1
|
Reyes‐Molina D, Zapata‐Lamana R, Nazar G, Cigarroa I, Ruiz JR, Parrado E, Losilla J, Celis‐Morales C. Conceptual and Evidence Update on Incidental Physical Activity: A Scoping Review of Experimental and Observational Studies. Scand J Med Sci Sports 2025; 35:e70015. [PMID: 39831442 PMCID: PMC11744493 DOI: 10.1111/sms.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/20/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Promoting incidental physical activity (IPA) can help reduce sedentary lifestyles and physical inactivity levels in the population. However, there is heterogeneity in the definition of IPA, and studies have yet to synthesize the empirical findings on this topic. This review aimed to (1) Synthesize the definitions of the IPA used in the scientific literature, (2) Identify the behaviors part of the IPA, and (3) Synthesize the main findings on IPA. The review followed PRISMA guidelines. A systematic search was performed in July 2023, and an update was made in February 2024 in the CINAHL databases by EBSCOhost, Cochrane Library, Pubmed, ScienceDirect, Scopus, and Web of Science. The search phrase was ("incidental physical activity" OR "incidental physical activity of daily living" OR "incidental movement" OR "vigorous intermittent lifestyle physical activity" OR "VILPA" OR "physical activity of daily living"). Fifty-five studies were included, with non-experimental (40), experimental (12), qualitative studies (2), and mixed design (1). Ten different terms for IPA were identified, and a conceptual definition was included in 33 articles. Behaviors measured as part of the IPA were reported in 41 articles. These definitions describe unstructured, unplanned, and unintentional physical activities of daily living that are performed as a by-product of an activity with a different primary purpose during free or occupational time and without specific fitness, sport, or recreation goals. Include light and vigorous intensities ranging from short sessions of < 1 min to prolonged ones. They include home activities, self-care, gardening, occupation, active transportation, and walking. Furthermore, evidence on IPA suggests an association with a lower risk of all-cause mortality. The findings of this review contribute to the updated study of IPA. Advances in data processing methods are needed to capture the diversity of behaviors and deepen the understanding of IPA.
Collapse
Affiliation(s)
- Daniel Reyes‐Molina
- Doctorado en Psicología, Facultad de Ciencias SocialesUniversidad de ConcepciónConcepciónChile
- Escuela de Kinesiología, Facultad de SaludUniversidad Santo TomásLos ÁngelesChile
- School of Cardiovascular and Metabolic HealthUniversity of GlasgowGlasgowUK
| | - Rafael Zapata‐Lamana
- Escuela de Kinesiología, Facultad de SaludUniversidad Santo TomásLos ÁngelesChile
- Escuela de Educación, Campus Los ÁngelesUniversidad de ConcepciónConcepciónChile
- Centro de Vida SaludableUniversidad de ConcepciónConcepciónChile
| | - Gabriela Nazar
- Centro de Vida SaludableUniversidad de ConcepciónConcepciónChile
- Departamento de Psicología, Facultad de Ciencias SocialesUniversidad de ConcepciónConcepciónChile
| | - Igor Cigarroa
- Escuela de Kinesiología, Facultad de Ciencias de la SaludUniversidad Católica Silva HenríquezLa FloridaChile
| | - Jonatan R. Ruiz
- Department of Physical Education and Sports, Faculty of Sports ScienceSport and Health University Research Institute (iMUDS)GranadaSpain
- Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA)GranadaSpain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN)Instituto de Salud Carlos IIIMadridSpain
| | - Eva Parrado
- Departamento de Psicología Básica, Evolutiva y de la EducaciónUniversidad Autónoma de BarcelonaBellaterraSpain
- Instituto de Investigación del DeporteUniversidad Autónoma de BarcelonaBellaterraSpain
| | - Josep‐Maria Losilla
- Department of Psychobiology and Methodology of Health ScienceAutonomous University of Barcelona, UABBarcelonaSpain
| | - Carlos Celis‐Morales
- School of Cardiovascular and Metabolic HealthUniversity of GlasgowGlasgowUK
- Human Performance Lab, Education, Physical Activity and Health Research UnitUniversity Católica del MauleTalcaChile
- Centro de Investigación en Medicina de Altura (CEIMA)Universidad Arturo PratIquiqueChile
| |
Collapse
|
2
|
Atanasovska T, Farr T, Smith R, Petersen AC, Garnham A, Andersen MJ, Krum H, Wong C, McKenna MJ. Acute oral digoxin in healthy adults hastens fatigue and increases plasma K + during intense exercise, despite preserved skeletal muscle Na +,K +-ATPase. J Physiol 2024; 602:6849-6869. [PMID: 39580613 DOI: 10.1113/jp287274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/21/2024] [Indexed: 11/26/2024] Open
Abstract
We investigated acute effects of the Na+,K+-ATPase (NKA) inhibitor, digoxin, on muscle NKA content and isoforms, arterial plasma [K+] ([K+]a) and fatigue with intense exercise. In a randomised, crossover, double-blind design, 10 healthy adults ingested 0.50 mg digoxin (DIG) or placebo (CON) 60 min before cycling for 1 min at 60%V ̇ O 2 peak ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}{\mathrm{peak}}}}$ then at 95%V ̇ O 2 peak ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}{\mathrm{peak}}}}$ until fatigue. Pre- and post-exercise muscle biopsies were analysed for [3H]-ouabain binding site content without (OB-Fab) and after incubation in digoxin antibody (OB+Fab) and NKA α1-2 and β1-2 isoform proteins. In DIG, pre-exercise serum [digoxin] reached 3.36 (0.80) nM [mean (SD)] and muscle NKA-digoxin occupancy was 8.2%. Muscle OB-Fab did not differ between trials, whereas OB+Fab was higher in DIG than CON (8.1%, treatment main effect, P = 0.001), whilst muscle NKA α1-2 and β1-2 abundances were unchanged by digoxin. Fatigue occurred earlier in DIG than CON [-7.7%, 2.90 (0.77) vs. 3.14 (0.86) min, respectively; P = 0.037]. [K+]a increased during exercise until 1 min post-exercise (P = 0.001), and fell below baseline at 3-10 (P = 0.001) and 20 min post-exercise (P = 0.022, time main effect). In DIG, [K+]a (P = 0.035, treatment effect) and [K+]a rise pre-fatigue were greater [1.64 (0.73) vs. 1.55 (0.73), P = 0.016], with lesser post-exercise [K+]a decline than CON [-2.55 (0.71) vs. -2.74 (0.62) mM, respectively, P = 0.003]. Preserved muscle OB-Fab with digoxin, yet increased OB+Fab with unchanged NKA isoforms, suggests a rapid regulatory assembly of existing NKA α and β subunits exists to preserve muscle NKA capacity. Nonetheless, functional protection against digoxin was incomplete, with earlier fatigue and perturbed [K+]a with exercise. KEY POINTS: Intense exercise causes marked potassium (K+) shifts out of contracting muscle cells, which may contribute to muscle fatigue. Muscle and systemic K+ perturbations with exercise are largely regulated by increased activity of Na+,K+-ATPase in muscle, which can be specifically inhibited by the cardiac glycoside, digoxin. We found that acute oral digoxin in healthy adults reduced time to fatigue during intense exercise, elevated the rise in arterial plasma K+ concentration during exercise and slowed K+ concentration decline post-exercise. Muscle functional Na+,K+-ATPase content was not reduced by acute digoxin, despite an 8.2% digoxin occupancy, and was unchanged at fatigue. Muscle Na+,K+-ATPase isoform protein abundances were unchanged by digoxin or fatigue. These suggest possible rapid assembly of existing subunits into functional pumps. Thus, acute digoxin impaired performance and exacerbated plasma K+ disturbances with intense, fatiguing exercise in healthy participants. These occurred despite the preservation of functional Na+,K+-ATPase in muscle.
Collapse
Affiliation(s)
- Tania Atanasovska
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Trevor Farr
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Robert Smith
- Institute for Health and Sport, Victoria University, Melbourne, Australia
- Department of Anaesthesia, Western Health, Melbourne, Australia
| | - Aaron C Petersen
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Andrew Garnham
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Mitchell J Andersen
- Institute for Health and Sport, Victoria University, Melbourne, Australia
- Heart and Diabetes Institute, Baker IDI, Melbourne, Australia
| | - Henry Krum
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - Chiew Wong
- Department of Cardiology, Northern Imaging Victoria, Northern Health, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
| | - Michael J McKenna
- Institute for Health and Sport, Victoria University, Melbourne, Australia
- College of Physical Education, Southwest University, Chongqing, China
- College of Sport Science, Zhuhai College of Science and Technology, Zhuhai, China
| |
Collapse
|
3
|
Vidović A, Dolinar K, Chibalin AV, Pirkmajer S. AMPK and glucose deprivation exert an isoform-specific effect on the expression of Na +,K +-ATPase subunits in cultured myotubes. J Muscle Res Cell Motil 2024; 45:139-154. [PMID: 38709429 DOI: 10.1007/s10974-024-09673-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
In skeletal muscle, Na+,K+-ATPase (NKA), a heterodimeric (α/β) P-type ATPase, has an essential role in maintenance of Na+ and K+ homeostasis, excitability, and contractility. AMP-activated protein kinase (AMPK), an energy sensor, increases the membrane abundance and activity of NKA in L6 myotubes, but its potential role in regulation of NKA content in skeletal muscle, which determines maximum capacity for Na+ and K+ transport, has not been clearly delineated. We examined whether energy stress and/or AMPK affect expression of NKA subunits in rat L6 and primary human myotubes. Energy stress, induced by glucose deprivation, increased protein content of NKAα1 and NKAα2 in L6 myotubes, while decreasing the content of NKAα1 in human myotubes. Pharmacological AMPK activators (AICAR, A-769662, and diflunisal) modulated expression of NKA subunits, but their effects only partially mimicked those that occurred in response to glucose deprivation, indicating that AMPK does not mediate all effects of energy stress on NKA expression. Gene silencing of AMPKα1/α2 increased protein levels of NKAα1 in L6 myotubes and NKAα1 mRNA levels in human myotubes, while decreasing NKAα2 protein levels in L6 myotubes. Collectively, our results suggest a role for energy stress and AMPK in modulation of NKA expression in skeletal muscle. However, their modulatory effects were not conserved between L6 myotubes and primary human myotubes, which suggests that coupling between energy stress, AMPK, and regulation of NKA expression in vitro depends on skeletal muscle cell model.
Collapse
Affiliation(s)
- Anja Vidović
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Klemen Dolinar
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Alexander V Chibalin
- Department of Molecular Medicine and Surgery, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
- National Research Tomsk State University, Tomsk, Russia
| | - Sergej Pirkmajer
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
4
|
McKenna MJ, Renaud JM, Ørtenblad N, Overgaard K. A century of exercise physiology: effects of muscle contraction and exercise on skeletal muscle Na +,K +-ATPase, Na + and K + ions, and on plasma K + concentration-historical developments. Eur J Appl Physiol 2024; 124:681-751. [PMID: 38206444 PMCID: PMC10879387 DOI: 10.1007/s00421-023-05335-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/27/2023] [Indexed: 01/12/2024]
Abstract
This historical review traces key discoveries regarding K+ and Na+ ions in skeletal muscle at rest and with exercise, including contents and concentrations, Na+,K+-ATPase (NKA) and exercise effects on plasma [K+] in humans. Following initial measures in 1896 of muscle contents in various species, including humans, electrical stimulation of animal muscle showed K+ loss and gains in Na+, Cl- and H20, then subsequently bidirectional muscle K+ and Na+ fluxes. After NKA discovery in 1957, methods were developed to quantify muscle NKA activity via rates of ATP hydrolysis, Na+/K+ radioisotope fluxes, [3H]-ouabain binding and phosphatase activity. Since then, it became clear that NKA plays a central role in Na+/K+ homeostasis and that NKA content and activity are regulated by muscle contractions and numerous hormones. During intense exercise in humans, muscle intracellular [K+] falls by 21 mM (range - 13 to - 39 mM), interstitial [K+] increases to 12-13 mM, and plasma [K+] rises to 6-8 mM, whilst post-exercise plasma [K+] falls rapidly, reflecting increased muscle NKA activity. Contractions were shown to increase NKA activity in proportion to activation frequency in animal intact muscle preparations. In human muscle, [3H]-ouabain-binding content fully quantifies NKA content, whilst the method mainly detects α2 isoforms in rats. Acute or chronic exercise affects human muscle K+, NKA content, activity, isoforms and phospholemman (FXYD1). Numerous hormones, pharmacological and dietary interventions, altered acid-base or redox states, exercise training and physical inactivity modulate plasma [K+] during exercise. Finally, historical research approaches largely excluded female participants and typically used very small sample sizes.
Collapse
Affiliation(s)
- Michael J McKenna
- Institute for Health and Sport, Victoria University, Melbourne, VIC, 8001, Australia.
- College of Physical Education, Southwest University, Chongqing, China.
- College of Sport Science, Zhuhai College of Science and Technology, Zhuhai, China.
| | - Jean-Marc Renaud
- Department of Cellular and Molecular Medicine, Neuromuscular Research Center, University of Ottawa, Ottawa, ON, Canada
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Kristian Overgaard
- Exercise Biology, Department of Public Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
von Seth M, Hillered L, Otterbeck A, Hanslin K, Larsson A, Sjölin J, Lipcsey M. EARLY DECREASED RESPIRATORY CHAIN CAPACITY IN RESUSCITATED EXPERIMENTAL SEPSIS IS A MAJOR CONTRIBUTOR TO LACTATE PRODUCTION. Shock 2023; 60:461-468. [PMID: 37548644 DOI: 10.1097/shk.0000000000002190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
ABSTRACT Background : Increased plasma lactate levels in patients with sepsis may be due to insufficient oxygen delivery, but mitochondrial dysfunction or accelerated glycolysis may also contribute. We studied the effect of the latter on muscle metabolism by using microdialysis in a sepsis model with sustained oxygen delivery and decreased energy consumption or mitochondrial blockade. Methods : Pigs were subjected to continuous Escherichia coli infusion (sepsis group, n = 12) or saline infusion (sham group, n = 4) for 3 h. Protocolized interventions were applied to normalize the oxygen delivery and blood pressure. Microdialysis catheters were used to monitor muscle metabolism (naïve). The same catheters were used to block the electron transport chain with cyanide or the Na + /K + -ATPase inhibitor, ouabain locally. Results: All pigs in the sepsis group had positive blood cultures and a Sequential Organ Failure Assessment score increase by at least 2, fulfilling the sepsis criteria. Plasma lactate was higher in the sepsis group than in the sham group ( P < 0.001), whereas muscle glucose was lower in the sepsis group ( P < 0.01). There were no changes in muscle lactate levels over time but lactate to pyruvate ratio (LPR) was elevated in the sepsis versus the sham group ( P < 0.05). Muscle lactate, LPR, and glutamate levels were higher in the sepsis group than in the sham group in the cyanide catheters ( P < 0.001, all comparisons) and did not normalize in the former group. Conclusions: In this experimental study on resuscitated sepsis, we observed increased aerobic metabolism and preserved mitochondrial function. Sepsis and electron transport chain inhibition led to increased LPR, suggesting a decreased mitochondrial reserve capacity in early sepsis.
Collapse
Affiliation(s)
- Magnus von Seth
- Section of Anesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Lars Hillered
- Section of Neurosurgery, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Alexander Otterbeck
- Section of Anesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Katja Hanslin
- Section of Anesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Anders Larsson
- Section of Clinical Chemistry, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jan Sjölin
- Section of Infectious Diseases, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
6
|
Jan V, Miš K, Nikolic N, Dolinar K, Petrič M, Bone A, Thoresen GH, Rustan AC, Marš T, Chibalin AV, Pirkmajer S. Effect of differentiation, de novo innervation, and electrical pulse stimulation on mRNA and protein expression of Na+,K+-ATPase, FXYD1, and FXYD5 in cultured human skeletal muscle cells. PLoS One 2021; 16:e0247377. [PMID: 33635930 PMCID: PMC7909653 DOI: 10.1371/journal.pone.0247377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 02/05/2021] [Indexed: 12/18/2022] Open
Abstract
Denervation reduces the abundance of Na+,K+-ATPase (NKA) in skeletal muscle, while reinnervation increases it. Primary human skeletal muscle cells, the most widely used model to study human skeletal muscle in vitro, are usually cultured as myoblasts or myotubes without neurons and typically do not contract spontaneously, which might affect their ability to express and regulate NKA. We determined how differentiation, de novo innervation, and electrical pulse stimulation affect expression of NKA (α and β) subunits and NKA regulators FXYD1 (phospholemman) and FXYD5 (dysadherin). Differentiation of myoblasts into myotubes under low serum conditions increased expression of myogenic markers CD56 (NCAM1), desmin, myosin heavy chains, dihydropyridine receptor subunit α1S, and SERCA2 as well as NKAα2 and FXYD1, while it decreased expression of FXYD5 mRNA. Myotubes, which were innervated de novo by motor neurons in co-culture with the embryonic rat spinal cord explants, started to contract spontaneously within 7–10 days. A short-term co-culture (10–11 days) promoted mRNA expression of myokines, such as IL-6, IL-7, IL-8, and IL-15, but did not affect mRNA expression of NKA, FXYDs, or myokines, such as musclin, cathepsin B, meteorin-like protein, or SPARC. A long-term co-culture (21 days) increased the protein abundance of NKAα1, NKAα2, FXYD1, and phospho-FXYD1Ser68 without attendant changes in mRNA levels. Suppression of neuromuscular transmission with α-bungarotoxin or tubocurarine for 24 h did not alter NKA or FXYD mRNA expression. Electrical pulse stimulation (48 h) of non-innervated myotubes promoted mRNA expression of NKAβ2, NKAβ3, FXYD1, and FXYD5. In conclusion, low serum concentration promotes NKAα2 and FXYD1 expression, while de novo innervation is not essential for upregulation of NKAα2 and FXYD1 mRNA in cultured myotubes. Finally, although innervation and EPS both stimulate contractions of myotubes, they exert distinct effects on the expression of NKA and FXYDs.
Collapse
Affiliation(s)
- Vid Jan
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Katarina Miš
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Natasa Nikolic
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Klemen Dolinar
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Metka Petrič
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Andraž Bone
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - G. Hege Thoresen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Arild C. Rustan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Tomaž Marš
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Alexander V. Chibalin
- National Research Tomsk State University, Tomsk, Russia
- Department of Molecular Medicine and Surgery, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Sergej Pirkmajer
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
7
|
Franz A, Berndt F, Raabe J, Harmsen JF, Zilkens C, Behringer M. Invasive Assessment of Hemodynamic, Metabolic and Ionic Consequences During Blood Flow Restriction Training. Front Physiol 2021; 11:617668. [PMID: 33391036 PMCID: PMC7772195 DOI: 10.3389/fphys.2020.617668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose: Medically recommended training often faces the dilemma that necessary mechanical intensities for muscle adaptations exceed patients' physical capacity. In this regard, blood flow restriction (BFR) training is becoming increasingly popular because it enables gains in muscle mass and strength despite using low-mechanical loads combined with external venous occlusion. Since the underlying mechanisms are still unknown, we applied invasive measurements during exercise with and without BFR to promote physiological understanding and safety of this popular training technique. Methods: In a randomized cross-over design, ten healthy men (28.1 ± 6.5 years) underwent two trials of unilateral biceps curls either with (BFR) and without BFR (CON). For analysis of changes in intravascular pressures, blood gases, oximetry and electrolytes, an arterial and a venous catheter were placed at the exercising arm before exercise. Arterial and venous blood gases and intravascular pressures were analyzed before, during and 5 min after exercise. Results: Intravascular pressures in the arterial and venous system were more increased during exercise with BFR compared to CON (p < 0.001). Furthermore, arterial and venous blood gas analyses revealed a BFR-induced metabolic acidosis (p < 0.05) with increased lactate production (p < 0.05) and associated elevations in [K+], [Ca2+] and [Na+] (p < 0.001). Conclusion: The present study describes for the first time the local physiological changes during BFR training. While BFR causes greater hypertension in the arterial and venous system of the exercising extremity, observed electrolyte shifts corroborate a local metabolic acidosis with concurrent rises in [K+] and [Na+]. Although BFR could be a promising new training concept for medical application, its execution is associated with comprehensive physiological challenges.
Collapse
Affiliation(s)
- Alexander Franz
- Department of Orthopedics, University Hospital Duesseldorf, Düsseldorf, Germany.,Department of Adult Reconstruction, ATOS Orthoparc Clinic Cologne, Cologne, Germany
| | - Felix Berndt
- Department of Orthopedics, University Hospital Duesseldorf, Düsseldorf, Germany
| | - Joachim Raabe
- Department of Anesthesiology, University Hospital Duesseldorf, Düsseldorf, Germany
| | - Jan-Frieder Harmsen
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Christoph Zilkens
- Department of Orthopedics, University Hospital Duesseldorf, Düsseldorf, Germany.,Department of Adult Reconstruction, ATOS Orthoparc Clinic Cologne, Cologne, Germany
| | - Michael Behringer
- Department of Sports Medicine and Exercise Physiology, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
8
|
The role of AMPK in regulation of Na +,K +-ATPase in skeletal muscle: does the gauge always plug the sink? J Muscle Res Cell Motil 2021; 42:77-97. [PMID: 33398789 DOI: 10.1007/s10974-020-09594-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022]
Abstract
AMP-activated protein kinase (AMPK) is a cellular energy gauge and a major regulator of cellular energy homeostasis. Once activated, AMPK stimulates nutrient uptake and the ATP-producing catabolic pathways, while it suppresses the ATP-consuming anabolic pathways, thus helping to maintain the cellular energy balance under energy-deprived conditions. As much as ~ 20-25% of the whole-body ATP consumption occurs due to a reaction catalysed by Na+,K+-ATPase (NKA). Being the single most important sink of energy, NKA might seem to be an essential target of the AMPK-mediated energy saving measures, yet NKA is vital for maintenance of transmembrane Na+ and K+ gradients, water homeostasis, cellular excitability, and the Na+-coupled transport of nutrients and ions. Consistent with the model that AMPK regulates ATP consumption by NKA, activation of AMPK in the lung alveolar cells stimulates endocytosis of NKA, thus suppressing the transepithelial ion transport and the absorption of the alveolar fluid. In skeletal muscles, contractions activate NKA, which opposes a rundown of transmembrane ion gradients, as well as AMPK, which plays an important role in adaptations to exercise. Inhibition of NKA in contracting skeletal muscle accentuates perturbations in ion concentrations and accelerates development of fatigue. However, different models suggest that AMPK does not inhibit or even stimulates NKA in skeletal muscle, which appears to contradict the idea that AMPK maintains the cellular energy balance by always suppressing ATP-consuming processes. In this short review, we examine the role of AMPK in regulation of NKA in skeletal muscle and discuss the apparent paradox of AMPK-stimulated ATP consumption.
Collapse
|
9
|
Pirkmajer S, Bezjak K, Matkovič U, Dolinar K, Jiang LQ, Miš K, Gros K, Milovanova K, Pirkmajer KP, Marš T, Kapilevich L, Chibalin AV. Ouabain Suppresses IL-6/STAT3 Signaling and Promotes Cytokine Secretion in Cultured Skeletal Muscle Cells. Front Physiol 2020; 11:566584. [PMID: 33101052 PMCID: PMC7544989 DOI: 10.3389/fphys.2020.566584] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022] Open
Abstract
The cardiotonic steroids (CTS), such as ouabain and marinobufagenin, are thought to be adrenocortical hormones secreted during exercise and the stress response. The catalytic α-subunit of Na,K-ATPase (NKA) is a CTS receptor, whose largest pool is located in skeletal muscles, indicating that muscles are a major target for CTS. Skeletal muscles contribute to adaptations to exercise by secreting interleukin-6 (IL-6) and plethora of other cytokines, which exert paracrine and endocrine effects in muscles and non-muscle tissues. Here, we determined whether ouabain, a prototypical CTS, modulates IL-6 signaling and secretion in the cultured human skeletal muscle cells. Ouabain (2.5–50 nM) suppressed the abundance of STAT3, a key transcription factor downstream of the IL-6 receptor, as well as its basal and IL-6-stimulated phosphorylation. Conversely, ouabain (50 nM) increased the phosphorylation of ERK1/2, Akt, p70S6K, and S6 ribosomal protein, indicating activation of the ERK1/2 and the Akt-mTOR pathways. Proteasome inhibitor MG-132 blocked the ouabain-induced suppression of the total STAT3, but did not prevent the dephosphorylation of STAT3. Ouabain (50 nM) suppressed hypoxia-inducible factor-1α (HIF-1α), a modulator of STAT3 signaling, but gene silencing of HIF-1α and/or its partner protein HIF-1β did not mimic effects of ouabain on the phosphorylation of STAT3. Ouabain (50 nM) failed to suppress the phosphorylation of STAT3 and HIF-1α in rat L6 skeletal muscle cells, which express the ouabain-resistant α1-subunit of NKA. We also found that ouabain (100 nM) promoted the secretion of IL-6, IL-8, GM-CSF, and TNF-α from the skeletal muscle cells of healthy subjects, and the secretion of GM-CSF from cells of subjects with the type 2 diabetes. Marinobufagenin (10 nM), another important CTS, did not alter the secretion of these cytokines. In conclusion, our study shows that ouabain suppresses the IL-6 signaling via STAT3, but promotes the secretion of IL-6 and other cytokines, which might represent a negative feedback in the IL-6/STAT3 pathway. Collectively, our results implicate a role for CTS and NKA in regulation of the IL-6 signaling and secretion in skeletal muscle.
Collapse
Affiliation(s)
- Sergej Pirkmajer
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Katja Bezjak
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Urška Matkovič
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Klemen Dolinar
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Lake Q Jiang
- Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Katarina Miš
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Katarina Gros
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Kseniya Milovanova
- Department of Sports and Health Tourism, Sports Physiology and Medicine, National Research Tomsk State University, Tomsk, Russia
| | - Katja Perdan Pirkmajer
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tomaž Marš
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Leonid Kapilevich
- Department of Sports and Health Tourism, Sports Physiology and Medicine, National Research Tomsk State University, Tomsk, Russia.,Central Scientific Laboratory, Siberian State Medical University, Tomsk, Russia
| | - Alexander V Chibalin
- Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Resistance training upregulates skeletal muscle Na +, K +-ATPase content, with elevations in both α 1 and α 2, but not β isoforms. Eur J Appl Physiol 2020; 120:1777-1785. [PMID: 32500280 DOI: 10.1007/s00421-020-04408-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 05/25/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE The Na+, K+-ATPase (NKA) is important in regulating trans-membrane ion gradients, cellular excitability and muscle function. We investigated the effects of resistance training in healthy young adults on the adaptability of NKA content and of the specific α and β isoforms in human skeletal muscle. METHODS Twenty-one healthy young males (22.9 ± 4.6 year; 1.80 ± 0.70 m, 85.1 ± 17.8 kg, mean ± SD) underwent 7 weeks of resistance training, training three times per week (RT, n = 16) or control (CON, n = 5). The training program was effective with a 39% gain in leg press muscle strength (p = 0.001). A resting vastus lateralis muscle biopsy was taken before and following RT or CON and assayed for NKA content ([3H]ouabain binding site content) and NKA isoform (α1, α2, β1, β2) abundances. RESULTS After RT, each of NKA content (12%, 311 ± 76 vs 349 ± 76 pmol g wet weight-1, p = 0.01), NKA α1 (32%, p = 0.01) and α2 (10%, p < 0.01) isoforms were increased, whereas β1 (p = 0.18) and β2 (p = 0.22) isoforms were unchanged. NKA content and isoform abundances were unchanged during CON. CONCLUSIONS Resistance training increased muscle NKA content through upregulation of both α1 and α2 isoforms, which were independent of β isoform changes. In animal models, modulations in α1 and α2 isoform abundances in skeletal muscle may affect fatigue resistance during exercise, muscle hypertrophy and strength. Whether similar in-vivo functional benefits of these NKA isoform adaptations occurs in human muscle with resistance training remains to be determined.
Collapse
|
11
|
Altarawneh MM, Hanson ED, Betik AC, Petersen AC, Hayes A, McKenna MJ. Effects of testosterone suppression, hindlimb immobilization, and recovery on [ 3H]ouabain binding site content and Na +, K +-ATPase isoforms in rat soleus muscle. J Appl Physiol (1985) 2020; 128:501-513. [PMID: 31854248 DOI: 10.1152/japplphysiol.01077.2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the effects of testosterone suppression, hindlimb immobilization, and recovery on skeletal muscle Na+,K+-ATPase (NKA), measured via [3H]ouabain binding site content (OB) and NKA isoform abundances (α1-3, β1-2). Male rats underwent castration or sham surgery plus 7 days of rest, 10 days of unilateral immobilization (cast), and 14 days of recovery, with soleus muscles obtained at each time from cast and noncast legs. Testosterone reduction did not modify OB or NKA isoforms in nonimmobilized control muscles. With sham surgery, OB was lower after immobilization in the cast leg than in both the noncast leg (-26%, P = 0.023) and the nonimmobilized control (-34%, P = 0.001), but OB subsequently recovered. With castration, OB was lower after immobilization in the cast leg than in the nonimmobilized control (-34%, P = 0.001), and remained depressed at recovery (-34%, P = 0.001). NKA isoforms did not differ after immobilization or recovery in the sham group. After castration, α2 in the cast leg was ~60% lower than in the noncast leg (P = 0.004) and nonimmobilized control (P = 0.004) and after recovery remained lower than the nonimmobilized control (-42%, P = 0.039). After immobilization, β1 was lower in the cast than the noncast leg (-26%, P = 0.018), with β2 lower in the cast leg than in the noncast leg (-71%, P = 0.004) and nonimmobilized control (-65%, P = 0.012). No differences existed for α1 or α3. Thus, both OB and α2 decreased after immobilization and recovery in the castration group, with α2, β1, and β2 isoform abundances decreased with immobilization compared with the sham group. Therefore, testosterone suppression in rats impaired restoration of immobilization-induced lowered number of functional NKA and α2 isoforms in soleus muscle.NEW & NOTEWORTHY: The Na+,K+-ATPase (NKA) is vital in muscle excitability and function. In rats, immobilization depressed soleus muscle NKA, with declines in [3H]ouabain binding, which was restored after 14 days recovery. After testosterone suppression by castration, immobilization depressed [3H]ouabain binding, depressed α2, β1, and β2 isoforms, and abolished subsequent recovery in [3H]ouabain binding and α2 isoforms. This may have implications for functional recovery for inactive men with lowered testosterone levels, such as in prostate cancer or aging.
Collapse
Affiliation(s)
- Muath M Altarawneh
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Erik D Hanson
- Institute for Health and Sport, Victoria University, Melbourne, Australia.,Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, North Carolina
| | - Andrew C Betik
- Institute for Health and Sport, Victoria University, Melbourne, Australia.,Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Aaron C Petersen
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Alan Hayes
- Institute for Health and Sport, Victoria University, Melbourne, Australia.,Australian Institute for Musculoskeletal Science, Victoria University, Melbourne, Australia
| | - Michael J McKenna
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| |
Collapse
|
12
|
Christiansen D. Molecular stressors underlying exercise training-induced improvements in K + regulation during exercise and Na + ,K + -ATPase adaptation in human skeletal muscle. Acta Physiol (Oxf) 2019; 225:e13196. [PMID: 30288889 DOI: 10.1111/apha.13196] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/12/2018] [Accepted: 09/28/2018] [Indexed: 12/28/2022]
Abstract
Despite substantial progress made towards a better understanding of the importance of skeletal muscle K+ regulation for human physical function and its association with several disease states (eg type-II diabetes and hypertension), the molecular basis underpinning adaptations in K+ regulation to various stimuli, including exercise training, remains inadequately explored in humans. In this review, the molecular mechanisms essential for enhancing skeletal muscle K+ regulation and its key determinants, including Na+ ,K+ -ATPase function and expression, by exercise training are examined. Special attention is paid to the following molecular stressors and signaling proteins: oxygenation, redox balance, hypoxia, reactive oxygen species, antioxidant function, Na+ ,K+ , and Ca2+ concentrations, anaerobic ATP turnover, AMPK, lactate, and mRNA expression. On this basis, an update on the effects of different types of exercise training on K+ regulation in humans is provided, focusing on recent discoveries about the muscle fibre-type-dependent regulation of Na+ ,K+ -ATPase-isoform expression. Furthermore, with special emphasis on blood-flow-restricted exercise as an exemplary model to modulate the key molecular mechanisms identified, it is discussed how training interventions may be designed to maximize improvements in K+ regulation in humans. The novel insights gained from this review may help us to better understand how exercise training and other strategies, such as pharmacological interventions, may be best designed to enhance K+ regulation and thus the physical function in humans.
Collapse
Affiliation(s)
- Danny Christiansen
- Department of Nutrition, Exercise and Sports (NEXS) University of Copenhagen Copenhagen Denmark
- Institute for Health and Sport (IHES) Victoria University Melbourne Victoria Australia
| |
Collapse
|
13
|
van Tunen JAC, Dell'Isola A, Juhl C, Dekker J, Steultjens M, Thorlund JB, Lund H. Association of malalignment, muscular dysfunction, proprioception, laxity and abnormal joint loading with tibiofemoral knee osteoarthritis - a systematic review and meta-analysis. BMC Musculoskelet Disord 2018; 19:273. [PMID: 30055600 PMCID: PMC6064629 DOI: 10.1186/s12891-018-2202-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 07/18/2018] [Indexed: 01/28/2023] Open
Abstract
Background To investigate (1) the association of specific biomechanical factors with knee osteoarthritis and knee osteoarthritis development, and (2) the impact of other relevant risk factors on this association. Methods MEDLINE, EMBASE, CINAHL and SPORTDiscus were searched up until April 2017. Studies were included if they fulfilled the following criteria: the study 1) assessed the association of a biomechanical factor with knee osteoarthritis, or knee osteoarthritis development; 2) reported on skeletal malalignment, muscular dysfunction, impaired proprioception, laxity and abnormal loading during gait; 3) was a cohort study with participants developing knee osteoarthritis and participants not developing knee osteoarthritis, or a case-control or cross-sectional study with participants with knee osteoarthritis and without knee osteoarthritis. Risk of bias was assessed with the QUIPS tool and meta-analyses were performed using random effects models. Results Of 6413 unique studies identified, 59 cross-sectional studies were eligible for meta-analyses (9825 participants, 5328 with knee osteoarthritis). No cohort studies fulfilled the inclusion criteria. Compared with healthy controls, patients with knee osteoarthritis have higher odds of having lower muscle strength, proprioception deficits, more medial varus-valgus laxity and less lateral varus-valgus laxity. Patients with medial knee osteoarthritis have higher odds of having a higher knee adduction moment than healthy controls. Level of evidence was graded as ‘very low’ to ‘moderate’ quality. Due to large between study differences moderation of other risk factors on biomechanical risk factors could not be evaluated. Conclusions Patients with knee osteoarthritis are more likely to display a number of biomechanical characteristics. The causal relationship between specific biomechanical factors and the development of knee osteoarthritis could not be determined as no longitudinal studies were included. There is an urgent need for high quality, longitudinal studies to evaluate the impact of specific biomechanical factors on the development of knee osteoarthritis. Trial Registration (PROSPERO ID: CRD42015025092). Electronic supplementary material The online version of this article (10.1186/s12891-018-2202-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joyce A C van Tunen
- Research Unit for Musculoskeletal Function and Physiotherapy, Department of Sports Science and Clinical Biomechanics, Faculty of Health Sciences, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark.
| | - Andrea Dell'Isola
- School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, Scotland
| | - Carsten Juhl
- Research Unit for Musculoskeletal Function and Physiotherapy, Department of Sports Science and Clinical Biomechanics, Faculty of Health Sciences, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark.,Department of Rehabilitation, Copenhagen University Hospital, Herlev and Gentofte, Denmark
| | - Joost Dekker
- Department of Rehabilitation Medicine and Department of Psychiatry, EMGO Insitute for Health and Care Research, VU University Medical Center, Amsterdam, the Netherlands
| | - Martijn Steultjens
- School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, Scotland
| | - Jonas B Thorlund
- Research Unit for Musculoskeletal Function and Physiotherapy, Department of Sports Science and Clinical Biomechanics, Faculty of Health Sciences, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Hans Lund
- Centre for Evidence Based Practice, Western Norway University of Applied Sciences, Bergen, Norway
| |
Collapse
|
14
|
Lee JH, Boland-Freitas R, Ng K. Sarcolemmal excitability changes in normal human aging. Muscle Nerve 2018; 57:981-988. [DOI: 10.1002/mus.26058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 12/30/2017] [Accepted: 01/01/2018] [Indexed: 12/16/2022]
Affiliation(s)
- James H.F. Lee
- Department of Neurology; Royal North Shore Hospital; St Leonards New South Wales 2065 Australia
- Faculty of Medicine; University of Sydney; Sydney New South Wales Australia
| | - Robert Boland-Freitas
- Department of Neurology; Royal North Shore Hospital; St Leonards New South Wales 2065 Australia
- Faculty of Medicine; University of Sydney; Sydney New South Wales Australia
| | - Karl Ng
- Department of Neurology; Royal North Shore Hospital; St Leonards New South Wales 2065 Australia
- Faculty of Medicine; University of Sydney; Sydney New South Wales Australia
| |
Collapse
|
15
|
Wyckelsma VL, Levinger I, Murphy RM, Petersen AC, Perry BD, Hedges CP, Anderson MJ, McKenna MJ. Intense interval training in healthy older adults increases skeletal muscle [ 3H]ouabain-binding site content and elevates Na +,K +-ATPase α 2 isoform abundance in Type II fibers. Physiol Rep 2017; 5:5/7/e13219. [PMID: 28373411 PMCID: PMC5392511 DOI: 10.14814/phy2.13219] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 02/27/2017] [Indexed: 12/12/2022] Open
Abstract
Young adults typically adapt to intense exercise training with an increased skeletal muscle Na+,K+-ATPase (NKA) content, concomitant with reduced extracellular potassium concentration [K+] during exercise and enhanced exercise performance. Whether these changes with longitudinal training occur in older adults is unknown and was investigated here. Fifteen older adults (69.4 ± 3.5 years, mean ± SD) were randomized to either 12 weeks of intense interval training (4 × 4 min at 90-95% peak heart rate), 3 days/week (IIT, n = 8); or no exercise controls (n = 7). Before and after training, participants completed an incremental cycle ergometer exercise test until a rating of perceived exertion of 17 (very hard) on a 20-point scale was attained, with measures of antecubital venous [K+]v Participants underwent a resting muscle biopsy prior to and at 48-72 h following the final training session. After IIT, the peak exercise work rate (25%), oxygen uptake (16%) and heart rate (6%) were increased (P < 0.05). After IIT, the peak exercise plasma [K+]v tended to rise (P = 0.07), while the rise in plasma [K+]v relative to work performed (nmol.L-1J-1) was unchanged. Muscle NKA content increased by 11% after IIT (P < 0.05). Single fiber measurements, increased in NKA α2 isoform in Type II fibers after IIT (30%, P < 0.05), with no changes to the other isoforms in single fibers or homogenate. Thus, intense exercise training in older adults induced an upregulation of muscle NKA, with a fiber-specific increase in NKA α2 abundance in Type II fibers, coincident with increased muscle NKA content and enhanced exercise performance.
Collapse
Affiliation(s)
- Victoria L Wyckelsma
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living (ISEAL), Victoria, Australia
| | - Itamar Levinger
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living (ISEAL), Victoria, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, Australia
| | - Aaron C Petersen
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living (ISEAL), Victoria, Australia
| | - Ben D Perry
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living (ISEAL), Victoria, Australia.,Renal Division, Department of Medicine, Emory University, Atlanta, Georgia
| | - Christopher P Hedges
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living (ISEAL), Victoria, Australia
| | - Mitchell J Anderson
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living (ISEAL), Victoria, Australia.,Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Michael J McKenna
- Clinical Exercise Science Research Program, Institute of Sport, Exercise and Active Living (ISEAL), Victoria, Australia
| |
Collapse
|
16
|
Perry BD, Wyckelsma VL, Murphy RM, Steward CH, Anderson M, Levinger I, Petersen AC, McKenna MJ. Dissociation between short-term unloading and resistance training effects on skeletal muscle Na+,K+-ATPase, muscle function, and fatigue in humans. J Appl Physiol (1985) 2016; 121:1074-1086. [PMID: 27633740 DOI: 10.1152/japplphysiol.00558.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/12/2016] [Indexed: 11/22/2022] Open
Abstract
Physical training increases skeletal muscle Na+,K+-ATPase content (NKA) and improves exercise performance, but the effects of inactivity per se on NKA content and isoform abundance in human muscle are unknown. We investigated the effects of 23-day unilateral lower limb suspension (ULLS) and subsequent 4-wk resistance training (RT) on muscle function and NKA in 6 healthy adults, measuring quadriceps muscle peak torque; fatigue and venous [K+] during intense one-legged cycling exercise; and skeletal muscle NKA content ([3H]ouabain binding) and NKA isoform abundances (immunoblotting) in muscle homogenates (α1-3, β1-2) and in single fibers (α1-3, β1). In the unloaded leg after ULLS, quadriceps peak torque and cycling time to fatigue declined by 22 and 23%, respectively, which were restored with RT. Whole muscle NKA content and homogenate NKA α1-3 and β1-2 isoform abundances were unchanged with ULLS or RT. However, in single muscle fibers, NKA α3 in type I (-66%, P = 0.006) and β1 in type II fibers (-40%, P = 0.016) decreased after ULLS, with other NKA isoforms unchanged. After RT, NKA α1 (79%, P = 0.004) and β1 (35%, P = 0.01) increased in type II fibers, while α2 (76%, P = 0.028) and α3 (142%, P = 0.004) increased in type I fibers compared with post-ULLS. Despite considerably impaired muscle function and earlier fatigue onset, muscle NKA content and homogenate α1 and α2 abundances were unchanged, thus being resilient to inactivity induced by ULLS. Nonetheless, fiber type-specific downregulation with inactivity and upregulation with RT of several NKA isoforms indicate complex regulation of muscle NKA expression in humans.
Collapse
Affiliation(s)
- Ben D Perry
- Institute of Sport, Exercise and Active Living (ISEAL), Clinical Exercise Science Program, Victoria University, Melbourne, Victoria, Australia.,Renal Division, Department of Medicine, Emory University, Atlanta, Georgia
| | - Victoria L Wyckelsma
- Institute of Sport, Exercise and Active Living (ISEAL), Clinical Exercise Science Program, Victoria University, Melbourne, Victoria, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia; and
| | - Collene H Steward
- Institute of Sport, Exercise and Active Living (ISEAL), Clinical Exercise Science Program, Victoria University, Melbourne, Victoria, Australia
| | - Mitchell Anderson
- Institute of Sport, Exercise and Active Living (ISEAL), Clinical Exercise Science Program, Victoria University, Melbourne, Victoria, Australia.,Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Itamar Levinger
- Institute of Sport, Exercise and Active Living (ISEAL), Clinical Exercise Science Program, Victoria University, Melbourne, Victoria, Australia
| | - Aaron C Petersen
- Institute of Sport, Exercise and Active Living (ISEAL), Clinical Exercise Science Program, Victoria University, Melbourne, Victoria, Australia
| | - Michael J McKenna
- Institute of Sport, Exercise and Active Living (ISEAL), Clinical Exercise Science Program, Victoria University, Melbourne, Victoria, Australia;
| |
Collapse
|
17
|
Salomoni S, Tucker K, Hug F, McPhee M, Hodges P. Reduced Maximal Force during Acute Anterior Knee Pain Is Associated with Deficits in Voluntary Muscle Activation. PLoS One 2016; 11:e0161487. [PMID: 27559737 PMCID: PMC4999173 DOI: 10.1371/journal.pone.0161487] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/05/2016] [Indexed: 11/19/2022] Open
Abstract
Although maximal voluntary contraction (MVC) force is reduced during pain, studies using interpolated twitch show no consistent reduction of voluntary muscle drive. The present study aimed to test if the reduction in MVC force during acute experimental pain could be explained by increased activation of antagonist muscles, weak voluntary activation at baseline, or changes in force direction. Twenty-two healthy volunteers performed maximal voluntary isometric knee extensions before, during, and after the effects of hypertonic (pain) and isotonic (control) saline injections into the infrapatellar fat pad. The MVC force, voluntary activation, electromyographic (EMG) activity of agonist, antagonist, and auxiliary (hip) muscles, and pain cognition and anxiety scores were recorded. MVC force was 9.3% lower during pain than baseline (p < 0.001), but there was no systematic change in voluntary activation. Reduced MVC force during pain was variable between participants (SD: 14%), and was correlated with reduced voluntary activation (r = 0.90), baseline voluntary activation (r = − 0.62), and reduced EMG amplitude of agonist and antagonist muscles (all r > 0.52), but not with changes in force direction, pain or anxiety scores. Hence, reduced MVC force during acute pain was mainly explained by deficits in maximal voluntary drive.
Collapse
Affiliation(s)
- Sauro Salomoni
- The University of Queensland, Centre for Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, Brisbane, Australia
| | - Kylie Tucker
- The University of Queensland, Centre for Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, Brisbane, Australia
- The University of Queensland, School of Biomedical Sciences, Brisbane, Australia
| | - François Hug
- The University of Queensland, Centre for Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, Brisbane, Australia
- University of Nantes, Laboratory “Motricité, Interactions, Performance” (EA 4334), Nantes, France
| | - Megan McPhee
- The University of Queensland, Centre for Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, Brisbane, Australia
| | - Paul Hodges
- The University of Queensland, Centre for Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, Brisbane, Australia
- * E-mail:
| |
Collapse
|
18
|
Wyckelsma VL, McKenna MJ. Effects of Age on Na(+),K(+)-ATPase Expression in Human and Rodent Skeletal Muscle. Front Physiol 2016; 7:316. [PMID: 27531982 PMCID: PMC4969555 DOI: 10.3389/fphys.2016.00316] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/13/2016] [Indexed: 12/30/2022] Open
Abstract
The maintenance of transmembrane Na(+) and K(+) concentration gradients and membrane potential is vital for the production of force in skeletal muscle. In aging an inability to maintain ion regulation and membrane potential would have adverse consequences on the capacity for performing repeated muscle contractions, which are critical for everyday activities and functional independence. This short review focusses on the effects of aging on one major and vital component affecting muscle Na(+) and K(+) concentrations, membrane potential and excitability in skeletal muscle, the Na(+),K(+)-ATPase (Na(+),K(+)-pump, NKA) protein. The review examines the effects of age on NKA in both human and rodent models and highlights a distant lack of research in NKA with aging. In rodents, the muscle NKA measured by [(3)H]ouabain binding site content, declines with advanced age from peak values in early life. In human skeletal muscle, however, there appears to be no age effect on [(3)H]ouabain binding site content in physically active older adults between 55 and 76 years compared to those aged between 18 and 30 years of age. Analysis of the NKA isoforms reveal differential changes with age in fiber-types in both rat and humans. The data show considerable disparities, suggesting different regulation of NKA isoforms between rodents and humans. Finally we review the importance of physical activity on NKA content in older humans. Findings suggest that physical activity levels of an individual may have a greater effect on regulating the NKA content in skeletal muscle rather than aging per se, at least up until 80 years of age.
Collapse
Affiliation(s)
- Victoria L Wyckelsma
- Clinical Exercise Science Program, Institute of Sport Exercise and Active Living, Victoria University Melbourne, VIC, Australia
| | - Michael J McKenna
- Clinical Exercise Science Program, Institute of Sport Exercise and Active Living, Victoria University Melbourne, VIC, Australia
| |
Collapse
|
19
|
Pirkmajer S, Chibalin AV. Na,K-ATPase regulation in skeletal muscle. Am J Physiol Endocrinol Metab 2016; 311:E1-E31. [PMID: 27166285 DOI: 10.1152/ajpendo.00539.2015] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 05/02/2016] [Indexed: 12/17/2022]
Abstract
Skeletal muscle contains one of the largest and the most dynamic pools of Na,K-ATPase (NKA) in the body. Under resting conditions, NKA in skeletal muscle operates at only a fraction of maximal pumping capacity, but it can be markedly activated when demands for ion transport increase, such as during exercise or following food intake. Given the size, capacity, and dynamic range of the NKA pool in skeletal muscle, its tight regulation is essential to maintain whole body homeostasis as well as muscle function. To reconcile functional needs of systemic homeostasis with those of skeletal muscle, NKA is regulated in a coordinated manner by extrinsic stimuli, such as hormones and nerve-derived factors, as well as by local stimuli arising in skeletal muscle fibers, such as contractions and muscle energy status. These stimuli regulate NKA acutely by controlling its enzymatic activity and/or its distribution between the plasma membrane and the intracellular storage compartment. They also regulate NKA chronically by controlling NKA gene expression, thus determining total NKA content in skeletal muscle and its maximal pumping capacity. This review focuses on molecular mechanisms that underlie regulation of NKA in skeletal muscle by major extrinsic and local stimuli. Special emphasis is given to stimuli and mechanisms linking regulation of NKA and energy metabolism in skeletal muscle, such as insulin and the energy-sensing AMP-activated protein kinase. Finally, the recently uncovered roles for glutathionylation, nitric oxide, and extracellular K(+) in the regulation of NKA in skeletal muscle are highlighted.
Collapse
Affiliation(s)
- Sergej Pirkmajer
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; and
| | - Alexander V Chibalin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
20
|
Wyckelsma VL, McKenna MJ, Levinger I, Petersen AC, Lamboley CR, Murphy RM. Cell specific differences in the protein abundances of GAPDH and Na(+),K(+)-ATPase in skeletal muscle from aged individuals. Exp Gerontol 2015; 75:8-15. [PMID: 26747222 DOI: 10.1016/j.exger.2015.12.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/12/2015] [Accepted: 12/27/2015] [Indexed: 10/22/2022]
Abstract
Na(+), K(+)-ATPase (NKA) isoforms (α1,α2,α3,β1,β2,β3) are involved in the maintenance of membrane potential and hence are important regulators of cellular homeostasis. Given the age-related decline in skeletal muscle function, we investigated whether the natural physiological process of aging is associated with altered abundance of NKA isoforms (α1,α2,α3,β1,β2,β3) or of the commonly used control protein, glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Importantly, measurements were made in both whole muscle or specific fiber types obtained from skeletal muscle biopsies. Seventeen healthy older (AGED, 69.4 ± 3.5 years, mean ± SD) and 14 younger (YOUNG, 25.5 ± 2.8 years) adults underwent a muscle biopsy for biochemical analyses. Comparing homogenates from AGED and YOUNG individuals revealed higher β3 isoform (p<0.05) and lower GAPDH (p<0.05). Analysis of individual fibers in muscle from YOUNG individuals, showed greater α3 and β2 isoforms, and more GAPDH in Type II compared with Type I fibers (p<0.05). In the AGED, GAPDH was higher in Type II compared with Type I fibers (p<0.05), there were no fiber type differences in the NKA isoforms (p>0.05). Compared with the same fiber type in YOUNG, α1 was greater (Type I) and α3 lower (Type II), while in both fiber types, β2 was lower, β3 greater and GAPDH lower, in muscle from AGED individuals (all p<0.05). Overall, we demonstrate that (i) GAPDH is an inappropriate choice of protein for normalization in all skeletal muscle research and (ii) full understanding of the role of NKA isoforms in human skeletal muscle requires consideration of age and muscle fiber type.
Collapse
Affiliation(s)
- Victoria L Wyckelsma
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Victoria, Australia; Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Michael J McKenna
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Victoria, Australia
| | - Itamar Levinger
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Victoria, Australia
| | - Aaron C Petersen
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Victoria, Australia
| | - Cedric R Lamboley
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Victoria, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
21
|
Perry BD, Levinger P, Morris HG, Petersen AC, Garnham AP, Levinger I, McKenna MJ. The effects of knee injury on skeletal muscle function, Na+, K+-ATPase content, and isoform abundance. Physiol Rep 2015; 3:3/2/e12294. [PMID: 25677549 PMCID: PMC4393202 DOI: 10.14814/phy2.12294] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
While training upregulates skeletal muscle Na(+), K(+)-ATPase (NKA), the effects of knee injury and associated disuse on muscle NKA remain unknown. This was therefore investigated in six healthy young adults with a torn anterior cruciate ligament, (KI; four females, two males; age 25.0 ± 4.9 years; injury duration 15 ± 17 weeks; mean ± SD) and seven age- and BMI-matched asymptomatic controls (CON; five females, two males). Each participant underwent a vastus lateralis muscle biopsy, on both legs in KI and one leg in CON. Muscle was analyzed for muscle fiber type and cross-sectional area (CSA), NKA content ([(3)H]ouabain binding), and α1-3 and β1-2 isoform abundance. Participants also completed physical activity and knee function questionnaires (KI only); and underwent quadriceps peak isometric strength, thigh CSA and postural sway assessments in both injured and noninjured legs. NKA content was 20.1% lower in the knee-injured leg than the noninjured leg and 22.5% lower than CON. NKA α2 abundance was 63.0% lower in the knee-injured leg than the noninjured leg, with no differences in other NKA isoforms. Isometric strength and thigh CSA were 21.7% and 7.1% lower in the injured leg than the noninjured leg, respectively. In KI, postural sway did not differ between legs, but for two-legged standing was 43% higher than CON. Hence, muscle NKA content and α2 abundance were reduced in severe knee injury, which may contribute to impaired muscle function. Restoration of muscle NKA may be important in rehabilitation of muscle function after knee and other lower limb injury.
Collapse
Affiliation(s)
- Ben D Perry
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Victoria, Australia
| | - Pazit Levinger
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Victoria, Australia
| | - Hayden G Morris
- The Park Clinic, St. Vincent's Private Hospital, Melbourne, Victoria, Australia
| | - Aaron C Petersen
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Victoria, Australia
| | - Andrew P Garnham
- School of Exercise and Nutrition Sciences, Deakin University Burwood, Melbourne, Victoria, Australia
| | - Itamar Levinger
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Victoria, Australia
| | - Michael J McKenna
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|