1
|
Welc SS, Brotto M, White KE, Bonewald LF. Aging: A struggle for beneficial to overcome negative factors made by muscle and bone. Mech Ageing Dev 2025; 224:112039. [PMID: 39952614 DOI: 10.1016/j.mad.2025.112039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/15/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
Musculoskeletal health is strongly influenced by regulatory interactions of bone and muscle. Recent discoveries have identified a number of key mechanisms through which soluble factors released during exercise by bone exert positive effects on muscle and by muscle on bone. Although exercise can delay the negative effects of aging, these beneficial effects are diminished with aging. The limited response of aged muscle and bone tissue to exercise are accompanied by a failure in bone and muscle communication. Here, we propose that exercise induced beneficial factors must battle changes in circulating endocrine and inflammatory factors that occur with aging. Furthermore, sedentary behavior results in the release of negative factors impacting the ability of bone and muscle to respond to physical activity especially with aging. In this review we report on exercise responsive factors and evidence of modification occurring with aging.
Collapse
Affiliation(s)
- Steven S Welc
- Department of Anatomy, Cell Biology, & Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing & Health Innovation, University of Texas-Arlington, Arlington, TX 76019, USA.
| | - Kenneth E White
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Department of Molecular and Medical Genetics, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
| | - Lynda F Bonewald
- Department of Anatomy, Cell Biology, & Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
| |
Collapse
|
2
|
Heitman K, Bollenbecker S, Bradley J, Czaya B, Fajol A, Thomas SM, Li Q, Komarova S, Krick S, Rowe GC, Alexander MS, Faul C. Hyperphosphatemia Contributes to Skeletal Muscle Atrophy in Mice. Int J Mol Sci 2024; 25:9308. [PMID: 39273260 PMCID: PMC11395169 DOI: 10.3390/ijms25179308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Chronic kidney disease (CKD) is associated with various pathologic changes, including elevations in serum phosphate levels (hyperphosphatemia), vascular calcification, and skeletal muscle atrophy. Elevated phosphate can damage vascular smooth muscle cells and cause vascular calcification. Here, we determined whether high phosphate can also affect skeletal muscle cells and whether hyperphosphatemia, in the context of CKD or by itself, is associated with skeletal muscle atrophy. As models of hyperphosphatemia with CKD, we studied mice receiving an adenine-rich diet for 14 weeks and mice with deletion of Collagen 4a3 (Col4a3-/-). As models of hyperphosphatemia without CKD, we analyzed mice receiving a high-phosphate diet for three and six months as well as a genetic model for klotho deficiency (kl/kl). We found that adenine, Col4a3-/-, and kl/kl mice have reduced skeletal muscle mass and function and develop atrophy. Mice on a high-phosphate diet for six months also had lower skeletal muscle mass and function but no significant signs of atrophy, indicating less severe damage compared with the other three models. To determine the potential direct actions of phosphate on skeletal muscle, we cultured primary mouse myotubes in high phosphate concentrations, and we detected the induction of atrophy. We conclude that in experimental mouse models, hyperphosphatemia is sufficient to induce skeletal muscle atrophy and that, among various other factors, elevated phosphate levels might contribute to skeletal muscle injury in CKD.
Collapse
Affiliation(s)
- Kylie Heitman
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.H.); (J.B.); (B.C.); (A.F.); (S.M.T.); (Q.L.); (S.K.)
| | - Seth Bollenbecker
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.B.); (S.K.)
| | - Jordan Bradley
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.H.); (J.B.); (B.C.); (A.F.); (S.M.T.); (Q.L.); (S.K.)
| | - Brian Czaya
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.H.); (J.B.); (B.C.); (A.F.); (S.M.T.); (Q.L.); (S.K.)
| | - Abul Fajol
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.H.); (J.B.); (B.C.); (A.F.); (S.M.T.); (Q.L.); (S.K.)
| | - Sarah Madison Thomas
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.H.); (J.B.); (B.C.); (A.F.); (S.M.T.); (Q.L.); (S.K.)
| | - Qing Li
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.H.); (J.B.); (B.C.); (A.F.); (S.M.T.); (Q.L.); (S.K.)
| | - Svetlana Komarova
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.H.); (J.B.); (B.C.); (A.F.); (S.M.T.); (Q.L.); (S.K.)
| | - Stefanie Krick
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.B.); (S.K.)
| | - Glenn C. Rowe
- Division of Cardiovascular Disease, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Matthew S. Alexander
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Division of Neurology, Department of Pediatrics, Children’s of Alabama, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christian Faul
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.H.); (J.B.); (B.C.); (A.F.); (S.M.T.); (Q.L.); (S.K.)
| |
Collapse
|
3
|
Heitman K, Alexander MS, Faul C. Skeletal Muscle Injury in Chronic Kidney Disease-From Histologic Changes to Molecular Mechanisms and to Novel Therapies. Int J Mol Sci 2024; 25:5117. [PMID: 38791164 PMCID: PMC11121428 DOI: 10.3390/ijms25105117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Chronic kidney disease (CKD) is associated with significant reductions in lean body mass and in the mass of various tissues, including skeletal muscle, which causes fatigue and contributes to high mortality rates. In CKD, the cellular protein turnover is imbalanced, with protein degradation outweighing protein synthesis, leading to a loss of protein and cell mass, which impairs tissue function. As CKD itself, skeletal muscle wasting, or sarcopenia, can have various origins and causes, and both CKD and sarcopenia share common risk factors, such as diabetes, obesity, and age. While these pathologies together with reduced physical performance and malnutrition contribute to muscle loss, they cannot explain all features of CKD-associated sarcopenia. Metabolic acidosis, systemic inflammation, insulin resistance and the accumulation of uremic toxins have been identified as additional factors that occur in CKD and that can contribute to sarcopenia. Here, we discuss the elevation of systemic phosphate levels, also called hyperphosphatemia, and the imbalance in the endocrine regulators of phosphate metabolism as another CKD-associated pathology that can directly and indirectly harm skeletal muscle tissue. To identify causes, affected cell types, and the mechanisms of sarcopenia and thereby novel targets for therapeutic interventions, it is important to first characterize the precise pathologic changes on molecular, cellular, and histologic levels, and to do so in CKD patients as well as in animal models of CKD, which we describe here in detail. We also discuss the currently known pathomechanisms and therapeutic approaches of CKD-associated sarcopenia, as well as the effects of hyperphosphatemia and the novel drug targets it could provide to protect skeletal muscle in CKD.
Collapse
Affiliation(s)
- Kylie Heitman
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Matthew S. Alexander
- Division of Neurology, Department of Pediatrics, The University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294, USA
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christian Faul
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
4
|
Huang M, Yan Y, Deng Z, Zhou L, She M, Yang Y, Zhang M, Wang D. Saikosaponin A and D attenuate skeletal muscle atrophy in chronic kidney disease by reducing oxidative stress through activation of PI3K/AKT/Nrf2 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154766. [PMID: 37002971 DOI: 10.1016/j.phymed.2023.154766] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/22/2023] [Accepted: 03/12/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Skeletal muscle atrophy in chronic kidney disease (CKD) leads to a decline in quality of life and increased risk of morbidity and mortality. We have obtained evidence that oxidative stress is essential in the progression of CKD-related muscle atrophy. Whether Saikosaponin A and D, two emerging antioxidants extracted from Bupleurum chinense DC, alleviate muscle atrophy remains to be further studied. The purpose of this study was to investigate the effects and mechanisms of these two components on CKD complicated with muscle atrophy. METHODS In this research, muscle dystrophy model was established using 5/6 nephrectomized mice in vivo and in vitro with Dexamethasone (Dex)-managed C2C12 myotubes. RESULTS The results of RNA-sequencing showed that exposure to Dex affected the antioxidant activity, catalytic activity and enzyme regulator activity of C2C12 cells. According to KEGG analysis, the largest numbers of differentially expressed genes detected were enriched in the PI3K/AKT pathway. In vivo, Saikosaponin A and D remain renal function, cross-section size, fiber-type composition and anti-inflammatory ability. These two components suppressed the expression of MuRF-1 and enhanced the expression of MyoD and Dystrophin. In addition, Saikosaponin A and D maintained redox balance by increasing the activities of antioxidant enzymes while inhibiting the excessive accumulation of reactive oxygen species. Furthermore, Saikosaponin A and D stimulated PI3K/AKT and its downstream Nrf2 pathway in CKD mice. The effects of Saikosaponin A and D on increasing the inner diameter of C2C12 myotube, reducing oxidative stress and enhancing expression of p-AKT, p-mTOR, p70S6K, Nrf2 and HO-1 proteins were observed in vitro. Importantly, we verified that these protective effects could be significantly reversed by inhibiting PI3K and knocking out Nrf2. CONCLUSIONS In summary, Saikosaponin A and D improve CKD-induced muscle atrophy by reducing oxidative stress through the PI3K/AKT/Nrf2 pathway.
Collapse
Affiliation(s)
- Minna Huang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, China
| | - Yan Yan
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, China
| | - Zihao Deng
- The First Clinical Medical College, Southern Medical University, Guangzhou, 510000, China
| | - Lingli Zhou
- The First Clinical Medical College, Southern Medical University, Guangzhou, 510000, China
| | - Meiling She
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, China
| | - Yajun Yang
- Department of Pharmacology, Guangdong Key Laboratory for R&D of Natural Drug, Guangdong Medical University, Zhanjiang,524000, China
| | - Meng Zhang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, China
| | - Dongtao Wang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, China.
| |
Collapse
|
5
|
Acevedo LM, Vidal Á, Aguilera-Tejero E, Rivero JLL. Muscle plasticity is influenced by renal function and caloric intake through the FGF23-vitamin D axis. Am J Physiol Cell Physiol 2023; 324:C14-C28. [PMID: 36409180 DOI: 10.1152/ajpcell.00306.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Skeletal muscle, the main metabolic engine in the body of vertebrates, is endowed with great plasticity. The association between skeletal muscle plasticity and two highly prevalent health problems: renal dysfunction and obesity, which share etiologic links as well as many comorbidities, is a subject of great relevance. It is important to know how these alterations impact on the structure and function of skeletal muscle because the changes in muscle phenotype have a major influence on the quality of life of the patients. This literature review aims to discuss the influence of a nontraditional axis involving kidney, bone, and muscle on skeletal muscle plasticity. In this axis, the kidneys play a role as the main site for vitamin D activation. Renal disease leads to a direct decrease in 1,25(OH)2-vitamin D, secondary to reduction in renal functional mass, and has an indirect effect, through phosphate retention, that contributes to stimulate fibroblast growth factor 23 (FGF23) secretion by bone cells. FGF23 downregulates the renal synthesis of 1,25(OH)2-vitamin D and upregulates its metabolism. Skeletal production of FGF23 is also regulated by caloric intake: it is increased in obesity and decreased by caloric restriction, and these changes impact on 1,25(OH)2-vitamin D concentrations, which are decreased in obesity and increased after caloric restriction. Thus, both phosphate retention, that develops secondary to renal failure, and caloric intake influence 1,25(OH)2-vitamin D that in turn plays a key role in muscle anabolism.
Collapse
Affiliation(s)
- Luz M Acevedo
- Department of Comparative Anatomy and Pathological Anatomy and Toxicology, Faculty of Veterinary Sciences, Laboratory of Muscular Biopathology, University of Cordoba, Spain.,Departamento de Ciencias Biomédicas, Facultad de Ciencias Veterinarias, Universidad Central de Venezuela, Maracay, Venezuela
| | - Ángela Vidal
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Spain
| | - Escolástico Aguilera-Tejero
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Spain
| | - José-Luis L Rivero
- Department of Comparative Anatomy and Pathological Anatomy and Toxicology, Faculty of Veterinary Sciences, Laboratory of Muscular Biopathology, University of Cordoba, Spain
| |
Collapse
|
6
|
Czaya B, Heitman K, Campos I, Yanucil C, Kentrup D, Westbrook D, Gutierrez O, Babitt JL, Jung G, Salusky IB, Hanudel M, Faul C. Hyperphosphatemia increases inflammation to exacerbate anemia and skeletal muscle wasting independently of FGF23-FGFR4 signaling. eLife 2022; 11:74782. [PMID: 35302487 PMCID: PMC8963881 DOI: 10.7554/elife.74782] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/17/2022] [Indexed: 12/01/2022] Open
Abstract
Elevations in plasma phosphate concentrations (hyperphosphatemia) occur in chronic kidney disease (CKD), in certain genetic disorders, and following the intake of a phosphate-rich diet. Whether hyperphosphatemia and/or associated changes in metabolic regulators, including elevations of fibroblast growth factor 23 (FGF23) directly contribute to specific complications of CKD is uncertain. Here, we report that similar to patients with CKD, mice with adenine-induced CKD develop inflammation, anemia, and skeletal muscle wasting. These complications are also observed in mice fed high phosphate diet even without CKD. Ablation of pathologic FGF23-FGFR4 signaling did not protect mice on an increased phosphate diet or mice with adenine-induced CKD from these sequelae. However, low phosphate diet ameliorated anemia and skeletal muscle wasting in a genetic mouse model of CKD. Our mechanistic in vitro studies indicate that phosphate elevations induce inflammatory signaling and increase hepcidin expression in hepatocytes, a potential causative link between hyperphosphatemia, anemia, and skeletal muscle dysfunction. Our study suggests that high phosphate intake, as caused by the consumption of processed food, may have harmful effects irrespective of pre-existing kidney injury, supporting not only the clinical utility of treating hyperphosphatemia in CKD patients but also arguing for limiting phosphate intake in healthy individuals.
Collapse
Affiliation(s)
- Brian Czaya
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at BirminghamBirminghamUnited States,Department of Medicine, David Geffen School of Medicine at UCLALos AngelesUnited States
| | - Kylie Heitman
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at BirminghamBirminghamUnited States
| | - Isaac Campos
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at BirminghamBirminghamUnited States
| | - Christopher Yanucil
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at BirminghamBirminghamUnited States
| | - Dominik Kentrup
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at BirminghamBirminghamUnited States
| | - David Westbrook
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at BirminghamBirminghamUnited States
| | - Orlando Gutierrez
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at BirminghamBirminghamUnited States
| | - Jodie L Babitt
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - Grace Jung
- Department of Medicine, David Geffen School of Medicine at UCLALos AngelesUnited States
| | - Isidro B Salusky
- Department of Pediatrics, David Geffen School of Medicine at UCLALos AngelesUnited States
| | - Mark Hanudel
- Department of Pediatrics, David Geffen School of Medicine at UCLALos AngelesUnited States
| | - Christian Faul
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at BirminghamBirminghamUnited States
| |
Collapse
|
7
|
Maintenance of Skeletal Muscle to Counteract Sarcopenia in Patients with Advanced Chronic Kidney Disease and Especially Those Undergoing Hemodialysis. Nutrients 2021; 13:nu13051538. [PMID: 34063269 PMCID: PMC8147474 DOI: 10.3390/nu13051538] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/18/2022] Open
Abstract
Life extension in modern society has introduced new concepts regarding such disorders as frailty and sarcopenia, which has been recognized in various studies. At the same time, cutting-edge technology methods, e.g., renal replacement therapy for conditions such as hemodialysis (HD), have made it possible to protect patients from advanced lethal chronic kidney disease (CKD). Loss of muscle and fat mass, termed protein energy wasting (PEW), has been recognized as prognostic factor and, along with the increasing rate of HD introduction in elderly individuals in Japan, appropriate countermeasures are necessary. Although their origins differ, frailty, sarcopenia, and PEW share common components, among which skeletal muscle plays a central role in their etiologies. The nearest concept may be sarcopenia, for which diagnosis techniques have recently been reported. The focus of this review is on maintenance of skeletal muscle against aging and CKD/HD, based on muscle physiology and pathology. Clinically relevant and topical factors related to muscle wasting including sarcopenia, such as vitamin D, myostatin, insulin (related to diabetes), insulin-like growth factor I, mitochondria, and physical inactivity, are discussed. Findings presented thus far indicate that in addition to modulation of the aforementioned factors, exercise combined with nutritional supplementation may be a useful approach to overcome muscle wasting and sarcopenia in elderly patients undergoing HD treatments.
Collapse
|
8
|
Vidal A, Rios R, Pineda C, Lopez I, Raya AI, Aguilera-Tejero E, Rivero JLL. Increased 1,25(OH) 2-Vitamin D Concentrations after Energy Restriction Are Associated with Changes in Skeletal Muscle Phenotype. Nutrients 2021; 13:nu13020607. [PMID: 33673262 PMCID: PMC7918565 DOI: 10.3390/nu13020607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 01/22/2023] Open
Abstract
The influence of energy restriction (ER) on muscle is controversial, and the mechanisms are not well understood. To study the effect of ER on skeletal muscle phenotype and the influence of vitamin D, rats (n = 34) were fed a control diet or an ER diet. Muscle mass, muscle somatic index (MSI), fiber-type composition, fiber size, and metabolic activity were studied in tibialis cranialis (TC) and soleus (SOL) muscles. Plasma vitamin D metabolites and renal expression of enzymes involved in vitamin D metabolism were measured. In the ER group, muscle weight was unchanged in TC and decreased by 12% in SOL, but MSI increased in both muscles (p < 0.0001) by 55% and 36%, respectively. Histomorphometric studies showed 14% increase in the percentage of type IIA fibers and 13% reduction in type IIX fibers in TC of ER rats. Decreased size of type I fibers and reduced oxidative activity was identified in SOL of ER rats. An increase in plasma 1,25(OH)2-vitamin D (169.7 ± 6.8 vs. 85.4 ± 11.5 pg/mL, p < 0.0001) with kidney up-regulation of CYP27b1 and down-regulation of CYP24a1 was observed in ER rats. Plasma vitamin D correlated with MSI in both muscles (p < 0.001), with the percentages of type IIA and type IIX fibers in TC and with the oxidative profile in SOL. In conclusion, ER preserves skeletal muscle mass, improves contractile phenotype in phasic muscles (TC), and reduces energy expenditure in antigravity muscles (SOL). These beneficial effects are closely related to the increases in vitamin D secondary to ER.
Collapse
Affiliation(s)
- Angela Vidal
- Department of Animal Medicine and Surgery, University of Cordoba, 14071 Cordoba, Spain; (A.V.); (R.R.); (C.P.); (I.L.); (A.I.R.)
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain
| | - Rafael Rios
- Department of Animal Medicine and Surgery, University of Cordoba, 14071 Cordoba, Spain; (A.V.); (R.R.); (C.P.); (I.L.); (A.I.R.)
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain
| | - Carmen Pineda
- Department of Animal Medicine and Surgery, University of Cordoba, 14071 Cordoba, Spain; (A.V.); (R.R.); (C.P.); (I.L.); (A.I.R.)
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain
| | - Ignacio Lopez
- Department of Animal Medicine and Surgery, University of Cordoba, 14071 Cordoba, Spain; (A.V.); (R.R.); (C.P.); (I.L.); (A.I.R.)
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain
| | - Ana I. Raya
- Department of Animal Medicine and Surgery, University of Cordoba, 14071 Cordoba, Spain; (A.V.); (R.R.); (C.P.); (I.L.); (A.I.R.)
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain
| | - Escolastico Aguilera-Tejero
- Department of Animal Medicine and Surgery, University of Cordoba, 14071 Cordoba, Spain; (A.V.); (R.R.); (C.P.); (I.L.); (A.I.R.)
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain
- Correspondence: ; Tel.: +34-957-21-8714
| | - Jose-Luis L. Rivero
- Department of Comparative Anatomy, Pathological Anatomy, and Toxicology, University of Cordoba, 14071 Cordoba, Spain;
| |
Collapse
|
9
|
Peri-Okonny P, Baskin KK, Iwamoto G, Mitchell JH, Smith SA, Kim HK, Szweda LI, Bassel-Duby R, Fujikawa T, Castorena CM, Richardson J, Shelton JM, Ayers C, Berry JD, Malladi VS, Hu MC, Moe OW, Scherer PE, Vongpatanasin W. High-Phosphate Diet Induces Exercise Intolerance and Impairs Fatty Acid Metabolism in Mice. Circulation 2019; 139:1422-1434. [PMID: 30612451 DOI: 10.1161/circulationaha.118.037550] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Inorganic phosphate (Pi) is used extensively as a preservative and a flavor enhancer in the Western diet. Physical inactivity, a common feature of Western societies, is associated with increased cardiovascular morbidity and mortality. It is unknown whether dietary Pi excess contributes to exercise intolerance and physical inactivity. METHODS To determine an association between Pi excess and physical activity in humans, we assessed the relationship between serum Pi and actigraphy-determined physical activity level, as well as left ventricular function by cardiac magnetic resonance imaging, in DHS-2 (Dallas Heart Study phase 2) participants after adjusting for relevant variables. To determine direct effects of dietary Pi on exercise capacity, oxygen uptake, serum nonesterified fatty acid, and glucose were measured during exercise treadmill test in C57/BL6 mice fed either a high-Pi (2%) or normal-Pi (0.6%) diet for 12 weeks. To determine the direct effect of Pi on muscle metabolism and expression of genes involved in fatty acid metabolism, additional studies in differentiated C2C12 myotubes were conducted after subjecting to media containing 1 to 3 mmol/L Pi (pH 7.0) to simulate in vivo phosphate conditions. RESULTS In participants of the DHS-2 (n=1603), higher serum Pi was independently associated with reduced time spent in moderate to vigorous physical activity ( P=0.01) and increased sedentary time ( P=0.004). There was no association between serum Pi and left ventricular ejection fraction or volumes. In animal studies, compared with the control diet, consumption of high-Pi diet for 12 weeks did not alter body weight or left ventricular function but reduced maximal oxygen uptake, treadmill duration, spontaneous locomotor activity, fat oxidation, and fatty acid levels and led to downregulation of genes involved in fatty acid synthesis, release, and oxidation, including Fabp4, Hsl, Fasn, and Pparγ, in muscle. Similar results were recapitulated in vitro by incubating C2C12 myotubes with high-Pi media. CONCLUSIONS Our data demonstrate a detrimental effect of dietary Pi excess on skeletal muscle fatty acid metabolism and exercise capacity that is independent of obesity and cardiac contractile function. Dietary Pi may represent a novel and modifiable target to reduce physical inactivity associated with the Western diet.
Collapse
Affiliation(s)
- Poghni Peri-Okonny
- Department of Internal Medicine, Hypertension Section (P.P.-O., H.K.K., W.V.), University of Texas Southwestern Medical Center, Dallas
| | - Kedryn K Baskin
- Department of Molecular Biology (K.K.B., R.B.-D.), University of Texas Southwestern Medical Center, Dallas.,Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus (K.K.B.)
| | - Gary Iwamoto
- Department of Cell Biology (G.I.), University of Texas Southwestern Medical Center, Dallas
| | - Jere H Mitchell
- Department of Internal Medicine, Cardiology Division (J.H.M., L.I.S., J.M.S., J.D.B., W.V.), University of Texas Southwestern Medical Center, Dallas
| | - Scott A Smith
- Department of Health Care Sciences (S.A.S.), University of Texas Southwestern Medical Center, Dallas
| | - Han Kyul Kim
- Department of Internal Medicine, Hypertension Section (P.P.-O., H.K.K., W.V.), University of Texas Southwestern Medical Center, Dallas
| | - Luke I Szweda
- Department of Internal Medicine, Cardiology Division (J.H.M., L.I.S., J.M.S., J.D.B., W.V.), University of Texas Southwestern Medical Center, Dallas
| | - Rhonda Bassel-Duby
- Department of Molecular Biology (K.K.B., R.B.-D.), University of Texas Southwestern Medical Center, Dallas
| | - Teppei Fujikawa
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio (T.F.)
| | - Carlos M Castorena
- Department of Internal Medicine, Division of Hypothalamic Research (C.M.C.), University of Texas Southwestern Medical Center, Dallas
| | - James Richardson
- Department of Pathology (J.R.), University of Texas Southwestern Medical Center, Dallas
| | - John M Shelton
- Department of Internal Medicine, Cardiology Division (J.H.M., L.I.S., J.M.S., J.D.B., W.V.), University of Texas Southwestern Medical Center, Dallas
| | - Colby Ayers
- Department of Clinical Sciences (C.A., J.D.B.), University of Texas Southwestern Medical Center, Dallas
| | - Jarett D Berry
- Department of Internal Medicine, Cardiology Division (J.H.M., L.I.S., J.M.S., J.D.B., W.V.), University of Texas Southwestern Medical Center, Dallas.,Department of Clinical Sciences (C.A., J.D.B.), University of Texas Southwestern Medical Center, Dallas
| | - Venkat S Malladi
- Department of Bioinformatics (V.S.M.), University of Texas Southwestern Medical Center, Dallas
| | - Ming-Chang Hu
- Department of Internal Medicine, Division of Nephrology (M.-C.H., O.W.M.), University of Texas Southwestern Medical Center, Dallas.,Department of Physiology (M.-C.H., O.W.M.), University of Texas Southwestern Medical Center, Dallas.,Pak Center of Mineral Metabolism and Clinical Research (M.-C.H., O.W.M., W.V.), University of Texas Southwestern Medical Center, Dallas
| | - Orson W Moe
- Department of Internal Medicine, Division of Nephrology (M.-C.H., O.W.M.), University of Texas Southwestern Medical Center, Dallas.,Department of Physiology (M.-C.H., O.W.M.), University of Texas Southwestern Medical Center, Dallas.,Pak Center of Mineral Metabolism and Clinical Research (M.-C.H., O.W.M., W.V.), University of Texas Southwestern Medical Center, Dallas
| | - Philipp E Scherer
- Touchstone Diabetes Center (P.E.S.), University of Texas Southwestern Medical Center, Dallas
| | - Wanpen Vongpatanasin
- Department of Internal Medicine, Hypertension Section (P.P.-O., H.K.K., W.V.), University of Texas Southwestern Medical Center, Dallas.,Department of Internal Medicine, Cardiology Division (J.H.M., L.I.S., J.M.S., J.D.B., W.V.), University of Texas Southwestern Medical Center, Dallas.,Pak Center of Mineral Metabolism and Clinical Research (M.-C.H., O.W.M., W.V.), University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
10
|
Exploring the Link between Serum Phosphate Levels and Low Muscle Strength, Dynapenia, and Sarcopenia. Sci Rep 2018; 8:3573. [PMID: 29476104 PMCID: PMC5824959 DOI: 10.1038/s41598-018-21784-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/09/2018] [Indexed: 11/09/2022] Open
Abstract
Emerging evidences addressed an association between phosphate and muscle function. Because little attention was focused on this issue, the objective of our study was to explore the relationship of phosphate with muscle strength, dynapenia, and sarcopenia. From the National Health and Nutrition Examination Survey, a total of 7421 participants aged 20 years or older were included in our study with comprehensive examinations included anthropometric parameters, strength of the quadriceps muscle, and appendicular lean masses. Within the normal range of serum phosphate, we used quartile-based analyses to determine the potential relationships of serum phosphate with dynapenia, and sarcopenia through multivariate regression models. After adjusting for the pertinent variables, an inverse association between the serum phosphate quartiles and muscle strength was observed and the linear association was stronger than other anthropometric parameters. Notably, the significant association between phosphate and muscle strength was existed in >65 years old age group, not in 20-65 years old. The higher quartiles of phosphate had higher likelihood for predicting the presence of dynapenia rather than sarcopenia in entire population. Our study highlighted that higher quartiles of phosphate had significant association with lower muscle strength and higher risks for predicting the presence of dynapenia.
Collapse
|
11
|
Acevedo LM, Raya AI, Ríos R, Aguilera-Tejero E, Rivero JLL. Obesity-induced discrepancy between contractile and metabolic phenotypes in slow- and fast-twitch skeletal muscles of female obese Zucker rats. J Appl Physiol (1985) 2017; 123:249-259. [PMID: 28522764 DOI: 10.1152/japplphysiol.00282.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 01/02/2023] Open
Abstract
A clear picture of skeletal muscle adaptations to obesity and related comorbidities remains elusive. This study describes fiber-type characteristics (size, proportions, and oxidative enzyme activity) in two typical hindlimb muscles with opposite structure and function in an animal model of genetic obesity. Lesser fiber diameter, fiber-type composition, and histochemical succinic dehydrogenase activity (an oxidative marker) of muscle fiber types were assessed in slow (soleus)- and fast (tibialis cranialis)-twitch muscles of obese Zucker rats and compared with age (16 wk)- and sex (females)-matched lean Zucker rats (n = 16/group). Muscle mass and lesser fiber diameter were lower in both muscle types of obese compared with lean animals even though body weights were increased in the obese cohort. A faster fiber-type phenotype also occurred in slow- and fast-twitch muscles of obese rats compared with lean rats. These adaptations were accompanied by a significant increment in histochemical succinic dehydrogenase activity of slow-twitch fibers in the soleus muscle and fast-twitch fiber types in the tibialis cranialis muscle. Obesity significantly increased plasma levels of proinflammatory cytokines but did not significantly affect protein levels of peroxisome proliferator-activated receptors PPARγ or PGC1α in either muscle. These data demonstrate that, in female Zucker rats, obesity induces a reduction of muscle mass in which skeletal muscles show a diminished fiber size and a faster and more oxidative phenotype. It was noteworthy that this discrepancy in muscle's contractile and metabolic features was of comparable nature and extent in muscles with different fiber-type composition and antagonist functions.NEW & NOTEWORTHY This study demonstrates a discrepancy between morphological (reduced muscle mass), contractile (shift toward a faster phenotype), and metabolic (increased mitochondrial oxidative enzyme activity) characteristics in skeletal muscles of female Zucker fatty rats. It is noteworthy that this inconsistency was comparable (in nature and extent) in muscles with different structure and function.
Collapse
Affiliation(s)
- Luz M Acevedo
- Laboratorio de Biopatología Muscular, Departamento de Anatomía y Anatomía Patológica Comparadas, Universidad de Córdoba, Córdoba, Spain.,Departamento de Ciencias Biomédicas, Universidad Central de Venezuela, Maracay, Venezuela
| | - Ana I Raya
- Departamento de Medicina y Cirugía Animal, Universidad de Córdoba, Córdoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofia, Universidad de Córdoba, Córdoba, Spain; and
| | - Rafael Ríos
- Departamento de Medicina y Cirugía Animal, Universidad de Córdoba, Córdoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofia, Universidad de Córdoba, Córdoba, Spain; and
| | - Escolástico Aguilera-Tejero
- Departamento de Medicina y Cirugía Animal, Universidad de Córdoba, Córdoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofia, Universidad de Córdoba, Córdoba, Spain; and
| | - José-Luis L Rivero
- Laboratorio de Biopatología Muscular, Departamento de Anatomía y Anatomía Patológica Comparadas, Universidad de Córdoba, Córdoba, Spain;
| |
Collapse
|
12
|
Acevedo LM, Raya AI, Martínez-Moreno JM, Aguilera–Tejero E, Rivero JLL. Mangiferin protects against adverse skeletal muscle changes and enhances muscle oxidative capacity in obese rats. PLoS One 2017; 12:e0173028. [PMID: 28253314 PMCID: PMC5333851 DOI: 10.1371/journal.pone.0173028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 02/13/2017] [Indexed: 12/12/2022] Open
Abstract
Obesity-related skeletal muscle changes include muscle atrophy, slow-to-fast fiber-type transformation, and impaired mitochondrial oxidative capacity. These changes relate with increased risk of insulin resistance. Mangiferin, the major component of the plant Mangifera indica, is a well-known anti-inflammatory, anti-diabetic, and antihyperlipidemic agent. This study tested the hypothesis that mangiferin treatment counteracts obesity-induced fiber atrophy and slow-to-fast fiber transition, and favors an oxidative phenotype in skeletal muscle of obese rats. Obese Zucker rats were fed gelatin pellets with (15 mg/kg BW/day) or without (placebo group) mangiferin for 8 weeks. Lean Zucker rats received the same gelatin pellets without mangiferin and served as non-obese and non-diabetic controls. Lesser diameter, fiber composition, and histochemical succinic dehydrogenase activity (an oxidative marker) of myosin-based fiber-types were assessed in soleus and tibialis cranialis muscles. A multivariate discriminant analysis encompassing all fiber-type features indicated that obese rats treated with mangiferin displayed skeletal muscle phenotypes significantly different compared with both lean and obese control rats. Mangiferin significantly decreased inflammatory cytokines, preserved skeletal muscle mass, fiber cross-sectional size, and fiber-type composition, and enhanced muscle fiber oxidative capacity. These data demonstrate that mangiferin attenuated adverse skeletal muscle changes in obese rats.
Collapse
Affiliation(s)
- Luz M. Acevedo
- Laboratory of Muscular Biopathology, Department of Comparative Anatomy and Pathological Anatomy, University of Cordoba, Cordoba, Spain
| | - Ana I. Raya
- Department of Animal Medicine and Surgery, University of Cordoba, Cordoba, Spain
- Instituto Maimonides de Investigacion Biomedica de Cordoba (IMIBIC), Hospital Universitario Reina Sofia, University of Cordoba, Cordoba, Spain
| | - Julio M. Martínez-Moreno
- Instituto Maimonides de Investigacion Biomedica de Cordoba (IMIBIC), Hospital Universitario Reina Sofia, University of Cordoba, Cordoba, Spain
| | - Escolástico Aguilera–Tejero
- Department of Animal Medicine and Surgery, University of Cordoba, Cordoba, Spain
- Instituto Maimonides de Investigacion Biomedica de Cordoba (IMIBIC), Hospital Universitario Reina Sofia, University of Cordoba, Cordoba, Spain
| | - José-Luis L. Rivero
- Laboratory of Muscular Biopathology, Department of Comparative Anatomy and Pathological Anatomy, University of Cordoba, Cordoba, Spain
| |
Collapse
|