1
|
Johnson DA, Cable TG, Funnell MP, Peden DL, Thorley J, Ferreira DA Cunha M, Reynolds KM, Harris L, Wood M, Chavez-O'Reilly T, Carrington J, Bailey SJ, Clifford T, Heaney LM, James LJ. Effects of Cannabidiol Ingestion on Thermoregulatory and Inflammatory Responses to Treadmill Exercise in the Heat in Recreationally Active Males. Med Sci Sports Exerc 2025; 57:413-424. [PMID: 39294920 DOI: 10.1249/mss.0000000000003568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
PURPOSE Exertional heat stress can induce systemic endotoxin exposure and a proinflammatory cascade, likely impairing thermoregulation. Cannabidiol (CBD) is protective in preclinical models of tissue ischemia and inflammation. Therefore, this study examined the effects of CBD ingestion on exercise-induced thermoregulatory and inflammatory responses. METHODS In a randomized, double-blinded study, 13 active males (age 25 ± 5 yr; peak oxygen uptake (V̇O 2peak ) 50.4 ± 3.2 mL·kg -1 ·min -1 ) ingested 298 mg CBD or placebo 105 min before 1 h treadmill exercise (60%-65% V̇O 2peak ) in 32°C and 50% relative humidity. Core temperature, skin temperature, heart rate, subjective outcomes, and sweat loss were assessed during/after exercise. Plasma osmolality, plasma volume changes, and plasma markers of intestinal damage (I-FABP), monocyte activation (CD14), and inflammatory cytokine responses (IL-6, IL-8, and TNF-α) were assessed at baseline, pre-exercise, and 20 and 90 min post-exercise. RESULTS Core temperature (∆ 1.69°C ± 0.48°C (CBD) and 1.79°C ± 0.53°C (Placebo)) and I-FABP increased during exercise, with no differences between conditions ( P > 0.050). Mean (95% confidence interval) CD14 was 1776 (463 to 3090) pg·mL -1 greater 90 min post-exercise in placebo ( P = 0.049). Median (interquartile range) peak IL-6 concentration was -0.8 (-1.1 to -0.3) pg·mL -1 less in CBD ( P = 0.050), whereas the between-condition difference in IL-6 area under curve was -113 (-172 to 27) (pg·mL -1 )·270 min ( P = 0.054). CONCLUSIONS CBD did not affect thermoregulation during exertional heat stress but appeared to elicit minor immunosuppressive effects, reducing CD14 and IL-6 responses, warranting investigation in humans under more severe heat strain and other proinflammatory scenarios.
Collapse
Affiliation(s)
| | - Thomas G Cable
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM
| | | | - Donald L Peden
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM
| | - Josh Thorley
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM
| | - Mafalda Ferreira DA Cunha
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM
| | - Kirsty M Reynolds
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM
| | - Luke Harris
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM
| | - Matt Wood
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM
| | - Tom Chavez-O'Reilly
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM
| | - Joe Carrington
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM
| | - Stephen J Bailey
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM
| | - Tom Clifford
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM
| | - Liam M Heaney
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM
| | - Lewis J James
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM
| |
Collapse
|
2
|
McCubbin AJ, Irwin CG, Costa RJS. Nourishing Physical Productivity and Performance On a Warming Planet - Challenges and Nutritional Strategies to Mitigate Exertional Heat Stress. Curr Nutr Rep 2024; 13:399-411. [PMID: 38995600 PMCID: PMC11327203 DOI: 10.1007/s13668-024-00554-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2024] [Indexed: 07/13/2024]
Abstract
PURPOSE OF REVIEW: Climate change is predicted to increase the frequency and severity of exposure to hot environments. This can impair health, physical performance, and productivity for active individuals in occupational and athletic settings. This review summarizes current knowledge and recent advancements in nutritional strategies to minimize the impact of exertional-heat stress (EHS). RECENT FINDINGS: Hydration strategies limiting body mass loss to < 3% during EHS are performance-beneficial in weight-supported activities, although evidence regarding smaller fluid deficits (< 2% body mass loss) and weight-dependent activities is less clear due to a lack of well-designed studies with adequate blinding. Sodium replacement requirements during EHS depends on both sweat losses and the extent of fluid replacement, with quantified sodium replacement only necessary once fluid replacement > 60-80% of losses. Ice ingestion lowers core temperature and may improve thermal comfort and performance outcomes when consumed before, but less so during activity. Prevention and management of gastrointestinal disturbances during EHS should focus on high carbohydrate but low FODMAP availability before and during exercise, frequent provision of carbohydrate and/or protein during exercise, adequate hydration, and body temperature regulation. Evidence for these approaches is lacking in occupational settings. Acute kidney injury is a potential concern resulting from inadequate fluid replacement during and post-EHS, and emerging evidence suggests that repeated exposures may increase the risk of developing chronic kidney disease. Nutritional strategies can help regulate hydration, body temperature, and gastrointestinal status during EHS. Doing so minimizes the impact of EHS on health and safety and optimizes productivity and performance outcomes on a warming planet.
Collapse
Affiliation(s)
- Alan J McCubbin
- Department of Nutrition, Dietetics and Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, Victoria, 3168, Australia.
| | - Christopher G Irwin
- School of Health Sciences and Social Work, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Ricardo J S Costa
- Department of Nutrition, Dietetics and Food, Monash University, Level 1, 264 Ferntree Gully Road, Notting Hill, Victoria, 3168, Australia
| |
Collapse
|
3
|
Bongers CCWG, James LJ, Périard JD. From Tokyo through Paris to Los Angeles and beyond - Preparing athletes to face the heat of a warming world. J Sci Med Sport 2024:S1440-2440(24)00256-1. [PMID: 39107225 DOI: 10.1016/j.jsams.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 08/09/2024]
Affiliation(s)
- C C W G Bongers
- HAN University of Applied Sciences, School of Sport and Exercise, the Netherlands; Radboud University Medical Center, Department of Medical Biosciences, the Netherlands.
| | - L J James
- Loughborough University, National Centre for Sport and Exercise Medicine, School of Sport and Exercise Sciences, UK. https://twitter.com/LJJ_nutrition
| | - J D Périard
- University of Canberra, Research Institute for Sport and Exercise, Australia. https://twitter.com/DrJPeriard
| |
Collapse
|
4
|
McCubbin AJ, Irwin C. The effect of pre-exercise oral hyperhydration on endurance exercise performance, heart rate, and thermoregulation: a meta-analytical review. Appl Physiol Nutr Metab 2024; 49:569-583. [PMID: 38198662 DOI: 10.1139/apnm-2023-0384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
This study aimed to determine the effect of pre-exercise hyperhydration on endurance performance (primary outcome), heart rate, thermoregulation, and perceptual responses (secondary outcomes). Six academic databases were searched to February 2023. Only studies reporting differences in hydration between intervention and placebo/control were included. Meta-analysis determined overall effect size (Hedges' g), and meta-regression the influence of independent moderators (ambient temperature, hyperhydration agent, exercise mode, extent of hyperhydration). Overall, 10 publications generating 19 effect estimates for primary outcomes, and 11 publications reporting 48 effect estimates for secondary outcomes, were included. A small-to-moderate improvement in time-to-exhaustion (TTE) (Hedges' g = 0.31, 95% CI: 0.13-0.50, p = 0.001) and time trial (TT) (g = 0.25, 95% CI: 0.002-0.51, p = 0.049) but not total work (TW) tasks (p = 0.120) was found following hyperhydration. No moderating effects were observed. No effect of hyperhydration was found for heart rate following steady state (SS) exercise (p = 0.069) or the performance task (p = 0.072), nor for body temperature post-SS (p = 0.132) or post-performance task (p = 0.349), but meta-regression of sodium versus glycerol showed lower body temperature post-performance task with sodium (g = 0.80, t (5) = 2.65, p = 0.046). No effects were found for perceived exertion or thermal comfort. Study heterogeneity was low, lacking representation of elite and female athletes, and weight-bearing (i.e., running) exercise modalities. These results suggest pre-exercise hyperhydration provides a small-to-moderate benefit to endurance performance in TTE and TT, but not TW performance tasks. While no moderating effects were observed, lack of heterogeneity makes it difficult to generalise these findings.
Collapse
Affiliation(s)
- Alan J McCubbin
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, Victoria, Australia
| | - Christopher Irwin
- School of Health Sciences and Social Work, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
5
|
Juett LA, Drury JE, Greensmith TB, Thompson AP, Funnell MP, James LJ, Mears SA. Hypohydration induced by prolonged cycling in the heat increases biomarkers of renal injury in males. Eur J Appl Physiol 2024; 124:1085-1096. [PMID: 37848571 PMCID: PMC10954877 DOI: 10.1007/s00421-023-05328-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/16/2023] [Indexed: 10/19/2023]
Abstract
PURPOSE Recent studies have shown that hypohydration can increase renal injury. However, the contribution of hypohydration to the extent of renal injury is often confounded by exercise induced muscle damage. Therefore, the aim of the present study was to investigate the effect of manipulating hydration status during moderate-intensity cycling in the heat on biomarkers of renal injury. METHODS Following familiarisation, fourteen active males (age: 21 [20-22] y; BMI: 22.1 ± 1.9 kg/m2; V ˙ O2peak: 55 ± 9 mL/kg/min) completed two experimental trials, in a randomised cross-over design. Experimental trials consisted of up to 120 min of intermittent cycling (~ 50% Wpeak) in the heat (~ 35 °C, ~ 50% relative humidity). During exercise, subjects consumed either a water volume equal to 100% body mass losses (EU) or minimal water (HYP; 75-100 mL) to induce ~ 3% body mass loss. Blood and urine samples were collected at baseline, 30 min post-exercise and 24 h post-baseline, with an additional urine sample collected immediately post-exercise. RESULTS Thirty minutes post-exercise, body mass and plasma volume were lower in HYP than EU (P < 0.001), whereas serum and urine osmolality (P < 0.001), osmolality-corrected urinary kidney injury molecule-1 concentrations (HYP: 2.74 [1.87-5.44] ng/mOsm, EU: 1.15 [0.84-2.37] ng/mOsm; P = 0.024), and percentage change in osmolality-corrected urinary neutrophil gelatinase-associated lipocalin concentrations (HYP: 61 [17-141] %, EU: 7.1 [- 4 to 24] %; P = 0.033) were greater in HYP than EU. CONCLUSION Hypohydration produced by cycling in the heat increased renal tubular injury, compared to maintaining euhydration with water ingestion.
Collapse
Affiliation(s)
- Loris A Juett
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, UK
- Loughborough College, Loughborough, LE11 3BT, UK
| | - Jack E Drury
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, UK
| | - Thomas B Greensmith
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, UK
| | - Alfie P Thompson
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, UK
| | - Mark P Funnell
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, UK
| | - Lewis J James
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, UK
| | - Stephen A Mears
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, UK.
| |
Collapse
|
6
|
Funnell MP, Moss J, Brown DR, Mears SA, James LJ. Perceived dehydration impairs endurance cycling performance in the heat in active males. Physiol Behav 2024; 276:114462. [PMID: 38215862 DOI: 10.1016/j.physbeh.2024.114462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
Dehydration of >3 % body mass impairs endurance performance irrespective of the individual's knowledge of their hydration status, but whether knowledge of hydration status influences performance at lower levels of dehydration is unknown. This study examined whether perception of hydration status influenced endurance performance. After familiarisation, nine active males (age 25 ± 2 y, V̇O2peak 52.5 ± 9.1 mL kg min-1) completed two randomised trials at 34 °C. Trials involved an intermittent exercise preload (8 × 10 min cycling/5 min rest), followed by a 15 min all-out cycling performance test. During the preload in both trials, water was ingested orally every 10 min (0.3 mL kg body mass-1), with additional water infused into the stomach via gastric feeding tube to produce dehydration of ∼1.5 % body mass pre-performance test. Participants were told intra-gastric infusion was manipulated to produce euhydration (0 % dehydration; Perceived-EUH) or dehydration (2 % dehydration; Perceived-DEH) pre-performance test, which was told to them pre-preload and confirmed after body mass measurement pre-performance test. Body mass loss during the preload (Perceived-EUH 1.6 ± 0.2 %, Perceived-DEH 1.7 ± 0.2 %; P = 0.459), heart rate, gastrointestinal temperature and RPE (P ≥ 0.110) were not different between trials. Thirst was greater at the end of the preload and performance test in Perceived-DEH (P ≤ 0.040). Work completed during the performance test was 5.6 ± 6.1 % lower in Perceived-DEH (187.4 ± 37.0 kJ vs. 176.9 ± 36.0 kJ; P = 0.038). These results suggest that at lower levels of dehydration (<2 % body mass), an individual's perception of their hydration status could impair their performance, as well as their thirst perception.
Collapse
Affiliation(s)
- Mark P Funnell
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, UK
| | - Jodie Moss
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, UK
| | - Daniel R Brown
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, UK; Centre for Human Performance, Carnegie School of Sport, Leeds Beckett University, Leeds, LS6 3QT, UK
| | - Stephen A Mears
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, UK
| | - Lewis J James
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, UK.
| |
Collapse
|
7
|
Goods PSR, Wall B, Galna B, McKay AKA, Jennings D, Peeling P, Watson G. Sweat Characteristics and Fluid Balance Responses During Two Heat Training Camps in Elite Female Field Hockey Players. Int J Sport Nutr Exerc Metab 2024; 34:79-87. [PMID: 38215732 DOI: 10.1123/ijsnem.2023-0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/02/2023] [Accepted: 11/16/2023] [Indexed: 01/14/2024]
Abstract
We examined the sweat characteristics and fluid balance of elite female field hockey players during two heat training camps. Fourteen elite female field hockey players from the Australian national squad participated in two heat training camps held ∼6 months apart, following winter- (Camp 1) and summer-based training (Camp 2). Daily waking body mass (BM) and urine specific gravity (USG) were collected, along with several markers of sweat and fluid balance across two matches per camp. There was a 19% mean reduction in estimated whole-body sweat sodium concentration from Camp 1 (45.8 ± 6.5 mmol/L) to Camp 2 (37.0 ± 5.0 mmol/L; p < .001). Waking urine specific gravity ≥ 1.020 was observed in 31% of samples, with no significant differences in mean urine specific gravity or BM between camps (p > .05), but with substantial interindividual variation. Intramatch sweat rates were high (1.2-1.8 L/hr), with greater BM losses in Camp 1 (p = .030), resulting in fewer players losing ≥2% BM in Camp 2 (0%-8%), as compared with Camp 1 (36%-43%; p = .017). Our field data suggest that elite female field hockey players experience substantial sweat losses during competition in the heat regardless of the season. In agreement with previous findings, we observed substantial interindividual variation in sweat and hydration indices, supporting the use of individualized athlete hydration strategies.
Collapse
Affiliation(s)
- Paul S R Goods
- School of Allied Health (Exercise Science), Murdoch University, Murdoch, WA, Australia
- Center for Healthy Aging, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Western Australian Institute of Sport, Mt Claremont, WA, Australia
| | - Bradley Wall
- School of Allied Health (Exercise Science), Murdoch University, Murdoch, WA, Australia
- Center for Healthy Aging, Health Futures Institute, Murdoch University, Perth, WA, Australia
| | - Brook Galna
- School of Allied Health (Exercise Science), Murdoch University, Murdoch, WA, Australia
- Center for Healthy Aging, Health Futures Institute, Murdoch University, Perth, WA, Australia
| | - Alannah K A McKay
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Denise Jennings
- High Performance Program, Hockey Australia, Perth, WA, Australia
| | - Peter Peeling
- Western Australian Institute of Sport, Mt Claremont, WA, Australia
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, WA, Australia
| | - Greig Watson
- School of Allied Health (Exercise Science), Murdoch University, Murdoch, WA, Australia
- Center for Healthy Aging, Health Futures Institute, Murdoch University, Perth, WA, Australia
| |
Collapse
|
8
|
Bergin-Taylor K, Funnell MP, Ferguson RA, Mears SA, James LJ. Serum osmolality measured in fingertip capillary blood is comparable to serum osmolality measured in venous blood. Appl Physiol Nutr Metab 2024; 49:121-124. [PMID: 37552893 DOI: 10.1139/apnm-2022-0358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Blood osmolality is considered the gold standard hydration assessment, but has limited application for technical and invasive reasons. Paired antecubital-venous blood and fingertip-capillary blood were collected pre- and 30 min post-drinking 600 mL water in 55 male/female participants. No bias (0.2 mOsmo/kg, limits of agreement = -2.5 to 2.8 mOsmo/kg) was found between sampling methods, with high linear correlation (Spearman's r = 0.95, P < 0.001). Capillary blood sampling offers an accurate less-invasive method for determining serum osmolality than venous blood sampling.
Collapse
Affiliation(s)
- K Bergin-Taylor
- National Centre for Sport and Exercise Medicine, School of Sport Exercise and Health Sciences, Loughborough University, Loughboroug LE11 3TU, UK
| | - M P Funnell
- National Centre for Sport and Exercise Medicine, School of Sport Exercise and Health Sciences, Loughborough University, Loughboroug LE11 3TU, UK
| | - R A Ferguson
- National Centre for Sport and Exercise Medicine, School of Sport Exercise and Health Sciences, Loughborough University, Loughboroug LE11 3TU, UK
| | - S A Mears
- National Centre for Sport and Exercise Medicine, School of Sport Exercise and Health Sciences, Loughborough University, Loughboroug LE11 3TU, UK
| | - L J James
- National Centre for Sport and Exercise Medicine, School of Sport Exercise and Health Sciences, Loughborough University, Loughboroug LE11 3TU, UK
| |
Collapse
|
9
|
Martins Januário W, Prata ERBDA, Natali AJ, Prímola-Gomes TN. Normal gastrointestinal temperature values measured through ingestible capsules technology: a systematic review. J Med Eng Technol 2023; 47:389-395. [PMID: 38780358 DOI: 10.1080/03091902.2024.2354793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Climate change has amplified the importance of continuous and precise body core temperature (Tcore) monitoring in the everyday life. In this context, assessing Tcore through ingestible capsules technology, i.e., gastrointestinal temperature (Tgastrointestinal), emerges as a good alternative to prevent heat-related illness. Therefore, we conducted a systematic review to point out values of normal Tgastrointestinal measured through ingestible capsules in healthy humans. The study followed PRISMA guidelines and searched the PubMed and Scielo databases from 1971 to 2023. Our search strategy included the descriptors ("gastrointestinal temperature") AND ("measurement"), and eligible studies had to be written in English and measured Tgastrointestinal using ingestible capsules or sensors in healthy adults aged 18-59 at rest. Two pairs of researchers independently reviewed titles and abstracts and identified 35 relevant articles out of 1,088 in the initial search. An average value of 37.13 °C with a standard deviation of 0.24 °C was observed, independently of the gender. The values measured ranged from 36.70 °C to 37.69 °C. In conclusion, this systematic review pointed out the mean value of 37.13 ± 0.24 °C measured by ingestible capsules as reference for resting Tgastrointestinal in healthy adult individuals.
Collapse
Affiliation(s)
- William Martins Januário
- Departamento de Educação Física, Laboratório de Performance Humana, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil
| | | | - Antônio José Natali
- Departamento de Educação Física, Laboratório de Biologia do Exercício, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil
| | - Thales Nicolau Prímola-Gomes
- Departamento de Educação Física, Laboratório de Performance Humana, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil
| |
Collapse
|
10
|
Reynolds KM, Juett LA, Funnell MP, Schofield JB, Grundig C, Melidis G, Brown A, Hubbard W, Luo Y, Almahaireh I, James LJ, Mears SA. Apple puree as a natural fructose source provides an effective alternative carbohydrate source for fuelling half-marathon running performance. Eur J Sport Sci 2023; 23:2011-2020. [PMID: 37115611 DOI: 10.1080/17461391.2023.2207074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Carbohydrate supplementation during endurance exercise is known to improve performance, but the effects of food-based approaches in running exercise are understudied. Therefore, this study investigated the performance and gastrointestinal (GI) effects of a carbohydrate supplement containing a natural fructose source compared with a highly processed fructose source in a combined glucose-fructose supplement, during a half-marathon. Eleven trained runners (9 males, 2 females; age 32 ± 8 y, 89:53 ± 13:28 min half-marathon personal record) completed a familiarisation (8 miles) and two experimental trials (13.1 miles) on an outdoor running course, with blood and urine samples collected before and after the run. Subjective GI measures were made throughout the run. Carbohydrate was provided as a natural fructose source in the form of apple puree (AP) or highly processed crystalline fructose (GF) in a 2:1 glucose-to-fructose ratio (additional required glucose was provided through maltodextrin). Half-marathon performance was not different between carbohydrate sources (AP 89:52 ± 09:33 min, GF 88:44 ± 10:09 min; P = 0.684). There were no interaction effects for GI comfort (P = 0.305) or other GI symptoms (P ≥ 0.211). There were no differences between carbohydrate sources in ad libitum fluid intake (AP 409 ± 206 mL; GF 294 ± 149 mL; P = 0.094) or any other urinary (P ≥ 0.724), blood-based (P ≥ 0.215) or subjective (P ≥ 0.421) measures. Apple puree as a natural fructose source was equivalent to crystalline fructose in supporting half-marathon running performance without increasing GI symptoms.HighlightsResearch examining food-first and food-based approaches to carbohydrate supplementation and endurance running performance are limited. Therefore, this study aimed to compare carbohydrate supplements either containing a natural or highly processed fructose source as part of a glucose-fructose supplement on half-marathon running performance and gastrointestinal comfort in trained runners.Running performance (apple puree 89:52 ± 09:33 min vs. crystalline fructose 88:44 ± 10:09 min), gastrointestinal comfort and symptoms were not different between the two fructose sources.Apple puree can be effectively used as a carbohydrate source to fuel half-marathon running performance.
Collapse
Affiliation(s)
- Kirsty M Reynolds
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Loris A Juett
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Mark P Funnell
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Joshua B Schofield
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Claire Grundig
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - George Melidis
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Alexander Brown
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Will Hubbard
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Yuxuan Luo
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Ibrahim Almahaireh
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Lewis J James
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Stephen A Mears
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
11
|
Francisco R, Jesus F, Nunes CL, Cioffi I, Alvim M, Mendonca GV, Lukaski H, Sardinha LB, Silva AM. Athletes with different habitual fluid intakes differ in hydration status but not in body water compartments. Scand J Med Sci Sports 2023; 33:1072-1078. [PMID: 36951582 DOI: 10.1111/sms.14355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/09/2023] [Accepted: 03/20/2023] [Indexed: 03/24/2023]
Abstract
Physiological differences have been reported between individuals who have habitual low (LOW) and high (HIGH) water intake (WI). The aims of this study were to explore body water compartments, hydration status, and fat-free mass (FFM) hydration of elite athletes exposed to different habitual WI. A total of 68 athletes (20.6 ± 5.3 years, 23 females) participated in this observational cross-sectional study. Total WI was assessed by seven-day food diaries and through WI, athletes were categorized as HIGH (n = 28, WI≥40.0 mL/kg/d) and LOW (n = 40, WI≤35.0 mL/kg/d). Total body water (TBW) and extracellular water (ECW) were determined by dilution techniques and intracellular water (ICW) as TBW-ECW. Hydration status was assessed by urine-specific gravity (USG) using a refractometer. Fat (FM) and FFM were assessed by dual-energy X-ray absorptiometry (DXA). The FFM hydration was calculated by TBW/FFM. The USG was statistically different between groups for females (LOW: 1.024 ± 0.003; HIGH: 1.015 ± 0.006; p = 0.005) and males (LOW: 1.024 ± 0.002; HIGH: 1.018 ± 0.005; p < 0.001). No differences between groups were detected in body water compartments and FFM hydration in both sexes (p > 0.05). Multiple regression showed that WI remains a predictor of USG regardless of FFM, age, and sex (β = -0.0004, p < 0.01). We concluded that LOW athletes were classified as dehydrated through USG although their water compartments were not different from HIGH athletes. These results suggest that LOW athletes may expectedly maintain the body water compartments' homeostasis through endocrine mechanisms. Interventions should be taken to encourage athletes to have sufficient WI to maintain optimal hydration.
Collapse
Affiliation(s)
- Rúben Francisco
- Exercise and Health Laboratory, CIPER, Faculdade Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | - Filipe Jesus
- Exercise and Health Laboratory, CIPER, Faculdade Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | - Catarina L Nunes
- Exercise and Health Laboratory, CIPER, Faculdade Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | - Iolanda Cioffi
- Department of Clinical Medicine and Surgery, Federico II University Hospital, Naples, Italy
| | - Marta Alvim
- National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - Goncalo V Mendonca
- Neuromuscular Research Lab, CIPER, Faculdade Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | - Henry Lukaski
- Department of Kinesiology and Public Health Education, Hyslop Sports Center, University of North Dakota, Grand Forks, North Dakota, USA
| | - Luís B Sardinha
- Exercise and Health Laboratory, CIPER, Faculdade Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | - Analiza M Silva
- Exercise and Health Laboratory, CIPER, Faculdade Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
12
|
Funnell MP, Embleton D, Morris T, Macrae HZ, Hart N, Mazzotta T, Lockyer W, Juett LA, Mears SA, James LJ. Exercise-induced hypohydration impairs 3 km treadmill-running performance in temperate conditions. J Sports Sci 2023; 41:1171-1178. [PMID: 37733070 DOI: 10.1080/02640414.2023.2259728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023]
Abstract
Research assessing exercise-induced hypohydration on running performance in a temperate environment is scarce. Given the weight-bearing nature of running, the negative effects of hypohydration might be offset by the weight-loss associated with a negative fluid balance. Therefore, this study investigated the effect of exercise-induced hypohydration on running performance in temperate conditions. Seventeen intermittent games players (age 22 ± 1 y; VO2peak 52.5 ± 4.1 mL∙kg-1∙min-1) completed preliminary and familiarisation trials, and two experimental trials consisting of 12 blocks of 6 min of running (65% VO2peak; preload) with 1 min passive rest in-between, followed by a 3 km time trial (TT). During the preload, subjects consumed minimal fluid (60 mL) to induce hypohydration (HYP) or water to replace 95% sweat losses (1622 ± 343 mL; EUH). Body mass loss (EUH -0.5 ± 0.3%; HYP -2.2 ± 0.4%; P < 0.001), and other changes indicative of hypohydration, including increased serum osmolality, heart rate, thirst sensation, and decreased plasma volume (P ≤ 0.022), were apparent in HYP by the end of the preload. TT performance was ~6% slower in HYP (EUH 900 ± 87 s; HYP 955 ± 110 s; P < 0.001). Exercise-induced hypohydration of ~2% body mass impaired 3 km running TT performance in a temperate environment.
Collapse
Affiliation(s)
- Mark P Funnell
- National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, Leicestershire, UK
| | - Daniel Embleton
- National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, Leicestershire, UK
| | - Thomas Morris
- National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, Leicestershire, UK
| | - Heather Z Macrae
- National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, Leicestershire, UK
| | - Nicholas Hart
- National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, Leicestershire, UK
| | - Tiberio Mazzotta
- National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, Leicestershire, UK
| | - William Lockyer
- National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, Leicestershire, UK
| | - Loris A Juett
- National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, Leicestershire, UK
| | - Stephen A Mears
- National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, Leicestershire, UK
| | - Lewis J James
- National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, Leicestershire, UK
| |
Collapse
|
13
|
Funnell MP, Juett LA, Ferrara R, Mears SA, James LJ. Ad-libitum fluid intake was insufficient to achieve euhydration 20 h after intermittent running in male team sports athletes. Physiol Behav 2023; 268:114227. [PMID: 37156317 DOI: 10.1016/j.physbeh.2023.114227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/17/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
This study documented 20 h rehydration from intermittent running while concealing the primary outcome of rehydration from subjects. Twenty-eight male team sports athletes (age 25 ± 3 y; predicted V̇O2max 54 ± 3 mL∙kg-1∙min-1) were pair-matched to exercise (EX) or rest (REST) groups. To determine hydration status, body mass, urine and blood samples were collected at 08:00, pre-intervention (09:30), post-intervention (12:00), 3 h post-intervention and 08:00 the following morning (20 h). The intervention was 110 min intermittent running (EX) or seated rest (REST), with ad-libitum fluid provided in both. Subjects completed a weighed diet record and collected all urine for the 24 h. Changes typical of hypohydration were apparent in EX following the intervention period (body mass: EX -2.0 ± 0.5%; REST -0.2 ± 0.3%; serum osmolality: EX 293 ± 4 mOsm∙kgH2O-1; REST 287 ± 6 mOsm∙kgH2O-1; P≤0.022). Fluid intake during the intervention period (EX 704 ± 286 mL, REST 343 ± 230 mL) and fluid intake within the first 3 h post-intervention (EX 1081 ± 460 mL, REST 662 ± 230 mL) were greater (P≤0.004), and 24 h urine volume lower (EX 1697 ± 824 mL, REST 2370 ± 842 mL; P=0.039) in EX. Compared to baseline, body mass remained lower (-0.6 ± 0.5%; P=0.030) and urine osmolality elevated (20 h: 844 ± 197 mOsm∙kgH2O-1, 08:00: 698 ± 200 mOsm∙kgH2O-1; P=0.004) at 20 h in EX. When games players drank fluid ad-libitum during exercise and post-exercise in free-living conditions, a small degree of hypohydration remained 20 h post-exercise.
Collapse
Affiliation(s)
- Mark P Funnell
- National Centre for Sport, Exercise & Medicine, Loughborough University, Leicestershire, UK, LE11 3TU..
| | - Loris A Juett
- National Centre for Sport, Exercise & Medicine, Loughborough University, Leicestershire, UK, LE11 3TU
| | - Robert Ferrara
- National Centre for Sport, Exercise & Medicine, Loughborough University, Leicestershire, UK, LE11 3TU
| | - Stephen A Mears
- National Centre for Sport, Exercise & Medicine, Loughborough University, Leicestershire, UK, LE11 3TU
| | - Lewis J James
- National Centre for Sport, Exercise & Medicine, Loughborough University, Leicestershire, UK, LE11 3TU
| |
Collapse
|
14
|
Turner O, Mitchell N, Ruddock A, Purvis A, Ranchordas MK. Fluid Balance, Sodium Losses and Hydration Practices of Elite Squash Players during Training. Nutrients 2023; 15:nu15071749. [PMID: 37049589 PMCID: PMC10096645 DOI: 10.3390/nu15071749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/07/2023] Open
Abstract
Elite squash players are reported to train indoors at high volumes and intensities throughout a microcycle. This may increase hydration demands, with hypohydration potentially impairing many key performance indicators which characterise elite squash performance. Consequently, the main aim of this study was to quantify the sweat rates and sweat [Na+] of elite squash players throughout a training session, alongside their hydration practices. Fourteen (males = seven; females = seven) elite or world class squash player’s fluid balance, sweat [Na+] and hydration practices were calculated throughout a training session in moderate environmental conditions (20 ± 0.4 °C; 40.6 ± 1% RH). Rehydration practices were also quantified post-session until the players’ next training session, with some training the same day and some training the following day. Players had a mean fluid balance of −1.22 ± 1.22% throughout the session. Players had a mean sweat rate of 1.11 ± 0.56 L·h−1, with there being a significant difference between male and female players (p < 0.05), and a mean sweat (Na+) of 46 ± 12 mmol·L−1. Players training the following day were able to replace fluid and sodium losses, whereas players training again on the same day were not. These data suggest the variability in players hydration demands and highlight the need to individualise hydration strategies, as well as training prescription, to ensure players with high hydration demands have ample time to optimally rehydrate.
Collapse
Affiliation(s)
- Ollie Turner
- Academy of Sport & Physical Activity, Sheffield Hallam University, Sheffield S10 2BP, UK
- English Institute of Sport, Manchester M11 3BS, UK
| | | | - Alan Ruddock
- Academy of Sport & Physical Activity, Sheffield Hallam University, Sheffield S10 2BP, UK
| | - Alison Purvis
- Academy of Sport & Physical Activity, Sheffield Hallam University, Sheffield S10 2BP, UK
| | - Mayur K. Ranchordas
- Academy of Sport & Physical Activity, Sheffield Hallam University, Sheffield S10 2BP, UK
| |
Collapse
|
15
|
Badham L, Stern SE, O’Connor FK, Wijekulasuriya GA, Corcoran G, Cox GR, Coffey VG. Fluid intake is a strong predictor of outdoor team sport pre-season training performance. J Sports Sci 2023; 41:1-7. [PMID: 37002685 DOI: 10.1080/02640414.2023.2191093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Our aim was to characterize fluid intake during outdoor team sport training and use generalized additive models to quantify interactions with the environment and performance. Fluid intake, body mass (BM) and internal/external training load data were recorded for male rugby union (n = 19) and soccer (n = 19) athletes before/after field training sessions throughout an 11-week preseason (357 observations). Running performance (GPS) and environmental conditions were recorded each session and generalized additive models were applied in the analysis of data. Mean body mass loss throughout all training sessions was -1.11 ± 0.63 kg (~1.3%) compared with a mean fluid intake at each session of 958 ± 476 mL during the experimental period. For sessions >110 min, when fluid intake reached ~10-19 mL·kg-1 BM the total distance increased (7.47 to 8.06 km, 7.6%; P = 0.049). Fluid intake above ~10 mL·kg-1 BM was associated with a 4.1% increase in high-speed running distance (P < 0.0001). Most outdoor team sport athletes fail to match fluid loss during training, and fluid intake is a strong predictor of running performance. Improved hydration practices during training should be beneficial and we provide a practical ingestion range to promote improved exercise capacity in outdoor team sport training sessions.
Collapse
Affiliation(s)
- Luke Badham
- Bond Institute of Health and Sport and Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Steven E. Stern
- Centre for Data Analytics, Bond Business School, Bond University, Gold Coast, Queensland, Australia
| | - Fergus K. O’Connor
- Bond Institute of Health and Sport and Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Gyan A. Wijekulasuriya
- Bond Institute of Health and Sport and Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Glenn Corcoran
- Bond University High Performance Training Centre, Gold Coast, Queensland, Australia
| | - Gregory R. Cox
- Bond Institute of Health and Sport and Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Vernon G. Coffey
- Bond Institute of Health and Sport and Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
- Centre for Data Analytics, Bond Business School, Bond University, Gold Coast, Queensland, Australia
| |
Collapse
|
16
|
Effects of Different Hydration Strategies in Young Men during Prolonged Exercise at Elevated Ambient Temperatures on Pro-Oxidative and Antioxidant Status Markers, Muscle Damage, and Inflammatory Status. Antioxidants (Basel) 2023; 12:antiox12030642. [PMID: 36978890 PMCID: PMC10045838 DOI: 10.3390/antiox12030642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Physical exercise is associated with an increase in the speed of metabolic processes to supply energy to working muscles and endogenous heat production. Intense sweating caused by the work performed at high ambient temperatures is associated with a significant loss of water and electrolytes, leading to dehydration. This study aimed to examine the effectiveness of different hydration strategies in young men during prolonged exercise at elevated ambient temperatures on levels of pro-oxidative and antioxidant status, oxidative status markers (TAC/TOC), muscle cell damage (Mb, LDH), and inflammatory status (WBC, CRP, IL-1β). The study was conducted on a group of 12 healthy men with average levels of aerobic capacity. The intervention consisted of using various hydration strategies: no hydration; water; and isotonic drinks. The examination was di-vided into two main stages. The first stage was a preliminary study that included medical exami-nations, measurements of somatic indices, and exercise tests. The exercise test was performed on a cycle ergometers. Their results were used to determine individual relative loads for the main part of the experiment. In the second stage, the main study was conducted, involving three series of weekly experimental tests using a cross-over design. The change in plasma volume (∆PV) measured im-mediately and one hour after the exercise test was significantly dependent on the hydration strategy (p = 0.003 and p = 0.002, respectively). The mean values of oxidative status did not differ signifi-cantly between the hydration strategy used and the sequence in which the test was performed. Using isotonic drinks, due to the more efficient restoration of the body’s water and electrolyte balance compared to water or no hydration, most effectively protects muscle cells from the negative effects of exercise, leading to heat stress of exogenous and endogenous origin.
Collapse
|
17
|
Peden DL, Funnell MP, Reynolds KM, Kenefick RW, Cheuvront SN, Mears SA, James LJ. Post-exercise rehydration: Comparing the efficacy of three commercial oral rehydration solutions. Front Sports Act Living 2023; 5:1158167. [PMID: 37181252 PMCID: PMC10174327 DOI: 10.3389/fspor.2023.1158167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction This study compared the efficacy of three commercial oral rehydration solutions (ORS) for restoring fluid and electrolyte balance, after exercise-induced dehydration. Method Healthy, active participants (N = 20; ♀ = 3; age ∼27 y, V˙O2peak ∼52 ml/kg/min) completed three randomised, counterbalanced trials whereby intermittent exercise in the heat (∼36°C, ∼50% humidity) induced ∼2.5% dehydration. Subsequently, participants rehydrated (125% fluid loss in four equal aliquots at 0, 1, 2, 3 h) with a glucose-based (G-ORS), sugar-free (Z-ORS) or amino acid-based sugar-free (AA-ORS) ORS of varying electrolyte composition. Urine output was measured hourly and capillary blood samples collected pre-exercise, 0, 2 and 5 h post-exercise. Sodium, potassium, and chloride concentrations in urine, sweat, and blood were determined. Results Net fluid balance peaked at 4 h and was greater in AA-ORS (141 ± 155 ml) and G-ORS (101 ± 195 ml) than Z-ORS (-47 ± 208 ml; P ≤ 0.010). Only AA-ORS achieved positive sodium and chloride balance post-exercise, which were greater for AA-ORS than G-ORS and Z-ORS (P ≤ 0.006), as well as for G-ORS than Z-ORS (P ≤ 0.007) from 1 to 5 h. Conclusion when provided in a volume equivalent to 125% of exercise-induced fluid loss, AA-ORS produced comparable/superior fluid balance and superior sodium/chloride balance responses to popular glucose-based and sugar-free ORS.
Collapse
Affiliation(s)
- Donald L. Peden
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Mark P. Funnell
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Kirsty M. Reynolds
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | | | - Samuel N. Cheuvront
- Entrinsic Bioscience, LLC, Norwood, MA, United States
- Sports Science Synergy, LLC, Franklin, MA, United States
| | - Stephen A. Mears
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Lewis J. James
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
- Correspondence: Lewis J. James
| |
Collapse
|
18
|
Smith NDW, Scott BR, Girard O, Peiffer JJ. Aerobic Training With Blood Flow Restriction for Endurance Athletes: Potential Benefits and Considerations of Implementation. J Strength Cond Res 2022; 36:3541-3550. [PMID: 34175880 DOI: 10.1519/jsc.0000000000004079] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ABSTRACT Smith, NDW, Scott, BR, Girard, O, and Peiffer, JJ. Aerobic training with blood flow restriction for endurance athletes: potential benefits and considerations of implementation. J Strength Cond Res 36(12): 3541-3550, 2022-Low-intensity aerobic training with blood flow restriction (BFR) can improve maximal oxygen uptake, delay the onset of blood lactate accumulation, and may provide marginal benefits to economy of motion in untrained individuals. Such a training modality could also improve these physiological attributes in well-trained athletes. Indeed, aerobic BFR training could be beneficial for those recovering from injury, those who have limited time for training a specific physiological capacity, or as an adjunct training stimulus to provide variation in a program. However, similarly to endurance training without BFR, using aerobic BFR training to elicit physiological adaptations in endurance athletes will require additional considerations compared with nonendurance athletes. The objective of this narrative review is to discuss the acute and chronic aspects of aerobic BFR exercise for well-trained endurance athletes and highlight considerations for its effective implementation. This review first highlights key physiological capacities of endurance performance. The acute and chronic responses to aerobic BFR exercise and their impact on performance are then discussed. Finally, considerations for prescribing and monitoring aerobic BFR exercise in trained endurance populations are addressed to challenge current views on how BFR exercise is implemented.
Collapse
Affiliation(s)
- Nathan D W Smith
- Exercise Science, Murdoch University, Perth, Western Australia.,Murdoch Applied Sports Science Laboratory, Murdoch University, Perth, Western Australia
| | - Brendan R Scott
- Murdoch Applied Sports Science Laboratory, Murdoch University, Perth, Western Australia.,Center for Healthy Ageing, Murdoch University, Perth, Western Australia ; and
| | - Olivier Girard
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Western Australia
| | - Jeremiah J Peiffer
- Murdoch Applied Sports Science Laboratory, Murdoch University, Perth, Western Australia.,Center for Healthy Ageing, Murdoch University, Perth, Western Australia ; and
| |
Collapse
|
19
|
Deshayes TA, Pancrate T, Goulet ED. Impact of dehydration on perceived exertion during endurance exercise: A systematic review with meta-analysis. J Exerc Sci Fit 2022; 20:224-235. [PMID: 35601980 PMCID: PMC9093000 DOI: 10.1016/j.jesf.2022.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/09/2022] [Accepted: 03/28/2022] [Indexed: 11/20/2022] Open
Abstract
Background Understanding the impact of stressors on the rating of perceived exertion (RPE) is relevant from a performance and exercise adherence/participation standpoint. Athletes and recreationally active individuals dehydrate during exercise. No attempt has been made to systematically determine the impact of exercise-induced dehydration (EID) on RPE. Objective The present meta-analysis aimed to determine the effect of EID on RPE during endurance exercise and examine the moderating effect of potential confounders. Data analyses Performed on raw RPE values using random-effects models weighted mean effect summaries and meta-regressions with robust standard errors, and with a practical meaningful effect set at 1 point difference between euhydration (EUH) and EID. Only controlled crossover studies measuring RPE with a Borg scale in healthy adults performing ≥30 min of continuous endurance exercise while dehydrating or drinking to maintain EUH were included. Results Sixteen studies were included, representing 147 individuals. Mean body mass loss with EUH was 0.5 ± 0.4%, compared to 2.3 ± 0.5% with EID (range 1.7-3.1%). Within an EID of 0.5-3% body mass, a maximum difference in RPE of 0.81 points (95% CI: 0.36-1.27) was observed between conditions. A meta-regression revealed that RPE increases by 0.21 points for each 1% increase in EID (95% CI: 0.12-0.31). Humidity, ambient temperature and aerobic capacity did not alter the relationship between EID and RPE. Conclusion Therefore, the effect of EID on RPE is unlikely to be practically meaningful until a body mass loss of at least 3%.
Collapse
Affiliation(s)
- Thomas A. Deshayes
- Faculty of Physical Activity Sciences, University of Sherbrooke, P.Q., Canada
- Research Center on Aging, University of Sherbrooke, P.Q., Canada
| | - Timothée Pancrate
- Faculty of Physical Activity Sciences, University of Sherbrooke, P.Q., Canada
| | - Eric D.B. Goulet
- Faculty of Physical Activity Sciences, University of Sherbrooke, P.Q., Canada
- Research Center on Aging, University of Sherbrooke, P.Q., Canada
| |
Collapse
|
20
|
Corticospinal and peripheral responses to heat-induced hypo-hydration: potential physiological mechanisms and implications for neuromuscular function. Eur J Appl Physiol 2022; 122:1797-1810. [PMID: 35362800 PMCID: PMC9287254 DOI: 10.1007/s00421-022-04937-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/16/2022] [Indexed: 12/05/2022]
Abstract
Heat-induced hypo-hydration (hyperosmotic hypovolemia) can reduce prolonged skeletal muscle performance; however, the mechanisms are less well understood and the reported effects on all aspects of neuromuscular function and brief maximal contractions are inconsistent. Historically, a 4–6% reduction of body mass has not been considered to impair muscle function in humans, as determined by muscle torque, membrane excitability and peak power production. With the development of magnetic resonance imaging and neurophysiological techniques, such as electromyography, peripheral nerve, and transcranial magnetic stimulation (TMS), the integrity of the brain-to-muscle pathway can be further investigated. The findings of this review demonstrate that heat-induced hypo-hydration impairs neuromuscular function, particularly during repeated and sustained contractions. Additionally, the mechanisms are separate to those of hyperthermia-induced fatigue and are likely a result of modulations to corticospinal inhibition, increased fibre conduction velocity, pain perception and impaired contractile function. This review also sheds light on the view that hypo-hydration has ‘no effect’ on neuromuscular function during brief maximal voluntary contractions. It is hypothesised that irrespective of unchanged force, compensatory reductions in cortical inhibition are likely to occur, in the attempt of achieving adequate force production. Studies using single-pulse TMS have shown that hypo-hydration can reduce maximal isometric and eccentric force, despite a reduction in cortical inhibition, but the cause of this is currently unclear. Future work should investigate the intracortical inhibitory and excitatory pathways within the brain, to elucidate the role of the central nervous system in force output, following heat-induced hypo-hydration.
Collapse
|
21
|
A Food First Approach to Carbohydrate Supplementation in Endurance Exercise: A Systematic Review. Int J Sport Nutr Exerc Metab 2022; 32:296-310. [PMID: 35231883 DOI: 10.1123/ijsnem.2021-0261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 11/18/2022]
Abstract
This systematic review analyzed whether carbohydrate source (food vs. supplement) influenced performance and gastrointestinal (GI) symptoms during endurance exercise. Medline, SPORTDiscus, and citations were searched from inception to July 2021. Inclusion criteria were healthy, active males and females aged >18 years, investigating endurance performance, and GI symptoms after ingestion of carbohydrate from a food or supplement, <60 min before or during endurance exercise. The van Rosendale scale was used to determine risk of bias, with seven studies having low risk of bias. A total of 151 participants from 15 studies were included in the review. Three studies provided 0.6-1 g carbohydrate/kg body mass during 5-45 min precycling exercise (duration 60-70 min) while 12 studies provided 24-80 g/hr carbohydrate during exercise (60-330 min). Except one study that suggested a likely harmful effect (magnitude-based inferences) of a bar compared to a gel consumed during exercise on cycling performance, there were no differences in running (n = 1) or cycling (n = 13) performance/capacity between food and supplemental sources. Greater GI symptoms were reported with food compared with supplemental sources. Highly heterogenous study designs for carbohydrate dose and timing, as well as exercise protocol and duration, make it difficult to compare findings between studies. A further limitation results from only one study assessing running performance. Food choices of carbohydrate consumed immediately before and during endurance exercise result in similar exercise performance/capacity responses to supplemental carbohydrate sources, but may slightly increase GI symptoms in some athletes, particularly with exercise >2 hr.
Collapse
|
22
|
Burke LM. Nutritional approaches to counter performance constraints in high-level sports competition. Exp Physiol 2021; 106:2304-2323. [PMID: 34762329 PMCID: PMC9299184 DOI: 10.1113/ep088188] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022]
Abstract
New Findings What is the topic of this review? The nutritional strategies that athletes use during competition events to optimize performance and the reasons they use them. What advances does it highlight? A range of nutritional strategies can be used by competitive athletes, alone or in combination, to address various event‐specific factors that constrain event performance. Evidence for such practices is constantly evolving but must be combined with understanding of the complexities of real‐life sport for optimal implementation.
Abstract High‐performance athletes share a common goal despite the unique nature of their sport: to pace or manage their performance to achieve the highest sustainable outputs over the duration of the event. Periodic or sustained decline in the optimal performance of event tasks, involves an interplay between central and peripheral phenomena that can often be reduced or delayed in onset by nutritional strategies. Contemporary nutrition practices undertaken before, during or between events include strategies to ensure the availability of limited muscle fuel stores. This includes creatine supplementation to increase muscle phosphocreatine content and consideration of the type, amount and timing of dietary carbohydrate intake to optimize muscle and liver glycogen stores or to provide additional exogenous substrate. Although there is interest in ketogenic low‐carbohydrate high‐fat diets and exogenous ketone supplements to provide alternative fuels to spare muscle carbohydrate use, present evidence suggests a limited utility of these strategies. Mouth sensing of a range of food tastants (e.g., carbohydrate, quinine, menthol, caffeine, fluid, acetic acid) may provide a central nervous system derived boost to sports performance. Finally, despite decades of research on hypohydration and exercise capacity, there is still contention around their effect on sports performance and the best guidance around hydration for sporting events. A unifying model proposes that some scenarios require personalized fluid plans while others might be managed by an ad hoc approach (ad libitum or thirst‐driven drinking) to fluid intake.
Collapse
Affiliation(s)
- Louise M Burke
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| |
Collapse
|
23
|
Juett LA, Midwood KL, Funnell MP, James LJ, Mears SA. Hypohydration produced by high-intensity intermittent running increases biomarkers of renal injury in males. Eur J Appl Physiol 2021; 121:3485-3497. [PMID: 34528132 PMCID: PMC8571244 DOI: 10.1007/s00421-021-04804-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/31/2021] [Indexed: 01/20/2023]
Abstract
Purpose Whilst there is evidence to suggest that hypohydration caused by physical work in the heat increases renal injury, whether this is the case during exercise in temperate conditions remains unknown. This study investigated the effect of manipulating hydration status during high-intensity intermittent running on biomarkers of renal injury. Methods After familiarisation, 14 males (age: 33 ± 7 years; V̇O2peak: 57.1 ± 8.6 ml/kg/min; mean ± SD) completed 2 trials in a randomised cross-over design, each involving 6, 15 min blocks of shuttle running (modified Loughborough Intermittent Shuttle Test protocol) in temperate conditions (22.3 ± 1.0 °C; 47.9 ± 12.9% relative humidity). During exercise, subjects consumed either a volume of water equal to 90% of sweat losses (EU) or 75 mL water (HYP). Body mass, blood and urine samples were taken pre-exercise (baseline/pre), 30 min post-exercise (post) and 24 h post-baseline (24 h). Results Post-exercise, body mass loss, serum osmolality and urine osmolality were greater in HYP than EU (P ≤ 0.024). Osmolality-corrected urinary kidney injury molecule-1 (uKIM-1) concentrations were increased post-exercise (P ≤ 0.048), with greater concentrations in HYP than EU (HYP: 2.76 [1.72–4.65] ng/mOsm; EU: 1.94 [1.1–2.54] ng/mOsm; P = 0.003; median [interquartile range]). Osmolality-corrected urinary neutrophil gelatinase-associated lipocalin (uNGAL) concentrations were increased post-exercise (P < 0.001), but there was no trial by time interaction effect (P = 0.073). Conclusion These results suggest that hypohydration produced by high-intensity intermittent running increases renal injury, compared to when euhydration is maintained, and that the site of this increased renal injury is at the proximal tubules.
Collapse
Affiliation(s)
- Loris A Juett
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, UK
| | - Katharine L Midwood
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, UK
| | - Mark P Funnell
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, UK
| | - Lewis J James
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, UK
| | - Stephen A Mears
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, UK.
| |
Collapse
|
24
|
PRESENT 2020: Text Expanding on the Checklist for Proper Reporting of Evidence in Sport and Exercise Nutrition Trials. Int J Sport Nutr Exerc Metab 2021; 30:2-13. [PMID: 31945740 DOI: 10.1123/ijsnem.2019-0326] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/07/2019] [Indexed: 11/18/2022]
|
25
|
Cheuvront SN, Kenefick RW. Personalized fluid and fuel intake for performance optimization in the heat. J Sci Med Sport 2021; 24:735-738. [DOI: 10.1016/j.jsams.2021.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/16/2020] [Accepted: 01/10/2021] [Indexed: 12/13/2022]
|
26
|
Changes in Hydration Factors Over the Course of Heat Acclimation in Endurance Athletes. Int J Sport Nutr Exerc Metab 2021; 31:406-411. [PMID: 34303307 DOI: 10.1123/ijsnem.2020-0374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/05/2021] [Accepted: 06/11/2021] [Indexed: 11/18/2022]
Abstract
The purpose of this study was to examine the effect of heat acclimation (HA) on thirst levels, sweat rate, and percentage of body mass loss (%BML), and changes in fluid intake factors throughout HA induction. Twenty-eight male endurance athletes (mean ± SD; age, 35 ± 12 years; body mass, 73.0 ± 8.9 kg; maximal oxygen consumption, 57.4 ± 6.8 ml·kg-1·min-1) completed 60 min of exercise in a euhydrated state at 58.9 ± 2.3% velocity of maximal oxygen consumption in the heat (ambient temperature, 35.0 ± 1.3 °C; relative humidity, 48.0 ± 1.3%) prior to and following HA where thirst levels, sweat rate, and %BML were measured. Then, participants performed 5 days of HA while held at hyperthermia (38.50-39.75 °C) for 60 min with fluid provided ad libitum. Sweat volume, %BML, thirst levels, and fluid intake were measured for each session. Thirst levels were significantly lower following HA (pre, 4 ± 1; post, 3 ± 1, p < .001). Sweat rate (pre, 1.76 ± 0.42 L/hr; post, 2.00 ± 0.60 L/hr, p = .039) and %BML (pre, 2.66 ± 0.53%; post, 2.98 ± 0.83%, p = .049) were significantly greater following HA. During HA, thirst levels decreased (Day 1, 4 ± 1; Day 2, 3 ± 2; Day 3, 3 ± 2; Day 4, 3 ± 1; Day 5, 3 ± 1; p < .001). However, sweat volume (Day 1, 2.34 ± 0.67 L; Day 2, 2.49 ± 0.58 L; Day 3, 2.67 ± 0.63 L; Day 4, 2.74 ± 0.61 L; Day 5, 2.74 ± 0.91 L; p = .010) and fluid intake (Day 1, 1.20 ± 0.45 L; Day 2, 1.52 ± 0.58 L; Day 3, 1.69 ± 0.63 L; Day 4, 1.65 ± 0.58 L; Day 5, 1.74 ± 0.51 L; p < .001) increased. In conclusion, thirst levels were lower following HA even though sweat rate and %BML were higher. Thirst levels decreased while sweat volume and fluid intake increased during HA induction. Thus, HA should be one of the factors to consider when planning hydration strategies.
Collapse
|
27
|
Estimated Sweat Loss, Fluid and Carbohydrate Intake, and Sodium Balance of Male Major Junior, AHL, and NHL Players During On-Ice Practices. Int J Sport Nutr Exerc Metab 2021; 29:612-619. [PMID: 31141409 DOI: 10.1123/ijsnem.2019-0029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/11/2019] [Accepted: 04/20/2019] [Indexed: 11/18/2022]
Abstract
Several previous studies have reported performance decrements in team sport athletes who dehydrated approximately 1.5-2% of their body mass (BM) through sweating. This study measured on-ice sweat loss, fluid intake, sodium balance, and carbohydrate (CHO) intake of 77 major junior (JR; 19 ± 1 years), 60 American Hockey League (AHL; 24 ± 4 years), and 77 National Hockey League (NHL; 27 ± 5 years) players. Sweat loss was calculated from pre- to post-exercise BM plus fluid intake minus urine loss. AHL (2.03 ± 0.62 L/hr) and NHL (2.02 ± 0.74 L/hr) players had higher sweat rates (p < .05) than JR players (1.63 ± 0.58 L/hr). AHL (1.23 ± 0.69%; p = .006) and NHL (1.29% ± 0.63%; p < .001) players had ∼30% greater BM losses than JR players (0.89% ± 0.57%). There was no difference in fluid intake between groups (p > .05). Sodium deficits (sodium loss - intake) were greater (p < .05) in AHL (1.68 ± 0.74 g/hr) and NHL (1.56 ± 0.84 g/hr) players compared with JR players (1.01 ± 0.50 g/hr). CHO intake was similar between groups (14-20 g CHO/hr), with 29%, 32%, and 40% of JR, AHL, and NHL players consuming no CHO, respectively. In summary, sweat rates were high in all players, but the majority of players (74/77, 54/60, and 68/77 of JR, AHL, and NHL, respectively) avoided mild dehydration (>2% BM) during 60 min of practice. However, ∼15%, 41%, and 48% of the JR, AHL, and NHL players, respectively, may have reached mild dehydration and increased risk of performance decrements in a 90-min practice.
Collapse
|
28
|
Périard JD, Eijsvogels TMH, Daanen HAM. Exercise under heat stress: thermoregulation, hydration, performance implications, and mitigation strategies. Physiol Rev 2021; 101:1873-1979. [PMID: 33829868 DOI: 10.1152/physrev.00038.2020] [Citation(s) in RCA: 195] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A rise in body core temperature and loss of body water via sweating are natural consequences of prolonged exercise in the heat. This review provides a comprehensive and integrative overview of how the human body responds to exercise under heat stress and the countermeasures that can be adopted to enhance aerobic performance under such environmental conditions. The fundamental concepts and physiological processes associated with thermoregulation and fluid balance are initially described, followed by a summary of methods to determine thermal strain and hydration status. An outline is provided on how exercise-heat stress disrupts these homeostatic processes, leading to hyperthermia, hypohydration, sodium disturbances, and in some cases exertional heat illness. The impact of heat stress on human performance is also examined, including the underlying physiological mechanisms that mediate the impairment of exercise performance. Similarly, the influence of hydration status on performance in the heat and how systemic and peripheral hemodynamic adjustments contribute to fatigue development is elucidated. This review also discusses strategies to mitigate the effects of hyperthermia and hypohydration on exercise performance in the heat by examining the benefits of heat acclimation, cooling strategies, and hyperhydration. Finally, contemporary controversies are summarized and future research directions are provided.
Collapse
Affiliation(s)
- Julien D Périard
- University of Canberra Research Institute for Sport and Exercise, Bruce, Australia
| | - Thijs M H Eijsvogels
- Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hein A M Daanen
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Juett LA, James LJ, Mears SA. Effects of Exercise on Acute Kidney Injury Biomarkers and the Potential Influence of Fluid Intake. ANNALS OF NUTRITION AND METABOLISM 2021; 76 Suppl 1:53-59. [PMID: 33774615 DOI: 10.1159/000515022] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 12/16/2020] [Indexed: 11/19/2022]
Abstract
Acute kidney injury (AKI) incidence (diagnosed by changes in serum creatinine [Cr]) following prolonged endurance events has been reported to be anywhere from 4 to 85%, and hypohydration may contribute to this. Whilst an increase in serum Cr indicates impaired kidney function, this might be influenced by muscle damage. Therefore, the use of other AKI biomarkers which can detect renal tubular injury may be more appropriate. The long-term consequences of AKI are not well understood, but there are some potential concerns of an increased subsequent risk of chronic kidney disease (CKD). Therefore, this brief review explores the effects of exercise training/competition on novel AKI biomarkers and the potential influence of fluid intake. The increase in novel AKI biomarkers following prolonged endurance events suggests renal tubular injury. This is likely due to the long duration and relatively high exercise intensity, producing increased sympathetic tone, body temperature, hypohydration, and muscle damage. Whilst muscle damage appears to be an important factor in the pathophysiology of exercise-associated AKI, it may require coexisting hypohydration. Fluid intake seems to play a role in exercise-associated AKI, as maintaining euhydration with water ingestion during simulated physical work in the heat appears to attenuate rises in AKI biomarkers. The composition of fluid intake may also be important, as high-fructose drinks have been shown to exacerbate AKI biomarkers. However, it is yet to be seen if these findings are applicable to athletes performing strenuous exercise in a temperate environment. Additionally, further work should examine the effects of repeated bouts of strenuous exercise on novel AKI biomarkers.
Collapse
Affiliation(s)
- Loris Allan Juett
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Lewis J James
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Stephen Andrew Mears
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
30
|
James LJ, Funnell MP, James RM, Mears SA. Does Hypohydration Really Impair Endurance Performance? Methodological Considerations for Interpreting Hydration Research. Sports Med 2020; 49:103-114. [PMID: 31696453 PMCID: PMC6901416 DOI: 10.1007/s40279-019-01188-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The impact of alterations in hydration status on human physiology and performance responses during exercise is one of the oldest research topics in sport and exercise nutrition. This body of work has mainly focussed on the impact of reduced body water stores (i.e. hypohydration) on these outcomes, on the whole demonstrating that hypohydration impairs endurance performance, likely via detrimental effects on a number of physiological functions. However, an important consideration, that has received little attention, is the methods that have traditionally been used to investigate how hypohydration affects exercise outcomes, as those used may confound the results of many studies. There are two main methodological limitations in much of the published literature that perhaps make the results of studies investigating performance outcomes difficult to interpret. First, subjects involved in studies are generally not blinded to the intervention taking place (i.e. they know what their hydration status is), which may introduce expectancy effects. Second, most of the methods used to induce hypohydration are both uncomfortable and unfamiliar to the subjects, meaning that alterations in performance may be caused by this discomfort, rather than hypohydration per se. This review discusses these methodological considerations and provides an overview of the small body of recent work that has attempted to correct some of these methodological issues. On balance, these recent blinded hydration studies suggest hypohydration equivalent to 2–3% body mass decreases endurance cycling performance in the heat, at least when no/little fluid is ingested.
Collapse
Affiliation(s)
- Lewis J James
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK.
| | - Mark P Funnell
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - Ruth M James
- Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Stephen A Mears
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| |
Collapse
|
31
|
García-Berger D, Mackay K, Monsalves-Alvarez M, Jorquera C, Ramirez-Campillo R, Zbinden-Foncea H, Castro-Sepulveda M. Effects of skim milk and isotonic drink consumption before exercise on fluid homeostasis and time-trial performance in cyclists: a randomized cross-over study. J Int Soc Sports Nutr 2020; 17:17. [PMID: 32228635 PMCID: PMC7106740 DOI: 10.1186/s12970-020-00346-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/11/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hydration status affects endurance performance. Pre-exercise hydration recommendations target the consumption of high carbohydrate and sodium beverages. Milk, due to its carbohydrate and sodium content, may be considered an effective pre-exercise hydration beverage. PURPOSE In a randomized cross-over trial, we compared the effects of an isotonic sport drink (SPD) with skim milk (SM) consumption before a race, on fluid homeostasis and time-trial performance in road cyclists. METHODS Male road cyclists (n = 9; age, 26.8 ± 4.78 years) with 10.8 ± 8.56 years of experience in national competitions, consumed either SPD or SM in doses of 350 mL at 3 h and 350 mL at 1.5 h before a 18.6 km time-trial race. Measurements of body mass, urine specific gravity (USG), urine color and time-trial were compared between drinks (group; g) before and after the race (time; t). RESULTS The two-way ANOVA showed no differences between SPD and SM in body mass (t, p < 0.0001; g, p = 0.89; t × g, p = 0.54), USG (t, p = 0.01; g, p = 0.63; t × g, p = 0.29) and urine color (t, p = 0.01; g, p = 0.54; t × g, p = 0.28) before or after race. Furthermore, no differences on water consumption during the race (p = 0.55) or time-trial performance (p = 0.84) were observed between trials. CONCLUSION Current results may help athletes with different beverages preferences to increase their options of hydration strategies.
Collapse
Affiliation(s)
- Danniela García-Berger
- Nutrition and Exercise laboratory, Faculty of Medicine, Universidad Mayor, Santiago, Chile
| | - Karen Mackay
- School of Exercise and Nutrition, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | | | - Carlos Jorquera
- Nutrition and Exercise laboratory, Faculty of Medicine, Universidad Mayor, Santiago, Chile
| | - Rodrigo Ramirez-Campillo
- Laboratory of Human Performance. Quality of Life and Wellness Research Group. Department of Physical Activity Sciences, Universidad de Los Lagos, Osorno, Chile
| | - Hermann Zbinden-Foncea
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Av. Pedro de Valdivia # 1509, Providencia, Santiago, Chile
| | - Mauricio Castro-Sepulveda
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Av. Pedro de Valdivia # 1509, Providencia, Santiago, Chile.
| |
Collapse
|
32
|
Gibson OR, James CA, Mee JA, Willmott AG, Turner G, Hayes M, Maxwell NS. Heat alleviation strategies for athletic performance: A review and practitioner guidelines. Temperature (Austin) 2019; 7:3-36. [PMID: 32166103 PMCID: PMC7053966 DOI: 10.1080/23328940.2019.1666624] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 12/19/2022] Open
Abstract
International competition inevitably presents logistical challenges for athletes. Events such as the Tokyo 2020 Olympic Games require further consideration given historical climate data suggest athletes will experience significant heat stress. Given the expected climate, athletes face major challenges to health and performance. With this in mind, heat alleviation strategies should be a fundamental consideration. This review provides a focused perspective of the relevant literature describing how practitioners can structure male and female athlete preparations for performance in hot, humid conditions. Whilst scientific literature commonly describes experimental work, with a primary focus on maximizing magnitudes of adaptive responses, this may sacrifice ecological validity, particularly for athletes whom must balance logistical considerations aligned with integrating environmental preparation around training, tapering and travel plans. Additionally, opportunities for sophisticated interventions may not be possible in the constrained environment of the athlete village or event arenas. This review therefore takes knowledge gained from robust experimental work, interprets it and provides direction on how practitioners/coaches can optimize their athletes' heat alleviation strategies. This review identifies two distinct heat alleviation themes that should be considered to form an individualized strategy for the athlete to enhance thermoregulatory/performance physiology. First, chronic heat alleviation techniques are outlined, these describe interventions such as heat acclimation, which are implemented pre, during and post-training to prepare for the increased heat stress. Second, acute heat alleviation techniques that are implemented immediately prior to, and sometimes during the event are discussed. Abbreviations: CWI: Cold water immersion; HA: Heat acclimation; HR: Heart rate; HSP: Heat shock protein; HWI: Hot water immersion; LTHA: Long-term heat acclimation; MTHA: Medium-term heat acclimation; ODHA: Once-daily heat acclimation; RH: Relative humidity; RPE: Rating of perceived exertion; STHA: Short-term heat acclimation; TCORE: Core temperature; TDHA: Twice-daily heat acclimation; TS: Thermal sensation; TSKIN: Skin temperature; V̇O2max: Maximal oxygen uptake; WGBT: Wet bulb globe temperature.
Collapse
Affiliation(s)
- Oliver R. Gibson
- Centre for Human Performance, Exercise and Rehabilitation (CHPER), Division of Sport, Health and Exercise Sciences, Brunel University London, Uxbridge, UK
| | - Carl A. James
- Institut Sukan Negara (National Sports Institute), Kuala Lumpur, Malaysia
| | - Jessica A. Mee
- School of Sport and Exercise Sciences, University of Worcester, Worcester, UK
| | - Ashley G.B. Willmott
- Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, Cambridge, UK
| | - Gareth Turner
- Bisham Abbey National High-Performance Centre, English Institute of Sport, EIS Performance Centre, Marlow, UK
| | - Mark Hayes
- Environmental Extremes Laboratory, School of Sport and Service Management, University of Brighton, Eastbourne, UK
| | - Neil S. Maxwell
- Environmental Extremes Laboratory, School of Sport and Service Management, University of Brighton, Eastbourne, UK
| |
Collapse
|