in AAs, which could contribute to the pathogenesis of hypertension in this ethnic group.
Collapse
Affiliation(s)
- Luca Carnevali
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Italy.
| | | | | | - Gaston Kapuku
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Julian F Thayer
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - LaBarron K Hill
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA; Center for Biobehavioral Health Disparities Research, Duke University, Durham, NC, USA; Center for the Study of Aging and Human Development, Duke University, Durham, NC, USA
| |
Collapse
|
33
|
Barbosa TC, Kaur J, Stephens BY, Akins JD, Keller DM, Brothers RM, Fadel PJ. Attenuated forearm vascular conductance responses to rhythmic handgrip in young African-American compared with Caucasian-American men. Am J Physiol Heart Circ Physiol 2018; 315:H1316-H1321. [PMID: 30118345 DOI: 10.1152/ajpheart.00387.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Previous studies have demonstrated that African-American (AA) individuals have heightened vasoconstrictor and reduced vasodilator responses under resting conditions compared with Caucasian-American (CA) individuals. However, potential differences in vascular responses to exercise remain unclear. Therefore, we tested the hypothesis that, compared with CA subjects, AA subjects would present an attenuated increase in forearm vascular conductance (FVC) during rhythmic handgrip exercise. Forearm blood flow (FBF; duplex Doppler ultrasound) and mean arterial pressure (MAP; finger photoplethysmography) were measured in healthy young CA ( n = 10) and AA ( n = 10) men during six trials of rhythmic handgrip performed at workloads of 4, 8, 12, 16, 20, and 24 kg. FVC (calculated as FBF/MAP), FBF, and MAP were similar between groups at rest (FVC: 63 ± 7 ml·min-1·100 mmHg-1 in CA subjects vs. 62 ± 7 ml·min-1·100 mmHg-1 in AA subjects, P = 0.862). There was an intensity-dependent increase in FVC during exercise in both groups; however, AA subjects presented lower FVC (interaction P < 0.001) at 8-, 12-, 16-, 20-, and 24-kg workloads (e.g., 24 kg: 324 ± 20 ml·min-1·100 mmHg-1 in CA subjects vs. 241 ± 21 ml·min-1·100 mmHg-1 in AA subjects, P < 0.001). FBF responses to exercise were also lower in AA subjects (interaction P < 0.001), whereas MAP responses did not differ between groups (e.g., ∆MAP at 24 kg: +19 ± 2 mmHg in CA subjects vs. +19 ± 2 mmHg in AA subjects, interaction P = 0.950). These findings indicate lower hyperemic responses to rhythmic handgrip exercise in AA men compared with CA men. NEW & NOTEWORTHY It is known that African-American individuals have heightened vasoconstriction and reduced vasodilation under resting conditions compared with Caucasian-American individuals. Here, we identified that the hyperemic response to moderate and high-intensity rhythmic handgrip exercise was lower in healthy young African-American men.
Collapse
Affiliation(s)
- Thales C Barbosa
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington , Arlington, Texas
| | - Jasdeep Kaur
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington , Arlington, Texas
| | - Brandi Y Stephens
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington , Arlington, Texas
| | - John D Akins
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington , Arlington, Texas
| | - David M Keller
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington , Arlington, Texas
| | - R Matthew Brothers
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington , Arlington, Texas
| | - Paul J Fadel
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington , Arlington, Texas
| |
Collapse
|
34
|
Covassin N, Greene EL, Singh P, Somers VK. Disparities in Hypertension Among African-Americans: Implications of Insufficient Sleep. Curr Hypertens Rep 2018; 20:57. [PMID: 29884924 DOI: 10.1007/s11906-018-0855-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Sleep deficiency has been proposed as a potential contributor to racial disparities in cardiovascular health. We present contemporary evidence on the unequal burden of insufficient sleep in Blacks/African-Americans and the repercussions for disparate risk of hypertension. RECENT FINDINGS The prevalence of insufficient sleep is high and rising and has been recognized as an important cardiovascular risk factor. Presumably due to a constellation of environmental, psychosocial, and individual determinants, these risks appear exacerbated in Blacks/African-Americans, who are more likely to experience short sleep than other ethnic/racial groups. Population-based data suggest that the risk of hypertension associated with sleep deficiency is greater in those of African ancestry. However, there is a paucity of experimental evidence linking short sleep duration to blood pressure levels in African-Americans. Blacks/African-Americans may be more vulnerable to sleep deficiency and to its hypertensive effects. Future research is needed to unequivocally establish causality and determine the mechanism underlying the postulated racial inequalities in sleep adequacy and consequent cardiovascular risk.
Collapse
Affiliation(s)
- Naima Covassin
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Eddie L Greene
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Prachi Singh
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA
| | - Virend K Somers
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905, USA
| |
Collapse
|
35
|
Fonkoue IT, Schwartz CE, Wang M, Carter JR. Sympathetic neural reactivity to mental stress differs in black and non-Hispanic white adults. J Appl Physiol (1985) 2018; 124:201-207. [PMID: 28970198 DOI: 10.1152/japplphysiol.00134.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Black adults have a higher risk of hypertension compared with non-Hispanic white (NHW) adults, but physiological mechanisms underlying this predisposition remain unclear. This study compared muscle sympathetic nerve activity (MSNA) responses to mental stress in a group of young black and NHW participants. We hypothesized that the sympathoexcitation associated with mental stress would be greater in black adults compared with NHW participants. Thirty-five male adults (19 black, 23 ± 1 yr; 16 NHW, 22 ± 1 yr) were examined during 5-min supine baseline and 5 min of mental stress (via mental arithmetic). Baseline mean arterial pressure (80 ± 2 vs. 82 ± 1 mmHg), heart rate (61 ± 4 vs. 61 ± 2 beats/min), MSNA (13 ± 1 vs. 15 ± 2 bursts/min), and sympathetic baroreflex sensitivity (-1.1 ± 0.4 vs. -1.5 ± 0.3 bursts·100 heart beats-1·mmHg-1) were not significantly different between NHW and black adults ( P > 0.05), respectively. MSNA reactivity to mental stress was significantly higher in NHW compared with black adults (time × race, P = 0.006), with a particularly divergent responsiveness during the first minute of mental stress in NHW (Δ4 ± 1 burst/min) and black (Δ-2 ± 2 burst/min; P = 0.022) men. Blood pressure and heart rate reactivity to mental stress were similar between groups. In summary, black participants demonstrated a lower MSNA responsiveness to mental stress compared with NHW adults. These findings suggest that, despite a higher prevalence of hypertension, black subjects do not appear to have higher neural and cardiovascular responsiveness to mental stress compared with NHW. NEW & NOTEWORTHY Black men have a blunted muscle sympathetic nerve activity response to mental stress compared with non-Hispanic white (NHW) men, especially at the onset of mental stress when muscle sympathetic nerve activity decreased in blacks and increased in NHW men. Thus, despite a high prevalence of hypertension in blacks, normotensive NHW men display a greater peripheral sympathetic neural reactivity to mental stress than black men.
Collapse
Affiliation(s)
| | | | - Min Wang
- 1 Michigan Technological University
| | | |
Collapse
|
36
|
Fink GD. Exaggerated Sympathetic Neurovascular Transduction as a Mechanism of Neurogenic Hypertension: It Is Not All About Activity. Hypertension 2017; 71:64-65. [PMID: 29203626 DOI: 10.1161/hypertensionaha.117.10300] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Gregory D Fink
- From the Department of Pharmacology and Toxicology, Michigan State University, East Lansing.
| |
Collapse
|
37
|
Vranish JR, Holwerda SW, Young BE, Credeur DP, Patik JC, Barbosa TC, Keller DM, Fadel PJ. Exaggerated Vasoconstriction to Spontaneous Bursts of Muscle Sympathetic Nerve Activity in Healthy Young Black Men. Hypertension 2017; 71:192-198. [PMID: 29203629 DOI: 10.1161/hypertensionaha.117.10229] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/05/2017] [Accepted: 09/22/2017] [Indexed: 12/16/2022]
Abstract
Blacks have the highest prevalence of hypertension, putting them at greater risk of cardiovascular disease and death. Previous studies have reported that, relative to whites, healthy black men have augmented pressor responses to sympathoexcitatory stressors. Although important, these studies do not inform about the resting state and the influence of spontaneous changes in resting muscle sympathetic nerve activity (MSNA). Likewise, little is known about the transduction of MSNA into a vascular response at rest on a beat-to-beat basis. Accordingly, we tested the hypothesis that relative to whites, blacks would exhibit greater vasoconstriction and pressor responses following spontaneous bursts of MSNA. Mean arterial pressure, common femoral artery blood flow, and MSNA were continuously recorded during 20 minutes of supine rest in 35 young healthy men (17 blacks and 18 whites). Signal averaging was used to characterize changes in leg vascular conductance, total vascular conductance, and mean arterial pressure following spontaneous MSNA bursts. Blacks demonstrated significantly greater decreases in leg vascular conductance (blacks: -15.0±1.0%; whites: -11.5±1.2%; P=0.042) and total vascular conductance (blacks: -8.6±0.9%; whites: -5.1±0.4%; P=0.001) following MSNA bursts, which resulted in greater mean arterial pressure increases (blacks: +5.2±0.6 mm Hg; whites: +3.9±0.3 mm Hg; P=0.04). These exaggerated responses in blacks compared with whites were present whether MSNA bursts occurred in isolation (singles) or in combination (multiples) and were graded with increases in burst height. Collectively, these findings suggest that healthy young black men exhibit augmented sympathetic vascular transduction at rest and provide novel insight into potential mechanism(s) by which this population may develop hypertension later in life.
Collapse
Affiliation(s)
- Jennifer R Vranish
- From the Department of Kinesiology, University of Texas at Arlington (J.R.V., B.E.Y., J.C.P., T.C.B., D.M.K., P.J.F.); School of Kinesiology, University of Southern Mississippi, Hattiesburg (D.P.C.); and Department of Health and Human Physiology, University of Iowa, Iowa City (S.W.H.)
| | - Seth W Holwerda
- From the Department of Kinesiology, University of Texas at Arlington (J.R.V., B.E.Y., J.C.P., T.C.B., D.M.K., P.J.F.); School of Kinesiology, University of Southern Mississippi, Hattiesburg (D.P.C.); and Department of Health and Human Physiology, University of Iowa, Iowa City (S.W.H.)
| | - Benjamin E Young
- From the Department of Kinesiology, University of Texas at Arlington (J.R.V., B.E.Y., J.C.P., T.C.B., D.M.K., P.J.F.); School of Kinesiology, University of Southern Mississippi, Hattiesburg (D.P.C.); and Department of Health and Human Physiology, University of Iowa, Iowa City (S.W.H.)
| | - Daniel P Credeur
- From the Department of Kinesiology, University of Texas at Arlington (J.R.V., B.E.Y., J.C.P., T.C.B., D.M.K., P.J.F.); School of Kinesiology, University of Southern Mississippi, Hattiesburg (D.P.C.); and Department of Health and Human Physiology, University of Iowa, Iowa City (S.W.H.)
| | - Jordan C Patik
- From the Department of Kinesiology, University of Texas at Arlington (J.R.V., B.E.Y., J.C.P., T.C.B., D.M.K., P.J.F.); School of Kinesiology, University of Southern Mississippi, Hattiesburg (D.P.C.); and Department of Health and Human Physiology, University of Iowa, Iowa City (S.W.H.)
| | - Thales C Barbosa
- From the Department of Kinesiology, University of Texas at Arlington (J.R.V., B.E.Y., J.C.P., T.C.B., D.M.K., P.J.F.); School of Kinesiology, University of Southern Mississippi, Hattiesburg (D.P.C.); and Department of Health and Human Physiology, University of Iowa, Iowa City (S.W.H.)
| | - David M Keller
- From the Department of Kinesiology, University of Texas at Arlington (J.R.V., B.E.Y., J.C.P., T.C.B., D.M.K., P.J.F.); School of Kinesiology, University of Southern Mississippi, Hattiesburg (D.P.C.); and Department of Health and Human Physiology, University of Iowa, Iowa City (S.W.H.)
| | - Paul J Fadel
- From the Department of Kinesiology, University of Texas at Arlington (J.R.V., B.E.Y., J.C.P., T.C.B., D.M.K., P.J.F.); School of Kinesiology, University of Southern Mississippi, Hattiesburg (D.P.C.); and Department of Health and Human Physiology, University of Iowa, Iowa City (S.W.H.).
| |
Collapse
|
38
|
Briant LJB, Burchell AE, Ratcliffe LEK, Charkoudian N, Nightingale AK, Paton JFR, Joyner MJ, Hart EC. Quantifying sympathetic neuro-haemodynamic transduction at rest in humans: insights into sex, ageing and blood pressure control. J Physiol 2016; 594:4753-68. [PMID: 27068560 DOI: 10.1113/jp272167] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/04/2016] [Indexed: 01/08/2023] Open
Abstract
KEY POINTS We have developed a simple analytical method for quantifying the transduction of sympathetic activity into vascular tone. This method demonstrates that as women age, the transfer of sympathetic nerve activity into vascular tone is increased, so that for a given level of sympathetic activity there is more vasoconstriction. In men, this measure decreases with age. Test-re-test analysis demonstrated that the new method is a reliable estimate of sympathetic transduction. We conclude that increased sympathetic vascular coupling contributes to the age-related increase in blood pressure that occurs in women only. This measure is a reliable estimate of sympathetic transduction in populations with high sympathetic nerve activity. Thus, it will provide information regarding whether treatment targeting the sympathetic nervous system, which interrupts the transfer of sympathetic nerve activity into vascular tone, will be effective in reducing blood pressure in hypertensive patients. This may provide insight into which populations will respond to certain types of anti-hypertensive medication. ABSTRACT Sex and age differences in the sympathetic control of resting blood pressure (BP) may be due to differences in the transduction of sympathetic nerve activity (SNA) into vascular tone. Current methods for dynamically quantifying transduction focus on the relationship between SNA and vasoconstriction during a pressor stimulus, which increases BP and may be contra-indicated in patients. We describe a simple analytical method for quantifying transduction under resting conditions. We performed linear regression analysis of binned muscle SNA burst areas against diastolic BP (DBP). We assessed whether the slope of this relationship reflects the transduction of SNA into DBP. To evaluate this, we investigated whether this measure captures differences in transduction in different populations. Specifically, we (1) quantified transduction in young men (YM), young women (YW), older men (OM) and postmenopausal women (PMW); and (2) measured changes in transduction during β-blockade using propranolol in YW, YM and PMW. YM had a greater transduction vs. OM (0.10 ± 0.01 mmHg (% s)(-1) , n = 23 vs. 0.06 ± 0.01 mmHg (% s)(-1) , n = 18; P = 0.003). Transduction was lowest in YW (0.02 ± 0.01 mmHg (% s)(-1) , n = 23) and increased during β-blockade (0.11 ± 0.01 mmHg (% s)(-1) ; P < 0.001). Transduction in PMW (0.07 ± 0.01 mmHg (% s)(-1) , n = 23) was greater compared to YW (P = 0.001), and was not altered during β-blockade (0.06 ± 0.01 mmHg (% s)(-1) ; P = 0.98). Importantly, transduction increased in women with age, but decreased in men. Transduction in women intersected that in men at 55 ± 1.5 years. This measure of transduction captures age- and sex-differences in the sympathetic regulation of DBP and may be valuable in quantifying transduction in disease. In particular, this measure may help target treatment strategies in specific hypertensive subpopulations.
Collapse
Affiliation(s)
- L J B Briant
- CardioNomics, CRIC Bristol, University of Bristol, Bristol, UK
| | - A E Burchell
- CardioNomics, CRIC Bristol, University of Bristol, Bristol, UK
| | - L E K Ratcliffe
- CardioNomics, CRIC Bristol, University of Bristol, Bristol, UK
| | - N Charkoudian
- US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - A K Nightingale
- Bristol Heart Institute, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - J F R Paton
- School of Physiology and Pharmacology, Biomedical Sciences, University of Bristol, Bristol, UK
| | | | - E C Hart
- CardioNomics, CRIC Bristol, University of Bristol, Bristol, UK.,School of Physiology and Pharmacology, Biomedical Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
39
|
Okada Y, Jarvis SS, Best SA, Edwards JG, Hendrix JM, Adams-Huet B, Vongpatanasin W, Levine BD, Fu Q. Sympathetic Neural and Hemodynamic Responses During Cold Pressor Test in Elderly Blacks and Whites. Hypertension 2016; 67:951-8. [PMID: 27021009 DOI: 10.1161/hypertensionaha.115.06700] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 03/01/2016] [Indexed: 11/16/2022]
Abstract
The sympathetic response during the cold pressor test (CPT) has been reported to be greater in young blacks than whites, especially in those with a family history of hypertension. Because blood pressure (BP) increases with age, we evaluated whether elderly blacks have greater sympathetic activation during CPT than age-matched whites. BP, heart rate, cardiac output, and muscle sympathetic nerve activity were measured during supine baseline, 2-minute CPT, and 3-minute recovery in 47 elderly (68 ± 7 [SD] years) volunteers (12 blacks and 35 whites). Baseline BP, heart rate, cardiac output, or muscle sympathetic nerve activity did not differ between races. Systolic and diastolic BP and heart rate increased during CPT (all P<0.001) with no racial differences (all P > 0.05). Cardiac output increased during CPT and ≤ 30 s of recovery in both groups, but was lower in blacks than whites. Muscle sympathetic nerve activity increased during CPT in both groups (both P<0.001); the increase in burst frequency was similar between groups, whereas the increase in total activity was smaller in blacks (P=0.030 for interaction). Peak change (Δ) in diastolic BP was correlated with Δ total activity at 1 minute into CPT in both blacks (r=0.78,P=0.003) and whites (r=0.43,P=0.009), whereas the slope was significantly greater in blacks (P=0.007). Thus, elderly blacks have smaller sympathetic and central hemodynamic (eg, cardiac output) responses, but a greater pressor response for a given sympathetic activation during CPT than elderly whites. This response may stem from augmented sympathetic vascular transduction, greater sympathetic activation to other vascular bed(s), or enhanced nonadrenergically mediated vasoconstriction in elderly blacks.
Collapse
Affiliation(s)
- Yoshiyuki Okada
- From the Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas (Y.O., S.S.J., S.A.B., J.G.E., B.D.L., Q.F.); Departments of Internal Medicine (Y.O., S.S.J., S.A.B., B.A.-H., W.V., B.D.L., Q.F.) and Anesthesiology and Pain (J.M.H.), UT Southwestern Medical Center, Dallas, TX; Department of Special Care Dentistry, Matsumoto Dental University, Nagano, Japan (Y.O.); and Department of Biological Sciences, Northern Arizona University, Flagstaff (S.S.J.)
| | - Sara S Jarvis
- From the Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas (Y.O., S.S.J., S.A.B., J.G.E., B.D.L., Q.F.); Departments of Internal Medicine (Y.O., S.S.J., S.A.B., B.A.-H., W.V., B.D.L., Q.F.) and Anesthesiology and Pain (J.M.H.), UT Southwestern Medical Center, Dallas, TX; Department of Special Care Dentistry, Matsumoto Dental University, Nagano, Japan (Y.O.); and Department of Biological Sciences, Northern Arizona University, Flagstaff (S.S.J.)
| | - Stuart A Best
- From the Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas (Y.O., S.S.J., S.A.B., J.G.E., B.D.L., Q.F.); Departments of Internal Medicine (Y.O., S.S.J., S.A.B., B.A.-H., W.V., B.D.L., Q.F.) and Anesthesiology and Pain (J.M.H.), UT Southwestern Medical Center, Dallas, TX; Department of Special Care Dentistry, Matsumoto Dental University, Nagano, Japan (Y.O.); and Department of Biological Sciences, Northern Arizona University, Flagstaff (S.S.J.)
| | - Jeffrey G Edwards
- From the Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas (Y.O., S.S.J., S.A.B., J.G.E., B.D.L., Q.F.); Departments of Internal Medicine (Y.O., S.S.J., S.A.B., B.A.-H., W.V., B.D.L., Q.F.) and Anesthesiology and Pain (J.M.H.), UT Southwestern Medical Center, Dallas, TX; Department of Special Care Dentistry, Matsumoto Dental University, Nagano, Japan (Y.O.); and Department of Biological Sciences, Northern Arizona University, Flagstaff (S.S.J.)
| | - Joseph M Hendrix
- From the Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas (Y.O., S.S.J., S.A.B., J.G.E., B.D.L., Q.F.); Departments of Internal Medicine (Y.O., S.S.J., S.A.B., B.A.-H., W.V., B.D.L., Q.F.) and Anesthesiology and Pain (J.M.H.), UT Southwestern Medical Center, Dallas, TX; Department of Special Care Dentistry, Matsumoto Dental University, Nagano, Japan (Y.O.); and Department of Biological Sciences, Northern Arizona University, Flagstaff (S.S.J.)
| | - Beverley Adams-Huet
- From the Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas (Y.O., S.S.J., S.A.B., J.G.E., B.D.L., Q.F.); Departments of Internal Medicine (Y.O., S.S.J., S.A.B., B.A.-H., W.V., B.D.L., Q.F.) and Anesthesiology and Pain (J.M.H.), UT Southwestern Medical Center, Dallas, TX; Department of Special Care Dentistry, Matsumoto Dental University, Nagano, Japan (Y.O.); and Department of Biological Sciences, Northern Arizona University, Flagstaff (S.S.J.)
| | - Wanpen Vongpatanasin
- From the Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas (Y.O., S.S.J., S.A.B., J.G.E., B.D.L., Q.F.); Departments of Internal Medicine (Y.O., S.S.J., S.A.B., B.A.-H., W.V., B.D.L., Q.F.) and Anesthesiology and Pain (J.M.H.), UT Southwestern Medical Center, Dallas, TX; Department of Special Care Dentistry, Matsumoto Dental University, Nagano, Japan (Y.O.); and Department of Biological Sciences, Northern Arizona University, Flagstaff (S.S.J.)
| | - Benjamin D Levine
- From the Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas (Y.O., S.S.J., S.A.B., J.G.E., B.D.L., Q.F.); Departments of Internal Medicine (Y.O., S.S.J., S.A.B., B.A.-H., W.V., B.D.L., Q.F.) and Anesthesiology and Pain (J.M.H.), UT Southwestern Medical Center, Dallas, TX; Department of Special Care Dentistry, Matsumoto Dental University, Nagano, Japan (Y.O.); and Department of Biological Sciences, Northern Arizona University, Flagstaff (S.S.J.)
| | - Qi Fu
- From the Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas (Y.O., S.S.J., S.A.B., J.G.E., B.D.L., Q.F.); Departments of Internal Medicine (Y.O., S.S.J., S.A.B., B.A.-H., W.V., B.D.L., Q.F.) and Anesthesiology and Pain (J.M.H.), UT Southwestern Medical Center, Dallas, TX; Department of Special Care Dentistry, Matsumoto Dental University, Nagano, Japan (Y.O.); and Department of Biological Sciences, Northern Arizona University, Flagstaff (S.S.J.).
| |
Collapse
|
40
|
Jarvis SS, Shibata S, Okada Y, Levine BD, Fu Q. Neural-humoral responses during head-up tilt in healthy young white and black women. Front Physiol 2014; 5:86. [PMID: 24624092 PMCID: PMC3941214 DOI: 10.3389/fphys.2014.00086] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 02/13/2014] [Indexed: 11/13/2022] Open
Abstract
Young black women have higher prevalence of hypertension during pregnancy compared to white women, which may be attributable to differences in blood pressure (BP) regulation. We hypothesized that young normotensive black women would demonstrate augmented muscle sympathetic nerve activity (MSNA) and renal-adrenal responses to orthostasis. Fifteen white and ten black women (30 ± 4 vs. 32 ± 6 years; means ± SD) had haemodynamics and MSNA measured during baseline (BL), 30 and 60° head-up tilt (HUT), and recovery. Blood was drawn for catecholamines, direct renin, vasopressin, and aldosterone. BL brachial systolic BP (SBP: 107 ± 6 vs. 101 ± 9 mmHg) and diastolic BP (DBP: 62 ± 4 vs. 56 ± 7 mmHg) were higher in white women (both p < 0.05). Δ DBP (60° HUT-BL) was greater in black women compared to white (p < 0.05). Cardiac output and total peripheral resistance were similar between groups. MSNA burst frequency was higher in whites (BL: 16 ± 10 vs. 14 ± 9 bursts/min, main effect p < 0.05) and increased in both groups during HUT (60°: 39 ± 8 vs. 34 ± 13 bursts/min, p < 0.05 from BL). Noradrenaline was higher in white women during 60° HUT (60° HUT: 364 ± 102 vs. 267 ± 89 pg/ml, p < 0.05). Direct renin was higher and vasopressin and Δ aldosterone tended to be higher in blacks (BL, direct renin: 12.1 ± 5.0 vs. 14.4 ± 3.7 pg/ml, p < 0.05; BL, vasopressin: 0.4 ± 0.0 vs. 1.6 ± 3.6 pg/ml, p = 0.065; Δ aldosterone: −0.9 ± 5.1 vs. 3.8 ± 7.5 ng/ml; p = 0.069). These results suggest that young normotensive white women may rely on sympathetic neural activity more so than black women who have a tendency to rely on the renal-adrenal system to regulate BP during an orthostatic stress.
Collapse
Affiliation(s)
- Sara S Jarvis
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas Dallas, TX, USA ; Department of Internal Medicine, University of Texas Southwestern Medical Center Dallas, TX, USA ; Department of Biological Sciences, Northern Arizona University Flagstaff, AZ, USA
| | - Shigeki Shibata
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas Dallas, TX, USA ; Department of Internal Medicine, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Yoshiyuki Okada
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas Dallas, TX, USA ; Department of Internal Medicine, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Benjamin D Levine
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas Dallas, TX, USA ; Department of Internal Medicine, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Qi Fu
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas Dallas, TX, USA ; Department of Internal Medicine, University of Texas Southwestern Medical Center Dallas, TX, USA
| |
Collapse
|
41
|
Blood pressure regulation VIII: resistance vessel tone and implications for a pro-atherogenic conduit artery endothelial cell phenotype. Eur J Appl Physiol 2013; 114:531-44. [PMID: 23860841 DOI: 10.1007/s00421-013-2684-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 06/15/2013] [Indexed: 10/26/2022]
Abstract
Dysfunction of the endothelium is proposed as the primary initiator of atherosclerotic peripheral artery disease, which occurs mainly in medium- to large-sized conduit arteries of the lower extremities (e.g., iliac, femoral, popliteal arteries). In this review article, we propose the novel concept that conduit artery endothelial cell phenotype is determined, in part, by microvascular tone in skeletal muscle resistance arteries through both changes in arterial blood pressure as well as upstream conduit artery shear stress patterns. First, we summarize the literature supporting the involvement of sympathetic nerve activity (SNA) and nitric oxide (NO) in the modulation of microvascular tone and arterial blood pressure. We then focus on the role of elevated blood pressure and shear stress profiles in modulating conduit artery endothelial cell phenotype. Last, we discuss findings from classic and emerging studies indicating that increased vascular resistance, as it occurs in the context of increased SNA and/or reduced NO bioavailability, is associated with greater oscillatory shear stress (e.g., increased retrograde shear) in upstream conduit arteries. The ideas put forth in this review set the stage for a new paradigm concerning the mechanistic link between increased microvascular tone and development of conduit artery endothelial dysfunction and thus increased risk for peripheral artery disease. Indeed, a vast amount of evidence supports the notion that excessive blood pressure and oscillatory shear stress are potent pro-atherogenic signals to the endothelium.
Collapse
|
42
|
Fairfax ST, Holwerda SW, Credeur DP, Zuidema MY, Medley JH, Dyke PC, Wray DW, Davis MJ, Fadel PJ. The role of α-adrenergic receptors in mediating beat-by-beat sympathetic vascular transduction in the forearm of resting man. J Physiol 2013; 591:3637-49. [PMID: 23652594 DOI: 10.1113/jphysiol.2013.250894] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sympathetic vascular transduction is commonly understood to act as a basic relay mechanism, but under basal conditions, competing dilatory signals may interact with and alter the ability of sympathetic activity to decrease vascular conductance. Thus, we determined the extent to which spontaneous bursts of muscle sympathetic nerve activity (MSNA) mediate decreases in forearm vascular conductance (FVC) and the contribution of local α-adrenergic receptor-mediated pathways to the observed FVC responses. In 19 young men, MSNA (microneurography), arterial blood pressure and brachial artery blood flow (duplex Doppler ultrasound) were continuously measured during supine rest. These measures were also recorded in seven men during intra-arterial infusions of normal saline, phentolamine (PHEN) and PHEN with angiotensin II (PHEN+ANG). The latter was used to control for increases in resting blood flow with α-adrenergic blockade. Spike-triggered averaging was used to characterize beat-by-beat changes in FVC for 15 cardiac cycles following each MSNA burst and a peak response was calculated. Following MSNA bursts, FVC initially increased by +3.3 ± 0.3% (P = 0.016) and then robustly decreased to a nadir of -5.8 ± 1.6% (P < 0.001). The magnitude of vasoconstriction appeared graded with the number of consecutive MSNA bursts; while individual burst size only had a mild influence. Neither PHEN nor PHEN+ANG infusions affected the initial rise in FVC, but both infusions significantly attenuated the subsequent decrease in FVC (-2.1 ± 0.7% and -0.7 ± 0.8%, respectively; P < 0.001 vs. normal saline). These findings indicate that spontaneous MSNA bursts evoke robust beat-by-beat decreases in FVC that are exclusively mediated via α-adrenergic receptors.
Collapse
Affiliation(s)
- Seth T Fairfax
- Biomedical Sciences, University of Missouri, Columbia, MO 65212, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Holwerda SW, Samels MR, Keller DM. Carotid baroreflex responsiveness in normotensive African Americans is attenuated at rest and during dynamic leg exercise. Front Physiol 2013; 4:29. [PMID: 23482843 PMCID: PMC3591748 DOI: 10.3389/fphys.2013.00029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 02/06/2013] [Indexed: 01/11/2023] Open
Abstract
Evidence suggests differences between African Americans (AAs) and Caucasian Americans (CAs) in cardiovascular responsiveness to physiological stressors. This study tested the hypothesis that carotid baroreflex (CBR) control of heart rate (HR) and blood pressure is reduced in AAs compared to CAs during exercise. Mean arterial pressure (MAP) and HR were continuously recorded at rest and during leg cycling in 23 non-hypertensive male subjects (12 AA; 11 CA; age 19–26 years). CBR control of HR and MAP was assessed with 5-s pulses of neck pressure (NP, simulated hypotension) and neck suction (NS, simulated hypertension) ranging from +45 to −80 Torr. Across all NS stimuli (−20, −40, −60, −80 Torr) at rest, the AA group demonstrated attenuated CBR-mediated reductions in HR (AA, −8.9 ± 1.9 vs. CA, −14.1 ± 2.3 bpm; P < 0.001) and MAP (AA, −6.4 ± 1 vs. CA, −7.8 ± 0.8 mmHg; P < 0.05). Despite similar gain and magnitude of resetting observed in the modeled stimulus response curves, an attenuation among AAs persisted in HR (AA, −8.2 ± 1.6 vs. CA, −11.8 ± 3 bpm; P < 0.05) and MAP (AA, −6.8 ± 0.9 vs. CA, −8.2 ± 1.1 mmHg; P < 0.05) responses to NS during exercise. No differences in CBR-mediated HR and MAP responses to NP were detected between groups at rest or during exercise. These data suggest impairment in the ability to defend against a hypertensive challenge among AAs during steady-state exercise compared to their CA counterparts.
Collapse
Affiliation(s)
- Seth W Holwerda
- Department of Medical Pharmacology and Physiology, University of Missouri Columbia, SC, USA
| | | | | |
Collapse
|
44
|
Fairfax ST, Padilla J, Vianna LC, Davis MJ, Fadel PJ. Spontaneous bursts of muscle sympathetic nerve activity decrease leg vascular conductance in resting humans. Am J Physiol Heart Circ Physiol 2013; 304:H759-66. [PMID: 23292718 DOI: 10.1152/ajpheart.00842.2012] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Previous studies in humans attempting to assess sympathetic vascular transduction have related large reflex-mediated increases in muscle sympathetic nerve activity (MSNA) to associated changes in limb vascular resistance. However, such procedures do not provide insight into the ability of MSNA to dynamically control vascular tone on a beat-by-beat basis. Thus we examined the influence of spontaneous MSNA bursts on leg vascular conductance (LVC) and how variations in MSNA burst pattern (single vs. multiple bursts) and burst size may affect the magnitude of the LVC response. In 11 young men, arterial blood pressure, common femoral artery blood flow, and MSNA were continuously recorded during 20 min of supine rest. Signal averaging was used to characterize percent changes in LVC for 15 cardiac cycles following heartbeats associated with and without MSNA bursts. LVC significantly decreased following MSNA bursts, reaching a nadir during the 6th cardiac cycle (single bursts, -2.9 ± 1.1%; and multiple bursts, -11.0 ± 1.4%; both, P < 0.001). Individual MSNA burst amplitudes and the total amplitude of consecutive bursts were related to the magnitude of peak decreases in LVC. In contrast, cardiac cycles without MSNA bursts were associated with a significant increase in LVC (+3.1 ± 0.5%; P < 0.001). Total vascular conductance decreased in parallel with LVC also reaching a nadir around the peak rise in arterial blood pressure following an MSNA burst. Collectively, these data are the first to assess beat-by-beat sympathetic vascular transduction in resting humans, demonstrating robust and dynamic decreases in LVC following MSNA bursts, an effect that was absent for cardiac cycles without MSNA bursts.
Collapse
Affiliation(s)
- Seth T Fairfax
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65212 ,USA
| | | | | | | | | |
Collapse
|
45
|
Greater cardiovascular reactivity to a cold stimulus is due to higher cold pain perception in black Africans. J Hypertens 2012; 30:2416-24. [DOI: 10.1097/hjh.0b013e328358faf7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
46
|
Abstract
This article reviews microneurographic research on sympathetic neural control in women under both physiological and pathophysiological conditions across the lifespan. Specifically, the effects of sex, age, race, the menstrual cycle, oral contraceptives, estrogen replacement therapy, and normal pregnancy on neural control of blood pressure in healthy women are reviewed. In addition, sympathetic neural activity during neurally mediated (pre)syncope, the Postural Orthostatic Tachycardia Syndrome (POTS), obesity, the Polycystic Ovary Syndrome (PCOS), gestational hypertension, and preeclampsia, chronic essential hypertension, heart failure, and myocardial infarction in women are also reviewed briefly. It is suggested that microneurographic studies provide valuable information regarding autonomic circulatory control in women of different ages and in most cases, excessive sympathetic activation is associated with specific medical conditions regardless of age and sex. In some situations, sympathetic inhibition or withdrawal may be the underlying mechanism. Information gained from previous and recent microneurographic studies has significant clinical implications in women's health, and in some cases could be used to guide therapy if more widely available.
Collapse
Affiliation(s)
- Qi Fu
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, and UT Southwestern Medical Center Dallas, TX, USA
| |
Collapse
|
47
|
Okada Y, Galbreath MM, Jarvis SS, Bivens TB, Vongpatanasin W, Levine BD, Fu Q. Elderly blacks have a blunted sympathetic neural responsiveness but greater pressor response to orthostasis than elderly whites. Hypertension 2012; 60:842-8. [PMID: 22777937 DOI: 10.1161/hypertensionaha.112.195313] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Neural control of blood pressure (BP) has been reported to differ between young blacks and whites. We hypothesized that elderly blacks have enhanced sympathetic neural responses during orthostasis compared with elderly whites. Muscle sympathetic nerve activity, arm-cuff BP, and heart rate were recorded continuously, and cardiac output, stroke volume, and total peripheral resistance were measured intermittently during supine and 5-minute 60° upright tilt in 10 blacks (65 [SD, 4] years; 4 women) and 20 whites (68 [6] years; 8 women). We found that muscle sympathetic nerve activity burst frequency was similar between blacks and whites in the supine position (44 [10] versus 42 [7] bursts per minute) and during upright tilt (59 [11] versus 60 [9] bursts per minute; P=0.846 for race, P<0.001 for posture, and P=0.622 for interaction). However, upright total muscle sympathetic nerve activity was smaller in blacks than in whites (162 [39] versus 243 [112]%; P=0.003). Systolic BP, heart rate, cardiac output, and stroke volume were not different between groups. Diastolic BP was similar in the supine position, increased in all of the subjects during tilting; upright diastolic BP was greater in blacks than in whites (80 [10] versus 71 [7] mmHg; P=0.008). Total peripheral resistance did not differ between blacks and whites in the supine position or during upright tilt (P=0.354 for race, P<0.001 for posture, P=0.825 for interaction). Thus, elderly blacks have a blunted sympathetic neural responsiveness but enhanced pressor response to orthostasis compared with elderly whites, which may be attributable to an augmented sympathetic vascular transduction and/or nonadrenergic vasoconstrictor mechanisms (ie, angiotensin II or the venoarteriolar response).
Collapse
Affiliation(s)
- Yoshiyuki Okada
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Reimann M, Hamer M, Schlaich M, Malan NT, Rüdiger H, Ziemssen T, Malan L. Autonomic responses to stress in Black versus Caucasian Africans: the SABPA study. Psychophysiology 2011; 49:454-61. [PMID: 22176778 DOI: 10.1111/j.1469-8986.2011.01328.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 10/11/2011] [Indexed: 11/30/2022]
Abstract
Underlying mechanisms of increased pressor responses to stress in Blacks are poorly understood. Cardiovascular regulation of normotensive Black (n=43) and Caucasian (n=90) Africans was studied during a cold pressor and color-word conflict test. Autonomic evaluation was performed by spectral analysis. Higher diastolic pressor and heart rate responses to the cold pressor test were observed in Black compared to Caucasian Africans. Autonomic efferent outflow to stress was comparable between groups. Transient downregulation of baroreflex during stress was evident in Blacks but not in Caucasians. Greater diastolic pressor responses were related to a higher cardiac reactivity, a baroreflex desensitization, and higher stress perception in Black Africans. Thus, increased stress perception may facilitate cardiac and diastolic hyperreactivity, indirectly affecting baroreflex function in Black Africans.
Collapse
Affiliation(s)
- Manja Reimann
- Autonomic and Neuroendocrinological Laboratory Dresden, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany.
| | | | | | | | | | | | | |
Collapse
|
49
|
Holwerda SW, Fulton D, Eubank WL, Keller DM. Carotid baroreflex responsiveness is impaired in normotensive African American men. Am J Physiol Heart Circ Physiol 2011; 301:H1639-45. [PMID: 21841014 DOI: 10.1152/ajpheart.00604.2011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
There are important differences in autonomic function and cardiovascular responsiveness between African Americans (AA) and Caucasian Americans (CA). This study tested the hypothesis that carotid baroreflex (CBR) responsiveness is impaired in normotensive AA compared with normotensive CA at rest. CBR control of heart rate (HR) and mean arterial blood pressure (MAP) was assessed in 30 nonhypertensive male subjects (15 AA; 15 CA; age 18-33 yr) with 5-s periods of neck pressure (NP; simulated hypotension) and neck suction (NS; simulated hypertension) ranging from +45 to -80 Torr during rest. Carotid-cardiac stimulus-response curves revealed a significantly lower minimum HR response in the CA compared with AA (40.8 ± 2.4 vs. 49.8 ± 2.9 beats/min, respectively; P < 0.05). In addition, the magnitude of the mean HR response to all trials of NS (-20, -40, -60, and -80 Torr) was attenuated in the AA group (AA, -10.1 ± 1.7 vs. CA, -14.9 ± 2.2 beats/min; P < 0.05), while no significant differences were found in the magnitude of the mean HR response to NP (+15, +30, and +45 Torr) between racial groups. There were no significant differences in the carotid-vasomotor stimulus-response curves between racial groups. Also, while no racial differences were found in the magnitude of the mean MAP response to all trials of NS, the magnitude of the mean MAP response to all trials of NP was attenuated in the AA group (AA, 7.2 ± 1.3 vs. CA, 9.3 ± 1.1 mmHg; P < 0.05). Together, these findings support inherent differences in short-term blood pressure regulation between racial groups that exhibit different relative risk for the development of hypertension.
Collapse
Affiliation(s)
- Seth W Holwerda
- Department of Kinesiology and Center for Healthy Living and Longevity, University of Texas at Arlington, Arlington, Texas 76019, USA
| | | | | | | |
Collapse
|
50
|
Hinds K, Stachenfeld NS. Greater orthostatic tolerance in young black compared with white women. Hypertension 2010; 56:75-81. [PMID: 20458005 PMCID: PMC2909588 DOI: 10.1161/hypertensionaha.110.150011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 04/19/2010] [Indexed: 11/16/2022]
Abstract
We hypothesized that orthostatic tolerance is higher in young, healthy black compared with white women. To determine orthostatic tolerance, 22 women (11 black and 11 white) underwent graded lower body negative pressure to presyncope. We measured blood pressure, heart rate, and R-R interval (ECG) continuously at baseline and through all of the levels of lower body negative pressure. Blood samples were taken at baseline along with presyncope for the measurement of plasma catecholamine concentrations, serum aldosterone concentration, and plasma renin activity. Cumulative stress index, the sum of the product of time and lower body negative pressure, was the indicator of orthostatic tolerance. Orthostatic tolerance in the black women was greater than in the white women [cumulative stress index: -1003 (375) versus -476 (197); P<0.05]. Although plasma concentrations of norepinephrine increased in both groups at presyncope, the increase was greater in black [Deltaplasma concentrations of norepinephrine: 167 (123)] versus white women [86 (64); P<0.05], as was the increase in PRA [DeltaPRA 2.6 (1.0) versus 0.6 (0.9) ng of angiotensin II x mL(-1) x h(-1); P<0.05, for black and white women, respectively). Although heart rate increased and R-R interval decreased to a greater extent during lower body negative pressure in black women compared with white women (ANOVA: P<0.05), baroreflex function (ie, slope R-R interval versus systolic blood pressure) was unaffected by race. These data indicate that orthostatic tolerance is greater in black compared with white women, which appears to be a function of greater sympathetic nervous system responses to orthostatic challenges.
Collapse
Affiliation(s)
- Kumba Hinds
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Public Health, Yale University School of Medicine, New Haven, Conn, USA
| | | |
Collapse
|