1
|
Han X, Li P, Jiang M, Cao Y, Wang Y, Jiang L, Liu X, Wu W. Autophagy in skeletal muscle dysfunction of chronic obstructive pulmonary disease: implications, mechanisms, and perspectives. J Zhejiang Univ Sci B 2025; 26:227-239. [PMID: 40082202 PMCID: PMC11906388 DOI: 10.1631/jzus.b2300680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/22/2023] [Indexed: 03/16/2025]
Abstract
Skeletal muscle dysfunction is a common extrapulmonary comorbidity of chronic obstructive pulmonary disease (COPD) and is associated with decreased quality-of-life and survival in patients. The autophagy lysosome pathway is one of the proteolytic systems that significantly affect skeletal muscle structure and function. Intriguingly, both promoting and inhibiting autophagy have been observed to improve COPD skeletal muscle dysfunction, yet the mechanism is unclear. This paper first reviewed the effects of macroautophagy and mitophagy on the structure and function of skeletal muscle in COPD, and then explored the mechanism of autophagy mediating the dysfunction of skeletal muscle in COPD. The results showed that macroautophagy- and mitophagy-related proteins were significantly increased in COPD skeletal muscle. Promoting macroautophagy in COPD improves myogenesis and replication capacity of muscle satellite cells, while inhibiting macroautophagy in COPD myotubes increases their diameters. Mitophagy helps to maintain mitochondrial homeostasis by removing impaired mitochondria in COPD. Autophagy is a promising target for improving COPD skeletal muscle dysfunction, and further research should be conducted to elucidate the specific mechanisms by which autophagy mediates COPD skeletal muscle dysfunction, with the aim of enhancing our understanding in this field.
Collapse
Affiliation(s)
- Xiaoyu Han
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
| | - Peijun Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Meiling Jiang
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
| | - Yuanyuan Cao
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
| | - Yingqi Wang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Linhong Jiang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaodan Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
- Institute of Rehabilitation Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China.
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai 201203, China.
| | - Weibing Wu
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
2
|
Hartmann JP, Nymand SB, Hartmeyer HL, Ryrsø CK, Andersen AB, Mohammad M, Rasmussen IE, Thomsen RS, Durrer CG, Berg RMG, Iepsen UW. Effect of 12 weeks of interval training on skeletal muscle blood flow during single-leg knee extensor exercise in COPD: a nonrandomized controlled trial. J Appl Physiol (1985) 2025; 138:836-847. [PMID: 39992976 DOI: 10.1152/japplphysiol.00798.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/11/2024] [Accepted: 02/14/2025] [Indexed: 02/26/2025] Open
Abstract
High-intensity interval training (HIIT) has shown to improve exercise capacity, symptom burden, and quality of life in patients with chronic obstructive pulmonary disease (COPD), but it remains to be investigated if HIIT can counteract limb muscle dysfunction. Therefore, we examined the impact of a 12-wk supervised HIIT protocol on muscle oxygen conductance. Eight patients with mild-to-moderate COPD and eight age-, sex-, and BMI-matched controls underwent a 12-wk HIIT intervention. Leg blood flow ([Formula: see text]) and arterio-venous blood samples were collected at rest and during active single-leg knee-extensor exercise (KEE) at unloaded (0 W) and 20% of peak workload (WLpeak) to estimate leg muscle oxygen conductance pre- and post-HIIT. In pre-HIIT, [Formula: see text] was similar between groups during unloaded KEE (P = 0.108) but lower at 20% WLpeak in the COPD group, compared with the control group. [Formula: see text] responses were higher during unloaded KEE (28%, P = 0.012) and 20% WLpeak (40%, P < 0.001) post-HIIT in the COPD group, whereas no change occurred in the control group. Flow-adjusted skeletal muscle O2 conductance was higher in the COPD pre-HIIT group but only increased in the control group. Thus, there was no difference in diffusive or convective capacity between groups post-HIIT at submaximal KEE. COPD assessment score decreased by 2.8 [1;4] (P = 0.003) in the COPD group and V̇o2peak increased in both groups (COPD 192 mL O2/min, P = 0.032, control 257 mL O2/min, P = 0.004) with no time/group interaction. A 12-wk HIIT intervention may improve peripheral exercise capacity in COPD by increasing the vasodilatory function in working muscle while concurrently improving whole-body exercise capacity and symptom burden.NEW & NOTEWORTHY Individuals with COPD exhibit lower blood flow to the exercising leg muscles, which may be considered part of the limb muscle dysfunction associated with the disease. A 12-wk high-intensity interval training (HIIT) program increased leg blood flow in patients with COPD during single-leg knee extensor exercise achieved by improving the vasodilatory response. HIIT also improved maximal oxygen uptake and exercise capacity while reducing symptom burden.
Collapse
Affiliation(s)
- Jacob P Hartmann
- Centre for Physical Activity Research, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Stine Buus Nymand
- Centre for Physical Activity Research, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helene Louise Hartmeyer
- Centre for Physical Activity Research, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Camilla Koch Ryrsø
- Centre for Physical Activity Research, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Amalie B Andersen
- Centre for Physical Activity Research, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Milan Mohammad
- Centre for Physical Activity Research, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Iben Elmerdahl Rasmussen
- Centre for Physical Activity Research, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Rie Skovly Thomsen
- Centre for Physical Activity Research, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Cody Garett Durrer
- Centre for Physical Activity Research, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Ronan M G Berg
- Centre for Physical Activity Research, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, United Kingdom
- Department Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Winning Iepsen
- Centre for Physical Activity Research, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Anesthesiology and Intensive Care, Copenhagen University Hospital-Hvidovre Hospital, Hvidovre, Denmark
| |
Collapse
|
3
|
Adami A, Duan F, Calmelat RA, Chen Z, Casaburi R, Rossiter HB. SEVERITY OF LUNG OBSTRUCTION AND OLDER AGE, BUT NOT PHYSICAL ACTIVITY, PREDICT LOCOMOTOR MUSCLE OXIDATIVE IMPAIRMENT IN COPD. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.28.25321301. [PMID: 39974145 PMCID: PMC11838953 DOI: 10.1101/2025.01.28.25321301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Background Low muscle oxidative capacity is an extrapulmonary manifestation of chronic obstructive pulmonary disease (COPD) with unclear etiology. We sought to determine clinical and behavioral features associated with muscle oxidative capacity in smokers with and without COPD and never smoker individuals. Methods 243 adults enrolled in the Muscle Health Study, an observational study ancillary to COPDGene. Gastrocnemius oxidative capacity was measured by near-infrared spectroscopy from muscle oxygen uptake recovery rate constant (k). Physical activity by accelerometry (vector magnitude units, VMU/min). Pulmonary assessments included spirometry (FEV1%predicted), diffusing capacity (DLCO), and quantitative chest computed tomography (CT). Eighty-seven variables related to COPD features were considered. Variables selected by univariate analysis of log-transformed k with p≤0.20, and filtered by machine learning, were entered into multivariable linear regression to determine association with k. Results 241(99%) participants were allocated to analysis. FEV1%predicted, DLCO, CT, pack-years, age and VMU/min were among 24 variables selected by univariate analysis. After machine learning filtering on 161(66%) cases with complete data, 11 variables were included in multivariable analysis. Only FEV1%predicted, age and race were significantly associated with k (R2=0.26). Model coefficients equate a 10% lower FEV1%predicted to a 4.4% lower k, or 10-years of aging to a 9.7% lower k. In 118 cases with CT available, FEV1%predicted and age remained associated with k (R2=0.24). Physical activity was not retained in any model. Conclusions Locomotor muscle oxidative capacity was positively associated with FEV1%predicted and negatively associated with age. Physical activity or radiographic COPD manifestations were not significantly associated with muscle oxidative impairment.
Collapse
Affiliation(s)
- Alessandra Adami
- Department of Kinesiology, College of Health Sciences, University of Rhode Island, Kingston, RI, USA
| | - Fenghai Duan
- Department of Biostatistics and Center for Statistical Sciences, Brown University School of Public Health, Providence, RI, USA
| | - Robert A. Calmelat
- Institute of Respiratory Medicine and Exercise Physiology, Division of Pulmonary and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor–UCLA Medical Center, Torrance, CA, USA
| | - Zeyu Chen
- Department of Biostatistics and Center for Statistical Sciences, Brown University School of Public Health, Providence, RI, USA
| | - Richard Casaburi
- Institute of Respiratory Medicine and Exercise Physiology, Division of Pulmonary and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor–UCLA Medical Center, Torrance, CA, USA
| | - Harry B. Rossiter
- Institute of Respiratory Medicine and Exercise Physiology, Division of Pulmonary and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor–UCLA Medical Center, Torrance, CA, USA
| |
Collapse
|
4
|
Arroum T, Hish GA, Burghardt KJ, Ghamloush M, Bazzi B, Mrech A, Morse PT, Britton SL, Koch LG, McCully JD, Hüttemann M, Malek MH. Mitochondria Transplantation: Rescuing Innate Muscle Bioenergetic Impairment in a Model of Aging and Exercise Intolerance. J Strength Cond Res 2024; 38:1189-1199. [PMID: 38900170 PMCID: PMC11192236 DOI: 10.1519/jsc.0000000000004793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
ABSTRACT Arroum, T, Hish, GA, Burghardt, KJ, Ghamloush, M, Bazzi, B, Mrech, A, Morse, PT, Britton, SL, Koch, LG, McCully, JD, Hüttemann, M, and Malek, MH. Mitochondria transplantation: Rescuing innate muscle bioenergetic impairment in a model of aging and exercise intolerance. J Strength Cond Res 38(7): 1189-1199, 2024-Mitochondria, through oxidative phosphorylation, are crucial for energy production. Disease, genetic impairment, or deconditioning can harm muscle mitochondria, affecting energy production. Endurance training enhances mitochondrial function but assumes mobility. Individuals with limited mobility lack effective treatments for mitochondrial dysfunction because of disease or aging. Mitochondrial transplantation replaces native mitochondria that have been damaged with viable, respiration-competent mitochondria. Here, we used a rodent model selectively bred for low-capacity running (LCR), which exhibits innate mitochondrial dysfunction in the hind limb muscles. Hence, the purpose of this study was to use a distinct breed of rats (i.e., LCR) that display hereditary skeletal muscle mitochondrial dysfunction to evaluate the consequences of mitochondrial transplantation. We hypothesized that the transplantation of mitochondria would effectively alleviate mitochondrial dysfunction in the hind limb muscles of rats when compared with placebo injections. In addition, we hypothesized that rats receiving the mitochondrial transplantation would experience an improvement in their functional capacity, as evaluated through incremental treadmill testing. Twelve aged LCR male rats (18 months old) were randomized into 2 groups (placebo or mitochondrial transplantation). One LCR rat of the same age and sex was used as the donor to isolate mitochondria from the hindlimb muscles. Isolated mitochondria were injected into both hindlimb muscles (quadriceps femoris, tibialis anterior (TA), and gastrocnemius complex) of a subset LCR (n = 6; LCR-M) rats. The remaining LCR (n = 5; LCR-P) subset received a placebo injection containing only the vehicle without the isolated mitochondria. Four weeks after mitochondrial transplantation, rodents were euthanized and hindlimb muscles harvested. The results indicated a significant (p < 0.05) increase in mitochondrial markers for glycolytic (plantaris and TA) and mixed (quadricep femoris) muscles, but not oxidative muscle (soleus). Moreover, we found significant (p < 0.05) epigenetic changes (i.e., hypomethylation) at the global and site-specific levels for a key mitochondrial regulator (transcription factor A mitochondrial) between the placebo and mitochondrial transplantation groups. To our knowledge, this is the first study to examine the efficacy of mitochondrial transplantation in a rodent model of aging with congenital skeletal muscle dysfunction.
Collapse
Affiliation(s)
- Tasnim Arroum
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201
| | - Gerald A. Hish
- Unit for Laboratory Animal Medicine (ULAM), University of Michigan, Ann Arbor, Ann Arbor, MI 48109
| | - Kyle J. Burghardt
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, MI 48201
| | - Mohamed Ghamloush
- Physical Therapy Program, Wayne State University, Eugene Applebaum College of Pharmacy and Health Sciences, Department of Health Care Sciences, Detroit, MI 48201
- Integrative Physiology of Exercise Laboratory, Wayne State University, Eugene Applebaum College of Pharmacy and Health Sciences, Department of Health Care Sciences, Detroit, MI 48201
| | - Belal Bazzi
- Physical Therapy Program, Wayne State University, Eugene Applebaum College of Pharmacy and Health Sciences, Department of Health Care Sciences, Detroit, MI 48201
- Integrative Physiology of Exercise Laboratory, Wayne State University, Eugene Applebaum College of Pharmacy and Health Sciences, Department of Health Care Sciences, Detroit, MI 48201
| | - Abdallah Mrech
- Physical Therapy Program, Wayne State University, Eugene Applebaum College of Pharmacy and Health Sciences, Department of Health Care Sciences, Detroit, MI 48201
- Integrative Physiology of Exercise Laboratory, Wayne State University, Eugene Applebaum College of Pharmacy and Health Sciences, Department of Health Care Sciences, Detroit, MI 48201
| | - Paul T. Morse
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201
| | - Steven L. Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, Ann Arbor, MI 48109
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Ann Arbor, MI 48109
| | - Lauren G. Koch
- Department of Physiology and Pharmacology, The University of Toledo, College of Medicine and Life Sciences, Toledo, OH 43606
| | - James D. McCully
- Department of Cardiac Surgery, Boston Children’s Hospital Harvard Medical School, Boston, MA 02115
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201
| | - Moh H. Malek
- Physical Therapy Program, Wayne State University, Eugene Applebaum College of Pharmacy and Health Sciences, Department of Health Care Sciences, Detroit, MI 48201
- Integrative Physiology of Exercise Laboratory, Wayne State University, Eugene Applebaum College of Pharmacy and Health Sciences, Department of Health Care Sciences, Detroit, MI 48201
| |
Collapse
|
5
|
Harrington JS, Ryter SW, Plataki M, Price DR, Choi AMK. Mitochondria in health, disease, and aging. Physiol Rev 2023; 103:2349-2422. [PMID: 37021870 PMCID: PMC10393386 DOI: 10.1152/physrev.00058.2021] [Citation(s) in RCA: 231] [Impact Index Per Article: 115.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Mitochondria are well known as organelles responsible for the maintenance of cellular bioenergetics through the production of ATP. Although oxidative phosphorylation may be their most important function, mitochondria are also integral for the synthesis of metabolic precursors, calcium regulation, the production of reactive oxygen species, immune signaling, and apoptosis. Considering the breadth of their responsibilities, mitochondria are fundamental for cellular metabolism and homeostasis. Appreciating this significance, translational medicine has begun to investigate how mitochondrial dysfunction can represent a harbinger of disease. In this review, we provide a detailed overview of mitochondrial metabolism, cellular bioenergetics, mitochondrial dynamics, autophagy, mitochondrial damage-associated molecular patterns, mitochondria-mediated cell death pathways, and how mitochondrial dysfunction at any of these levels is associated with disease pathogenesis. Mitochondria-dependent pathways may thereby represent an attractive therapeutic target for ameliorating human disease.
Collapse
Affiliation(s)
- John S Harrington
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | | | - Maria Plataki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | - David R Price
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| |
Collapse
|
6
|
Mankowski RT, Wohlgemuth SE, Bresciani G, Martin AD, Arnaoutakis G, Martin T, Jeng E, Ferreira L, Machuca T, Rackauskas M, Smuder AJ, Beaver T, Leeuwenburgh C, Smith BK. Intraoperative Hemi-Diaphragm Electrical Stimulation Demonstrates Attenuated Mitochondrial Function without Change in Oxidative Stress in Cardiothoracic Surgery Patients. Antioxidants (Basel) 2023; 12:antiox12051009. [PMID: 37237876 DOI: 10.3390/antiox12051009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/07/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Mechanical ventilation during cardiothoracic surgery is life-saving but can lead to ventilator-induced diaphragm dysfunction (VIDD) and prolong ventilator weaning and hospital length of stay. Intraoperative phrenic nerve stimulation may preserve diaphragm force production to offset VIDD; we also investigated changes in mitochondrial function after stimulation. During cardiothoracic surgeries (n = 21), supramaximal, unilateral phrenic nerve stimulation was performed every 30 min for 1 min. Diaphragm biopsies were collected after the last stimulation and analyzed for mitochondrial respiration in permeabilized fibers and protein expression and enzymatic activity of biomarkers of oxidative stress and mitophagy. Patients received, on average, 6.2 ± 1.9 stimulation bouts. Stimulated hemidiaphragms showed lower leak respiration, maximum electron transport system (ETS) capacities, oxidative phosphorylation (OXPHOS), and spare capacity compared with unstimulated sides. There were no significant differences between mitochondrial enzyme activities and oxidative stress and mitophagy protein expression levels. Intraoperative phrenic nerve electrical stimulation led to an acute decrease of mitochondrial respiration in the stimulated hemidiaphragm, without differences in biomarkers of mitophagy or oxidative stress. Future studies warrant investigating optimal stimulation doses and testing post-operative chronic stimulation effects on weaning from the ventilator and rehabilitation outcomes.
Collapse
Affiliation(s)
- Robert T Mankowski
- Department of Physiology and Aging, University of Florida, Gainesville, FL 32611, USA
| | | | - Guilherme Bresciani
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | - A Daniel Martin
- Department of Physical Therapy, University of Florida, Gainesville, FL 32611, USA
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - George Arnaoutakis
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - Tomas Martin
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - Eric Jeng
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - Leonardo Ferreira
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | - Tiago Machuca
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | | | - Ashley J Smuder
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | - Thomas Beaver
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | | | - Barbara K Smith
- Department of Physical Therapy, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
7
|
Henrot P, Dupin I, Schilfarth P, Esteves P, Blervaque L, Zysman M, Gouzi F, Hayot M, Pomiès P, Berger P. Main Pathogenic Mechanisms and Recent Advances in COPD Peripheral Skeletal Muscle Wasting. Int J Mol Sci 2023; 24:ijms24076454. [PMID: 37047427 PMCID: PMC10095391 DOI: 10.3390/ijms24076454] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a worldwide prevalent respiratory disease mainly caused by tobacco smoke exposure. COPD is now considered as a systemic disease with several comorbidities. Among them, skeletal muscle dysfunction affects around 20% of COPD patients and is associated with higher morbidity and mortality. Although the histological alterations are well characterized, including myofiber atrophy, a decreased proportion of slow-twitch myofibers, and a decreased capillarization and oxidative phosphorylation capacity, the molecular basis for muscle atrophy is complex and remains partly unknown. Major difficulties lie in patient heterogeneity, accessing patients' samples, and complex multifactorial process including extrinsic mechanisms, such as tobacco smoke or disuse, and intrinsic mechanisms, such as oxidative stress, hypoxia, or systemic inflammation. Muscle wasting is also a highly dynamic process whose investigation is hampered by the differential protein regulation according to the stage of atrophy. In this review, we report and discuss recent data regarding the molecular alterations in COPD leading to impaired muscle mass, including inflammation, hypoxia and hypercapnia, mitochondrial dysfunction, diverse metabolic changes such as oxidative and nitrosative stress and genetic and epigenetic modifications, all leading to an impaired anabolic/catabolic balance in the myocyte. We recapitulate data concerning skeletal muscle dysfunction obtained in the different rodent models of COPD. Finally, we propose several pathways that should be investigated in COPD skeletal muscle dysfunction in the future.
Collapse
Affiliation(s)
- Pauline Henrot
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33604 Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33604 Pessac, France
- CHU de Bordeaux, Service d'Exploration Fonctionnelle Respiratoire, CIC 1401, Service de Pneumologie, F-33604 Pessac, France
| | - Isabelle Dupin
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33604 Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33604 Pessac, France
| | - Pierre Schilfarth
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33604 Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33604 Pessac, France
- CHU de Bordeaux, Service d'Exploration Fonctionnelle Respiratoire, CIC 1401, Service de Pneumologie, F-33604 Pessac, France
| | - Pauline Esteves
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33604 Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33604 Pessac, France
| | - Léo Blervaque
- PhyMedExp, INSERM-CNRS-Montpellier University, F-34090 Montpellier, France
| | - Maéva Zysman
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33604 Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33604 Pessac, France
- CHU de Bordeaux, Service d'Exploration Fonctionnelle Respiratoire, CIC 1401, Service de Pneumologie, F-33604 Pessac, France
| | - Fares Gouzi
- PhyMedExp, INSERM-CNRS-Montpellier University, CHRU Montpellier, F-34090 Montpellier, France
| | - Maurice Hayot
- PhyMedExp, INSERM-CNRS-Montpellier University, CHRU Montpellier, F-34090 Montpellier, France
| | - Pascal Pomiès
- PhyMedExp, INSERM-CNRS-Montpellier University, F-34090 Montpellier, France
| | - Patrick Berger
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33604 Pessac, France
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33604 Pessac, France
- CHU de Bordeaux, Service d'Exploration Fonctionnelle Respiratoire, CIC 1401, Service de Pneumologie, F-33604 Pessac, France
| |
Collapse
|
8
|
Decker ST, Alexandrou-Majaj N, Layec G. Effects of acute cigarette smoke concentrate exposure on mitochondrial energy transfer in fast- and slow-twitch skeletal muscle. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148973. [PMID: 36972770 DOI: 10.1016/j.bbabio.2023.148973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/26/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
The mechanisms underlying cigarette smoke-induced mitochondrial dysfunction in skeletal muscle are still poorly understood. Accordingly, this study aimed to examine the effects of cigarette smoke on mitochondrial energy transfer in permeabilized muscle fibers from skeletal muscles with differing metabolic characteristics. The electron transport chain (ETC) capacity, ADP transport, and respiratory control by ADP were assessed in fast- and slow-twitch muscle fibers from C57BL/6 mice (n = 11) acutely exposed to cigarette smoke concentrate (CSC) using high-resolution respirometry. CSC decreased complex I-driven respiration in the white gastrocnemius (CONTROL:45.4 ± 11.2 pmolO2.s-1.mg-1 and CSC:27.5 ± 12.0 pmolO2.s-1.mg-1; p = 0.01) and soleus (CONTROL:63.0 ± 23.8 pmolO2.s-1.mg-1 and CSC:44.6 ± 11.1 pmolO2.s-1.mg-1; p = 0.04). In contrast, the effect of CSC on Complex II-linked respiration increased its relative contribution to muscle respiratory capacity in the white gastrocnemius muscle. The maximal respiratory activity of the ETC was significantly inhibited by CSC in both muscles. Furthermore, the respiration rate dependent on the ADP/ATP transport across the mitochondrial membrane was significantly impaired by CSC in the white gastrocnemius (CONTROL:-70 ± 18 %; CSC:-28 ± 10 %; p < 0.001), but not the soleus (CONTROL:47 ± 16 %; CSC:31 ± 7 %; p = 0.08). CSC also significantly impaired mitochondrial thermodynamic coupling in both muscles. Our findings underscore that acute CSC exposure directly inhibits oxidative phosphorylation in permeabilized muscle fibers. This effect was mediated by significant perturbations of the electron transfer in the respiratory complexes, especially at complex I, in both fast and slow twitch muscles. In contrast, CSC-induced inhibition of the exchange of ADP/ATP across the mitochondrial membrane was fiber-type specific, with a large effect on fast-twitch muscles.
Collapse
Affiliation(s)
- Stephen T Decker
- Department of Kinesiology, University of Massachusetts Amherst, USA
| | | | - Gwenael Layec
- Department of Kinesiology, University of Massachusetts Amherst, USA; Institute for Applied Life Science, University of Massachusetts Amherst, USA.
| |
Collapse
|
9
|
Decker ST, Matias AA, Bannon ST, Madden JP, Alexandrou-Majaj N, Layec G. Effects of cigarette smoke on in situ mitochondrial substrate oxidation of slow- and fast-twitch skeletal muscles. Life Sci 2023; 315:121376. [PMID: 36646379 DOI: 10.1016/j.lfs.2023.121376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023]
Abstract
Epidemiological and clinical evidence suggests that cigarette smoke exposure alters glucose and fatty acid metabolism, leading to greater susceptibility to metabolic disorders. However, the effects of cigarette smoke exposure on mitochondrial substrate oxidation in the skeletal muscle are still poorly understood. Accordingly, this study aimed to examine the acute effects of cigarette smoke on mitochondrial respiratory capacity, sensitivity, and concurrent utilization of palmitoylcarnitine (PC), a long-chain fatty acid, and pyruvate, a product of glycolysis, in permeabilized gastrocnemius and soleus muscle fibers exposed to an acute (1 h) dose (4 %) of cigarette smoke concentrate. Cigarette smoke decreased both mitochondrial respiratory capacity (CONTROL: 50.4 ± 11.8 pmolO2/s/mgwt and SMOKE: 22.3 ± 4.4 pmolO2/s/mgwt, p < 0.01) and sensitivity for pyruvate (CONTROL: 0.10 ± 0.04 mM and SMOKE: 0.11 ± 0.04 mM, p < 0.01) in the gastrocnemius muscle. In the soleus, only the sensitivity for pyruvate-stimulated mitochondrial respiration trended toward a decrease (CONTROL: 0.11 ± 0.04 mM and SMOKE: 0.23 ± 0.15 mM, p = 0.08). In contrast, cigarette smoke did not significantly alter palmitoylcarnitine-stimulated mitochondrial respiration in either muscle. In the control condition, pyruvate-supported respiration was inhibited by the concurrent addition of palmitoylcarnitine in the fast-twitch gastrocnemius muscle (-27.1 ± 19.7 %, p < 0.05), but not in the slow-twitch soleus (-9.2 ± 17.0 %). With cigarette smoke, the addition of palmitoylcarnitine augmented the maximal respiration rate stimulated by the concurrent addition of pyruvate in the gastrocnemius (+18.5 ± 39.3 %, p < 0.05). However, cigarette smoke still significantly impaired mitochondrial respiratory capacity with combined substrates compared to control (p < 0.05). Our findings underscore that cigarette smoke directly impairs mitochondrial respiration of carbohydrate-derived substrates and is a primary mechanism underlying cigarette smoke-induced muscle dysfunction, which leads to a vicious cycle involving excess glucose conversion into fatty acids and lipotoxicity.
Collapse
Affiliation(s)
- Stephen T Decker
- Department of Kinesiology, University of Massachusetts Amherst, USA
| | - Alexs A Matias
- Department of Kinesiology, University of Massachusetts Amherst, USA
| | - Sean T Bannon
- Department of Kinesiology, University of Massachusetts Amherst, USA
| | - Jack P Madden
- Department of Kinesiology, University of Massachusetts Amherst, USA
| | | | - Gwenael Layec
- Department of Kinesiology, University of Massachusetts Amherst, USA; Institute for Applied Life Science, University of Massachusetts Amherst, USA.
| |
Collapse
|
10
|
Wang Y, Li P, Cao Y, Liu C, Wang J, Wu W. Skeletal Muscle Mitochondrial Dysfunction in Chronic Obstructive Pulmonary Disease: Underlying Mechanisms and Physical Therapy Perspectives. Aging Dis 2023; 14:33-45. [PMID: 36818563 PMCID: PMC9937710 DOI: 10.14336/ad.2022.0603] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/03/2022] [Indexed: 11/18/2022] Open
Abstract
Skeletal muscle dysfunction (SMD) is a prevalent extrapulmonary complication and a significant independent prognostic factor in patients with chronic obstructive pulmonary disease (COPD). Mitochondrial dysfunction is one of the core factors that damage structure and function in COPD skeletal muscle and is closely related to smoke exposure, hypoxia, and insufficient physical activity. The currently known phenotypes of mitochondrial dysfunction are reduced mitochondrial content and biogenesis, impaired activity of mitochondrial respiratory chain complexes, and increased mitochondrial reactive oxygen species production. Significant progress has been made in research on physical therapy (PT), which has broad prospects for treating the abovementioned potential mitochondrial-function changes in COPD skeletal muscle. In terms of specific types of PT, exercise therapy can directly act on mitochondria and improve COPD SMD by increasing mitochondrial density, regulating mitochondrial biogenesis, upregulating mitochondrial respiratory function, and reducing oxidative stress. However, improvements in mitochondrial-dysfunction phenotype in COPD skeletal muscle due to different exercise strategies are not entirely consistent. Therefore, based on the elucidation of this phenotype, in this study, we analyzed the effect of exercise on mitochondrial dysfunction in COPD skeletal muscle and the regulatory mechanism thereof. We also provided a theoretical basis for exercise programs to rehabilitate this condition.
Collapse
Affiliation(s)
- Yingqi Wang
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, China.
| | - Peijun Li
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, China.
| | - Yuanyuan Cao
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, China.
| | - Chanjing Liu
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, China.
| | - Jie Wang
- School of Physical Education and Sport Training, Shanghai University of Sport, Shanghai, China.,Correspondence should be addressed to: Dr. Weibing Wu () and Dr. Jie Wang (), Shanghai University of Sport, Shanghai, China
| | - Weibing Wu
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, China.,Correspondence should be addressed to: Dr. Weibing Wu () and Dr. Jie Wang (), Shanghai University of Sport, Shanghai, China
| |
Collapse
|
11
|
Kwon OS, Decker ST, Zhao J, Hoidal JR, Heuckstadt T, Sanders KA, Richardson RS, Layec G. The receptor for advanced glycation end products (RAGE) is involved in mitochondrial function and cigarette smoke-induced oxidative stress. Free Radic Biol Med 2023; 195:261-269. [PMID: 36586455 DOI: 10.1016/j.freeradbiomed.2022.12.089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/14/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022]
Abstract
The mechanisms underlying muscle dysfunction with Chronic Obstructive Pulmonary Disease (COPD) are poorly understood. Indirect evidence has recently suggested a role of Advanced Glycation End Products (AGEs) and their receptor (RAGE) in the pathophysiology of COPD. Accordingly, this study aimed to examine the redox balance and mitochondrial alterations in the skeletal muscle of a mouse model deficient in the receptor for AGE (RAGE-KO) and wild-type C57BL/6 exposed to cigarette smoke for 8-months using immunoblotting, spectrophotometry, and high-resolution respirometry. Cigarette smoke exposure increased by two-fold 4-HNE levels (P < 0.001), a marker of oxidative stress, and markedly downregulated contractile proteins, mitochondrial respiratory complexes, and uncoupling proteins levels (P < 0.001). Functional alterations with cigarette smoke exposure included a greater reliance on complex-I supported respiration (P < 0.01) and lower relative respiratory capacity for fatty acid (P < 0.05). RAGE knockout resulted in 47% lower 4-HNE protein levels than the corresponding WT control mice exposed to cigarette smoke (P < 0.05), which was partly attributed to increased Complex III protein levels. Independent of cigarette smoke exposure, RAGE KO decreased mitochondrial specific maximal respiration (P < 0.05), resulting in a compensatory increase in mitochondrial content measured by citrate synthase activity (P < 0.001) such that muscle respiratory capacity remained unaltered. Together, these findings suggest that knockout of RAGE protected the skeletal muscle against oxidative damage induced by 8 months of cigarette smoke exposure. In addition, this study supports a role for RAGE in regulating mitochondrial content and function and can thus serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Oh Sung Kwon
- Department of Kinesiology, University of Connecticut, Storrs, CT, USA; UConn Center on Aging and Department of Orthopaedic Surgery, University of Connecticut, School of Medicine, Farmington, CT, USA; Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA; Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA
| | - Stephen T Decker
- Department of Kinesiology, University of Massachusetts Amherst, USA
| | - Jia Zhao
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA; Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA
| | - John R Hoidal
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA; Department of Internal Medicine, Pulmonary Division, University of Utah, Salt Lake City, UT, USA; Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, UT, USA
| | - Thomas Heuckstadt
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA; Department of Internal Medicine, Pulmonary Division, University of Utah, Salt Lake City, UT, USA; Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, UT, USA
| | - Karl A Sanders
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA; Department of Internal Medicine, Pulmonary Division, University of Utah, Salt Lake City, UT, USA; Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, UT, USA
| | - Russell S Richardson
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA; Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA; Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Gwenael Layec
- Department of Kinesiology, University of Massachusetts Amherst, USA; Institute of Applied Life Science, University of Massachusetts Amherst, USA.
| |
Collapse
|
12
|
NMR Spectroscopy Identifies Chemicals in Cigarette Smoke Condensate That Impair Skeletal Muscle Mitochondrial Function. TOXICS 2022; 10:toxics10030140. [PMID: 35324765 PMCID: PMC8955362 DOI: 10.3390/toxics10030140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/01/2022] [Accepted: 03/11/2022] [Indexed: 01/16/2023]
Abstract
Tobacco smoke-related diseases such as chronic obstructive pulmonary disease (COPD) are associated with high healthcare burden and mortality rates. Many COPD patients were reported to have muscle atrophy and weakness, with several studies suggesting intrinsic muscle mitochondrial impairment as a possible driver of this phenotype. Whereas much information has been learned about muscle pathology once a patient has COPD, little is known about how active tobacco smoking might impact skeletal muscle physiology or mitochondrial health. In this study, we examined the acute effects of cigarette smoke condensate (CSC) on muscle mitochondrial function and hypothesized that toxic chemicals present in CSC would impair mitochondrial respiratory function. Consistent with this hypothesis, we found that acute exposure of muscle mitochondria to CSC caused a dose-dependent decrease in skeletal muscle mitochondrial respiratory capacity. Next, we applied an analytical nuclear magnetic resonance (NMR)-based approach to identify 49 water-soluble and 12 lipid-soluble chemicals with high abundance in CSC. By using a chemical screening approach in the Seahorse XF96 analyzer, several CSC-chemicals, including nicotine, o-Cresol, phenylacetate, and decanoic acid, were found to impair ADP-stimulated respiration in murine muscle mitochondrial isolates significantly. Further to this, several chemicals, including nicotine, o-Cresol, quinoline, propylene glycol, myo-inositol, nitrosodimethylamine, niacinamide, decanoic acid, acrylonitrile, 2-naphthylamine, and arsenic acid, were found to significantly decrease the acceptor control ratio, an index of mitochondrial coupling efficiency.
Collapse
|
13
|
Catteau M, Passerieux E, Blervaque L, Gouzi F, Ayoub B, Hayot M, Pomiès P. Response to Electrostimulation Is Impaired in Muscle Cells from Patients with Chronic Obstructive Pulmonary Disease. Cells 2021; 10:3002. [PMID: 34831227 PMCID: PMC8616440 DOI: 10.3390/cells10113002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 11/16/2022] Open
Abstract
Among the comorbidities associated with chronic obstructive pulmonary disease (COPD), skeletal muscle weakness and atrophy are known to affect patient survival rate. In addition to muscle deconditioning, various systemic and intrinsic factors have been implicated in COPD muscle dysfunction but an impaired COPD muscle adaptation to contraction has never been extensively studied. We submitted cultured myotubes from nine healthy subjects and nine patients with COPD to an endurance-type protocol of electrical pulse stimulation (EPS). EPS induced a decrease in the diameter, covered surface and expression of MHC1 in COPD myotubes. Although the expression of protein degradation markers was not affected, expression of the protein synthesis marker mTOR was not induced in COPD compared to healthy myotubes after EPS. The expression of the differentiation markers p16INK4a and p21 was impaired, while expression of Myf5 and MyoD tended to be affected in COPD muscle cells in response to EPS. The expression of mitochondrial biogenesis markers PGC1α and MFN2 was affected and expression of TFAM and COX1 tended to be reduced in COPD compared to healthy myotubes upon EPS. Lipid peroxidation was increased and the expression of the antioxidant enzymes SOD2 and GPx4 was affected in COPD compared to healthy myotubes in response to EPS. Thus, we provide evidence of an impaired response of COPD muscle cells to contraction, which might be involved in the muscle weakness observed in patients with COPD.
Collapse
Affiliation(s)
- Matthias Catteau
- PhyMedExp, University of Montpellier—INSERM—CNRS, 34295 Montpellier, France; (M.C.); (E.P.); (L.B.)
| | - Emilie Passerieux
- PhyMedExp, University of Montpellier—INSERM—CNRS, 34295 Montpellier, France; (M.C.); (E.P.); (L.B.)
| | - Léo Blervaque
- PhyMedExp, University of Montpellier—INSERM—CNRS, 34295 Montpellier, France; (M.C.); (E.P.); (L.B.)
| | - Farés Gouzi
- PhyMedExp, University of Montpellier—INSERM—CNRS—CHRU Montpellier, 34295 Montpellier, France; (F.G.); (B.A.); (M.H.)
| | - Bronia Ayoub
- PhyMedExp, University of Montpellier—INSERM—CNRS—CHRU Montpellier, 34295 Montpellier, France; (F.G.); (B.A.); (M.H.)
| | - Maurice Hayot
- PhyMedExp, University of Montpellier—INSERM—CNRS—CHRU Montpellier, 34295 Montpellier, France; (F.G.); (B.A.); (M.H.)
| | - Pascal Pomiès
- PhyMedExp, University of Montpellier—INSERM—CNRS, 34295 Montpellier, France; (M.C.); (E.P.); (L.B.)
| |
Collapse
|
14
|
Maremanda KP, Sundar IK, Rahman I. Role of inner mitochondrial protein OPA1 in mitochondrial dysfunction by tobacco smoking and in the pathogenesis of COPD. Redox Biol 2021; 45:102055. [PMID: 34214709 PMCID: PMC8258692 DOI: 10.1016/j.redox.2021.102055] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/19/2021] [Accepted: 06/20/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Chronic lung diseases, such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) are linked to several mitochondrial alterations. Cigarette smoke (CS) alters the structure and function of mitochondria. OPA1 is the main inner mitochondrial GTPase responsible for the fusion events. OPA1 undergoes proteolytic cleavage from long to short forms during acute stress and mitophagy. However, the exact role of OPA1 isoforms and related proteins during CS-induced mitophagy and COPD is not clear. METHODS Lung tissues from non-smokers, smokers, COPD and IPF were used to determine the relative expression of OPA1 and related proteins. Additionally, we used mouse lungs from chronic (6 months) CS exposure to evaluate the status of OPA1. Primary lung fibroblasts from normal and COPD patients and naked mole rat (NMR) lung fibroblasts, human fetal lung fibroblast (HFL1), mouse embryonic fibroblast from wild type (WT), OPA1-/-, MFN1 and MFN2-/- were used to determine the effect of CS on OPA1 isoforms. Various mitochondrial fusion promoters/activators (BGP-15, leflunomide, M1) and fission inhibitor (DRP1) were used to determine their effect on OPA1 status and cigarette smoke extract (CSE)-induced lung epithelial (BEAS2B) cell damage, respectively. Seahorse flux analyzer was used to determine the effect of these compounds in BEAS2B cells with and without CSE exposure. FINDINGS Short OPA1 isoforms were predominantly detected and significantly increased in COPD subjects. Acute CSE treatment in various cell lines except NMR was found to increase the conversion of long to short OPA1 isoforms. CSE treatment significantly increased mitochondrial stress-related protein SLP2 in all the cells used. OPA1 interacting partners like prohibitins (PHB1 and 2) were also altered depending on the CS exposure. Finally, BGP-15 and leflunomide treatment were able to preserve the long OPA1 isoform in cells treated with CSE. INTERPRETATION/CONCLUSION The long OPA1 isoform along with SLP2 and prohibitins play a crucial role in CS-induced lung damage, causing mitophagy/mitochondrial dysfunction in COPD, which may be used as a novel therapeutic target in COPD.
Collapse
Affiliation(s)
| | - Isaac Kirubakaran Sundar
- Division of Pulmonary Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
15
|
De Brandt J, Burtin C, Pomiès P, Vandenabeele F, Verboven K, Aumann J, Blancquaert L, Everaert I, Van Ryckeghem L, Cops J, Hayot M, Spruit MA, Derave W. Carnosine, oxidative and carbonyl stress, antioxidants and muscle fiber characteristics of quadriceps muscle of patients with COPD. J Appl Physiol (1985) 2021; 131:1230-1240. [PMID: 34323590 DOI: 10.1152/japplphysiol.00200.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Oxidative/carbonyl stress is elevated in lower-limb muscles of patients with Chronic Obstructive Pulmonary Disease (COPD). Carnosine is a skeletal muscle antioxidant particularly present in fast-twitch fibers. AIMS To compare muscle carnosine, oxidative/carbonyl stress, antioxidants and fiber characteristics between patients with COPD and healthy controls (HCs), and between patients after stratification for airflow limitation (mild/moderate vs. severe/very-severe). To investigate correlates of carnosine in patients with COPD. METHODS A vastus lateralis muscle biopsy was obtained from 40 patients with stable COPD and 20 age/sex matched HCs. Carnosine, oxidative/carbonyl stress, antioxidants, fiber characteristics, quadriceps strength and endurance (QE), VO2peak (incremental cycle test) and physical activity (PA) were determined. RESULTS Patients with COPD had a similar carnosine concentration (4.16 mmol/kg wet weight (WW) (SD 1.93)) to HCs (4.64 mmol/kgWW (SD 1.71)) and significantly higher percentage of fast-twitch fibers and lower QE, VO2peak and PA vs. HCs. Patients with severe/very-severe COPD had a 30% lower carnosine concentration (3.24 mmol/kgWW (SD 1.79); n=15) vs. patients with mild/moderate COPD (4.71 mmol/kgWW (SD 1.83); n=25; P=0.02) and significantly lower VO2peak and PA vs. patients with mild/moderate COPD. Carnosine correlated significantly with QE (rs=0.427), VO2peak (rs=0.334), PA (rs=0.379) and lung function parameters in patients with COPD. CONCLUSION Despite having the highest proportion of fast-twitch fibers, patients with severe/very-severe COPD displayed a 30% lower muscle carnosine concentration compared to patients with mild/moderate COPD. As no oxidative/carbonyl stress markers, nor antioxidants were affected, the observed carnosine deficiency is thought to be a possible first sign of muscle redox balance abnormalities.
Collapse
Affiliation(s)
- Jana De Brandt
- Hasselt University, Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, Diepenbeek, Belgium.,Hasselt University, BIOMED - Biomedical Research Institute, Diepenbeek, Belgium
| | - Chris Burtin
- Hasselt University, Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, Diepenbeek, Belgium.,Hasselt University, BIOMED - Biomedical Research Institute, Diepenbeek, Belgium
| | - Pascal Pomiès
- PhyMedExp, University of Montpellier - INSERM - CNRS - CHRU Montpellier, Montpellier, France
| | - Frank Vandenabeele
- Hasselt University, Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, Diepenbeek, Belgium
| | - Kenneth Verboven
- Hasselt University, Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, Diepenbeek, Belgium.,Hasselt University, BIOMED - Biomedical Research Institute, Diepenbeek, Belgium
| | - Joseph Aumann
- Department of Respiratory Medicine, Jessa Hospital, Hasselt, Belgium
| | - Laura Blancquaert
- Ghent University, Department of Movement and Sports Sciences, Ghent, Belgium
| | - Inge Everaert
- Ghent University, Department of Movement and Sports Sciences, Ghent, Belgium
| | - Lisa Van Ryckeghem
- Hasselt University, Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, Diepenbeek, Belgium.,Hasselt University, BIOMED - Biomedical Research Institute, Diepenbeek, Belgium
| | - Jirka Cops
- Hasselt University, Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, Diepenbeek, Belgium.,Hasselt University, BIOMED - Biomedical Research Institute, Diepenbeek, Belgium
| | - Maurice Hayot
- PhyMedExp, University of Montpellier - INSERM - CNRS - CHRU Montpellier, Montpellier, France
| | - Martijn A Spruit
- CIRO, Department of Research and Development, Horn, The Netherlands.,Maastricht University Medical Centre, Department of Respiratory Medicine, Faculty of Health, Medicine and Life Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
| | - Wim Derave
- Ghent University, Department of Movement and Sports Sciences, Ghent, Belgium
| |
Collapse
|
16
|
Decker ST, Kwon OS, Zhao J, Hoidal JR, Heuckstadt T, Richardson RS, Sanders KA, Layec G. Skeletal muscle mitochondrial adaptations induced by long-term cigarette smoke exposure. Am J Physiol Endocrinol Metab 2021; 321:E80-E89. [PMID: 34121449 PMCID: PMC8321829 DOI: 10.1152/ajpendo.00544.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/18/2022]
Abstract
Because patients with chronic obstructive pulmonary disease (COPD) are often physically inactive, it is still unclear whether the lower respiratory capacity in the locomotor muscles of these patients is due to cigarette smoking per se or is secondary to physical deconditioning. Accordingly, the purpose of this study was to examine mitochondrial alterations in the quadriceps muscle of 10 mice exposed to 8 mo of cigarette smoke, a sedentary mouse model of emphysema, and 9 control mice, using immunoblotting, spectrophotometry, and high-resolution respirometry in permeabilized muscle fibers. Mice exposed to smoke displayed a twofold increase in the oxidative stress marker, 4-HNE, (P < 0.05) compared with control mice. This was accompanied by significant decrease in protein expression of UCP3 (65%), ANT (58%), and mitochondrial complexes II-V (∼60%-75%). In contrast, maximal ADP-stimulated respiration with complex I and II substrates (CON: 23.6 ± 6.6 and SMO: 19.2 ± 8.2 ρM·mg-1·s-1) or octanoylcarnitine (CON: 21.8 ± 9.0 and SMO: 16.5 ± 6.6 ρM·mg-1·s-1) measured in permeabilized muscle fibers, as well as citrate synthase activity, were not significantly different between groups. Collectively, our findings revealed that sedentary mice exposed to cigarette smoke for 8 mo, which is typically associated with pulmonary inflammation and emphysema, exhibited a preserved mitochondrial respiratory capacity for various substrates, including fatty acid, in the skeletal muscle. However, the mitochondrial adaptations induced by cigarette smoke favored the development of chronic oxidative stress, which can indirectly contribute to augment the susceptibility to muscle fatigue and exercise intolerance.NEW & NOTEWORTHY It is unclear whether the exercise intolerance and skeletal muscle mitochondrial dysfunction observed in patients with COPD is due to cigarette smoke exposure, per se, or if they are secondary consequences to inactivity. Herein, while long-term exposure to cigarette smoke induces oxidative stress and an altered skeletal muscle phenotype, cigarette smoke does not directly contribute to mitochondrial dysfunction. With this evidence, we demonstrate the critical role of physical inactivity in cigarette smoke-related skeletal muscle dysfunction.
Collapse
Affiliation(s)
- Stephen T Decker
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Oh-Sung Kwon
- Department of Kinesiology, University of Connecticut, Storrs, Connecticut
- UConn Center on Aging and Department of Orthopaedic Surgery, University of Connecticut, School of Medicine, Farmington, Connecticut
- Geriatric Research, Education, and Clinical Center, George E. Wahlen VA Medical Center, Salt Lake City, Utah
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Jia Zhao
- Geriatric Research, Education, and Clinical Center, George E. Wahlen VA Medical Center, Salt Lake City, Utah
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - John R Hoidal
- Department of Internal Medicine, Pulmonary Division, University of Utah, Salt Lake City, Utah
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, Utah
| | - Thomas Heuckstadt
- Department of Internal Medicine, Pulmonary Division, University of Utah, Salt Lake City, Utah
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, Utah
| | - Russell S Richardson
- Geriatric Research, Education, and Clinical Center, George E. Wahlen VA Medical Center, Salt Lake City, Utah
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Karl A Sanders
- Department of Internal Medicine, Pulmonary Division, University of Utah, Salt Lake City, Utah
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, Utah
| | - Gwenael Layec
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts
- Institute of Applied Life Science, University of Massachusetts Amherst, Amherst, Massachusetts
- Geriatric Research, Education, and Clinical Center, George E. Wahlen VA Medical Center, Salt Lake City, Utah
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| |
Collapse
|
17
|
Miyamoto A, Asai K, Kadotani H, Maruyama N, Kubo H, Okamoto A, Sato K, Yamada K, Ijiri N, Watanabe T, Kawaguchi T. Ninjin'yoeito Ameliorates Skeletal Muscle Complications in COPD Model Mice by Upregulating Peroxisome Proliferator-Activated Receptor γ Coactivator-1α Expression. Int J Chron Obstruct Pulmon Dis 2020; 15:3063-3077. [PMID: 33273811 PMCID: PMC7708308 DOI: 10.2147/copd.s280401] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose Sarcopenia, the loss of skeletal muscle mass and strength, is a common systemic consequence of chronic obstructive pulmonary disease (COPD) and is correlated with higher mortality. Ninjin’yoeito (NYT) is a Japanese herbal medicine used to treat athrepsia and anorexia and is reported to ameliorate weight loss and muscular dysfunction. Recent studies have shown that its crude components upregulate the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)-related pathway, which is involved in skeletal muscle functions. Here, we examined whether NYT improves skeletal muscle complications by upregulating PGC-1α in COPD model mice. Materials and Methods Mice were divided into four groups: control, NYT, smoking, and smoking + NYT. The smoking and smoking + NYT groups were exposed to cigarette smoke for 60 min once daily. The mice in the NYT and smoking + NYT groups were fed an NYT-containing diet (3% w/w). We performed cellular analysis of bronchoalveolar lavage fluid, assessed pulmonary morphological changes, examined the expression of PGC-1α mRNA and protein in the gastrocnemius and soleus muscle, measured the hindlimb muscle volume with micro-computed tomography, and determined the myofiber proportion in soleus muscle after 12 weeks. Results Cigarette smoke exposure resulted in reduced skeletal muscle volume and slow-twitch muscle fibers and development of pulmonary emphysema. NYT feeding induced partial recovery of the damaged alveolar wall; however, NYT did not ameliorate smoke-induced alveolar enlargement. These findings revealed that NYT did not have sufficient efficacy in suppressing pulmonary emphysema. On the other hand, PGC-1α expression in muscle tissue of the NYT-fed mice increased significantly, resulting in suppression of smoke-induced loss of muscle mass and alteration in the muscle fiber distribution. Conclusion NYT increases PGC-1α expression in the muscle of COPD model mice and is involved in suppressing cigarette smoke-induced muscle complications. NYT may be a novel preventive and therapeutic medication for muscular dysfunctions in COPD.
Collapse
Affiliation(s)
- Atsushi Miyamoto
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka-City, Osaka, Japan
| | - Kazuhisa Asai
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka-City, Osaka, Japan
| | - Hideaki Kadotani
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka-City, Osaka, Japan
| | - Naomi Maruyama
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka-City, Osaka, Japan
| | - Hiroaki Kubo
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka-City, Osaka, Japan
| | - Atsuko Okamoto
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka-City, Osaka, Japan
| | - Kanako Sato
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka-City, Osaka, Japan
| | - Kazuhiro Yamada
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka-City, Osaka, Japan
| | - Naoki Ijiri
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka-City, Osaka, Japan
| | - Tetsuya Watanabe
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka-City, Osaka, Japan
| | - Tomoya Kawaguchi
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka-City, Osaka, Japan
| |
Collapse
|
18
|
Haji G, Wiegman CH, Michaeloudes C, Patel MS, Curtis K, Bhavsar P, Polkey MI, Adcock IM, Chung KF. Mitochondrial dysfunction in airways and quadriceps muscle of patients with chronic obstructive pulmonary disease. Respir Res 2020; 21:262. [PMID: 33046036 PMCID: PMC7552476 DOI: 10.1186/s12931-020-01527-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/01/2020] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Mitochondrial damage and dysfunction have been reported in airway and quadriceps muscle cells of patients with chronic obstructive pulmonary disease (COPD). We determined the concomitance of mitochondrial dysfunction in these cells in COPD. METHODS Bronchial biopsies were obtained from never- and ex-smoker volunteers and COPD patients (GOLD Grade 2) and quadriceps muscle biopsies from the same volunteers in addition to COPD patients at GOLD Grade 3/4 for measurement of mitochondrial function. RESULTS Decreased mitochondrial membrane potential (ΔΨm), increased mitochondrial reactive oxygen species (mtROS) and decreased superoxide dismutase 2 (SOD2) levels were observed in mitochondria isolated from bronchial biopsies from Grade 2 patients compared to healthy never- and ex-smokers. There was a significant correlation between ΔΨm and FEV1 (% predicted), transfer factor of the lung for carbon monoxide (TLCOC % predicted), 6-min walk test and maximum oxygen consumption. In addition, ΔΨm was also associated with decreased expression levels of electron transport chain (ETC) complex proteins I and II. In quadriceps muscle of Grade 2 COPD patients, a significant increase in total ROS and mtROS was observed without changes in ΔΨm, SOD2 or ETC complex protein expression. However, quadriceps muscle of GOLD Grade 3/4 COPD patients showed an increased mtROS and decreased SOD2 and ETC complex proteins I, II, III and V expression. CONCLUSIONS Mitochondrial dysfunction in the airways, but not in quadriceps muscle, is associated with airflow obstruction and exercise capacity in Grade 2 COPD. Oxidative stress-induced mitochondrial dysfunction in the quadriceps may result from similar disease processes occurring in the lungs.
Collapse
Affiliation(s)
- Gulam Haji
- Airways Disease, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, SW3 6LY, UK.,Royal Brompton & Harefield NHS Foundation Trust, London, UK
| | - Coen H Wiegman
- Airways Disease, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, SW3 6LY, UK.
| | - Charalambos Michaeloudes
- Airways Disease, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, SW3 6LY, UK
| | - Mehul S Patel
- Royal Brompton & Harefield NHS Foundation Trust, London, UK
| | - Katrina Curtis
- Royal Brompton & Harefield NHS Foundation Trust, London, UK
| | - Pankaj Bhavsar
- Airways Disease, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, SW3 6LY, UK
| | | | - Ian M Adcock
- Airways Disease, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, SW3 6LY, UK
| | - Kian Fan Chung
- Airways Disease, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, SW3 6LY, UK.,Royal Brompton & Harefield NHS Foundation Trust, London, UK
| | | |
Collapse
|
19
|
Dalle S, Koppo K. Is inflammatory signaling involved in disease-related muscle wasting? Evidence from osteoarthritis, chronic obstructive pulmonary disease and type II diabetes. Exp Gerontol 2020; 137:110964. [PMID: 32407865 DOI: 10.1016/j.exger.2020.110964] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/15/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022]
Abstract
Muscle loss is an important feature that occurs in multiple pathologies including osteoarthritis (OA), chronic obstructive pulmonary disease (COPD) and type II diabetes (T2D). Despite differences in pathogenesis and disease-related complications, there are reasons to believe that some fundamental underlying mechanisms are inherent to the muscle wasting process, irrespective of the pathology. Recent evidence shows that inflammation, either local or systemic, contributes to the modulation of muscle mass and/or muscle strength, via an altered molecular profile in muscle tissue. However, it remains ambiguous to which extent and via which mechanisms inflammatory signaling affects muscle mass in disease. Therefore, the objective of the present review is to discuss the role of inflammation on skeletal muscle anabolism, catabolism and functionality in three pathologies that are characterized by an eventual loss in muscle mass (and muscle strength), i.e. OA, COPD and T2D. In OA and COPD, most rodent models confirmed that systemic (COPD) or muscle (OA) inflammation directly induces muscle loss or muscle dysfunctionality. However, in a patient population, the association between inflammation and muscular maladaptations are more ambiguous. For example, in T2D patients, systemic inflammation is associated with muscle loss whereas in OA patients this link has not consistently been established. T2D rodent models revealed that increased levels of advanced glycation end-products (AGEs) and a decreased mTORC1 activation play a key role in muscle atrophy, but it remains to be elucidated whether AGEs and mTORC1 are interconnected and contribute to muscle loss in T2D patients. Generally, if any, associations between inflammation and muscle are mainly based on observational and cross-sectional data. There is definitely a need for longitudinal evidence through well-powered randomized control trials that take into account confounders such as age, disease-phenotypes, comorbidities, physical (in) activity etc. This will allow to improve our understanding of the complex interaction between inflammatory signaling and muscle mass loss and hence contribute to the development of therapeutic strategies to combat muscle wasting in these diseases.
Collapse
Affiliation(s)
- Sebastiaan Dalle
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium
| | - Katrien Koppo
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium.
| |
Collapse
|
20
|
Broxterman RM, Hoff J, Wagner PD, Richardson R. Determinants of the diminished exercise capacity in patients with chronic obstructive pulmonary disease: looking beyond the lungs. J Physiol 2020; 598:599-610. [PMID: 31856306 PMCID: PMC6995414 DOI: 10.1113/jp279135] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/06/2019] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Peak oxygen uptake, a primary determinant of prognosis, mortality and quality of life, is diminished in patients with chronic obstructive pulmonary disease (COPD), with mounting evidence supporting an important role for peripheral dysfunction, particularly within skeletal muscle. In patients with severe COPD and activity-matched controls, muscle oxygen transport and utilization were assessed at peak effort during single-leg knee-extensor exercise (KE), where ventilation is assumed to be submaximal. This strategy removes ventilation as the major constraint to exercise capacity in COPD, allowing maximal muscle function to be attained and evaluated. During maximal KE, both convective arterial oxygen delivery to the skeletal muscle microvasculature and subsequent diffusive oxygen delivery to the mitochondria were diminished in patients with COPD compared to control subjects. These findings emphasize the importance of factors, beyond the lungs, that influence exercise capacity in this patient population and may, ultimately, influence the prognosis, mortality and quality of life for patients with COPD. ABSTRACT Peak oxygen uptake ( V ̇ O 2 peak ), a primary determinant of prognosis, mortality and quality of life, is diminished in patients with chronic obstructive pulmonary disease (COPD). Mounting evidence supports an important role of the periphery, particularly skeletal muscle, in the diminished V ̇ O 2 peak with COPD. However, the peripheral determinants of V ̇ O 2 peak have not been comprehensively assessed in this cohort. Thus, the hypothesis was tested that both muscle convective and diffusive oxygen (O2 ) transport, and therefore skeletal muscle peak O2 uptake ( V ̇ M O 2 peak ), are diminished in patients with COPD compared to matched healthy controls, even when ventilatory limitations (i.e. attainment of maximal ventilation) are minimized by using small muscle mass exercise. Muscle O2 transport and utilization were assessed at peak exercise from femoral arterial and venous blood samples and leg blood flow (by thermodilution) in eight patients with severe COPD (forced expiratory volume in 1s (FEV1 ) ± SEM = 0.9 ± 0.1 l, 30% of predicted) and eight controls during single-leg knee-extensor exercise. Both muscle convective O2 delivery (0.44 ± 0.06 vs. 0.69 ± 0.07 l min-1 , P < 0.05) and muscle diffusive O2 conductance (6.6 ± 0.8 vs. 10.4 ± 0.9 ml min-1 mmHg-1 , P < 0.05) were ∼1/3 lower in patients with COPD than controls, resulting in an attenuated V ̇ M O 2 peak in the patients (0.27 ± 0.04 vs. 0.42 ± 0.05 l min-1 , P < 0.05). When cardiopulmonary limitations to exercise are minimized, the convective and diffusive determinants of V ̇ M O 2 peak , at the level of the skeletal muscle, are greatly attenuated in patients with COPD. These findings emphasize the importance of factors, beyond the lungs, that may ultimately influence this population's prognosis, mortality and quality of life.
Collapse
Affiliation(s)
- Ryan M. Broxterman
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
- Geriatric Research, Education, and Clinical Center, VA Medical Center, Salt Lake City, Utah
| | - Jan Hoff
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Peter D. Wagner
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Russell.S. Richardson
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
- Geriatric Research, Education, and Clinical Center, VA Medical Center, Salt Lake City, Utah
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
21
|
van Beers M, Rutten-van Mölken MP, van de Bool C, Boland M, Kremers SP, Franssen FM, van Helvoort A, Gosker HR, Wouters EF, Schols AM. Clinical outcome and cost-effectiveness of a 1-year nutritional intervention programme in COPD patients with low muscle mass: The randomized controlled NUTRAIN trial. Clin Nutr 2020; 39:405-413. [DOI: 10.1016/j.clnu.2019.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/20/2019] [Accepted: 03/04/2019] [Indexed: 01/18/2023]
|
22
|
Marillier M, Bernard AC, Vergès S, Neder JA. Locomotor Muscles in COPD: The Rationale for Rehabilitative Exercise Training. Front Physiol 2020; 10:1590. [PMID: 31992992 PMCID: PMC6971045 DOI: 10.3389/fphys.2019.01590] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/19/2019] [Indexed: 12/28/2022] Open
Abstract
Exercise training as part of pulmonary rehabilitation is arguably the most effective intervention to improve tolerance to physical exertion in patients with chronic obstructive pulmonary disease (COPD). Owing to the fact that exercise training has modest effects on exertional ventilation, operating lung volumes and respiratory muscle performance, improving locomotor muscle structure and function are key targets for pulmonary rehabilitation in COPD. In the current concise review, we initially discuss whether patients’ muscles are exposed to deleterious factors. After presenting corroboratory evidence on this regard (e.g., oxidative stress, inflammation, hypoxemia, inactivity, and medications), we outline their effects on muscle macro- and micro-structure and related functional properties. We then finalize by addressing the potential beneficial consequences of different training strategies on these muscle-centered outcomes. This review provides, therefore, an up-to-date outline of the rationale for rehabilitative exercise training approaches focusing on the locomotor muscles in this patient population.
Collapse
Affiliation(s)
- Mathieu Marillier
- Laboratory of Clinical Exercise Physiology, Kingston General Hospital, Queen's University, Kingston, ON, Canada
| | - Anne-Catherine Bernard
- Laboratory of Clinical Exercise Physiology, Kingston General Hospital, Queen's University, Kingston, ON, Canada
| | - Samuel Vergès
- HP2 Laboratory, INSERM, CHU Grenoble Alpes, Grenoble Alpes University, Grenoble, France
| | - J Alberto Neder
- Laboratory of Clinical Exercise Physiology, Kingston General Hospital, Queen's University, Kingston, ON, Canada
| |
Collapse
|
23
|
Mitochondrial Dysfunction as a Pathogenic Mediator of Chronic Obstructive Pulmonary Disease and Idiopathic Pulmonary Fibrosis. Ann Am Thorac Soc 2019; 15:S266-S272. [PMID: 30759019 DOI: 10.1513/annalsats.201808-585mg] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The mechanisms underlying the pathogenesis of chronic lung diseases, including chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis, remain incompletely understood. Mitochondria are vital cellular organelles crucial for energy generation, the maintenance of cellular metabolism, calcium homeostasis, intracellular signaling, and the regulation of cell death programs. Emerging evidence suggests that mitochondrial dysfunction plays a cardinal role in the initiation and progression of many human diseases, including chronic lung diseases. Upregulation of the autophagy program, a cellular adaptive mechanism for protein and organelle turnover, can occur in response to injury and may have a cell type-specific impact on the progression of disease. The selective autophagy subtype specific for mitochondria (mitophagy), regulated by PINK1 (phosphatase and tensin homolog-induced putative kinase 1), is a cellular response to accumulation of depolarized or injured mitochondria. Autophagy and mitophagy may be associated with either cellular protection or propagation of injury in a cell type-specific manner, and they may also be associated with modulation of cell death pathways. Genetic studies in mouse models have revealed opposing roles for PINK1 and/or mitophagy in the propagation of emphysema and fibrosis, whereas human studies have shown altered regulation of PINK1 in both idiopathic pulmonary fibrosis and COPD. We have also recently identified a role for mitophagy in regulating the cellular necroptosis program, with implications in COPD pathogenesis. Damage-associated molecular patterns released from injured mitochondria and/or necrotic cells may promote proinflammatory and profibrotic responses. In this review, we explore current experimental evidence for mitochondrial dysfunction as a key determinant in the pathogenesis of chronic lung diseases.
Collapse
|
24
|
Marklund S, Bui KL, Nyberg A. Measuring and monitoring skeletal muscle function in COPD: current perspectives. Int J Chron Obstruct Pulmon Dis 2019; 14:1825-1838. [PMID: 31695351 PMCID: PMC6707440 DOI: 10.2147/copd.s178948] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/25/2019] [Indexed: 11/23/2022] Open
Abstract
Skeletal muscle dysfunction is an important systemic consequence of chronic obstructive pulmonary disease (COPD) that worsens the natural cause of the disease. Up to a third of all people with COPD express some form of impairment which encompasses reductions in strength and endurance, as well as an increased fatigability. Considering this complexity, no single test could be used to measure and monitor all aspects of the impaired skeletal muscle function within the COPD population, resulting in a wide range of available tests and measurement techniques. The aim of the current review is to highlight current and new perspectives relevant to skeletal muscle function measurements within the COPD population in order to provide guidance for researchers as well as for clinicians. First of all, standardized and clinically feasible measurement protocols, as well as normative values and predictive equations across the spectrum of impaired function in COPD, are needed before assessment of skeletal muscle function can become a reality in clinical praxis. This should minimally target the quadriceps muscle; however, depending on the objective of measurements, eg, to determine upper limb muscle function or walking capacity, other muscles could also be tested. Furthermore, even though muscle strength measurements are important, current evidence suggests that other aspects, such as the endurance and power capacity of the muscle, should also be considered. Moreover, although static (isometric) measurements have been favored, dynamic measurements of skeletal muscle function should not be neglected as they, in a larger extent than static measurements, are related to tasks of daily living. Lastly, the often modest relationships between functional tests and skeletal muscle function measurements indicate that they evaluate different constructs and thus cannot replace one another. Therefore, for accurate measurements of skeletal muscle function in people with COPD, specific and formal measurements should still be prioritized.
Collapse
Affiliation(s)
- Sarah Marklund
- Department of Community Medicine and Rehabilitation, Section of Physiotherapy, Umeå University, Umeå, Sweden
| | - Kim-Ly Bui
- Rehabilitation Department, Faculty of Medicine Laval University and Centre de recherche, Laval University Quebec Heart and Lung Institute (CRIUCPQ), Québec, QC, Canada
| | - Andre Nyberg
- Department of Community Medicine and Rehabilitation, Section of Physiotherapy, Umeå University, Umeå, Sweden
| |
Collapse
|
25
|
The Relevance of Limb Muscle Dysfunction in Chronic Obstructive Pulmonary Disease. Clin Chest Med 2019; 40:367-383. [DOI: 10.1016/j.ccm.2019.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
26
|
Leermakers PA, Schols AMWJ, Kneppers AEM, Kelders MCJM, de Theije CC, Lainscak M, Gosker HR. Molecular signalling towards mitochondrial breakdown is enhanced in skeletal muscle of patients with chronic obstructive pulmonary disease (COPD). Sci Rep 2018; 8:15007. [PMID: 30302028 PMCID: PMC6177478 DOI: 10.1038/s41598-018-33471-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/27/2018] [Indexed: 11/09/2022] Open
Abstract
Loss of skeletal muscle mitochondrial oxidative capacity is well-established in patients with COPD, but the role of mitochondrial breakdown herein is largely unexplored. Currently, we studied if mitochondrial breakdown signalling is increased in skeletal muscle of COPD patients and associates with the loss of mitochondrial content, and whether it is affected in patients with iron deficiency (ID) or systemic inflammation. Therefore, mitophagy, autophagy, mitochondrial dynamics and content markers were analysed in vastus lateralis biopsies of COPD patients (N = 95, FEV1% predicted: 39.0 [31.0–53.6]) and healthy controls (N = 15, FEV1% predicted: 112.8 [107.5–125.5]). Sub-analyses were performed on patients stratified by ID or C-reactive protein (CRP). Compared with controls, COPD patients had lower muscle mitochondrial content, higher BNIP3L and lower FUNDC1 protein, and higher Parkin protein and gene-expression. BNIP3L and Parkin protein levels inversely correlated with mtDNA/gDNA ratio and FEV1% predicted. ID-COPD patients had lower BNIP3L protein and higher BNIP3 gene-expression, while high CRP patients had higher BNIP3 and autophagy-related protein levels. In conclusion, our data indicates that mitochondrial breakdown signalling is increased in skeletal muscle of COPD patients, and is related to disease severity and loss of mitochondrial content. Moreover, systemic inflammation is associated with higher BNIP3 and autophagy-related protein levels.
Collapse
Affiliation(s)
- P A Leermakers
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands.
| | - A M W J Schols
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - A E M Kneppers
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - M C J M Kelders
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - C C de Theije
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - M Lainscak
- Department of Cardiology, General Hospital Murska Sobota, Murska Sobota, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - H R Gosker
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|