1
|
Silverstein AL, Alilain WJ. Ethanol abolishes ventilatory long-term facilitation and blunts the ventilatory response to hypoxia in female rats. Respir Physiol Neurobiol 2025; 332:104373. [PMID: 39603312 PMCID: PMC11710997 DOI: 10.1016/j.resp.2024.104373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Obstructive sleep apnea (OSA) is a breathing disorder in which airway obstruction during sleep leads to periodic bouts of inadequate (hypopneic) or absent (apneic) ventilation despite neurorespiratory effort. Repetitive apneic and hypopneic exposures can induce intermittent hypoxemia and lead to a host of maladaptive behavioral and physiological outcomes. Intermittent hypoxia treatment (IH), which consists of alternating exposure to hypoxic and normal air, can induce a long-lasting increase in breathing motor outputs called long term facilitation (LTF). IH models key aspects of the hypoxemia experienced during OSA and LTF might serve to prevent OSA or ameliorate its severity by stimulating ventilatory output during or after apnea/hypopnea. Ethanol consumption prior to sleep exacerbates existing OSA, but it is unknown how ethanol affects LTF expression. Thus, we hypothesized that ethanol treatment would attenuate LTF expression and the magnitude of the ventilatory response during acute hypoxic exposure. We administered either low-dose (0.8 g/kg) or high-dose (3 g/kg) ethanol or saline to adult female Sprague-Dawley rats through intraperitoneal injection and then measured subjects' ventilatory output by whole-body plethysmography during baseline, a 5 by 3-minute moderate IH protocol (hypoxia: FiO2 = 0.11, Normoxia: room air), and for one hour following the end of IH. Results indicate that low-dose ethanol abolishes LTF of respiratory rate and minute ventilation and trends suggest that low-dose ethanol might attenuate respiratory rate and minute ventilation during acute hypoxic exposure. While high-dose ethanol significantly diminished subjects' respiratory rate and minute ventilation during hypoxia, LTF expression was not significantly different between high-dose ethanol and saline-treated subjects. Overall, data indicate that ethanol exposure dramatically attenuates LTF expression following IH treatment and impairs ventilatory responses to hypoxia in a dose-dependent manner. Such findings inspire further consideration of ethanol's negative effects upon endogenous compensatory mechanisms for repeated hypoxic exposure, both in the context of OSA and beyond.
Collapse
Affiliation(s)
- Aaron L Silverstein
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, 741 S. Limestone St., Lexington, KY 40508, USA..
| | - Warren J Alilain
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, 741 S. Limestone St., Lexington, KY 40508, USA..
| |
Collapse
|
2
|
Marciante AB, Seven YB, Kelly MN, Perim RR, Mitchell GS. Magnitude and Mechanism of Phrenic Long-term Facilitation Shift Between Daily Rest Versus Active Phase. FUNCTION 2023; 4:zqad041. [PMID: 37753182 PMCID: PMC10519274 DOI: 10.1093/function/zqad041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 09/28/2023] Open
Abstract
Plasticity is a fundamental property of the neural system controlling breathing. One key example of respiratory motor plasticity is phrenic long-term facilitation (pLTF), a persistent increase in phrenic nerve activity elicited by acute intermittent hypoxia (AIH). pLTF can arise from distinct cell signaling cascades initiated by serotonin versus adenosine receptor activation, respectively, and interact via powerful cross-talk inhibition. Here, we demonstrate that the daily rest/active phase and the duration of hypoxic episodes within an AIH protocol have profound impact on the magnitude and mechanism of pLTF due to shifts in serotonin/adenosine balance. Using the historical "standard" AIH protocol (3, 5-min moderate hypoxic episodes), we demonstrate that pLTF magnitude is unaffected by exposure in the midactive versus midrest phase, yet the mechanism driving pLTF shifts from serotonin-dominant (midrest) to adenosine-dominant (midactive). This mechanistic "flip" results from combined influences of hypoxia-evoked adenosine release and daily fluctuations in basal spinal adenosine. Since AIH evokes less adenosine with shorter (15, 1-min) hypoxic episodes, midrest pLTF is amplified due to diminished adenosine constraint on serotonin-driven plasticity; in contrast, elevated background adenosine during the midactive phase suppresses serotonin-dominant pLTF. These findings demonstrate the importance of the serotonin/adenosine balance in regulating the amplitude and mechanism of AIH-induced pLTF. Since AIH is emerging as a promising therapeutic modality to restore respiratory and nonrespiratory movements in people with spinal cord injury or ALS, knowledge of how time-of-day and hypoxic episode duration impact the serotonin/adenosine balance and the magnitude and mechanism of pLTF has profound biological, experimental, and translational implications.
Collapse
Affiliation(s)
- Alexandria B Marciante
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Yasin B Seven
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Mia N Kelly
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Raphael R Perim
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Gordon S Mitchell
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
3
|
Abdelmissih S. A Bitter Experience That Enlightens the Future: COVID-19 Neurological Affection and Perspectives on the Orexigenic System. Cureus 2022; 14:e30788. [DOI: 10.7759/cureus.30788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
|
4
|
Acute intermittent hypoxia evokes ventilatory long-term facilitation and active expiration in unanesthetized rats. Respir Physiol Neurobiol 2021; 294:103768. [PMID: 34343692 DOI: 10.1016/j.resp.2021.103768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 11/23/2022]
Abstract
Acute intermittent hypoxia (AIH) modifies the functioning of the respiratory network, causing respiratory motor facilitation in anesthetized animals and a compensatory increase in pulmonary ventilation in freely behaving animals. However, it is still unclear whether the ventilatory facilitation induced by AIH in unanesthetized animals is associated with changes in the respiratory pattern. We found that Holtzman male rats (80-150 g) exposed to AIH (10 × 6% O2 for 30-40 s every 5 min, n = 9) exhibited a prolonged (30 min) increase in baseline minute ventilation (P < 0.05) compared to control animals (n = 13), combined with the occurrence of late expiratory peak flow events, suggesting the presence of active expiration. The increase in ventilation after AIH was also accompanied by reductions in arterial CO2 and body temperature (n = 5-6, P < 0.05). The systemic treatment with ketanserin (a 5-HT2 receptor antagonist) before AIH prevented the changes in ventilation and active expiration (n = 11) but potentiated the hypothermic response (n = 5, P < 0.05) when compared to appropriate control rats (n = 13). Our findings indicate that the ventilatory long-term facilitation elicited by AIH exposure in unanesthetized rats is linked to the generation of active expiration by mechanisms that may depend on the activation of serotonin receptors. In contrast, the decrease in body temperature induced by AIH may not require 5-HT2 receptor activation.
Collapse
|
5
|
Mo H, Zhao J, Wu X, Liu W, Hu K. The combination of intermittent electrical stimulation with acute intermittent hypoxia strengthens genioglossus muscle discharge in chronic intermittent hypoxia-pretreated rats. Respir Physiol Neurobiol 2021; 291:103680. [PMID: 33971311 DOI: 10.1016/j.resp.2021.103680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/24/2021] [Accepted: 04/30/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Exploring whether the genioglossus discharge in chronic intermittent hypoxia(CIH) - pretreated rats could be enhanced by intermittent electrical stimulation combined with acute intermittent hypoxia(AIH). METHODS Rats were pretreated with CIH for 4 weeks and then were randomly divided into 6 groups: time control, intermittent electric stimulation, AIH, intermittent electric stimulation + AIH, continuous electric stimulation and continuous hypoxia exposure. The genioglossus discharges were recorded and compared before and after stimulation. Normoxic-treated rats were grouped and treated with the same stimulation protocols. RESULTS Intermittent electrical stimulation or AIH temporarily increased the activity of the genioglossus discharge, in which the degree of the increase was significantly higher in CIH-pretreated rats than in normoxic rats.After intermittent electrical stimulation, AIH evoked a sustained elevation of genioglossus discharge activities in CIH-pretreated rats, in which the degree of the increase was significantly higher than in rats induced by a single intermittent electric stimulation. CONCLUSION Intermittent electrical stimulation combined with AIH strengthens the genioglossus plasticity in CIH-pretreated rats.
Collapse
Affiliation(s)
- Huaheng Mo
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - JingJing Zhao
- Department of Respiratory and Critical Care Medicine, Zhumadian Central Hospital, Zhumadian 463000, China.
| | - Xiaofeng Wu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Wei Liu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
6
|
Novel Influences of Sex and APOE Genotype on Spinal Plasticity and Recovery of Function after Spinal Cord Injury. eNeuro 2021; 8:ENEURO.0464-20.2021. [PMID: 33536234 PMCID: PMC7986541 DOI: 10.1523/eneuro.0464-20.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/30/2020] [Accepted: 01/22/2021] [Indexed: 12/16/2022] Open
Abstract
Spinal cord injuries can abolish both motor and sensory function throughout the body. Spontaneous recovery after injury is limited and can vary substantially between individuals. Despite an abundance of therapeutic approaches that have shown promise in preclinical models, there is currently a lack of effective treatment strategies that have been translated to restore function after spinal cord injury (SCI) in the human population. We hypothesized that sex and genetic background of injured individuals could impact how they respond to treatment strategies, presenting a barrier to translating therapies that are not tailored to the individual. One gene of particular interest is APOE, which has been extensively studied in the brain because of its allele-specific influences on synaptic plasticity, metabolism, inflammation, and neurodegeneration. Despite its prominence as a therapeutic target in brain injury and disease, little is known about how it influences neural plasticity and repair processes in the spinal cord. Using humanized mice, we examined how the ε3 and ε4 alleles of APOE influence the efficacy of therapeutic intermittent hypoxia (IH) in inducing spinally-mediated plasticity after cervical SCI (cSCI). IH is sufficient to enhance plasticity and restore motor function after experimental SCI in genetically similar rodent populations, but its effect in human subjects is more variable (Golder and Mitchell, 2005; Hayes et al., 2014). Our results demonstrate that both sex and APOE genotype determine the extent of respiratory motor plasticity that is elicited by IH, highlighting the importance of considering these clinically relevant variables when translating therapeutic approaches for the SCI community.
Collapse
|
7
|
Fonseca EM, Vicente MC, Fournier S, Kinkead R, Bícego KC, Gargaglioni LH. Influence of light/dark cycle and orexins on breathing control in green iguanas (Iguana iguana). Sci Rep 2020; 10:22105. [PMID: 33328521 PMCID: PMC7744544 DOI: 10.1038/s41598-020-79107-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/01/2020] [Indexed: 11/17/2022] Open
Abstract
Light/dark cycle affects the physiology of vertebrates and hypothalamic orexin neurons (ORX) are involved in this function. The breathing pattern of the green iguana changes from continuous to episodic across the light/dark phases. Since the stimulatory actions of ORX on breathing are most important during arousal, we hypothesized that ORX regulates changes of breathing pattern in iguanas. Thus, we: (1) Localized ORX neurons with immunohistochemistry; (2) Quantified cyclic changes in plasma orexin-A levels by ELISA; (3) Compared breathing pattern at rest and during hypoxia and hypercarbia; (4) Evaluated the participation of the ORX receptors in ventilation with intracerebroventricular microinjections of ORX antagonists during light and dark phases. We show that the ORX neurons of I. iguana are located in the periventricular hypothalamic nucleus. Orexin-A peaks during the light/active phase and breathing parallels these cyclic changes: ventilation is higher during the light phase than during the dark phase. However, inactivation of ORX-receptors does not affect the breathing pattern. Iguanas increase ventilation during hypoxia only during the light phase. Conversely, CO2 promotes post-hypercarbic hyperpnea during both phases. We conclude that ORXs potentiate the post-hypercarbic (but not the hypoxic)-drive to breathe and are not involved in light/dark changes in the breathing pattern.
Collapse
Affiliation(s)
- Elisa M Fonseca
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, Unesp, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, CEP 14884-900, Brazil
| | - Mariane C Vicente
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, Unesp, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, CEP 14884-900, Brazil
| | - Stephanie Fournier
- Department of Pediatrics, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, QC, Canada
| | - Richard Kinkead
- Department of Pediatrics, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, QC, Canada
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, Unesp, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, CEP 14884-900, Brazil
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, Unesp, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, CEP 14884-900, Brazil.
| |
Collapse
|
8
|
Chen S, Takahashi N, Chen C, Pauli JL, Kuroki C, Kaminosono J, Kashiwadani H, Kanmura Y, Mori Y, Ou S, Hao L, Kuwaki T. Transient Receptor Potential Ankyrin 1 Mediates Hypoxic Responses in Mice. Front Physiol 2020; 11:576209. [PMID: 33192579 PMCID: PMC7642990 DOI: 10.3389/fphys.2020.576209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/23/2020] [Indexed: 12/03/2022] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is a non-selective cation channel that is broadly expressed in sensory pathways, such as the trigeminal and vagus nerves. It is capable of detecting various irritants in inspired gasses and is activated during hypoxia. In this study, the role of TRPA1 in hypoxia-induced behavioral, respiratory, and cardiovascular responses was examined through four lines of experiments using TRPA1 knockout (KO) mice and wild type (WT) littermates. First, KO mice showed significantly attenuated avoidance behavior in response to a low (15%) oxygen environment. Second, the wake-up response to a hypoxic ramp (from 21 to 10% O2 in 40 s) was measured using EEG electrodes. WT mice woke up within 30 s when oxygen was at 13–14%, but KO mice did not wake up until oxygen levels reached 10%. Histological analysis confirmed that mild (13% O2) hypoxia resulted in an attenuation of trigeminal neuronal activation in KO mice. Third, the ventilatory response to hypoxia was measured with whole body plethysmography. KO mice showed attenuated responses to mild hypoxia (15% O2) but not severe hypoxia (10% O2). Similar responses were observed in WT mice treated with the TRPA1 blocker, AP-18. These data clearly show that TRPA1 is necessary for multiple mild hypoxia (13–15% O2)-induced physiological responses. We propose that TRPA1 channels in the sensory pathways innervating the airway can detect hypoxic environments and prevent systemic and/or cellular hypoxia from occurring.
Collapse
Affiliation(s)
- Sichong Chen
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.,Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Nobuaki Takahashi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan.,The Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan
| | - Changping Chen
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.,Department of Neurosurgery, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jordan L Pauli
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Chiharu Kuroki
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.,Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Jun Kaminosono
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hideki Kashiwadani
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yuichi Kanmura
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Shaowu Ou
- Department of Neurosurgery, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Tomoyuki Kuwaki
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
9
|
Lo Martire V, Berteotti C, Bastianini S, Alvente S, Valli A, Cerri M, Amici R, Silvani A, Swoap SJ, Zoccoli G. The physiological signature of daily torpor is not orexin dependent. J Comp Physiol B 2020; 190:493-507. [DOI: 10.1007/s00360-020-01281-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/01/2020] [Accepted: 04/27/2020] [Indexed: 12/25/2022]
|
10
|
Receno CN, Cunningham CM, Eassa BE, Purdy R, DeRuisseau LR. Method to Obtain Pattern of Breathing in Senescent Mice through Unrestrained Barometric Plethysmography. J Vis Exp 2020. [PMID: 32420981 DOI: 10.3791/59393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Unrestrained barometric plethysmography (UBP) is a method for quantifying the pattern of breathing in mice, where breathing frequency, tidal volume, and minute ventilation are routinely reported. Moreover, information can be collected regarding the neural output of breathing, including the existence of central apneas and augmented breaths. An important consideration for UBP is obtaining a breathing segment with a minimal impact of anxious or active behaviors, to elucidate the response to breathing challenges. Here, we present a protocol that allows for short, quiet baselines to be obtained in aged mice, comparable to waiting for longer bouts of quiet breathing. The use of shorter time segments is valuable, as some strains of mice may be increasingly excitable or anxious, and longer periods of quiet breathing may not be achieved within a reasonable timeframe. We placed 22 month-old mice in a UBP chamber and compared four 15 s quiet breathing segments between minutes 60-120 to a longer 10 min quiet breathing period that took 2-3 h to acquire. We also obtained counts of central apneas and augmented breaths prior to the quiet breathing segments, following a 30 min familiarization period. We show that 10 min of quiet breathing is comparable to using a much shorter 15 s duration. Additionally, the time leading up to these 15 s quiet breathing segments can be used to gather data regarding apneas of central origin. This protocol allows investigators to collect pattern-of-breathing data in a set amount of time and makes quiet baseline measures feasible for mice that may exhibit increased amounts of excitable behavior. The UBP methodology itself provides a useful and noninvasive way to collect pattern-of-breathing data and allows for mice to be tested over several time points.
Collapse
|
11
|
Hoshino T, Sasanabe R, Mano M, Nomura A, Kato C, Sato M, Imai M, Murotani K, Guilleminault C, Shiomi T. Prevalence of Rapid Eye Movement-related Obstructive Sleep Apnea in Adult Narcolepsy. Intern Med 2019; 58:2151-2157. [PMID: 30996185 PMCID: PMC6709340 DOI: 10.2169/internalmedicine.2601-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Objective The association between narcolepsy and rapid eye movement (REM)-related obstructive sleep apnea (OSA) has not been reported. This study aimed to examine the prevalence of REM-related OSA in narcolepsy patients. Methods From January 2013 to April 2018, 141 adult patients were diagnosed with narcolepsy using nocturnal polysomnography and the multiple sleep latency test. The prevalence of REM-related OSA in narcolepsy patients was retrospectively reviewed. Three criteria were used to determine REM-related OSA: Definition #1, an overall apnea-hypopnea index (AHI) ≥5 and AHI during REM (AHIREM)/AHI during non-rapid eye movement (NREM) (AHINREM) ≥2; Definition #2, an overall AHI ≥5 and AHIREM/AHINREM≥2 and AHINREM <15; and Definition #3, an overall AHI ≥5 and AHIREM/AHINREM≥2 and AHINREM <8 plus an REM sleep duration >10.5 minutes. Results Of the 141 narcolepsy patients, 26 were diagnosed with narcolepsy with cataplexy (NA-CA) and 115 with narcolepsy without cataplexy (NA w/o CA). Seventeen patients with NA-CA and 39 with NA w/o CA had OSA. According to Definition #1, the prevalence of REM-related OSA was 47.1% and 41.0%, respectively, in OSA patients with NA-CA and NA w/o CA; according to Definition #2, the respective prevalence was 47.1% and 38.5%, while that according to Definition #3 was 41.2% and 25.6%. No significant differences were found in the prevalence of REM-related OSA for each definition. Conclusion A high prevalence of REM-related OSA was confirmed in adult narcolepsy patients with OSA. Compared to previous reports, we noted a high frequency of REM-related OSA satisfying the relatively strict Definition #3. These results might reflect the pathophysiological characteristics of narcolepsy.
Collapse
Affiliation(s)
- Tetsuro Hoshino
- Department of Sleep Medicine and Sleep Disorders Center, Aichi Medical University Hospital, Japan
| | - Ryujiro Sasanabe
- Department of Sleep Medicine and Sleep Disorders Center, Aichi Medical University Hospital, Japan
| | - Mamiko Mano
- Department of Sleep Medicine and Sleep Disorders Center, Aichi Medical University Hospital, Japan
| | - Atsuhiko Nomura
- Department of Sleep Medicine and Sleep Disorders Center, Aichi Medical University Hospital, Japan
| | - Chihiro Kato
- Department of Sleep Medicine and Sleep Disorders Center, Aichi Medical University Hospital, Japan
| | - Masako Sato
- Department of Sleep Medicine and Sleep Disorders Center, Aichi Medical University Hospital, Japan
| | - Masato Imai
- Department of Sleep Medicine and Sleep Disorders Center, Aichi Medical University Hospital, Japan
| | - Kenta Murotani
- Center for Clinical Research, Aichi Medical University Hospital, Japan
| | | | - Toshiaki Shiomi
- Department of Sleep Medicine and Sleep Disorders Center, Aichi Medical University Hospital, Japan
| |
Collapse
|
12
|
Bastianini S, Alvente S, Berteotti C, Bosi M, Lo Martire V, Silvani A, Valli A, Zoccoli G. Post-sigh sleep apneas in mice: Systematic review and data-driven definition. J Sleep Res 2019; 28:e12845. [PMID: 30920081 DOI: 10.1111/jsr.12845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/01/2019] [Accepted: 02/18/2019] [Indexed: 11/26/2022]
Abstract
Sleep apneas can be categorized as post-sigh (prevailing in non-rapid eye movement sleep) or spontaneous (prevailing in rapid eye movement sleep) according to whether or not they are preceded by an augmented breath (sigh). Notably, the occurrence of these apnea subtypes changes differently in hypoxic/hypercapnic environments and in some genetic diseases, highlighting the importance of an objective discrimination. We aim to: (a) systematically review the literature comparing the criteria used in categorizing mouse sleep apneas; and (b) provide data-driven criteria for this categorization, with the final goal of reducing experimental variability in future studies. Twenty-two wild-type mice, instrumented with electroencephalographic/electromyographic electrodes, were placed inside a whole-body plethysmographic chamber to quantify sleep apneas and sighs. Wake-sleep states were scored on 4-s epochs based on electroencephalographic/electromyographic signals. Literature revision showed that highly different criteria were used for post-sigh apnea definition, the intervals for apnea occurrence after sigh ranging from 1 breath up to 20 s. In our data, the apnea occurrence rate during non-rapid eye movement sleep was significantly higher than that calculated before the sigh only in the 1st and 2nd 4-s epochs following a sigh. These data suggest that, in mice, apneas should be categorized as post-sigh only if they start within 8 s from a sigh; the choice of shorter or longer time windows might underestimate or slightly overestimate their occurrence rate, respectively.
Collapse
Affiliation(s)
- Stefano Bastianini
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sara Alvente
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Chiara Berteotti
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marcello Bosi
- ASL of Romagna, Department Thoracic Diseases, Pulmonary Operative Unit, Morgagni-Pierantoni Hospital, Forlì, Italy
| | - Viviana Lo Martire
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandro Silvani
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alice Valli
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giovanna Zoccoli
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
13
|
Peña-Ortega F. Neural Network Reconfigurations: Changes of the Respiratory Network by Hypoxia as an Example. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1015:217-237. [PMID: 29080029 DOI: 10.1007/978-3-319-62817-2_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neural networks, including the respiratory network, can undergo a reconfiguration process by just changing the number, the connectivity or the activity of their elements. Those elements can be either brain regions or neurons, which constitute the building blocks of macrocircuits and microcircuits, respectively. The reconfiguration processes can also involve changes in the number of connections and/or the strength between the elements of the network. These changes allow neural networks to acquire different topologies to perform a variety of functions or change their responses as a consequence of physiological or pathological conditions. Thus, neural networks are not hardwired entities, but they constitute flexible circuits that can be constantly reconfigured in response to a variety of stimuli. Here, we are going to review several examples of these processes with special emphasis on the reconfiguration of the respiratory rhythm generator in response to different patterns of hypoxia, which can lead to changes in respiratory patterns or lasting changes in frequency and/or amplitude.
Collapse
Affiliation(s)
- Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, UNAM-Campus Juriquilla, Boulevard Juriquilla 3001, Querétaro, 76230, Mexico.
| |
Collapse
|
14
|
Lynch M, Duffell L, Sandhu M, Srivatsan S, Deatsch K, Kessler A, Mitchell GS, Jayaraman A, Rymer WZ. Effect of acute intermittent hypoxia on motor function in individuals with chronic spinal cord injury following ibuprofen pretreatment: A pilot study. J Spinal Cord Med 2017; 40:295-303. [PMID: 26856344 PMCID: PMC5472017 DOI: 10.1080/10790268.2016.1142137] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION Acute intermittent hypoxia (AIH) enhances lower extremity motor function in humans with chronic incomplete spinal cord injury (SCI). AIH-induced spinal plasticity is inhibited by systemic inflammation in animal models. Since SCI is frequently associated with systemic inflammation in humans, we tested the hypothesis that pretreatment with the anti-inflammatory agent ibuprofen enhances the effects of AIH. METHODS A randomized, double-blinded, placebo-controlled crossover design was used. Nine adults (mean age 51.1 ± 13.1 years) with chronic motor-incomplete SCI (7.7 ± 6.3 years post-injury) received a single dose of ibuprofen (800 mg) or placebo, 90 minutes prior to AIH. For AIH, 9% O2 for 90 seconds was interspersed with 21% O2 for 60 seconds. Maximal voluntary ankle plantar flexion isometric torque was assessed prior to, and at 0, 30, and 60 minutes post-AIH. Surface electromyography (EMG) of plantar flexor muscles was also recorded. RESULTS Torque increased significantly after AIH at 30 (P = 0.007; by ∼20%) and 60 (P < 0.001; by ∼30%) minutes post-AIH versus baseline. Ibuprofen did not augment the effects of AIH. EMG activity did not increase significantly after AIH; however, there was a significant association between increases in torque and EMG in both gastrocnemius (R2 = 0.17, P < 0.005) and soleus (R2 = 0.17, P < 0.005) muscles. CONCLUSIONS AIH systematically increased lower extremity torque in individuals with chronic incomplete SCI, but there was no significant effect of ibuprofen pretreatment. Our study re-confirms the ability of AIH to enhance leg strength in persons with chronic incomplete SCI.
Collapse
Affiliation(s)
- Meaghan Lynch
- Rehabilitation Institute of Chicago, Northwestern University, Chicago, IL, USA,Correspondence to: Meaghan Lynch, Rehabilitation Institute of Chicago, 345 E Superior Street, Suite 1600, Chicago, IL 60611, USA.
| | - Lynsey Duffell
- Department of Physical Medicine & Rehabilitation, Northwestern University, Chicago, IL, USA,Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Milap Sandhu
- Department of Physical Medicine & Rehabilitation, Northwestern University, Chicago, IL, USA
| | - Sudarshan Srivatsan
- Rehabilitation Institute of Chicago, Northwestern University, Chicago, IL, USA
| | - Kelly Deatsch
- Rehabilitation Institute of Chicago, Northwestern University, Chicago, IL, USA
| | - Allison Kessler
- Rehabilitation Institute of Chicago, Northwestern University, Chicago, IL, USA
| | - Gordon S. Mitchell
- Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Arun Jayaraman
- Department of Physical Medicine & Rehabilitation, Northwestern University, Chicago, IL, USA,Max Nader Center for Rehabilitation Technologies & Outcomes, Rehabilitation Institute of Chicago, Chicago, IL, USA,Department of Medical Social Sciences, Northwestern University, Chicago, IL, USA,Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA
| | - William Zev Rymer
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Professor, Northwestern University, Chicago, IL, USA
| |
Collapse
|
15
|
Carrive P, Kuwaki T. Orexin and Central Modulation of Cardiovascular and Respiratory Function. Curr Top Behav Neurosci 2017; 33:157-196. [PMID: 27909989 DOI: 10.1007/7854_2016_46] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Orexin makes an important contribution to the regulation of cardiorespiratory function. When injected centrally under anesthesia, orexin increases blood pressure, heart rate, sympathetic nerve activity, and the amplitude and frequency of respiration. This is consistent with the location of orexin neurons in the hypothalamus and the distribution of orexin terminals at all levels of the central autonomic and respiratory network. These cardiorespiratory responses are components of arousal and are necessary to allow the expression of motivated behaviors. Thus, orexin contributes to the cardiorespiratory response to acute stressors, especially those of a psychogenic nature. Consequently, upregulation of orexin signaling, whether it is spontaneous or environmentally induced, can increase blood pressure and lead to hypertension, as is the case for the spontaneously hypertensive rat and the hypertensive BPH/2J Schlager mouse. Blockade of orexin receptors will reduce blood pressure in these animals, which could be a new pharmacological approach for the treatment of some forms of hypertension. Orexin can also magnify the respiratory reflex to hypercapnia in order to maintain respiratory homeostasis, and this may be in part why it is upregulated during obstructive sleep apnea. In this pathological condition, blockade of orexin receptors would make the apnea worse. To summarize, orexin is an important modulator of cardiorespiratory function. Acting on orexin signaling may help in the treatment of some cardiovascular and respiratory disorders.
Collapse
Affiliation(s)
- Pascal Carrive
- School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Tomoyuki Kuwaki
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
16
|
Messina G, Di Bernardo G, Viggiano A, De Luca V, Monda V, Messina A, Chieffi S, Galderisi U, Monda M. Exercise increases the level of plasma orexin A in humans. J Basic Clin Physiol Pharmacol 2016; 27:611-616. [PMID: 27665420 DOI: 10.1515/jbcpp-2015-0133] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 07/18/2016] [Indexed: 01/11/2023]
Abstract
BACKGROUND The purpose of this research was to study the effects of exercise on the concentration of plasma orexin A, a peptide regulating several physiological functions. METHODS Blood samples were collected from participants (men, n=10; age: 24.4±2.93 years) 15, 0 min before the start of exercise, and 30, 45, 60 min after a cycle ergometer exercise at 75 W for 15 min. Also heart rate (HR), galvanic skin response (GSR), and rectal temperature were monitored. RESULTS The exercise induced a significant increase (p<0.01) in plasmatic orexin A with a peak at 30 min after the exercise bout, in association with an increase of the other three monitored variables: HR (p<0.01), GSR (p<0.05), and rectal temperature (p<0.01). CONCLUSIONS Our findings indicate that plasmatic orexin A is involved in the reaction to physical activity.
Collapse
|
17
|
Miyata K, Kuwaki T, Ootsuka Y. The integrated ultradian organization of behavior and physiology in mice and the contribution of orexin to the ultradian patterning. Neuroscience 2016; 334:119-133. [PMID: 27491480 DOI: 10.1016/j.neuroscience.2016.07.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/22/2016] [Accepted: 07/26/2016] [Indexed: 11/15/2022]
Abstract
Our series of rat experiments have shown that locomotor activity, arousal level, body and brown adipose tissue temperatures, heart rate and arterial pressure increase episodically in an integrated manner approximately every 100min (ultradian manner). Although it has been proposed that the integrated ultradian pattern is a fundamental biological rhythm across species, there are no reports of the integrated ultradian pattern in species other than rats. The aim of the present study was to establish a mouse model using simultaneous recording of locomotor activity, eating behavior, body temperature, heart rate and arousal in order to determine whether their behavior and physiology are organized in an ultradian manner in normal (wild-type) mice. We also incorporated the same recording in prepro-orexin knockout (ORX-KO) mice to reveal the role of orexin in the brain mechanisms underlying ultradian patterning. The orexin system is one of the key conductors required for coordinating autonomic functions and behaviors, and thus may contribute to ultradian patterning. In wild-type mice, locomotor activity, arousal level, body temperature and heart rate increased episodically every 93±18min (n=8) during 24h. Eating was integrated into the ultradian pattern, commencing 23±4min (n=8) after the onset of an electroencephalogram (EEG) ultradian episode. The integrated ultradian pattern in wild-type mice is very similar to that observed in rats. In ORX-KO mice, the ultradian episodic changes in locomotor activity, EEG arousal indices and body temperature were significantly attenuated, but the ultradian patterning was preserved. Our findings support the view that the ultradian pattern is common across species. The present results also suggest that orexin contributes to driving ultradian episodic changes, however, this neuropeptide is not essential for the generation of the ultradian pattern.
Collapse
Affiliation(s)
- Kohei Miyata
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tomoyuki Kuwaki
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Youichirou Ootsuka
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan; Centre for Neuroscience, Department of Human Physiology, School of Medicine, Flinders University, South Australia, Australia.
| |
Collapse
|
18
|
Pamenter ME, Powell FL. Time Domains of the Hypoxic Ventilatory Response and Their Molecular Basis. Compr Physiol 2016; 6:1345-85. [PMID: 27347896 DOI: 10.1002/cphy.c150026] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ventilatory responses to hypoxia vary widely depending on the pattern and length of hypoxic exposure. Acute, prolonged, or intermittent hypoxic episodes can increase or decrease breathing for seconds to years, both during the hypoxic stimulus, and also after its removal. These myriad effects are the result of a complicated web of molecular interactions that underlie plasticity in the respiratory control reflex circuits and ultimately control the physiology of breathing in hypoxia. Since the time domains of the physiological hypoxic ventilatory response (HVR) were identified, considerable research effort has gone toward elucidating the underlying molecular mechanisms that mediate these varied responses. This research has begun to describe complicated and plastic interactions in the relay circuits between the peripheral chemoreceptors and the ventilatory control circuits within the central nervous system. Intriguingly, many of these molecular pathways seem to share key components between the different time domains, suggesting that varied physiological HVRs are the result of specific modifications to overlapping pathways. This review highlights what has been discovered regarding the cell and molecular level control of the time domains of the HVR, and highlights key areas where further research is required. Understanding the molecular control of ventilation in hypoxia has important implications for basic physiology and is emerging as an important component of several clinical fields. © 2016 American Physiological Society. Compr Physiol 6:1345-1385, 2016.
Collapse
Affiliation(s)
| | - Frank L Powell
- Physiology Division, Department of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
19
|
Kim SJ, Kim YJ, Kakall Z, Farnham MMJ, Pilowsky PM. Intermittent hypoxia-induced cardiorespiratory long-term facilitation: A new role for microglia. Respir Physiol Neurobiol 2016; 226:30-8. [PMID: 27015670 DOI: 10.1016/j.resp.2016.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 03/18/2016] [Accepted: 03/18/2016] [Indexed: 02/07/2023]
Abstract
Intermittent hypoxia induces plasticity in neural networks controlling breathing and cardiovascular function. Studies demonstrate that mechanisms causing cardiorespiratory plasticity rely on intracellular signalling pathways that are activated by specific neurotransmitters. Peptides such as serotonin, PACAP and orexin are well-known for their physiological significance in regulating the cardiorespiratory system. Their receptor counterparts are present in cardiorespiratory centres of the brainstem medulla and spinal cord. Microglial cells are also important players in inducing plasticity. The phenotype and function of microglial cells can change based on the physiological state of the central nervous system. Here, we propose that in the autonomic nuclei of the ventral brainstem the relationship between neurotransmitters and neurokines, neurons and microglia determines the overall neural function of the central cardiorespiratory system.
Collapse
Affiliation(s)
- Seung Jae Kim
- Department of Physiology, Faculty of Medicine, The University of Sydney, Sydney, New South Wales 2006, Australia; The Heart Research Institute, 7 Eliza Street, Newtown, Sydney 2042, Australia
| | - Yeon Jae Kim
- Department of Physiology, Faculty of Medicine, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zohra Kakall
- Department of Physiology, Faculty of Medicine, The University of Sydney, Sydney, New South Wales 2006, Australia; The Heart Research Institute, 7 Eliza Street, Newtown, Sydney 2042, Australia
| | - Melissa M J Farnham
- Department of Physiology, Faculty of Medicine, The University of Sydney, Sydney, New South Wales 2006, Australia; The Heart Research Institute, 7 Eliza Street, Newtown, Sydney 2042, Australia
| | - Paul M Pilowsky
- Department of Physiology, Faculty of Medicine, The University of Sydney, Sydney, New South Wales 2006, Australia; The Heart Research Institute, 7 Eliza Street, Newtown, Sydney 2042, Australia.
| |
Collapse
|
20
|
Role of Astrocytes in Central Respiratory Chemoreception. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 949:109-145. [PMID: 27714687 DOI: 10.1007/978-3-319-40764-7_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Astrocytes perform various homeostatic functions in the nervous system beyond that of a supportive or metabolic role for neurons. A growing body of evidence indicates that astrocytes are crucial for central respiratory chemoreception. This review presents a classical overview of respiratory central chemoreception and the new evidence for astrocytes as brainstem sensors in the respiratory response to hypercapnia. We review properties of astrocytes for chemosensory function and for modulation of the respiratory network. We propose that astrocytes not only mediate between CO2/H+ levels and motor responses, but they also allow for two emergent functions: (1) Amplifying the responses of intrinsic chemosensitive neurons through feedforward signaling via gliotransmitters and; (2) Recruiting non-intrinsically chemosensitive cells thanks to volume spreading of signals (calcium waves and gliotransmitters) to regions distant from the CO2/H+ sensitive domains. Thus, astrocytes may both increase the intensity of the neuron responses at the chemosensitive sites and recruit of a greater number of respiratory neurons to participate in the response to hypercapnia.
Collapse
|
21
|
Franco P, Junqua A, Guignard-Perret A, Raoux A, Perier M, Raverot V, Claustrat B, Gustin MP, Inocente CO, Lin JS. High bicarbonate levels in narcoleptic children. J Sleep Res 2015; 25:194-202. [PMID: 26574184 DOI: 10.1111/jsr.12357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 09/08/2015] [Indexed: 12/01/2022]
Abstract
The objective of this study was to evaluate the levels of plasma bicarbonate levels in narcoleptic children. Clinical, electrophysiological data and bicarbonate levels were evaluated retrospectively in children seen in our paediatric national reference centre for hypersomnia. The cohort included 23 control subjects (11.5 ± 4 years, 43% boys) and 51 patients presenting de-novo narcolepsy (N) (12.7 ± 3.7 years, 47% boys). In narcoleptic children, cataplexy was present in 78% and DQB1*0602 was positive in 96%. The control children were less obese (2 versus 47%, P = 0.001). Compared with control subjects, narcoleptic children had higher bicarbonate levels (P = 0.02) as well as higher PCO2 (P < 0.01) and lower venous pH gas (P < 0.01). Bicarbonate levels higher than 27 mmol L(-1) were found in 41.2% of the narcoleptic children and 4.2% of the controls (P = 0.001). Bicarbonate levels were correlated with the Adapted Epworth Sleepiness Scale (P = 0.01). Narcoleptic patients without obesity often had bicarbonate levels higher than 27 mmol L (-1) (55 versus 25%, P = 0.025). No differences were found between children with and without cataplexy. In conclusion, narcoleptic patients had higher bicarbonate plasma levels compared to control children. This result could be a marker of hypoventilation in this pathology, provoking an increase in PCO2 and therefore a respiratory acidosis, compensated by an increase in plasma bicarbonates. This simple screening tool could be useful for prioritizing children for sleep laboratory evaluation in practice.
Collapse
Affiliation(s)
- Patricia Franco
- Integrative Physiology of Brain Arousal System, CRNL, INSERM-U1028, University Lyon1, Lyon, France.,National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome (CNR narcolepsie-hypersomnie), Lyon, France.,Pediatric Sleep Unit, Hôpital Femme Mère Enfant, University Lyon1, Lyon, France
| | - Aurelie Junqua
- Integrative Physiology of Brain Arousal System, CRNL, INSERM-U1028, University Lyon1, Lyon, France.,National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome (CNR narcolepsie-hypersomnie), Lyon, France.,Pediatric Sleep Unit, Hôpital Femme Mère Enfant, University Lyon1, Lyon, France.,Service d'Hormonologie, Groupement Est, Université Lyon 1, Lyon, France
| | - Anne Guignard-Perret
- Integrative Physiology of Brain Arousal System, CRNL, INSERM-U1028, University Lyon1, Lyon, France.,National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome (CNR narcolepsie-hypersomnie), Lyon, France.,Pediatric Sleep Unit, Hôpital Femme Mère Enfant, University Lyon1, Lyon, France
| | - Aude Raoux
- Integrative Physiology of Brain Arousal System, CRNL, INSERM-U1028, University Lyon1, Lyon, France.,National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome (CNR narcolepsie-hypersomnie), Lyon, France.,Pediatric Sleep Unit, Hôpital Femme Mère Enfant, University Lyon1, Lyon, France
| | - Magali Perier
- Integrative Physiology of Brain Arousal System, CRNL, INSERM-U1028, University Lyon1, Lyon, France
| | - Veronique Raverot
- Service d'Hormonologie, Groupement Est, Université Lyon 1, Lyon, France
| | - Bruno Claustrat
- Service d'Hormonologie, Groupement Est, Université Lyon 1, Lyon, France
| | - Marie-Paule Gustin
- Department of Public Health, Institute of Pharmacy and Service de Biostatistique, University Lyon1, Lyon, France
| | - Clara Odilia Inocente
- Integrative Physiology of Brain Arousal System, CRNL, INSERM-U1028, University Lyon1, Lyon, France
| | - Jian-Sheng Lin
- Integrative Physiology of Brain Arousal System, CRNL, INSERM-U1028, University Lyon1, Lyon, France
| |
Collapse
|
22
|
Sutton EL. Profile of suvorexant in the management of insomnia. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:6035-42. [PMID: 26648692 PMCID: PMC4651361 DOI: 10.2147/dddt.s73224] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Suvorexant, approved in late 2014 in the United States and Japan for the treatment of insomnia characterized by difficulty achieving and/or maintaining sleep, is a dual orexin receptor antagonist and the first drug in its class to reach the market. Its development followed from the 1998 discovery of orexins (also called hypocretins), excitatory neuropeptides originating from neurons in the hypothalamus involved in regulation of sleep and wake, feeding behavior and energy regulation, motor activity, and reward-seeking behavior. Suvorexant objectively improves sleep, shortening the time to achieve persistent sleep and reducing wake after sleep onset, although at approved doses (≤20 mg) the benefit was subjectively assessed as modest. Its half-life of 12 hours is relatively long for a modern hypnotic; however, at approved doses (≤20 mg) next-day sedation and driving impairment were much less apparent than at higher doses. Suvorexant is metabolized by the hepatic CYP3A system and should be avoided in combination with strong CYP3A inhibitors. Drug levels are higher in women and obese people; hence, dosing should be conservative in obese women. Administration with food delays drug absorption and is not advised. No dose adjustment is needed for advanced age, renal impairment, or mild-to-moderate hepatic impairment. Suvorexant in contraindicated in narcolepsy and has not been studied in children. In alignment with the changes begun in 2013 in the labeling of other hypnotics, the United States Food and Drug Administration advises that the lowest dose effective to treat symptoms be used and that patients be advised of the possibility of next-day impairment in function, including driving. Infrequent but notable side effects included abnormal dreams, sleep paralysis, and suicidal ideation that were dose-related and reported to be mild. Given its mechanism of action, cataplexy and rapid eye movement (REM) sleep behavior disorder could potentially occur in some patients taking this medication.
Collapse
Affiliation(s)
- Eliza L Sutton
- Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
23
|
Bastianini S, Silvani A, Berteotti C, Lo Martire V, Cohen G, Ohtsu H, Lin JS, Zoccoli G. Histamine Transmission Modulates the Phenotype of Murine Narcolepsy Caused by Orexin Neuron Deficiency. PLoS One 2015; 10:e0140520. [PMID: 26474479 PMCID: PMC4608736 DOI: 10.1371/journal.pone.0140520] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 09/27/2015] [Indexed: 01/10/2023] Open
Abstract
Narcolepsy type 1 is associated with loss of orexin neurons, sleep-wake derangements, cataplexy, and a wide spectrum of alterations in other physiological functions, including energy balance, cardiovascular, and respiratory control. It is unclear which narcolepsy signs are directly related to the lack of orexin neurons or are instead modulated by dysfunction of other neurotransmitter systems physiologically controlled by orexin neurons, such as the histamine system. To address this question, we tested whether some of narcolepsy signs would be detected in mice lacking histamine signaling (HDC-KO). Moreover, we studied double-mutant mice lacking both histamine signaling and orexin neurons (DM) to evaluate whether the absence of histamine signaling would modulate narcolepsy symptoms produced by orexin deficiency. Mice were instrumented with electrodes for recording the electroencephalogram and electromyogram and a telemetric arterial pressure transducer. Sleep attacks fragmenting wakefulness, cataplexy, excess rapid-eye-movement sleep (R) during the activity period, and enhanced increase of arterial pressure during R, which are hallmarks of narcolepsy in mice, did not occur in HDC-KO, whereas they were observed in DM mice. Thus, these narcolepsy signs are neither caused nor abrogated by the absence of histamine. Conversely, the lack of histamine produced obesity in HDC-KO and to a greater extent also in DM. Moreover, the regularity of breath duration during R was significantly increased in either HDC-KO or DM relative to that in congenic wild-type mice. Defects of histamine transmission may thus modulate the metabolic and respiratory phenotype of murine narcolepsy.
Collapse
Affiliation(s)
- Stefano Bastianini
- PRISM Laboratory, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Alessandro Silvani
- PRISM Laboratory, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Chiara Berteotti
- PRISM Laboratory, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Viviana Lo Martire
- PRISM Laboratory, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Gary Cohen
- Department of Women & Child Health, Karolinska Institutet, Stockholm, Sweden
| | - Hiroshi Ohtsu
- Applied Quantum Medical Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Jian-Sheng Lin
- Physiologie intégrée du système d'éveil, Centre de recherche en neurosciences de Lyon, INSERM U1028-CNRS UMR 5292 Faculté de Médecine, Université Claude Bernard, Lyon, France
| | - Giovanna Zoccoli
- PRISM Laboratory, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
24
|
Intermittent but not sustained hypoxia activates orexin-containing neurons in mice. Respir Physiol Neurobiol 2014; 206:11-4. [PMID: 25462014 DOI: 10.1016/j.resp.2014.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/20/2014] [Accepted: 11/05/2014] [Indexed: 11/22/2022]
Abstract
Hypothalamic orexin-containing neurons are activated by CO2 and contribute to hypercapnic ventilatory activation. However, their role in oxygen-related regulation of breathing is not well defined. In this study, we examined whether an experimental model mimicking apnea-induced repetitive hypoxemia (intermittent hypoxia [IH]) activates orexin-containing neurons. Mice were exposed to IH (5×5min at 10% O2), intermittent hyperoxia (IO; 5×5min at 50% O2), sustained hypoxia (SH; 25min at 10% O2), or sham stimulation. Their brains were examined using double immunohistochemical staining for orexin and c-Fos. The results indicated that IH (25.8±3.0%), but not SH (9.0±1.5%) activated orexin-containing neurons when compared to IO (5.5±0.6%) and sham stimulation (5.9±1.4%). These results correlate with those of our previous work showing that IH-induced respiratory long-term facilitation is dependent on orexin-containing neurons. Taken together, orexin contributes to repetitive hypoxia-induced respiratory activation and the hypoxic activation of orexin-containing neurons is pattern dependent.
Collapse
|
25
|
Li J, Hu Z, de Lecea L. The hypocretins/orexins: integrators of multiple physiological functions. Br J Pharmacol 2014; 171:332-50. [PMID: 24102345 DOI: 10.1111/bph.12415] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 07/16/2013] [Accepted: 08/02/2013] [Indexed: 12/28/2022] Open
Abstract
The hypocretins (Hcrts), also known as orexins, are two peptides derived from a single precursor produced in the posterior lateral hypothalamus. Over the past decade, the orexin system has been associated with numerous physiological functions, including sleep/arousal, energy homeostasis, endocrine, visceral functions and pathological states, such as narcolepsy and drug abuse. Here, we review the discovery of Hcrt/orexins and their receptors and propose a hypothesis as to how the orexin system orchestrates these multifaceted physiological functions.
Collapse
Affiliation(s)
- Jingcheng Li
- Department of Physiology, Third Military Medical University, Chongqing, China
| | | | | |
Collapse
|
26
|
Kernder A, De Luca R, Yanovsky Y, Haas HL, Sergeeva OA. Acid-sensing hypothalamic neurons controlling arousal. Cell Mol Neurobiol 2014; 34:777-89. [PMID: 24798513 PMCID: PMC11488898 DOI: 10.1007/s10571-014-0065-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 04/16/2014] [Indexed: 12/30/2022]
Abstract
Breathing and vigilance are regulated by pH and CO2 levels in the central nervous system. The hypocretin/orexin (Hcrt/Orx)- and histamine (HA)-containing hypothalamic neurons synergistically control different aspects of the waking state. Acidification inhibits firing of most neurons but these two groups in the caudal hypothalamus are excited by hypercapnia and protons, similar to the chemosensory neurons in the brain stem. Activation of hypothalamic wake-on neurons in response to hypercapnia, seen with the c-Fos assay, is supported by patch-clamp recordings in rodent brain slices: Hcrt/Orx and HA neurons are excited by acidification in the physiological range (pH from 7.4 to 7.0). Multiple molecular mechanisms mediate wake-promoting effects of protons in HA neurons in the tuberomamillary nucleus (TMN): among them are acid-sensing ion channels, Na(+),K(+)-ATPase, group I metabotropic glutamate receptors (mGluRI). HA neurons are remarkably sensitive to the mGluRI agonist DHPG (threshold concentration 0.5 µM) and mGluRI antagonists abolish proton-induced excitation of HA neurons. Hcrt/Orx neurons are excited through block of a potassium conductance and release glutamate with their peptides in TMN. The two hypothalamic nuclei and the serotonergic dorsal raphe cooperate toward CO2/acid-induced arousal. Their interactions and molecular mechanisms of H(+)/CO2-induced activation are relevant for the understanding and treatment of respiratory and metabolic disorders related to sleep-waking such as obstructive sleep apnea and sudden infant death syndrome.
Collapse
Affiliation(s)
- Anna Kernder
- Department of Neurophysiology, Molecular Neurophysiology, Medical Faculty, Heinrich-Heine University, 40225 Duesseldorf, Germany
| | - Roberto De Luca
- Department of Neurophysiology, Molecular Neurophysiology, Medical Faculty, Heinrich-Heine University, 40225 Duesseldorf, Germany
| | - Yevgenij Yanovsky
- Department of Neurophysiology, Molecular Neurophysiology, Medical Faculty, Heinrich-Heine University, 40225 Duesseldorf, Germany
| | - Helmut L. Haas
- Department of Neurophysiology, Molecular Neurophysiology, Medical Faculty, Heinrich-Heine University, 40225 Duesseldorf, Germany
| | - Olga A. Sergeeva
- Department of Neurophysiology, Molecular Neurophysiology, Medical Faculty, Heinrich-Heine University, 40225 Duesseldorf, Germany
| |
Collapse
|
27
|
Hickner S, Hussain N, Angoa-Perez M, Francescutti DM, Kuhn DM, Mateika JH. Ventilatory long-term facilitation is evident after initial and repeated exposure to intermittent hypoxia in mice genetically depleted of brain serotonin. J Appl Physiol (1985) 2013; 116:240-50. [PMID: 24336886 DOI: 10.1152/japplphysiol.01197.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Our study was designed to determine if central nervous system (CNS) serotonin is required for the induction of ventilatory long-term facilitation (LTF) in intact, spontaneously breathing mice. Nineteen tryptophan hydroxylase 2-deficient (Tph2(-/-)) mice, devoid of serotonin in the CNS, and their wild-type counterparts (Tph2(+/+)) were exposed to intermittent hypoxia each day for 10 consecutive days. The ventilatory response to intermittent hypoxia was greater in the Tph2(+/+) compared with the Tph2(-/-) mice (1.10 ± 0.10 vs. 0.77 ± 0.01 ml min(-1)·percent(-1) oxygen; P ≤ 0.04). Ventilatory LTF, caused by increases in breathing frequency, was evident in Tph2(+/+) and Tph2(-/-) mice following exposure to intermittent hypoxia each day; however, the magnitude of the response was greater in the Tph2(+/+) compared with the Tph2(-/-) mice (1.11 ± 0.02 vs. 1.05 ± 0.01 normalized to baseline on each day; P ≤ 0.01). The magnitude of ventilatory LTF increased significantly from the initial to the finals days of the protocol in the Tph2(-/-) (1.06 ± 0.02 vs. 1.11 ± 0.03 normalized to baseline on the initial days; P ≤ 0.004) but not in the Tph2(+/+) mice. This enhanced response was mediated by increases in tidal volume. Body temperature and metabolic rate did not account for differences in the magnitude of ventilatory LTF observed between groups after acute and repeated daily exposure to intermittent hypoxia. We conclude that ventilatory LTF, after acute exposure to intermittent hypoxia, is mediated by increases in breathing frequency and occurs in the absence of serotonin, although the magnitude of the response is diminished. This weakened response is enhanced following repeated daily exposure to intermittent hypoxia, via increases in tidal volume, to a similar magnitude evident in Tph2(+/+) mice. Thus the magnitude of ventilatory LTF following repeated daily exposure to intermittent hypoxia is not dependent on the presence of CNS serotonin.
Collapse
Affiliation(s)
- Stephen Hickner
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan
| | | | | | | | | | | |
Collapse
|
28
|
Ramirez JM, Doi A, Garcia AJ, Elsen FP, Koch H, Wei AD. The cellular building blocks of breathing. Compr Physiol 2013; 2:2683-731. [PMID: 23720262 DOI: 10.1002/cphy.c110033] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Respiratory brainstem neurons fulfill critical roles in controlling breathing: they generate the activity patterns for breathing and contribute to various sensory responses including changes in O2 and CO2. These complex sensorimotor tasks depend on the dynamic interplay between numerous cellular building blocks that consist of voltage-, calcium-, and ATP-dependent ionic conductances, various ionotropic and metabotropic synaptic mechanisms, as well as neuromodulators acting on G-protein coupled receptors and second messenger systems. As described in this review, the sensorimotor responses of the respiratory network emerge through the state-dependent integration of all these building blocks. There is no known respiratory function that involves only a small number of intrinsic, synaptic, or modulatory properties. Because of the complex integration of numerous intrinsic, synaptic, and modulatory mechanisms, the respiratory network is capable of continuously adapting to changes in the external and internal environment, which makes breathing one of the most integrated behaviors. Not surprisingly, inspiration is critical not only in the control of ventilation, but also in the context of "inspiring behaviors" such as arousal of the mind and even creativity. Far-reaching implications apply also to the underlying network mechanisms, as lessons learned from the respiratory network apply to network functions in general.
Collapse
Affiliation(s)
- J M Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institut, Seattle, Washington, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Xing T, Fong AY, Bautista TG, Pilowsky PM. Acute intermittent hypoxia induced neural plasticity in respiratory motor control. Clin Exp Pharmacol Physiol 2013; 40:602-9. [DOI: 10.1111/1440-1681.12129] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/24/2013] [Accepted: 05/26/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Tao Xing
- Australian School of Advanced Medicine; Macquarie University; Sydney NSW Australia
| | - Angelina Y Fong
- Australian School of Advanced Medicine; Macquarie University; Sydney NSW Australia
| | - Tara G Bautista
- Australian School of Advanced Medicine; Macquarie University; Sydney NSW Australia
| | - Paul M Pilowsky
- Australian School of Advanced Medicine; Macquarie University; Sydney NSW Australia
| |
Collapse
|
30
|
Takahashi Y, Zhang W, Sameshima K, Kuroki C, Matsumoto A, Sunanaga J, Kono Y, Sakurai T, Kanmura Y, Kuwaki T. Orexin neurons are indispensable for prostaglandin E2-induced fever and defence against environmental cooling in mice. J Physiol 2013; 591:5623-43. [PMID: 23959674 DOI: 10.1113/jphysiol.2013.261271] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We recently showed using prepro-orexin knockout (ORX-KO) mice and orexin neuron-ablated (ORX-AB) mice that orexin neurons in the hypothalamus, but not orexin peptides per se, are indispensable for stress-induced thermogenesis. To examine whether orexin neurons are more generally involved in central thermoregulatory mechanisms, we applied other forms of thermogenic perturbations, including brain prostaglandin E2 (PGE2) injections which mimic inflammatory fever and environmental cold exposure, to ORX-KO mice, ORX-AB mice and their wild-type (WT) litter mates. ORX-AB mice, but not ORX-KO mice, exhibited a blunted PGE2-induced fever and intolerance to cold (5°C) exposure, and these findings were similar to the results previously obtained with stress-induced thermogenesis. PGE2-induced shivering was also attenuated in ORX-AB mice. Both mutants responded similarly to environmental heating (39°C). In WT and ORX-KO mice, the administration of PGE2 and cold exposure activated orexin neurons, as revealed by increased levels of expression of c-fos. Injection of retrograde tracer into the medullary raphe nucleus revealed direct and indirect projection from the orexin neurons, of which the latter seemed to be preserved in the ORX-AB mice. In addition, we found that glutamate receptor antagonists (D-(-)-2-amino-5-phosphonopentanoic acid and 6-cyano-7-nitroquinoxaline-2,3-dione) but not orexin receptor antagonists (SB334867 and OX2 29) successfully inhibited PGE2-induced fever in WT mice. These results suggest that orexin neurons are important in general thermogenic processes, and their importance is not restricted to stress-induced thermogenesis. In addition, these results indicate the possible involvement of glutamate in orexin neurons implicated in PGE2-induced fever.
Collapse
Affiliation(s)
- Yoshiko Takahashi
- T. Kuwaki: Department of Physiology, Kagoshima University Graduate School of Medical and Dental Sciences, Sakuragaoka 8-35-1, Kagoshima 890-8544, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Pamenter ME, Powell FL. Signalling mechanisms of long term facilitation of breathing with intermittent hypoxia. F1000PRIME REPORTS 2013; 5:23. [PMID: 23864930 PMCID: PMC3702218 DOI: 10.12703/p5-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Intermittent hypoxia causes long-term facilitation (LTF) of respiratory motor nerve activity and ventilation, which manifests as a persistent increase over the normoxic baseline for an hour or more after the acute hypoxic ventilatory response. LTF is likely involved in sleep apnea, but its exact role is uncertain. Previously, LTF was defined as a serotonergic mechanism, but new evidence shows that multiple signaling pathways can elicit LTF. This raises new questions about the interactions between signaling pathways in different time domains of the hypoxic ventilatory response, which can no longer be defined simply in terms of neurochemical mechanisms.
Collapse
Affiliation(s)
- Matthew E Pamenter
- Physiology Division, Department of Medicine, University of California San DiegoLa Jolla, CA 92092-0623USA
- Department of Zoology, University of British ColumbiaVancouver, BC V6T 1Z4Canada
| | - Frank L Powell
- Physiology Division, Department of Medicine, University of California San DiegoLa Jolla, CA 92092-0623USA
| |
Collapse
|
32
|
Wang W, Li Q, Pan Y, Zhu D, Wang L. Influence of hypercapnia on the synthesis of neuropeptides and their receptors in murine brain. Respirology 2013; 18:102-7. [PMID: 22882587 DOI: 10.1111/j.1440-1843.2012.02245.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND OBJECTIVE Sleep disorders are a complicated and major public health concern affecting millions of individuals. Obstructive sleep apnoea (OSA) is a common but still under-recognized disease which can cause intermittent nocturnal hypercapnia. Neuropeptides play critical roles in neurotransmission, acting as transmitters or modulators. Results from recent studies have implicated several neuropeptides in sleep and breathing regulation, including orexin, neuropeptides Y and galanin. Therefore, the present study aimed to evaluate the influence of hypercapnia on these neuropeptides and their receptors in order to assess their potential role in the pathogenesis of OSA. METHODS Fifteen C57BL/6J mice were randomly divided into three groups and exposed to moderate hypercapnia (5% CO(2) with balanced room air), or severe hypercapnia (10% CO(2) with balanced room air) or room air for 3 h (9:00-12:00 h), respectively. Immediately following exposure the brainstem and hypothalamus were excised for real-time reverse transcription polymerase chain reaction and western blot analyses. RESULTS In the hypothalamus gene expression including galanin, orexin and neuropeptide Y receptor 1 (NPYR1) was downregulated by hypercapnia. However, protein and mRNA levels of orexin-A receptor were upregulated by severe hypercapnia. In the brainstem only NPYR1 mRNA expression was decreased in moderate hypercapnia compared with that in severe hypercapnia. CONCLUSIONS These findings suggest that hypercapnia can affect these neuropeptides and their receptors, especially the orexin and orexin-A receptor. The potential relationships between these peptides and OSA are worthy of further investigation.
Collapse
Affiliation(s)
- Wei Wang
- Institute of Stomatology, Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | | | | | | | | |
Collapse
|
33
|
Pizza F, Tartarotti S, Poryazova R, Baumann CR, Bassetti CL. Sleep-disordered breathing and periodic limb movements in narcolepsy with cataplexy: a systematic analysis of 35 consecutive patients. Eur Neurol 2013; 70:22-6. [PMID: 23689193 DOI: 10.1159/000348719] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 01/28/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND Disturbed sleep is a core feature of narcolepsy with cataplexy (NC). Few studies have independently assessed sleep-disordered breathing (SDB) and periodic limb movements (PLMs) in non-homogeneous series of patients with and without cataplexy. We systematically assessed both SDB and PLMs in well-defined NC patients. METHODS We analyzed the clinical and polysomnographic features of 35 consecutive NC patients (mean age 40 ± 16 years, 51% males, 23/23 hypocretin-deficient) to assess the prevalence of SDB (apnea-hypopnea index >5) and PLMs (periodic leg movements in sleep (PLMI) >15) together with their impact on nocturnal sleep and daytime sleepiness using the multiple sleep latency test. RESULTS 11 (31%) and 14 (40%) patients had SDB and PLMs, respectively. SDB was associated with older age (49 ± 16 vs. 35 ± 13 years, p = 0.02), higher BMI (30 ± 5 vs. 27 ± 6, p = 0.05), and a trend towards higher PLMI (25 ± 20 vs. 12 ± 23, p = 0.052), whereas PLMs with older age (50 ± 16 vs. 33 ± 11 years, p = 0.002) and reduced and fragmented sleep (e.g. sleep efficiency of 82 ± 12% vs. 91 ± 6%, p = 0.015; sleep time of 353 ± 66 vs. 395 ± 28, p = 0.010). SDB and PLMs were also mutually associated (p = 0.007), but not correlated to daytime sleepiness. CONCLUSIONS SDB and PLMs are highly prevalent and associated in NC. Nevertheless, SDB and PLMs are rarely severe, suggesting an overall limited effect on clinical manifestations.
Collapse
Affiliation(s)
- Fabio Pizza
- Department of Neurology, University Hospital Zürich, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
34
|
Wang W, Pan Y, Li Q, Wang L. Orexin: a potential role in the process of obstructive sleep apnea. Peptides 2013; 42:48-54. [PMID: 23313149 DOI: 10.1016/j.peptides.2013.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 12/28/2012] [Accepted: 01/02/2013] [Indexed: 02/07/2023]
Abstract
Obstructive sleep apnea (OSA) is a complicated disease with an unrecognized mechanism. Obesity, sex, age, and smoking have been found to be independent correlates of OSA. Orexin (also named hypocretin) mainly secreted by lateral hypothalamus neurons has a wide array of biological functions like regulating sleep, energy levels and breathing. Several clinical studies found ties between orexin and OSA. Because of the close correlation between orexin and obesity, sex, age and smoking (which are the key risk factors for OSA patients), we hypothesize that orexin may play a key role in the pathogenesis of OSA.
Collapse
Affiliation(s)
- Wei Wang
- Institute of Stomatology, Nanjing Medical University, Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | | | | | | |
Collapse
|
35
|
Hayward LF, Castellanos M, Noah C. Cardiorespiratory variability following repeat acute hypoxia in the conscious SHR versus two normotensive rat strains. Auton Neurosci 2012; 171:58-65. [PMID: 23154112 DOI: 10.1016/j.autneu.2012.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 10/18/2012] [Accepted: 10/19/2012] [Indexed: 12/26/2022]
Abstract
A link between exaggerated chemoreceptor sensitivity and hypertension has been documented in the spontaneously hypertensive rat (SHR) but has also been questioned when comparisons with normotensive strains other than the Wistar Kyoto (WKY) rat are made. To further evaluate the link between hypertension and chemoreflex sensitivity, changes in cardiorespiratory variability in response to three successive bouts of 5 min of hypoxia (21%→10%) were evaluated in conscious male SHR, and WKY and Sprague Dawley (SD) rats (n=7-8/group). In response to the first bout of hypoxia, the change in respiratory frequency (RF) was greatest in the SHR, but the increase in mean arterial pressure (MAP) was similar in both SHRs and WKY rats and all strains demonstrated a similar rise in heart rate (HR). All strains showed some level of response accommodation during subsequent bouts of hypoxia. Spectral analysis of HR variability identified a significant difference in high frequency (HF) power between strains during hypoxia, including an increase in HF power in the WKY rats, a decrease in the SHRs and little overall change in the SD rats. Alternatively, all strains demonstrated a rise in systolic arterial pressure (SAP) variability in the low frequency (LF) range in response to hypoxia but the increase was greatest in the SHR. Since SAP LF power is linked to vasosympathetic tone, these results support the hypothesis that essential hypertension is linked to exaggerated sympathetic responses to chemoreceptor stimulation but confirm that estimation of augmented reflex function cannot be determined by quantifying simple changes in MAP or HR.
Collapse
Affiliation(s)
- L F Hayward
- Univ. of Florida, Dept. Physiological Sciences, 1333 Center Dr., BSB 3-4, Gainesville, FL 32610-0144, USA.
| | | | | |
Collapse
|
36
|
Syed Z, Lin HS, Mateika JH. The impact of arousal state, sex, and sleep apnea on the magnitude of progressive augmentation and ventilatory long-term facilitation. J Appl Physiol (1985) 2012; 114:52-65. [PMID: 23139361 DOI: 10.1152/japplphysiol.00985.2012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined the impact of arousal state, sex, and obstructive sleep apnea (OSA) on the magnitude of progressive augmentation of the hypoxic ventilatory response and ventilatory long-term facilitation (vLTF). We also examined whether exposure to intermittent hypoxia during sleep has an impact on the apnea-hypopnea index (AHI) in individuals with OSA. Ten men and seven women with OSA, along with ten healthy men and ten healthy women, were exposed to twelve 2-min episodes of hypoxia (end-tidal PO(2): 50 Torr) in the presence of sustained hypercapnia (end-tidal PCO(2): 3 Torr above baseline), followed by a 30-min recovery period during wakefulness and sleep. The OSA participants completed an additional sham study during sleep. The AHI during the first hour of sleep following the intermittent hypoxia and sham protocols were compared. Progressive augmentation was only evident during wakefulness and was enhanced in the OSA participants. vLTF was evident during wakefulness and sleep. When standardized to baseline, vLTF was greater during wakefulness and was enhanced in the OSA group (men: wakefulness 1.39 ± 0.08 vs. sleep 1.14 ± 0.03; women: wakefulness 1.35 ± 0.03 vs. sleep 1.16 ± 0.05 fraction of baseline; P ≤ 0.001) compared with control (men: wakefulness 1.19 ± 0.03 vs. sleep 1.09 ± 0.03; women: wakefulness 1.26 ± 0.05 vs. sleep 1.08 ± 0.04 fraction of baseline; P ≤ 0.001). The AHI following exposure to intermittent hypoxia was increased (intermittent hypoxia 72.8 ± 7.3 vs. sham 56.5 ± 7.0 events/h; P ≤ 0.01). Sex-related differences were not observed for the primary measures. We conclude that progressive augmentation is not evident, and the magnitude of vLTF is diminished during sleep compared with wakefulness in men and women. However, when present, the phenomena are enhanced in individuals with OSA. The AHI data indicate that, under the prevailing experimental conditions, vLTF did not serve to mitigate apnea severity.
Collapse
Affiliation(s)
- Ziauddin Syed
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
37
|
Shahid IZ, Rahman AA, Pilowsky PM. Orexin A in rat rostral ventrolateral medulla is pressor, sympatho-excitatory, increases barosensitivity and attenuates the somato-sympathetic reflex. Br J Pharmacol 2012; 165:2292-303. [PMID: 21951179 DOI: 10.1111/j.1476-5381.2011.01694.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND AND PURPOSE The rostral ventrolateral medulla (RVLM) maintains sympathetic nerve activity (SNA), and integrates adaptive reflexes. Orexin A-immunoreactive neurones in the lateral hypothalamus project to the RVLM. Microinjection of orexin A into RVLM increases blood pressure and heart rate. However, the expression of orexin receptors, and effects of orexin A in the RVLM on splanchnic SNA (sSNA), respiration and adaptive reflexes are unknown. EXPERIMENTAL APPROACH The effect of orexin A on baseline cardio-respiratory variables as well as the somato-sympathetic, baroreceptor and chemoreceptor reflexes in RVLM were investigated in urethane-anaesthetized, vagotomized and artificially ventilated male Sprague-Dawley rats (n= 50). orexin A and its receptors were detected with fluorescence immunohistochemistry. KEY RESULTS Tyrosine hydroxylase-immunoreactive neurones in the RVLM were frequently co-localized with orexin 1 (OX(1) ) and orexin 2 (OX(2) ) receptors and closely apposed to orexin A-immunoreactive terminals. Orexin A injected into the RVLM was pressor and sympatho-excitatory. Peak effects were observed at 50 pmol with increased mean arterial pressure (42 mmHg) and SNA (45%). Responses to orexin A (50 pmol) were attenuated by the OX(1) receptor antagonist, SB334867, and reproduced by the OX(2) receptor agonist, [Ala(11) , D-Leu(15) ]orexin B. Orexin A attenuated the somato-sympathetic reflex but increased baroreflex sensitivity. Orexin A increased or reduced sympatho-excitation following hypoxia or hypercapnia respectively. CONCLUSIONS AND IMPLICATIONS Although central cardio-respiratory control mechanisms at rest do not rely on orexin, responses to adaptive stimuli are dramatically affected by the functional state of orexin receptors.
Collapse
Affiliation(s)
- Israt Z Shahid
- Australian School of Advanced Medicine, Macquarie University, Sydney, Australia
| | | | | |
Collapse
|
38
|
Yanovsky Y, Zigman JM, Kernder A, Bein A, Sakata I, Osborne-Lawrence S, Haas HL, Sergeeva OA. Proton- and ammonium-sensing by histaminergic neurons controlling wakefulness. Front Syst Neurosci 2012; 6:23. [PMID: 22509157 PMCID: PMC3325548 DOI: 10.3389/fnsys.2012.00023] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/21/2012] [Indexed: 11/29/2022] Open
Abstract
The histaminergic neurons in the tuberomamillary nucleus (TMN) of the posterior hypothalamus are involved in the control of arousal. These neurons are sensitive to hypercapnia as has been shown in experiments examining c-Fos expression, a marker for increased neuronal activity. We investigated the mechanisms through which TMN neurons respond to changes in extracellular levels of acid/CO2. Recordings in rat brain slices revealed that acidification within the physiological range (pH from 7.4 to 7.0), as well as ammonium chloride (5 mM), excite histaminergic neurons. This excitation is significantly reduced by antagonists of type I metabotropic glutamate receptors and abolished by benzamil, an antagonist of acid-sensing ion channels (ASICs) and Na+/Ca2+ exchanger, or by ouabain which blocks Na+/K+ ATPase. We detected variable combinations of 4 known types of ASICs in single TMN neurons, and observed activation of ASICs in single dissociated TMN neurons only at pH lower than 7.0. Thus, glutamate, which is known to be released by glial cells and orexinergic neurons, amplifies the acid/CO2-induced activation of TMN neurons. This amplification demands the coordinated function of metabotropic glutamate receptors, Na+/Ca2+ exchanger and Na+/K+ ATPase. We also developed a novel HDC-Cre transgenic reporter mouse line in which histaminergic TMN neurons can be visualized. In contrast to the rat, the mouse histaminergic neurons lacked the pH 7.0-induced excitation and displayed only a minimal response to the mGluR I agonist DHPG (0.5 μM). On the other hand, ammonium-induced excitation was similar in mouse and rat. These results are relevant for the understanding of the neuronal mechanisms controlling acid/CO2-induced arousal in hepatic encephalopathy and obstructive sleep apnoea. Moreover, the new HDC-Cre mouse model will be a useful tool for studying the physiological and pathophysiological roles of the histaminergic system.
Collapse
Affiliation(s)
- Yevgenij Yanovsky
- Medical Faculty, Molecular Neurophysiology, Heinrich-Heine University Duesseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Chen W, Ye J, Han D, Yin G, Wang B, Zhang Y. Association of prepro-orexin polymorphism with obstructive sleep apnea/hypopnea syndrome. Am J Otolaryngol 2012; 33:31-6. [PMID: 21371780 DOI: 10.1016/j.amjoto.2010.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Revised: 12/03/2010] [Accepted: 12/12/2010] [Indexed: 11/25/2022]
Abstract
BACKGROUND Because of the potential role of orexin neuronal circuitry in the regulation of sleep and wakefulness and arousal and breathing, it seems reasonable to speculate that abnormalities in the prepro-orexin gene could be relevant to studies of obstructive sleep apnea/hypopnea syndrome (OSAHS); and it might be a candidate gene in the pathogenesis of OSAHS. OBJECTIVE The present study investigated whether single nucleotide polymorphisms (SNPs) in the human prepro-orexin gene are associated with OSAHS in Han Chinese people. METHODS A total of 394 subjects (217 cases and 177 control subjects) were recruited from China. Diagnostic polysomnography was performed in all patients and control subjects. SNPs in potentially functional regions of the gene were identified; and genotypes, determined by direct sequencing. RESULTS By sequencing the promoter, 2 exons, and the exon-intron junctions of the prepro-orexin gene, the g11182C>T SNP was identified. Statistical analysis showed that there were significant differences in the genotype distribution between patients with OSAHS and the control group (χ(2)(2) = 6.437, P = .04). Variant allele T of the g1182C>T polymorphism was more commonly found in patients with OSAHS as compared with control subjects (χ(2)(1) = 5.648, P = .017; odds ratio, 1.449; 95% confidence interval, 1.0466-1.968). CONCLUSIONS Our results suggest that the prepro-orexin gene polymorphism g1182C>T is associated with susceptibility to OSAHS in Han Chinese. This study provides insights into the genetic information for future studies regarding this gene in OSAHS.
Collapse
|
40
|
Abstract
Orexin, a small neuropeptide released from neurons in the hypothalamus with widespread projections throughout the central nervous system, has broad biological roles including the modulation of breathing and autonomic function. That orexin activity is fundamentally dependent on sleep-wake state, and circadian cycle requires consideration of orexin function in physiological control systems in respect to these two state-related activity patterns. Both transgenic mouse studies and focal orexin receptor antagonism support a role for orexins in respiratory chemosensitivity to CO₂ predominantly in wakefulness, with further observations limiting this role to the dark period. In addition, orexin neurons participate in the regulation of sympathetic activity, including effects on blood pressure and thermoregulation. Orexin is also essential in physiological responses to stress. Orexin-mediated processes may operate at two levels: (1) in sleep-wake and circadian states and (2) in stress, for example, the defense or "fight-or-flight" response and panic-anxiety syndrome.
Collapse
Affiliation(s)
- Eugene Nattie
- Department of Physiology and Neurobiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
| | | |
Collapse
|
41
|
Wu MF, Nienhuis R, Maidment N, Lam HA, Siegel JM. Cerebrospinal fluid hypocretin (orexin) levels are elevated by play but are not raised by exercise and its associated heart rate, blood pressure, respiration or body temperature changes. Arch Ital Biol 2011; 149:492-8. [PMID: 22205595 DOI: 10.4449/aib.v149i4.1315] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Hypocretin (Hcrt) has been implicated in the control of motor activity and in respiration and cardiovascular changes. Loss of Hcrt in narcolepsy is linked to sleepiness and to cataplexy, a sudden loss of muscle tone which is triggered by sudden strong emotions. In the current study we have compared the effects of treadmill running, to yard play on cerebrospinal fluid (CSF) Hcrt level in normal dogs. We find that treadmill locomotion, at a wide range of speeds, does not increase Hcrt level beyond baseline, whereas yard play produces a substantial increase in Hcrt, even though both activities produce comparable increases in heart rate, respiration and body temperature. We conclude that motor and cardiovascular changes are not sufficient to elevate CSF levels of Hcrt and we hypothesize that the emotional aspects of yard play account for the observed increase in Hcrt.
Collapse
Affiliation(s)
- M-F Wu
- Department of Psychiatry, University of California, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
42
|
Yokhana SS, Gerst DG, Lee DS, Badr MS, Qureshi T, Mateika JH. Impact of repeated daily exposure to intermittent hypoxia and mild sustained hypercapnia on apnea severity. J Appl Physiol (1985) 2011; 112:367-77. [PMID: 22052874 DOI: 10.1152/japplphysiol.00702.2011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined whether exposure to intermittent hypoxia (IH) during wakefulness impacted on the apnea/hypopnea index (AHI) during sleep in individuals with sleep apnea. Participants were exposed to twelve 4-min episodes of hypoxia in the presence of sustained mild hypercapnia each day for 10 days. A control group was exposed to sustained mild hypercapnia for a similar duration. The intermittent hypoxia protocol was completed in the evening on day 1 and 10 and was followed by a sleep study. During all sleep studies, the change in esophageal pressure (ΔPes) from the beginning to the end of an apnea and the tidal volume immediately following apneic events were used to measure respiratory drive. Following exposure to IH on day 1 and 10, the AHI increased above baseline measures (day 1: 1.95 ± 0.42 fraction of baseline, P ≤ 0.01, vs. day 10: 1.53 ± 0.24 fraction of baseline, P < 0.06). The indexes were correlated to the hypoxic ventilatory response (HVR) measured during the IH protocol but were not correlated to the magnitude of ventilatory long-term facilitation (vLTF). Likewise, ΔPes and tidal volume measures were greater on day 1 and 10 compared with baseline (ΔPes: -8.37 ± 0.84 vs. -5.90 ± 1.30 cmH(2)0, P ≤ 0.04; tidal volume: 1,193.36 ± 101.85 vs. 1,015.14 ± 119.83 ml, P ≤ 0.01). This was not the case in the control group. Interestingly, the AHI on day 10 (0.78 ± 0.13 fraction of baseline, P ≤ 0.01) was significantly less than measures obtained during baseline and day 1 in the mild hypercapnia control group. We conclude that enhancement of the HVR initiated by exposure to IH may lead to increases in the AHI during sleep and that initiation of vLTF did not appear to impact on breathing stability. Lastly, our results suggest that repeated daily exposure to mild sustained hypercapnia may lead to a decrease in breathing events.
Collapse
Affiliation(s)
- Sanar S Yokhana
- Department of Physiology, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | | | | | | | | | | |
Collapse
|
43
|
Should we standardize protocols and preparations used to study respiratory plasticity? Respir Physiol Neurobiol 2011; 177:93-7. [DOI: 10.1016/j.resp.2011.03.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 03/20/2011] [Accepted: 03/22/2011] [Indexed: 11/19/2022]
|
44
|
Terada J, Mitchell GS. Diaphragm long-term facilitation following acute intermittent hypoxia during wakefulness and sleep. J Appl Physiol (1985) 2011; 110:1299-310. [PMID: 21372099 DOI: 10.1152/japplphysiol.00055.2011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Acute intermittent hypoxia (AIH) elicits a form of respiratory plasticity known as long-term facilitation (LTF). Here, we tested four hypotheses in unanesthetized, spontaneously breathing rats using radiotelemetry for EEG and diaphragm electromyography (Dia EMG) activity: 1) AIH induces LTF in Dia EMG activity; 2) diaphragm LTF (Dia LTF) is more robust during sleep vs. wakefulness; 3) AIH (or repetitive AIH) disrupts natural sleep-wake architecture; and 4) preconditioning with daily AIH (dAIH) for 7 days enhances Dia LTF. Sleep-wake states and Dia EMG were monitored before (60 min), during, and after (60 min) AIH (10, 5-min hypoxic episodes, 5-min normoxic intervals; n = 9), time control (continuous normoxia, n = 8), and AIH following dAIH preconditioning for 7 days (n = 7). Dia EMG activities during quiet wakefulness (QW), rapid eye movement (REM), and non-REM (NREM) sleep were analyzed and normalized to pre-AIH values in the same state. During NREM sleep, diaphragm amplitude (25.1 ± 4.6%), frequency (16.4 ± 4.7%), and minute diaphragm activity (amplitude × frequency; 45.2 ± 6.6%) increased above baseline 0-60 min post-AIH (all P < 0.05). This Dia LTF was less robust during QW and insignificant during REM sleep. dAIH preconditioning had no effect on LTF (P > 0.05). We conclude that 1) AIH induces Dia LTF during NREM sleep and wakefulness; 2) Dia LTF is greater in NREM sleep vs. QW and is abolished during REM sleep; 3) AIH and repetitive AIH disrupt natural sleep patterns; and 4) Dia LTF is unaffected by dAIH. The capacity for plasticity in spinal pump muscles during sleep and wakefulness suggests an important role in the neural control of breathing.
Collapse
Affiliation(s)
- J Terada
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
45
|
Fanfulla F, Ceriana P, D'Artavilla Lupo N, Trentin R, Frigerio F, Nava S. Sleep disturbances in patients admitted to a step-down unit after ICU discharge: the role of mechanical ventilation. Sleep 2011; 34:355-62. [PMID: 21358853 DOI: 10.1093/sleep/34.3.355] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Severe sleep disruption is a well-documented problem in mechanically ventilated, critically ill patients during their time in the intensive care unit (ICU), but little attention has been paid to the period when these patients become clinically stable and are transferred to a step-down unit (SDU). We monitored the 24-h sleep pattern in 2 groups of patients, one on mechanical ventilation and the other breathing spontaneously, admitted to our SDU to assess the presence of sleep abnormalities and their association with mechanical ventilation. METHODS Twenty-two patients admitted to an SDU underwent 24-h polysomnography with monitoring of noise and light. RESULTS One patient did not complete the study. At night, 10 patients showed reduced sleep efficiency, 6 had reduced percentage of REM sleep, and 3 had reduced percentage of slow wave sleep (SWS). Sleep amount and quality did not differ between patients breathing spontaneously and those on mechanical ventilation. Clinical severity (SAPS(II) score) was significantly correlated with daytime total sleep time and efficiency (r = 0.51 and 0.5, P < 0.05, respectively); higher pH was correlated with reduced sleep quantity and quality; and higher PaO(2) was correlated with increased SWS (r = 0.49; P = 0.02). CONCLUSIONS Patients admitted to an SDU after discharge from an ICU still have a wide range of sleep abnormalities. These abnormalities are mainly associated with a high severity score and alkalosis. Mechanical ventilation does not appear to be a primary cause of sleep impairment.
Collapse
Affiliation(s)
- Francesco Fanfulla
- Sleep Center, Istituto Scientifico di Pavia and Montescano, Fondazione S. Maugeri, IRCCS, Pavia, Italy.
| | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Respiratory regulation in narcolepsy. Sleep Breath 2011; 16:241-5. [PMID: 21318258 DOI: 10.1007/s11325-011-0489-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 01/17/2011] [Accepted: 01/24/2011] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Narcolepsy is a debilitating sleep disorder characterized by excessive daytime sleepiness, cataplexy and intrusive REM sleep. Deficits in endogenous orexins are a major pathogenic component of the disease. This disorder is also associated with the gene marker, HLADQB1*0602. An increased prevalence of sleep apnea in narcolepsy suggested interactions among ventilatory chemosensitivity, narcolepsy-cataplexy, and sleep apnea. RESULTS Evidence from animal studies using orexin knockout mice and focal microdialysis of an orexin receptor antagonist demostrated that orexins are also contributed to respiratory regulation in a vigilance state-dependent manner, as animals with orexins dysregulation have attenuated hypercapnic ventilatory responses predominately in wakefulness, which is consistent with the notion that the activity of orexinergic neurons is higher during wake than sleep periods. Human model of hypocretin deficiency is patients with narcolepsy-cataplexy. In contrast to findings suggested by animal studies, we found significant decrease in hypoxic responsiveness but not in hypercapnic responsiveness in narcoleptics, and further analysis indicated that decreased ventilatory responses to hypoxia in human narcolepsy-cataplexy is in relation to HLA-DQB1*0602 status, not hypocretin deficiency. CONCLUSION Unlike in mouse, hypocretin-1 is not a major factor contributing to chemoresponsiveness in human. Species differences may exist.
Collapse
|
48
|
Mateika JH, Sandhu KS. Experimental protocols and preparations to study respiratory long term facilitation. Respir Physiol Neurobiol 2011; 176:1-11. [PMID: 21292044 DOI: 10.1016/j.resp.2011.01.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 01/18/2011] [Accepted: 01/18/2011] [Indexed: 11/29/2022]
Abstract
Respiratory long-term facilitation is a form of neuronal plasticity that is induced following exposure to intermittent hypoxia. Long-term facilitation is characterized by a progressive increase in respiratory motor output during normoxic periods that separate hypoxic episodes and by a sustained elevation in respiratory activity for up to 90min after exposure to intermittent hypoxia. This phenomenon is associated with increases in phrenic, hypoglossal or carotid sinus nerve inspiratory-modulated discharge. The examination of long-term facilitation has been steadily ongoing for approximately 3 decades. During this period of time a variety of animal models (e.g. cats, rats and humans), experimental preparations and intermittent hypoxia protocols have been used to study long-term facilitation. This review is designed to summarize the strengths and weaknesses of the models, preparations and protocols that have been used to study LTF over the past 30 years. The review is divided into two primary sections. Initially, the models and protocols used to study LTF in animals other than humans will be discussed, followed by a section specifically focused on human studies. Each section will begin with a discussion of various factors that must be considered when selecting an experimental preparation and intermittent hypoxia protocol to examine LTF. Model and protocol design recommendations will follow, with the goal of presenting a prevailing model and protocol that will ultimately ensure standardized comparisons across studies.
Collapse
Affiliation(s)
- Jason H Mateika
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, United States.
| | | |
Collapse
|
49
|
Schäffer T. Respiratory physiology in sleep and wakefulness. HANDBOOK OF CLINICAL NEUROLOGY 2011; 98:371-81. [PMID: 21056199 DOI: 10.1016/b978-0-444-52006-7.00024-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Thorsten Schäffer
- Medical Faculty, Ruhr-University Bochum and Institute of Clinical Physiology, Helios Klinik Hagen-Ambrock, Germany.
| |
Collapse
|
50
|
Boychuk CR, Fuller DD, Hayward LF. Sex differences in heart rate variability during sleep following prenatal nicotine exposure in rat pups. Behav Brain Res 2010; 219:82-91. [PMID: 21163307 DOI: 10.1016/j.bbr.2010.12.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 11/19/2010] [Accepted: 12/07/2010] [Indexed: 01/13/2023]
Abstract
The influence of both prenatal nicotine exposure (PNE; 6 mg/kg/day) and sex on heart rate (HR) regulation during sleep versus wakefulness was evaluated in 13, 16 and 26 day old rat pups. Pups were chronically instrumented at least 24 h before testing. On postnatal day 13 (P13), PNE males spent significantly more time in NREM sleep and demonstrated a greater drop in HR when transitioning from quiet wake to sleep compared to age and sex matched controls (-14±5 bpm versus -1±3 bpm, respectively). Heart rate variability (HRV) analysis indicated that this state-dependent drop in HR was primarily associated with a greater reduction in sympathovagal balance (LF/HF ratio) in PNE males compared to controls. No parallel changes in indices of parasympathetic drive (HF power) were identified. In contrast, no significant effect of PNE on HR during sleep versus wakefulness was identified in P13 females. However, independent of state, a significant decrease in HF power was identified in P13 PNE females compared to controls. At P16, state-dependent differences in HR or HRV between PNE and sex-matched control pups were resolved. Additionally, at P26 no significant effect of PNE on state-dependent changes in HR or HRV was identified in either sex. Analysis of the hypothalamic peptide orexin identified that PNE induced approximately a 50% reduction in hypothalamic prepro-orexin mRNA and total mRNA was lowest in PNE males. These findings suggest that PNE induces sex dependent changes in sleep related autonomic regulation of HR during early postnatal development and these changes may be related to epigenetic alterations in the orexin system.
Collapse
Affiliation(s)
- Carie R Boychuk
- University of Florida, College of Veterinary Medicine, Department of Physiological Sciences, Gainesville, FL 32610, United States
| | | | | |
Collapse
|