1
|
Żera T, Paleczny B, Siński M, Conde SV, Narkiewicz K, Ponikowski P, Paton JFR, Niewiński P. Translating physiology of the arterial chemoreflex into novel therapeutic interventions targeting carotid bodies in cardiometabolic disorders. J Physiol 2025. [PMID: 40186613 DOI: 10.1113/jp285081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/10/2025] [Indexed: 04/07/2025] Open
Abstract
This review resulted from a conference on the pathological role of arterial chemoreflex and carotid bodies in cardiometabolic diseases held at the 27th Congress of the Polish Cardiac Society in September 2023 in Poznan, Poland. It reflects the contribution of Polish researchers and their international collaborations, which have been fundamental in the development of the field. Aberrant activity of the carotid bodies leads to both high tonicity and increased sensitivity of the arterial chemoreflex with resultant sympathoexcitation in chronic heart failure, resistant hypertension and obstructive sleep apnoea. This observation has led to several successful attempts of removing or denervating the carotid bodies as a therapeutic option in humans. Regrettably, such interventions are accompanied by serious respiratory and acid-base balance side-effects. Rather than a single stereotyped reaction, arterial chemoreflex comprises an integrative multi-system response to a variety of stimulants and its specific reflex components may be individually conveyed at varying intensities. Recent research has revealed that carotid bodies express diverse receptors, synthesize a cocktail of mediators, and respond to a plethora of metabolic, hormonal and autonomic nervous stimuli. This state-of-the-art summary discusses exciting new discoveries regarding GLP-1 receptors, purinergic receptors, the glutamate-GABA system, efferent innervation and regulation of blood flow in the carotid body and how they open new avenues for novel pharmacological treatments selectively targeting specific receptors, mediators and neural pathways to correct distinct responses of the carotid body-evoked arterial chemoreflex in cardiometabolic diseases. The carotid body offers novel and advantageous therapeutic opportunities for future consideration by trialists.
Collapse
Affiliation(s)
- Tymoteusz Żera
- Department of Experimental and Clinical Physiology, Medical University of Warsaw, Warsaw, Poland
| | - Bartłomiej Paleczny
- Department of Physiology and Pathophysiology, Wroclaw Medical University, Wroclaw, Poland
| | - Maciej Siński
- Department of Internal Medicine, Hypertension and Vascular Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Sílvia V Conde
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Krzysztof Narkiewicz
- Department of Hypertension and Diabetology, Medical University of Gdańsk, Gdańsk, Poland
| | - Piotr Ponikowski
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Julian F R Paton
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand
| | - Piotr Niewiński
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
2
|
Banydeen R, Lacavalerie MR, Florentin J, Boullanger C, Medhaoui H, Resiere D, Neviere R. Central sleep apnea and exposure to ambient hydrogen sulfide emissions from massive strandings of decomposing sargassum in the Caribbean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168886. [PMID: 38016560 DOI: 10.1016/j.scitotenv.2023.168886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/08/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Sargassum invasion of Caribbean and American shorelines is a recurring environmental hazard. Potential health effects of long-term chronic exposure to sargassum gaseous emissions, notably hydrogen sulfide (H2S), are overlooked. H2S plays an important role in neurotransmission and is involved in generating and transmitting respiratory rhythm. Central sleep apnea (CSA) has been attributed to the depression of respiratory centers. OBJECTIVE Evaluate the effects of exposure to sargassum-H2S on CSA. METHODS This study, set in the Caribbean, describes the clinical and polysomnographic characteristics of individuals living and/or working in areas impacted by sargassum strandings, in comparison with non-exposed subjects. Environmental exposure was estimated by the closest ground H2S sensor. Multivariate linear regression was applied to analyze CSA changes according to cumulative H2S exposure over time. Effects of air pollution and other sargassum toxic compounds (NH3) on CSA were also controlled. RESULTS Among the 685 study patients, 27 % were living and/or working in sargassum impacted areas. Compared with non-exposed patients, exposed ones had similar sleep apnea syndrome risk factors, but had increased levels of CSA events (expressed as absolute number or % of total sleep apnea). Multivariate regression retained only male gender and mean H2S concentration over a 6-month exposure period as independent predictors of an increase in CSA events. A minimal exposure length of 1 month generated a significant rise in CSA events, with the latter increasing proportionally with a cumulative increase in H2S concentration over time. CONCLUSION This pioneer work highlights a potential effect of sargassum-H2S on the central nervous system, notably on the modulation of the activity of the brain's respiratory control center. These observations, jointly with previous studies from our group, constitute a body of evidence strongly supporting a deleterious effect of sargassum-H2S on the health of individuals chronically exposed to low to moderate concentration levels over time.
Collapse
Affiliation(s)
- Rishika Banydeen
- Department of Toxicology and Critical Care Medicine, University Hospital of Martinique (CHU Martinique), 97261 Fort-de-France, France; Cardiovascular Research Team (UR5_3 PC2E), University of the French West Indies (Université des Antilles), 97200 Fort de France, France
| | - Mickael Rejaudry Lacavalerie
- Cardiovascular Research Team (UR5_3 PC2E), University of the French West Indies (Université des Antilles), 97200 Fort de France, France; Department of Neurophysiology, University Hospital of Martinique (CHU Martinique), 97261 Fort-de-France, France
| | - Jonathan Florentin
- Department of Toxicology and Critical Care Medicine, University Hospital of Martinique (CHU Martinique), 97261 Fort-de-France, France; Cardiovascular Research Team (UR5_3 PC2E), University of the French West Indies (Université des Antilles), 97200 Fort de France, France
| | - Carole Boullanger
- Martinique Observatory of Air Quality (Madininair), 97200 Fort-de-France, France
| | - Hossein Medhaoui
- Department of Toxicology and Critical Care Medicine, University Hospital of Martinique (CHU Martinique), 97261 Fort-de-France, France; Cardiovascular Research Team (UR5_3 PC2E), University of the French West Indies (Université des Antilles), 97200 Fort de France, France
| | - Dabor Resiere
- Department of Toxicology and Critical Care Medicine, University Hospital of Martinique (CHU Martinique), 97261 Fort-de-France, France; Cardiovascular Research Team (UR5_3 PC2E), University of the French West Indies (Université des Antilles), 97200 Fort de France, France
| | - Remi Neviere
- Cardiovascular Research Team (UR5_3 PC2E), University of the French West Indies (Université des Antilles), 97200 Fort de France, France; Department of Neurophysiology, University Hospital of Martinique (CHU Martinique), 97261 Fort-de-France, France.
| |
Collapse
|
3
|
Lataro RM, Brognara F, Iturriaga R, Paton JFR. Inflammation of some visceral sensory systems and autonomic dysfunction in cardiovascular disease. Auton Neurosci 2024; 251:103137. [PMID: 38104365 DOI: 10.1016/j.autneu.2023.103137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/15/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
The sensitization and hypertonicity of visceral afferents are highly relevant to the development and progression of cardiovascular and respiratory disease states. In this review, we described the evidence that the inflammatory process regulates visceral afferent sensitivity and tonicity, affecting the control of the cardiovascular and respiratory system. Some inflammatory mediators like nitric oxide, angiotensin II, endothelin-1, and arginine vasopressin may inhibit baroreceptor afferents and contribute to the baroreflex impairment observed in cardiovascular diseases. Cytokines may act directly on peripheral afferent terminals that transmit information to the central nervous system (CNS). TLR-4 receptors, which recognize lipopolysaccharide, were identified in the nodose and petrosal ganglion and have been implicated in disrupting the blood-brain barrier, which can potentiate the inflammatory process. For example, cytokines may cross the blood-brain barrier to access the CNS. Additionally, pro-inflammatory cytokines such as IL-1β, IL-6, TNF-α and some of their receptors have been identified in the nodose ganglion and carotid body. These pro-inflammatory cytokines also sensitize the dorsal root ganglion or are released in the nucleus of the solitary tract. In cardiovascular disease, pro-inflammatory mediators increase in the brain, heart, vessels, and plasma and may act locally or systemically to activate/sensitize afferent nervous terminals. Recent evidence demonstrated that the carotid body chemoreceptor cells might sense systemic pro-inflammatory molecules, supporting the novel proposal that the carotid body is part of the afferent pathway in the central anti-inflammatory reflexes. The exact mechanisms of how pro-inflammatory mediators affects visceral afferent signals and contribute to the pathophysiology of cardiovascular diseases awaits future research.
Collapse
Affiliation(s)
- R M Lataro
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| | - F Brognara
- Department of Nursing, General and Specialized, Nursing School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - R Iturriaga
- Facultad de Ciencias Biológicas, Pontificia Universidad Catolica de Chile, Santiago, Chile; Centro de Investigación en Fisiología y Medicina en Altura - FIMEDALT, Universidad de Antofagasta, Antofagasta, Chile
| | - J F R Paton
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, Grafton, Auckland, New Zealand
| |
Collapse
|
4
|
Felippe ISA, Río RD, Schultz H, Machado BH, Paton JFR. Commonalities and differences in carotid body dysfunction in hypertension and heart failure. J Physiol 2023; 601:5527-5551. [PMID: 37747109 PMCID: PMC10873039 DOI: 10.1113/jp284114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Carotid body pathophysiology is associated with many cardiovascular-respiratory-metabolic diseases. This pathophysiology reflects both hyper-sensitivity and hyper-tonicity. From both animal models and human patients, evidence indicates that amelioration of this pathophysiological signalling improves disease states such as a lowering of blood pressure in hypertension, a reduction of breathing disturbances with improved cardiac function in heart failure (HF) and a re-balancing of autonomic activity with lowered sympathetic discharge. Given this, we have reviewed the mechanisms of carotid body hyper-sensitivity and hyper-tonicity across disease models asking whether there is uniqueness related to specific disease states. Our analysis indicates some commonalities and some potential differences, although not all mechanisms have been fully explored across all disease models. One potential commonality is that of hypoperfusion of the carotid body across hypertension and HF, where the excessive sympathetic drive may reduce blood flow in both models and, in addition, lowered cardiac output in HF may potentiate the hypoperfusion state of the carotid body. Other mechanisms are explored that focus on neurotransmitter and signalling pathways intrinsic to the carotid body (e.g. ATP, carbon monoxide) as well as extrinsic molecules carried in the blood (e.g. leptin); there are also transcription factors found in the carotid body endothelium that modulate its activity (Krüppel-like factor 2). The evidence to date fully supports that a better understanding of the mechanisms of carotid body pathophysiology is a fruitful strategy for informing potential new treatment strategies for many cardiovascular, respiratory and metabolic diseases, and this is highly relevant clinically.
Collapse
Affiliation(s)
- Igor S. A. Felippe
- Manaaki Manawa – The Centre for Heart Research, Department of Physiology, Faculty of Health & Medical Sciences, University of Auckland, Grafton, Auckland, 1023, New Zealand
| | - Rodrigo Del Río
- Department of Physiology, Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
- Mechanisms of Myelin Formation and Repair Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
- Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Harold Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Benedito H. Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Julian F. R. Paton
- Manaaki Manawa – The Centre for Heart Research, Department of Physiology, Faculty of Health & Medical Sciences, University of Auckland, Grafton, Auckland, 1023, New Zealand
| |
Collapse
|
5
|
Abstract
Substantial advances have been made recently into the discovery of fundamental mechanisms underlying the neural control of breathing and even some inroads into translating these findings to treating breathing disorders. Here, we review several of these advances, starting with an appreciation of the importance of V̇A:V̇CO2:PaCO2 relationships, then summarizing our current understanding of the mechanisms and neural pathways for central rhythm generation, chemoreception, exercise hyperpnea, plasticity, and sleep-state effects on ventilatory control. We apply these fundamental principles to consider the pathophysiology of ventilatory control attending hypersensitized chemoreception in select cardiorespiratory diseases, the pathogenesis of sleep-disordered breathing, and the exertional hyperventilation and dyspnea associated with aging and chronic diseases. These examples underscore the critical importance that many ventilatory control issues play in disease pathogenesis, diagnosis, and treatment.
Collapse
Affiliation(s)
- Jerome A Dempsey
- John Rankin Laboratory of Pulmonary Medicine, Department of Population Health Sciences, University of Wisconsin, Madison, Wisconsin
| | - Joseph F Welch
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
6
|
Giannoni A, Borrelli C, Gentile F, Sciarrone P, Spießhöfer J, Piepoli M, Richerson GB, Floras JS, Coats AJS, Javaheri S, Emdin M, Passino C. Autonomic and respiratory consequences of altered chemoreflex function: clinical and therapeutic implications in cardiovascular diseases. Eur J Heart Fail 2023; 25:642-656. [PMID: 36907827 PMCID: PMC10989193 DOI: 10.1002/ejhf.2819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/10/2023] [Accepted: 02/26/2023] [Indexed: 03/14/2023] Open
Abstract
The importance of chemoreflex function for cardiovascular health is increasingly recognized in clinical practice. The physiological function of the chemoreflex is to constantly adjust ventilation and circulatory control to match respiratory gases to metabolism. This is achieved in a highly integrated fashion with the baroreflex and the ergoreflex. The functionality of chemoreceptors is altered in cardiovascular diseases, causing unstable ventilation and apnoeas and promoting sympathovagal imbalance, and it is associated with arrhythmias and fatal cardiorespiratory events. In the last few years, opportunities to desensitize hyperactive chemoreceptors have emerged as potential options for treatment of hypertension and heart failure. This review summarizes up to date evidence of chemoreflex physiology/pathophysiology, highlighting the clinical significance of chemoreflex dysfunction, and lists the latest proof of concept studies based on modulation of the chemoreflex as a novel target in cardiovascular diseases.
Collapse
Affiliation(s)
- Alberto Giannoni
- Health Science Interdisciplinary Center, Scuola Superiore Sant’Anna, Pisa, Italy
- Fondazione Toscana G. Monasterio, Pisa, Italy
| | | | - Francesco Gentile
- Health Science Interdisciplinary Center, Scuola Superiore Sant’Anna, Pisa, Italy
| | | | - Jens Spießhöfer
- Health Science Interdisciplinary Center, Scuola Superiore Sant’Anna, Pisa, Italy
- University of Aachen, Aachen, Germany
| | | | | | - John S Floras
- Division of Cardiology, Mount Sinai Hospital, University of Toronto, Ontario, Canada
| | | | - Shahrokh Javaheri
- Division of Pulmonary and Sleep Medicine, Bethesda North Hospital, Cincinnati, Ohio, Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, Ohio, and Division of Cardiology, The Ohio State University, Columbus, Ohio USA
| | - Michele Emdin
- Health Science Interdisciplinary Center, Scuola Superiore Sant’Anna, Pisa, Italy
- Fondazione Toscana G. Monasterio, Pisa, Italy
| | - Claudio Passino
- Health Science Interdisciplinary Center, Scuola Superiore Sant’Anna, Pisa, Italy
- Fondazione Toscana G. Monasterio, Pisa, Italy
| |
Collapse
|
7
|
Lataro RM, Moraes DJA, Gava FN, Omoto ACM, Silva CAA, Brognara F, Alflen L, Brazão V, Colato RP, do Prado JC, Ford AP, Salgado HC, Paton JFR. P2X3 receptor antagonism attenuates the progression of heart failure. Nat Commun 2023; 14:1725. [PMID: 36977675 PMCID: PMC10050083 DOI: 10.1038/s41467-023-37077-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
Despite advances in the treatment of heart failure, prognosis is poor, mortality high and there remains no cure. Heart failure is associated with reduced cardiac pump function, autonomic dysregulation, systemic inflammation and sleep-disordered breathing; these morbidities are exacerbated by peripheral chemoreceptor dysfunction. We reveal that in heart failure the carotid body generates spontaneous, episodic burst discharges coincident with the onset of disordered breathing in male rats. Purinergic (P2X3) receptors were upregulated two-fold in peripheral chemosensory afferents in heart failure, and when antagonized abolished these episodic discharges, normalized both peripheral chemoreceptor sensitivity and the breathing pattern, reinstated autonomic balance, improved cardiac function, and reduced both inflammation and biomarkers of cardiac failure. Aberrant ATP transmission in the carotid body triggers episodic discharges that via P2X3 receptors play a crucial role in the progression of heart failure and as such offer a distinct therapeutic angle to reverse multiple components of its pathogenesis.
Collapse
Affiliation(s)
- Renata M Lataro
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Davi J A Moraes
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fabio N Gava
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Department of Clinical Veterinary, Agrarian Sciences Center, Londrina State University, Londrina, Brazil
| | - Ana C M Omoto
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Carlos A A Silva
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernanda Brognara
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Lais Alflen
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Vânia Brazão
- College of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Rafaela Pravato Colato
- College of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - José Clóvis do Prado
- College of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Helio C Salgado
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Julian F R Paton
- Manaaki Manawa-The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
8
|
Hydrogen sulfide as a neuromodulator of the vascular tone. Eur J Pharmacol 2023; 940:175455. [PMID: 36549499 DOI: 10.1016/j.ejphar.2022.175455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Hydrogen sulfide (H2S) is a unique signaling molecule that, along with carbon monoxide and nitric oxide, belongs to the gasotransmitters family. H2S is endogenously synthesized by enzymatic and non-enzymatic pathways. Three enzymatic pathways involving cystathionine-γ-lyase, cystathionine-β-synthetase, and 3-mercaptopyruvate sulfurtransferase are known as endogenous sources of H2S. This gaseous molecule has recently emerged as a regulator of many systems and physiological functions, including the cardiovascular system where it controls the vascular tone of small arteries. In this context, H2S leads to vasorelaxation by regulating the activity of vascular smooth muscle cells, endothelial cells, and perivascular nerves. Specifically, H2S modulates the functionality of different ion channels to inhibit the autonomic sympathetic outflow-by either central or peripheral mechanisms-or to stimulate perivascular sensory nerves. These mechanisms are particularly relevant for those pathological conditions associated with impaired neuromodulation of vascular tone. In this regard, exogenous H2S administration efficiently attenuates the increased activity of the sympathetic nervous system often seen in patients with certain pathologies. These effects of H2S on the autonomic sympathetic outflow will be the primary focus of this review. Thereafter, we will discuss the central and peripheral regulatory effects of H2S on vascular tone. Finally, we will provide the audience with a detailed summary of the current pathological implications of H2S modulation on the neural regulation of vascular tone.
Collapse
|
9
|
Díaz-Jara E, Díaz HS, Rios-Gallardo A, Ortolani D, Andrade DC, Toledo C, Pereyra KV, Schwarz K, Ramirez G, Ortiz FC, Andía ME, Del Rio R. Exercise training reduces brainstem oxidative stress and restores normal breathing function in heart failure. Free Radic Biol Med 2021; 172:470-481. [PMID: 34216779 DOI: 10.1016/j.freeradbiomed.2021.06.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 10/21/2022]
Abstract
Enhanced central chemoreflex drive and irregular breathing are both hallmarks in heart failure (HF) and closely related to disease progression. Central chemoreceptor neurons located within the retrotrapezoid nucleus (RTN) are known to play a role in breathing alterations in HF. It has been shown that exercise (EX) effectively reduced reactive oxygen species (ROS) in HF rats. However, the link between EX and ROS, particularly at the RTN, with breathing alterations in HF has not been previously addressed. Accordingly, we aimed to determine: i) ROS levels in the RTN in HF and its association with chemoreflex drive, ii) whether EX improves chemoreflex/breathing function by reducing ROS levels, and iii) determine molecular alterations associated with ROS generation within the RTN of HF rats and study EX effects on these pathways. Adult male Sprague-Dawley rats were allocated into 3 experimental groups: Sham (n = 5), volume overloaded HF (n = 6) and HF (n = 8) rats that underwent EX training for 6 weeks (60 min/day, 25 m/min, 10% inclination). At 8 weeks post-HF induction, breathing patterns and chemoreflex function were analyzed by unrestrained plethysmography. ROS levels and anti/pro-oxidant enzymes gene expression were analyzed in the RTN. Our results showed that HF rats have high ROS levels in the RTN which were closely linked to the enhanced central chemoreflex and breathing disorders. Also, HF rats displayed decreased expression of antioxidant genes in the RTN compared with control rats. EX training increases antioxidant defense in the RTN, reduces ROS formation and restores normal central chemoreflex drive and breathing regularity in HF rats. This study provides evidence for a role of ROS in central chemoreception in the setting of HF and support the use of EX to reduce ROS in the brainstem of HF animals and reveal its potential as an effective mean to normalize chemoreflex and breathing function in HF.
Collapse
Affiliation(s)
- Esteban Díaz-Jara
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile.
| | - Hugo S Díaz
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile.
| | - Angélica Rios-Gallardo
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, 621-0427, Punta Arenas, Chile.
| | - Domiziana Ortolani
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile.
| | - David C Andrade
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile; Centro de Fisiología y Medicina de Altura, Facultad de Ciencias de la Salud, Universidad de Antofagasta, 1270300, Antofagasta, Chile.
| | - Camilo Toledo
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, 621-0427, Punta Arenas, Chile.
| | - Katherin V Pereyra
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile.
| | - Karla Schwarz
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile.
| | - Gigliola Ramirez
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile.
| | - Fernando C Ortiz
- Centro de Investigación Biomédica, Universidad Autónoma de Chile, Santiago, Chile.
| | - Marcelo E Andía
- Radiology Department & ANID - Millennium Nucleus for Cardiovascular Magnetic Resonance, 8331150, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, 621-0427, Punta Arenas, Chile; Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile.
| |
Collapse
|
10
|
|
11
|
Pachen M, Abukar Y, Shanks J, Lever N, Ramchandra R. Regulation of Coronary Blood Flow by the Carotid Body Chemoreceptors in Ovine Heart Failure. Front Physiol 2021; 12:681135. [PMID: 34122147 PMCID: PMC8195281 DOI: 10.3389/fphys.2021.681135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022] Open
Abstract
Carotid bodies (CBs) are peripheral chemoreceptors, which are primary sensors of systemic hypoxia and their activation produces respiratory, autonomic, and cardiovascular adjustments critical for body homeostasis. We have previously shown that carotid chemoreceptor stimulation increases directly recorded cardiac sympathetic nerve activity (cardiac SNA) which increases coronary blood flow (CoBF) in conscious normal sheep. Previous studies have shown that chemoreflex sensitivity is augmented in heart failure (HF). We hypothesized that carotid chemoreceptor stimulation would increase CoBF to a greater extent in HF than control sheep. Experiments were conducted in conscious HF sheep and control sheep (n = 6/group) implanted with electrodes to record diaphragmatic electromyography (dEMG), flow probes to record CoBF as well as arterial pressure. There was a significant increase in mean arterial pressure (MAP), CoBF and coronary vascular conductance (CVC) in response to potassium cyanide (KCN) in both groups of sheep. To eliminate the effects of metabolic vasodilation, the KCN was repeated while the heart was paced at a constant level. In this paradigm, the increase in CoBF and CVC was augmented in the HF group compared to the control group. Pre-treatment with propranolol did not alter the CoBF or the CVC increase in the HF group indicating this was not mediated by an increase in cardiac sympathetic drive. The pressor response to CB activation was abolished by pre-treatment with intravenous atropine in both groups, but there was no change in the CoBF and vascular conductance responses. Our data suggest that in an ovine model of HF, carotid body (CB) mediated increases in CoBF and CVC are augmented compared to control animals. This increase in CoBF is mediated by an increase in cardiac SNA in the control group but not the HF group.
Collapse
Affiliation(s)
- Mridula Pachen
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Yonis Abukar
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Julia Shanks
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Nigel Lever
- Department of Medicine, University of Auckland and Green Lane Cardiovascular Service, Auckland City Hospital, Auckland, New Zealand
| | - Rohit Ramchandra
- Department of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
12
|
Toledo C, Andrade DC, Díaz HS, Pereyra KV, Schwarz KG, Díaz-Jara E, Oliveira LM, Takakura AC, Moreira TS, Schultz HD, Marcus NJ, Del Rio R. Rostral ventrolateral medullary catecholaminergic neurones mediate irregular breathing pattern in volume overload heart failure rats. J Physiol 2019; 597:5799-5820. [PMID: 31642520 DOI: 10.1113/jp278845] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/14/2019] [Indexed: 08/25/2023] Open
Abstract
KEY POINTS A strong association between disordered breathing patterns, elevated sympathetic activity, and enhanced central chemoreflex drive has been shown in experimental and human heart failure (HF). The aim of this study was to determine the contribution of catecholaminergic rostral ventrolateral medulla catecholaminergic neurones (RVLM-C1) to both haemodynamic and respiratory alterations in HF. Apnoea/hypopnoea incidence (AHI), breathing variability, respiratory-cardiovascular coupling, cardiac autonomic control and cardiac function were analysed in HF rats with or without selective ablation of RVLM-C1 neurones. Partial lesion (∼65%) of RVLM-C1 neurones reduces AHI, respiratory variability, and respiratory-cardiovascular coupling in HF rats. In addition, the deleterious effects of central chemoreflex activation on cardiac autonomic balance and cardiac function in HF rats was abolished by ablation of RVLM-C1 neurones. Our findings suggest that RVLM-C1 neurones play a pivotal role in breathing irregularities in volume overload HF, and mediate the sympathetic responses induced by acute central chemoreflex activation. ABSTRACT Rostral ventrolateral medulla catecholaminergic neurones (RVLM-C1) modulate sympathetic outflow and breathing under normal conditions. Heart failure (HF) is characterized by chronic RVLM-C1 activation, increased sympathetic activity and irregular breathing patterns. Despite studies showing a relationship between RVLM-C1 and sympathetic activity in HF, no studies have addressed a potential contribution of RVLM-C1 neurones to irregular breathing in this context. Thus, the aim of this study was to determine the contribution of RVLM-C1 neurones to irregular breathing patterns in HF. Sprague-Dawley rats underwent surgery to induce volume overload HF. Anti-dopamine β-hydroxylase-saporin toxin (DβH-SAP) was used to selectively lesion RVLM-C1 neurones. At 8 weeks post-HF induction, breathing pattern, blood pressures (BP), respiratory-cardiovascular coupling (RCC), central chemoreflex function, cardiac autonomic control and cardiac function were studied. Reduction (∼65%) of RVLM-C1 neurones resulted in attenuation of irregular breathing, decreased apnoea-hypopnoea incidence (11.1 ± 2.9 vs. 6.5 ± 2.5 events h-1 ; HF+Veh vs. HF+DβH-SAP; P < 0.05) and improved cardiac autonomic control in HF rats. Pathological RCC was observed in HF rats (peak coherence >0.5 between breathing and cardiovascular signals) and was attenuated by DβH-SAP treatment (coherence: 0.74 ± 0.12 vs. 0.54 ± 0.10, HF+Veh vs. HF+DβH-SAP rats; P < 0.05). Central chemoreflex activation had deleterious effects on cardiac function and cardiac autonomic control in HF rats that were abolished by lesion of RVLM-C1 neurones. Our findings reveal that RVLM-C1 neurones play a major role in irregular breathing patterns observed in volume overload HF and highlight their contribution to cardiac dysautonomia and deterioration of cardiac function during chemoreflex activation.
Collapse
Affiliation(s)
- Camilo Toledo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - David C Andrade
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Investigación en Fisiología del Ejercicio, Universidad Mayor, Santiago, Chile
| | - Hugo S Díaz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Katherin V Pereyra
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karla G Schwarz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Esteban Díaz-Jara
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luiz M Oliveira
- Department of Pharmacology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Harold D Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Noah J Marcus
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, USA
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
- Centro de Envejecimiento y Regeneración (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
13
|
Sands SA, Edwards BA, Terrill PI, Butler JP, Owens RL, Taranto-Montemurro L, Azarbarzin A, Marques M, Hess LB, Smales ET, de Melo CM, White DP, Malhotra A, Wellman A. Identifying obstructive sleep apnoea patients responsive to supplemental oxygen therapy. Eur Respir J 2018; 52:13993003.00674-2018. [PMID: 30139771 DOI: 10.1183/13993003.00674-2018] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/29/2018] [Indexed: 11/05/2022]
Abstract
A possible precision-medicine approach to treating obstructive sleep apnoea (OSA) involves targeting ventilatory instability (elevated loop gain) using supplemental inspired oxygen in selected patients. Here we test whether elevated loop gain and three key endophenotypic traits (collapsibility, compensation and arousability), quantified using clinical polysomnography, can predict the effect of supplemental oxygen on OSA severity.36 patients (apnoea-hypopnoea index (AHI) >20 events·h-1) completed two overnight polysomnographic studies (single-blinded randomised-controlled crossover) on supplemental oxygen (40% inspired) versus sham (air). OSA traits were quantified from the air-night polysomnography. Responders were defined by a ≥50% reduction in AHI (supine non-rapid eye movement). Secondary outcomes included blood pressure and self-reported sleep quality.Nine of 36 patients (25%) responded to supplemental oxygen (ΔAHI=72±5%). Elevated loop gain was not a significant univariate predictor of responder/non-responder status (primary analysis). In post hoc analysis, a logistic regression model based on elevated loop gain and other traits (better collapsibility and compensation; cross-validated) had 83% accuracy (89% before cross-validation); predicted responders exhibited an improvement in OSA severity (ΔAHI 59±6% versus 12±7% in predicted non-responders, p=0.0001) plus lowered morning blood pressure and "better" self-reported sleep.Patients whose OSA responds to supplemental oxygen can be identified by measuring their endophenotypic traits using diagnostic polysomnography.
Collapse
Affiliation(s)
- Scott A Sands
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Dept of Allergy, Immunology and Respiratory Medicine and Central Clinical School, The Alfred and Monash University, Melbourne, Australia
| | - Bradley A Edwards
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Sleep and Circadian Medicine Laboratory, Dept of Physiology, Monash University, Melbourne, Australia.,School of Psychological Sciences, Monash University, Melbourne, Australia.,Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, Australia
| | - Philip I Terrill
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
| | - James P Butler
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Robert L Owens
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, La Jolla, CA, USA
| | - Luigi Taranto-Montemurro
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ali Azarbarzin
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Melania Marques
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Lauren B Hess
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Erik T Smales
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Camila M de Melo
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - David P White
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Atul Malhotra
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andrew Wellman
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Hydrogen Sulfide as an O 2 Sensor: A Critical Analysis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 967:261-276. [PMID: 29047091 DOI: 10.1007/978-3-319-63245-2_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
There is increasing interest in the physiological actions and therapeutic potential of the gasotransmitter hydrogen sulfide (H2S). In addition to exerting antihypertensive, anti-inflammatory, antioxidant, and pro-angiogenic effects, H2S has been suggested to play a central and ubiquitous role in O2 sensing. According to this concept, because H2S is metabolized by oxidation, its cellular concentration varies inversely with the ambient pO2 such that hypoxia causes a rise in intracellular [H2S]; this then acts to induce appropriate cellular responses. In particular, it has been proposed that H2S underpins O2 sensing in the carotid body, which triggers increases in ventilation in response to hypoxemia, and also in pulmonary arteries, which constrict in response to local alveolar hypoxia. This process, termed hypoxic pulmonary vasoconstriction (HPV), acts to divert blood to better-oxygenated regions of the lung, thereby maintaining the ventilation-perfusion ratio and minimizing hypoxia-induced falls in blood O2 saturation. In this chapter, we present a critical review of the evidence supporting and questioning this model in both HPV and the carotid body.
Collapse
|
15
|
Lewis R, Hackfort BT, Schultz HD. Chronic Heart Failure Abolishes Circadian Rhythms in Resting and Chemoreflex Breathing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1071:129-136. [PMID: 30357743 DOI: 10.1007/978-3-319-91137-3_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Physiological systems often display 24 h rhythms that vary with the light/dark cycle. Disruption of circadian physiological rhythms have been linked to the progression of various cardiovascular diseases, and advances in the understanding of these rhythms have led to novel interventions and improved clinical outcomes. Although respiratory function has been known to vary between the light and dark periods, circadian rhythms in breathing have been understudied in clinical conditions. In the current study, we have begun to assess light/dark variations in respiration in chronic heart failure (CHF), a condition associated with abnormal resting and chemoreflex breathing as well as exercise intolerance. CHF was induced using coronary artery ligation and verified using echocardiography. Sham animals underwent a thoracotomy without coronary artery ligation. Tidal volume, respiratory frequency, and minute ventilation were all determined by whole body plethysmography under resting conditions and in response to chemoreflex challenges during the light and dark periods. Light/dark differences in voluntary exercise were assessed using a running wheel. The sham control group showed light/dark differences in resting and chemoreflex breathing, as well as arterial pressure, and these effects were eliminated in the CHF group. Both groups completed more rotations on the running wheel during the dark period compared to during the light period. The data suggest that CHF disrupts cardiovascular and respiratory circadian rhythms.
Collapse
Affiliation(s)
- Robert Lewis
- A.T. Still University School of Osteopathic Medicine, Mesa, AZ, USA.
| | - Bryan T Hackfort
- Department of Cellular and Integrative Physiology at the University of Nebraska Medical Center, Omaha, NE, USA
| | - Harold D Schultz
- Department of Cellular and Integrative Physiology at the University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
16
|
Iturriaga R. Translating carotid body function into clinical medicine. J Physiol 2017; 596:3067-3077. [PMID: 29114876 DOI: 10.1113/jp275335] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 10/18/2017] [Indexed: 12/12/2022] Open
Abstract
The carotid body (CB) is considered the main O2 chemoreceptor, which contributes to cardiorespiratory homeostasis and ventilatory acclimatization. In clinical medicine, the most common pathologies associated with the CB are tumours. However, a growing body of evidence supports the novel idea that an enhanced CB chemosensory discharge contributes to the autonomic dysfunction and pathological consequences in obstructive sleep apnoea (OSA), hypertension, systolic heart failure (HF) and cardiometabolic diseases. Heightened CB chemosensory reactivity elicited by oxidative stress has been involved in sympathetic hyperactivity, cardiorespiratory instability, hypertension and insulin resistance. CB ablation, which reduces sympathetic hyperactivity, decreases hypertension in animal models of OSA and hypertension, eliminates breathing instability and improves animal survival in HF, and restores insulin tolerance in cardiometabolic models. Thus, data obtained from preclinical studies highlight the importance of the CB in the progression of sympathetic-related diseases, supporting the idea that appeasing the enhanced CB chemosensory drive may be useful in improving cardiovascular, respiratory and endocrine alterations. Accordingly, CB ablation has been proposed and used as a treatment for moderating resistant hypertension and HF-induced sympathetic hyperactivity in humans. First-in-human studies have shown that CB ablation reduces sympathetic overactivity, transiently reduces severe hypertension and improves quality of life in HF patients. Thus, CB ablation would be a useful therapy to reverse sympathetic overactivation in HF and severe hypertension, but caution is required before it is widely used due to the crucial physiological function played by the CB. Further studies in preclinical models are required to assess side-effects of CB ablation.
Collapse
Affiliation(s)
- Rodrigo Iturriaga
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
17
|
Wang J, Hogan JO, Wang R, White C, Kim D. Role of cystathionine-γ-lyase in hypoxia-induced changes in TASK activity, intracellular [Ca 2+] and ventilation in mice. Respir Physiol Neurobiol 2017; 246:98-106. [PMID: 28851593 DOI: 10.1016/j.resp.2017.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/09/2017] [Accepted: 08/15/2017] [Indexed: 10/19/2022]
Abstract
Cystathionine-γ-lyase (CSE) is a multifunctional enzyme, and hydrogen sulfide (H2S) is one of its products. CSE and H2S have recently been proposed to be critical signaling molecules in hypoxia-induced excitation of carotid body (CB) glomus cells and the chemosensory response. Because the role of H2S in arterial chemoreception is still debated, we further examined the role of CSE by studying the effects of hypoxia on TASK K+ channel activity, cell depolarization, [Ca2+]i and ventilation using CSE+/+ and CSE-/- mice. As predicted, hypoxia reduced TASK activity and depolarized glomus cells isolated from CSE+/+ mice. These effects of hypoxia were not significantly altered in glomus cells from CSE-/- mice. Basal [Ca2+]i and hypoxia-induced elevation of [Ca2+] were also not significantly different in glomus cells from CSE+/+ and CSE-/- mice. In whole-body plethysmography, hypoxia (10%O2) increased minute ventilation in both CSE+/+ and CSE-/- mice equally well, and no significant differences were found in either males or females when adjusted by body weight. Together, these results show that deletion of the CSE gene has no effects on hypoxia-induced changes in TASK, cell depolarization, [Ca2+]i and ventilation, and therefore do not support the idea that CSE/H2S signaling is important for CB chemoreceptor activity in mice.
Collapse
Affiliation(s)
- Jiaju Wang
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, United States
| | - James O Hogan
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, United States
| | - Rui Wang
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Carl White
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, United States
| | - Donghee Kim
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, United States.
| |
Collapse
|
18
|
Yao Y, Kong C, Yin L, Jain AD, Ratia K, Thatcher GRJ, Moore TW, Driver TG, Miller LW. Time-Gated Detection of Cystathionine γ-Lyase Activity and Inhibition with a Selective, Luminogenic Hydrogen Sulfide Sensor. Chemistry 2016; 23:752-756. [PMID: 27734530 DOI: 10.1002/chem.201604786] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Indexed: 12/18/2022]
Abstract
Herein, we report the design, synthesis, and characterization of a lanthanideIII complex-based probe for the time-gated luminescence detection of hydrogen sulfide (H2 S) in aqueous media. The probe's unique sensing mechanism relies on the selective reduction of azide to amine by sulfide, followed by intramolecular cyclization to form a quinolinone. The quinolinone is a sensitizer that absorbs near-UV light and transfers excitation energy to coordinated TbIII or EuIII ions to trigger a strong "turn-on" luminescence response with ms-scale lifetimes characteristic of lanthanide complexes. Using this probe, we developed a robust, high throughput screening (HTS) assay for detecting H2 S generated by cystathionine γ-lyase (CSE), one of the main producers of H2 S in mammalian cells. In a 240-compound screen to identify potential CSE inhibitors, the EuIII analogue of the sensor showed a low false-positive rate and high Z'-factor (>0.7).
Collapse
Affiliation(s)
- Yao Yao
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, MC 111, Chicago, Illinois, 60607, USA
| | - Chen Kong
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, MC 111, Chicago, Illinois, 60607, USA
| | - Liang Yin
- Department of Medicinal Chemistry and Pharmacognosy, UICentre for Drug Discovery, University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, Illinois, 60612, USA
| | - Atul D Jain
- Department of Medicinal Chemistry and Pharmacognosy, UICentre for Drug Discovery, University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, Illinois, 60612, USA
| | - Kiira Ratia
- Department of Medicinal Chemistry and Pharmacognosy, UICentre for Drug Discovery, University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, Illinois, 60612, USA
| | - Gregory R J Thatcher
- Department of Medicinal Chemistry and Pharmacognosy, UICentre for Drug Discovery, University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, Illinois, 60612, USA
| | - Terry W Moore
- Department of Medicinal Chemistry and Pharmacognosy, UICentre for Drug Discovery, University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, Illinois, 60612, USA
| | - Tom G Driver
- Institute of Next Generation Matter Transformation, College of Chemical Engineering, Huaqiao University, 668 Jimei Blvd. Xiamen, Fujian, 361021, P. R. China
| | - Lawrence W Miller
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, MC 111, Chicago, Illinois, 60607, USA
| |
Collapse
|
19
|
Toledo C, Andrade DC, Lucero C, Schultz HD, Marcus N, Retamal M, Madrid C, Del Rio R. Contribution of peripheral and central chemoreceptors to sympatho-excitation in heart failure. J Physiol 2016; 595:43-51. [PMID: 27218485 DOI: 10.1113/jp272075] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/20/2016] [Indexed: 12/18/2022] Open
Abstract
Chronic heart failure (CHF) is a major public health problem. Tonic hyper-activation of sympathetic neural outflow is commonly observed in patients with CHF. Importantly, sympatho-excitation in CHF exacerbates its progression and is strongly related to poor prognosis and high mortality risk. Increases in both peripheral and central chemoreflex drive are considered markers of the severity of CHF. The principal peripheral chemoreceptors are the carotid bodies (CBs) and alteration in their function has been described in CHF. Mainly, during CHF the CB chemosensitivity is enhanced leading to increases in ventilation and sympathetic outflow. In addition to peripheral control of breathing, central chemoreceptors (CCs) are considered a dominant mechanism in ventilatory regulation. Potentiation of the ventilatory and sympathetic drive in response to CC activation has been shown in patients with CHF as well as in animal models. Therefore, improving understanding of the contribution of the peripheral and central chemoreflexes to augmented sympathetic discharge in CHF could help in developing new therapeutic approaches intended to attenuate the progression of CHF. Accordingly, the main focus of this review is to discuss recent evidence that peripheral and central chemoreflex function are altered in CHF and that they contribute to autonomic imbalance and progression of CHF.
Collapse
Affiliation(s)
- Camilo Toledo
- Laboratory of Cardiorespiratory Control, Center of Biomedical Research, Universidad Autónoma de Chile, Santiago, Chile
| | - David C Andrade
- Laboratory of Cardiorespiratory Control, Center of Biomedical Research, Universidad Autónoma de Chile, Santiago, Chile
| | - Claudia Lucero
- Laboratory of Cardiorespiratory Control, Center of Biomedical Research, Universidad Autónoma de Chile, Santiago, Chile
| | - Harold D Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Noah Marcus
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, USA
| | - Mauricio Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Carlos Madrid
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Center of Biomedical Research, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
20
|
Iturriaga R, Del Rio R, Idiaquez J, Somers VK. Carotid body chemoreceptors, sympathetic neural activation, and cardiometabolic disease. Biol Res 2016; 49:13. [PMID: 26920146 PMCID: PMC4768417 DOI: 10.1186/s40659-016-0073-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/12/2016] [Indexed: 11/10/2022] Open
Abstract
The carotid body (CB) is the main peripheral chemoreceptor that senses the arterial PO2, PCO2 and pH. In response to hypoxemia, hypercapnia and acidosis, carotid chemosensory discharge elicits reflex respiratory, autonomic and cardiovascular adjustments. The classical construct considers the CB as the main peripheral oxygen sensor, triggering reflex physiological responses to acute hypoxemia and facilitating the ventilatory acclimation to chronic hypoxemia at high altitude. However, a growing body of experimental evidence supports the novel concept that an abnormally enhanced CB chemosensory input to the brainstem contributes to overactivation
of the sympathetic nervous system, and consequent pathology. Indeed, the CB has been implicated in several diseases associated with increases in central sympathetic outflow. These include hypertension, heart failure, sleep apnea, chronic obstructive pulmonary disease and metabolic syndrome. Indeed, ablation of the CB has been proposed for the treatment of severe and resistant hypertension in humans. In this review, we will analyze and discuss new evidence supporting an important role for the CB chemoreceptor in the progression of autonomic and cardiorespiratory alterations induced by heart failure, obstructive sleep apnea, chronic obstructive pulmonary disease and metabolic syndrome.
Collapse
Affiliation(s)
- Rodrigo Iturriaga
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Centro de Investigación Biomédica, Universidad Autónoma de Chile, Santiago, Chile. .,Dirección de Investigación, Universidad Científica del Sur, Lima, Peru.
| | - Juan Idiaquez
- Catedra de Neurología, Escuela de Medicina, Universidad de Valparaíso, Valparaíso, Chile.
| | - Virend K Somers
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
21
|
Laitano O, Ahn B, Patel N, Coblentz PD, Smuder AJ, Yoo JK, Christou DD, Adhihetty PJ, Ferreira LF. Pharmacological targeting of mitochondrial reactive oxygen species counteracts diaphragm weakness in chronic heart failure. J Appl Physiol (1985) 2016; 120:733-42. [PMID: 26846552 DOI: 10.1152/japplphysiol.00822.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/28/2016] [Indexed: 12/15/2022] Open
Abstract
Diaphragm muscle weakness in chronic heart failure (CHF) is caused by elevated oxidants and exacerbates breathing abnormalities, exercise intolerance, and dyspnea. However, the specific source of oxidants that cause diaphragm weakness is unknown. We examined whether mitochondrial reactive oxygen species (ROS) cause diaphragm weakness in CHF by testing the hypothesis that CHF animals treated with a mitochondria-targeted antioxidant have normal diaphragm function. Rats underwent CHF or sham surgery. Eight weeks after surgeries, we administered a mitochondrial-targeted antioxidant (MitoTEMPO; 1 mg·kg(-1)·day(-1)) or sterile saline (Vehicle). Left ventricular dysfunction (echocardiography) pre- and posttreatment and morphological abnormalities were consistent with the presence of CHF. CHF elicited a threefold (P < 0.05) increase in diaphragm mitochondrial H2O2 emission, decreased diaphragm glutathione content by 23%, and also depressed twitch and maximal tetanic force by ∼20% in Vehicle-treated animals compared with Sham (P < 0.05 for all comparisons). Diaphragm mitochondrial H2O2 emission, glutathione content, and twitch and maximal tetanic force were normal in CHF animals receiving MitoTEMPO. Neither CHF nor MitoTEMPO altered the diaphragm protein levels of antioxidant enzymes: superoxide dismutases (CuZn-SOD or MnSOD), glutathione peroxidase, and catalase. In both Vehicle and MitoTEMPO groups, CHF elicited a ∼30% increase in cytochrome c oxidase activity, whereas there were no changes in citrate synthase activity. Our data suggest that elevated mitochondrial H2O2 emission causes diaphragm weakness in CHF. Moreover, changes in protein levels of antioxidant enzymes or mitochondrial content do not seem to mediate the increase in mitochondria H2O2 emission in CHF and protective effects of MitoTEMPO.
Collapse
Affiliation(s)
- Orlando Laitano
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida
| | - Bumsoo Ahn
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida
| | - Nikhil Patel
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida
| | - Philip D Coblentz
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida
| | - Ashley J Smuder
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida
| | - Jeung-Ki Yoo
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida
| | - Demetra D Christou
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida
| | - Peter J Adhihetty
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida
| | - Leonardo F Ferreira
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida
| |
Collapse
|
22
|
Giannoni A, Mirizzi G, Aimo A, Emdin M, Passino C. Peripheral reflex feedbacks in chronic heart failure: Is it time for a direct treatment? World J Cardiol 2015; 7:824-828. [PMID: 26730288 PMCID: PMC4691809 DOI: 10.4330/wjc.v7.i12.824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/21/2015] [Accepted: 10/27/2015] [Indexed: 02/07/2023] Open
Abstract
Despite repeated attempts to develop a unifying hypothesis that explains the clinical syndrome of heart failure (HF), no single conceptual paradigm for HF has withstood the test of time. The last model that has been developed, the neurohormonal model, has the great virtue of highlighting the role of the heart as an endocrine organ, as well as to shed some light on the key role on HF progression of neurohormones and peripheral organs and tissues beyond the heart itself. However, while survival in clinical trials based on neurohormonal antagonist drugs has improved, HF currently remains a lethal condition. At the borders of the neurohormonal model of HF, a partially unexplored path trough the maze of HF pathophysiology is represented by the feedback systems. There are several evidences, from both animal studies and humans reports, that the deregulation of baro-, ergo- and chemo-reflexes in HF patients elicits autonomic imbalance associated with parasympathetic withdrawal and increased adrenergic drive to the heart, thus fundamentally contributing to the evolution of the disease. Hence, on top of guideline-recommended medical therapy, mainly based on neurohormonal antagonisms, all visceral feedbacks have been recently considered in HF patients as additional potential therapeutic targets.
Collapse
|
23
|
Andrade DC, Lucero C, Toledo C, Madrid C, Marcus NJ, Schultz HD, Del Rio R. Relevance of the Carotid Body Chemoreflex in the Progression of Heart Failure. BIOMED RESEARCH INTERNATIONAL 2015; 2015:467597. [PMID: 26779536 PMCID: PMC4686619 DOI: 10.1155/2015/467597] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/08/2015] [Indexed: 12/18/2022]
Abstract
Chronic heart failure (CHF) is a global health problem affecting millions of people. Autonomic dysfunction and disordered breathing patterns are commonly observed in patients with CHF, and both are strongly related to poor prognosis and high mortality risk. Tonic activation of carotid body (CB) chemoreceptors contributes to sympathoexcitation and disordered breathing patterns in experimental models of CHF. Recent studies show that ablation of the CB chemoreceptors improves autonomic function and breathing control in CHF and improves survival. These exciting findings indicate that alterations in CB function are critical to the progression of CHF. Therefore, better understanding of the physiology of the CB chemoreflex in CHF could lead to improvements in current treatments and clinical management of patients with CHF characterized by high chemosensitivity. Accordingly, the main focus of this brief review is to summarize current knowledge of CB chemoreflex function in different experimental models of CHF and to comment on their potential translation to treatment of human CHF.
Collapse
Affiliation(s)
- David C. Andrade
- Laboratory of Cardiorespiratory Control, Center of Biomedical Research, Universidad Autónoma de Chile, 8900000 Santiago, Chile
| | - Claudia Lucero
- Laboratory of Cardiorespiratory Control, Center of Biomedical Research, Universidad Autónoma de Chile, 8900000 Santiago, Chile
| | - Camilo Toledo
- Laboratory of Cardiorespiratory Control, Center of Biomedical Research, Universidad Autónoma de Chile, 8900000 Santiago, Chile
| | - Carlos Madrid
- Centro de Fisiología Celular e Integrativa, Clínica Alemana-Universidad del Desarrollo, 7500000 Santiago, Chile
| | - Noah J. Marcus
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA 50312, USA
| | - Harold D. Schultz
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Center of Biomedical Research, Universidad Autónoma de Chile, 8900000 Santiago, Chile
- Dirección de Investigación, Universidad Científica del Sur, Lima 15067, Peru
| |
Collapse
|
24
|
Ashley Z, Schwenke DO, Cragg PA. Hyperventilation in normoxia following myocardial infarction in rats: a shift in the set point of the hypoxic ventilatory response. Acta Physiol (Oxf) 2015; 214:415-25. [PMID: 25980319 DOI: 10.1111/apha.12527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 01/22/2015] [Accepted: 05/08/2015] [Indexed: 11/30/2022]
Abstract
AIM The peripheral chemoreflex is augmented in heart failure, and it may contribute to sympathoexcitation. This study aimed to investigate both the chemoreflex and the cardiac sympathetic nerve activity in the acute-stage post-myocardial infarction. METHODS Myocardial infarction was induced in male adult Sprague-Dawley rats by permanent ligation of the left anterior descending coronary artery. Within-animal repeated measure assessment of normoxic and hypoxic ventilation patterns was determined with whole-body plethysmography and compared to sham-operated controls. Cardiac function, morphology and cardiac sympathetic nerve activity were determined 14 days later. RESULTS Infarction induced increases in normoxic ventilation through increases in tidal volume within 3 days. At the same time points, the hypoxic ventilatory response to short durations (10 min) of hypoxia (8, 10 and 12% inspired O2 ) was blunted. At the end of the experiment (D14), increases in nerve activity, specifically through increased firing rate, and significant cardiac dysfunction (ejection fraction 43%) were observed in myocardial infarction (MI) group. CONCLUSIONS An augmentation of normoxic ventilation caused by myocardial infarction occurs before the amplification of the hypoxic ventilatory response. It occurs much earlier following myocardial injury than previously demonstrated and may have a role in initiating cardiac sympathoexcitation. The difference in the augmentation of hypoxic response between early and late stages post-myocardial infarction suggest that the initial change in the chemoreflex is an alteration to the operating point of chemoreflex.
Collapse
Affiliation(s)
- Z. Ashley
- Department of Physiology; Otago School of Medical Sciences; University of Otago; Dunedin New Zealand
| | - D. O. Schwenke
- Department of Physiology; Otago School of Medical Sciences; University of Otago; Dunedin New Zealand
| | - P. A. Cragg
- Department of Physiology; Otago School of Medical Sciences; University of Otago; Dunedin New Zealand
| |
Collapse
|
25
|
Kim D, Kim I, Wang J, White C, Carroll JL. Hydrogen sulfide and hypoxia-induced changes in TASK (K2P3/9) activity and intracellular Ca(2+) concentration in rat carotid body glomus cells. Respir Physiol Neurobiol 2015; 215:30-8. [PMID: 25956223 DOI: 10.1016/j.resp.2015.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 01/01/2023]
Abstract
Acute hypoxia depolarizes carotid body chemoreceptor (glomus) cells and elevates intracellular Ca(2+) concentration ([Ca(2+)]i). Recent studies suggest that hydrogen sulfide (H2S) may serve as an oxygen sensor/signal in the carotid body during acute hypoxia. To further test such a role for H2S, we studied the effects of H2S on the activity of TASK channel and [Ca(2+)]i, which are considered important for mediating the glomus cell response to hypoxia. Like hypoxia, NaHS (a H2S donor) inhibited TASK activity and elevated [Ca(2+)]i. To inhibit the production of H2S, glomus cells were incubated (3h) with inhibitors of cystathionine-β-synthase and cystathionine-γ-lyase (DL-propargylglycine, aminooxyacetic acid, β-cyano-L-alanine; 0.3 mM). SF7 fluorescence was used to assess the level of H2S production. The inhibitors blocked L-cysteine- and hypoxia-induced elevation of SF7 fluorescence intensity. In cells treated with the inhibitors, hypoxia produced an inhibition of TASK activity and a rise in [Ca(2+)]i, similar in magnitude to those observed in control cells. L-cysteine produced no effect on TASK activity or [Ca(2+)]i and did not affect hypoxia-induced inhibition of TASK and elevation of [Ca(2+)]i. These findings suggest that under normal conditions, H2S is not a major signal in hypoxia-induced modulation of TASK channels and [Ca(2+)]i in isolated glomus cells.
Collapse
Affiliation(s)
- Donghee Kim
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, United States.
| | - Insook Kim
- Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, 13 Children's Way, Little Rock, AR 72202, United States
| | - Jiaju Wang
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, United States
| | - Carl White
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, United States
| | - John L Carroll
- Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, 13 Children's Way, Little Rock, AR 72202, United States.
| |
Collapse
|
26
|
Hydrogen sulfide activates the carotid body chemoreceptors in cat, rabbit and rat ex vivo preparations. Respir Physiol Neurobiol 2015; 208:15-20. [DOI: 10.1016/j.resp.2015.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/04/2015] [Accepted: 01/04/2015] [Indexed: 01/01/2023]
|
27
|
Abstract
SIGNIFICANCE Although oxygen (O2)-sensing cells and tissues have been known for decades, the identity of the O2-sensing mechanism has remained elusive. Evidence is accumulating that O2-dependent metabolism of hydrogen sulfide (H2S) is this enigmatic O2 sensor. RECENT ADVANCES The elucidation of biochemical pathways involved in H2S synthesis and metabolism have shown that reciprocal H2S/O2 interactions have been inexorably linked throughout eukaryotic evolution; there are multiple foci by which O2 controls H2S inactivation, and the effects of H2S on downstream signaling events are consistent with those activated by hypoxia. H2S-mediated O2 sensing has been demonstrated in a variety of O2-sensing tissues in vertebrate cardiovascular and respiratory systems, including smooth muscle in systemic and respiratory blood vessels and airways, carotid body, adrenal medulla, and other peripheral as well as central chemoreceptors. CRITICAL ISSUES Information is now needed on the intracellular location and stoichometry of these signaling processes and how and which downstream effectors are activated by H2S and its metabolites. FUTURE DIRECTIONS Development of specific inhibitors of H2S metabolism and effector activation as well as cellular organelle-targeted compounds that release H2S in a time- or environmentally controlled way will not only enhance our understanding of this signaling process but also provide direction for future therapeutic applications.
Collapse
Affiliation(s)
- Kenneth R Olson
- Department of Physiology, Indiana University School of Medicine-South Bend , South Bend, India na
| |
Collapse
|
28
|
Schultz HD, Marcus NJ, Del Rio R. Mechanisms of carotid body chemoreflex dysfunction during heart failure. Exp Physiol 2015; 100:124-9. [PMID: 25398713 DOI: 10.1113/expphysiol.2014.079517] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/03/2014] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the topic of this review? Carotid body chemoreceptor activity is tonically elevated in heart failure and contributes to morbidity due to the reflex activation of sympathetic nerve activity and destabilization of breathing. The potential causes for the enhanced chemoreceptor activation in heart failure are discussed. What advances does it highlight? The role of a chronic reduction in blood flow to the carotid body due to cardiac failure and its impact on signalling pathways in the carotid body is discussed. Recent advances have attracted interest in the potential for carotid body (CB) ablation or desensitization as an effective strategy for clinical treatment and management of cardiorespiratory diseases, including hypertension, heart failure, diabetes mellitus, metabolic syndrome and renal failure. These disease states have in common sympathetic overactivity, which plays an important role in the development and progression of the disease and is often associated with breathing dysregulation, which in turn is likely to mediate or aggravate the autonomic imbalance. Evidence from both chronic heart failure (CHF) patients and animal models indicates that the CB chemoreflex is enhanced in CHF and contributes to the tonic elevation in sympathetic activity and the development of periodic breathing associated with the disease. Although this maladaptive change is likely to derive from altered function at all levels of the reflex arc, a tonic increase in afferent activity from CB glomus cells is likely to be a main driving force. This report focuses on our understanding of mechanisms that alter CB function in CHF and their potential translational impact on treatment of CHF.
Collapse
Affiliation(s)
- Harold D Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | |
Collapse
|
29
|
Del Rio R, Andrade DC, Marcus NJ, Schultz HD. Selective carotid body ablation in experimental heart failure: a new therapeutic tool to improve cardiorespiratory control. Exp Physiol 2015; 100:136-42. [PMID: 25398714 DOI: 10.1113/expphysiol.2014.079566] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/10/2014] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the topic of this review? This review summarizes the physiological role played by the carotid body in the autonomic dysregulation and breathing disturbances during the progression of chronic heart failure and the therapeutic potential of carotid body ablation to control cardiorespiratory imbalance and improve survival in heart failure. What advances does it highlight? Carotid body ablation markedly improves breathing stability and normalizes autonomic function in chronic heart failure. More importantly, if carotid body ablation is performed early during the progression of the disease it significantly improves animal survival. Chronic heart failure (CHF) is a leading medical problem worldwide. Common hallmarks of CHF include autonomic imbalance and breathing disorders, both of which are closely related to the progression of the disease and strongly predict mortality in CHF patients. The role played by the carotid body (CB) chemoreceptors in the progression of CHF has received attention because enhanced carotid chemoreflex drive is thought to contribute to autonomic dysfunction, abnormal breathing patterns and increased mortality in CHF. Therefore, therapeutic tools intended to normalize CB-mediated chemoreflex drive could have the potential to improve quality of life and decrease mortality of CHF patients. In experimental CHF, an enhancement of the CB chemoreflex drive, elevated sympathetic outflow, increased resting breathing variability, increased incidence of apnoea and desensitization of the baroreflex have been shown. Notably, selective elimination of the CB reduced central presympathetic neuronal activation, normalized sympathetic outflow and baroreflex sensitivity and stabilized breathing function in CHF. More remarkably, CB ablation has been shown to be a valuable therapeutic tool that significantly reduced aberrant cardiac remodelling, improved left ventriclular ejection fraction and reduced cardiac arrhythmogenesis. Most importantly, animals with CHF that underwent CB ablation showed a marked improvement in survival rate. Interestingly, a case report from a heart failure patient in whom unilateral CB ablation was performed showed promising results, with significant improvement in autonomic balance and breathing variability. Together, the CHF data from experimental animals as well as humans unveil a major role for the CB chemoreceptors in the progression of heart failure and support the notion that CB ablation could represent a novel therapeutic strategy to reduce cardiorespiratory dysfunction and improve survival during heart failure.
Collapse
Affiliation(s)
- Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Center of Biomedical Research, Universidad Autónoma de Chile, Santiago, Chile
| | | | | | | |
Collapse
|
30
|
Role of the Carotid Body Chemoreflex in the Pathophysiology of Heart Failure: A Perspective from Animal Studies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 860:167-85. [PMID: 26303479 DOI: 10.1007/978-3-319-18440-1_19] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The treatment and management of chronic heart failure (CHF) remains an important focus for new and more effective clinical strategies. This important goal, however, is dependent upon advancing our understanding of the underlying pathophysiology. In CHF, sympathetic overactivity plays an important role in the development and progression of the cardiac and renal dysfunction and is often associated with breathing dysregulation, which in turn likely mediates or aggravates the autonomic imbalance. In this review we will summarize evidence that in CHF, the elevation in sympathetic activity and breathing instability that ultimately lead to cardiac and renal failure are driven, at least in part, by maladaptive activation of the carotid body (CB) chemoreflex. This maladaptive change derives from a tonic increase in CB afferent activity. We will focus our discussion on an understanding of mechanisms that alter CB afferent activity in CHF and its consequence on reflex control of autonomic, respiratory, renal, and cardiac function in animal models of CHF. We will also discuss the potential translational impact of targeting the CB in the treatment of CHF in humans, with relevance to other cardio-respiratory diseases.
Collapse
|
31
|
Módis K, Bos EM, Calzia E, van Goor H, Coletta C, Papapetropoulos A, Hellmich MR, Radermacher P, Bouillaud F, Szabo C. Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part II. Pathophysiological and therapeutic aspects. Br J Pharmacol 2014; 171:2123-46. [PMID: 23991749 DOI: 10.1111/bph.12368] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 07/30/2013] [Accepted: 08/05/2013] [Indexed: 12/15/2022] Open
Abstract
Emerging work demonstrates the dual regulation of mitochondrial function by hydrogen sulfide (H2 S), including, at lower concentrations, a stimulatory effect as an electron donor, and, at higher concentrations, an inhibitory effect on cytochrome C oxidase. In the current article, we overview the pathophysiological and therapeutic aspects of these processes. During cellular hypoxia/acidosis, the inhibitory effect of H2 S on complex IV is enhanced, which may shift the balance of H2 S from protective to deleterious. Several pathophysiological conditions are associated with an overproduction of H2 S (e.g. sepsis), while in other disease states H2 S levels and H2 S bioavailability are reduced and its therapeutic replacement is warranted (e.g. diabetic vascular complications). Moreover, recent studies demonstrate that colorectal cancer cells up-regulate the H2 S-producing enzyme cystathionine β-synthase (CBS), and utilize its product, H2 S, as a metabolic fuel and tumour-cell survival factor; pharmacological CBS inhibition or genetic CBS silencing suppresses cancer cell bioenergetics and suppresses cell proliferation and cell chemotaxis. In the last chapter of the current article, we overview the field of H2 S-induced therapeutic 'suspended animation', a concept in which a temporary pharmacological reduction in cell metabolism is achieved, producing a decreased oxygen demand for the experimental therapy of critical illness and/or organ transplantation.
Collapse
Affiliation(s)
- Katalin Módis
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Marcus NJ, Del Rio R, Schultz HD. Central role of carotid body chemoreceptors in disordered breathing and cardiorenal dysfunction in chronic heart failure. Front Physiol 2014; 5:438. [PMID: 25505417 PMCID: PMC4241833 DOI: 10.3389/fphys.2014.00438] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 10/27/2014] [Indexed: 11/13/2022] Open
Abstract
Oscillatory breathing (OB) patterns are observed in pre-term infants, patients with cardio-renal impairment, and in otherwise healthy humans exposed to high altitude. Enhanced carotid body (CB) chemoreflex sensitivity is common to all of these populations and is thought to contribute to these abnormal patterns by destabilizing the respiratory control system. OB patterns in chronic heart failure (CHF) patients are associated with greater levels of tonic and chemoreflex-evoked sympathetic nerve activity (SNA), which is associated with greater morbidity and poor prognosis. Enhanced chemoreflex drive may contribute to tonic elevations in SNA by strengthening the relationship between respiratory and sympathetic neural outflow. Elimination of CB afferents in experimental models of CHF has been shown to reduce OB, respiratory-sympathetic coupling, and renal SNA, and to improve autonomic balance in the heart. The CB chemoreceptors may play an important role in progression of CHF by contributing to respiratory instability and OB, which in turn further exacerbates tonic and chemoreflex-evoked increases in SNA to the heart and kidney.
Collapse
Affiliation(s)
- Noah J Marcus
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center Omaha, NE, USA
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Center of Biomedical Research, Universidad Autónoma de Chile Santiago, Chile
| | - Harold D Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center Omaha, NE, USA
| |
Collapse
|
33
|
da Silva GSF, Soriano RN, Kwiatkoski M, Giusti H, Glass ML, Branco LGS. Central hydrogen sulphide mediates ventilatory responses to hypercapnia in adult conscious rats. Acta Physiol (Oxf) 2014; 212:239-47. [PMID: 25042027 DOI: 10.1111/apha.12346] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/30/2014] [Accepted: 07/09/2014] [Indexed: 11/30/2022]
Abstract
AIM Hydrogen sulphide (H2S) is endogenously produced and plays an important role as a modulator of neuronal functions; however, its modulatory role in the central CO2 chemoreception is unknown. The aim of the present study was to assess the role of endogenously produced H2S in the ventilatory response to hypercapnia in adult conscious rats. METHODS Cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) inhibitors (aminooxyacetate: AOA and propargylglycine: PAG respectively) and a H2S donor (sodium sulphide: Na2S) were microinjected into the fourth ventricle (4V). Ventilation (V̇(E)), oxygen consumption (V̇O2) and body temperature were recorded before (room air) and during a 30-min CO2 exposure (hypercapnia, 7% CO2). Endogenous H2S levels were measured in the nucleus tractus solitarius (NTS). RESULTS Microinjection of Na2S (H2S donor), AOA (CBS inhibitor) or PAG (CSE inhibitor) did not affect baseline of the measured variables compared to control group (vehicle). In all experimental groups, hypercapnia elicited an increase in V̇(E). However, AOA microinjection, but not PAG, attenuated the ventilatory response to hypercapnia (P < 0.05), whereas Na2S elicited a slight, not significant, enhancement. Moreover, endogenous H2S levels were found higher in the NTS after hypercapnia (P < 0.05) compared to room air (normoxia) condition. CONCLUSION There are a few reports on the role of gaseous transmitters in the control of breathing. Importantly, the present data suggest that endogenous H2S via the CBS-H2S pathway mediates the ventilatory response to hypercapnia playing an excitatory role.
Collapse
Affiliation(s)
- G. S. F. da Silva
- Dental School of Ribeirao Preto; University of Sao Paulo; Ribeirao Preto Sao Paulo Brazil
| | - R. N. Soriano
- Dental School of Ribeirao Preto; University of Sao Paulo; Ribeirao Preto Sao Paulo Brazil
| | - M. Kwiatkoski
- Medical School of Ribeirao Preto; University of Sao Paulo; Ribeirao Preto Brazil
| | - H. Giusti
- Medical School of Ribeirao Preto; University of Sao Paulo; Ribeirao Preto Brazil
| | - M. L. Glass
- Medical School of Ribeirao Preto; University of Sao Paulo; Ribeirao Preto Brazil
| | - L. G. S. Branco
- Dental School of Ribeirao Preto; University of Sao Paulo; Ribeirao Preto Sao Paulo Brazil
| |
Collapse
|
34
|
Abstract
We review the substantial recent progress made in understanding the underlying mechanisms controlling breathing and the applicability of these findings to selected human diseases. Emphasis is placed on the sites of central respiratory rhythm and pattern generation as well as newly described functions of the carotid chemoreceptors, the integrative nature of the central chemoreceptors, and the interaction between peripheral and central chemoreception. Recent findings that support critical contributions from cortical central command and muscle afferent feedback to exercise hyperpnoea are also reviewed. These basic principles, and the evidence supporting chemoreceptor and ventilatory control system plasticity during and following constant and intermittent hypoxaemia and stagnant hypoxia, are applied to: 1) the pathogenesis, consequences and treatment of obstructive sleep apnoea; and 2) exercise hyperpnoea and its control and limitations with ageing, chronic obstructive pulmonary disease and congestive heart failure.
Collapse
Affiliation(s)
- Jerome A Dempsey
- John Rankin Laboratory of Pulmonary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Curtis A Smith
- John Rankin Laboratory of Pulmonary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
35
|
Patent Highlights. Pharm Pat Anal 2014; 3:223. [DOI: 10.4155/ppa.14.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A snapshot of recent key developments in the patent literature of relevance to the advancement of pharmaceutical and medical R&D.
Collapse
|
36
|
Marcus NJ, Del Rio R, Schultz HD. Reply from Noah J. Marcus, Rodrigo Del Rio and Harold D. Schultz. J Physiol 2014; 592:1905-6. [PMID: 24737900 DOI: 10.1113/jphysiol.2014.273565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
37
|
Schultz HD, Marcus NJ, Del Rio R. Role of the carotid body in the pathophysiology of heart failure. Curr Hypertens Rep 2014; 15:356-62. [PMID: 23824499 DOI: 10.1007/s11906-013-0368-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Important recent advances implicate a role of the carotid body (CB) chemoreflex in sympathetic and breathing dysregulation in several cardio-respiratory diseases, drawing renewed interest in its potential implications for clinical treatment. Evidence from both chronic heart failure (CHF) patients and animal models indicates that the CB chemoreflex is enhanced in CHF, and contributes to the tonic elevation in sympathetic nerve activity (SNA) and periodic breathing associated with the disease. Although this maladaptive change likely derives from altered function at all levels of the reflex arc, a change in afferent function of the CB is likely to be a main driving force. This review will focus on recent advances in our understanding of the pathophysiological mechanisms that alter CB function in CHF and their potential translational impact on treatment of chronic heart failure (CHF).
Collapse
Affiliation(s)
- Harold D Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE 68198-5850, USA.
| | | | | |
Collapse
|
38
|
Empinado HM, Deevska GM, Nikolova-Karakashian M, Yoo JK, Christou DD, Ferreira LF. Diaphragm dysfunction in heart failure is accompanied by increases in neutral sphingomyelinase activity and ceramide content. Eur J Heart Fail 2014; 16:519-25. [PMID: 24596158 DOI: 10.1002/ejhf.73] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 01/18/2014] [Accepted: 01/31/2014] [Indexed: 12/21/2022] Open
Abstract
AIMS Chronic heart failure (CHF) causes inspiratory (diaphragm) muscle weakness and fatigue that contributes to dyspnoea and limited physical capacity in patients. However, the mechanisms that lead to diaphragm dysfunction in CHF remain poorly understood. Cytokines and angiotensin II are elevated in CHF and stimulate the activity of the enzyme sphingomyelinase (SMase) and accumulation of its reaction product ceramide. In the diaphragm, SMase or ceramide exposure in vitro causes weakness and fatigue. Thus, elevated SMase activity and ceramide content have been proposed as mediators of diaphragm dysfunction in CHF. In the present study, we tested the hypotheses that diaphragm dysfunction was accompanied by increases in diaphragm SMase activity and ceramide content. METHODS AND RESULTS Myocardial infarction was used to induce CHF in rats. We measured diaphragm isometric force, SMase activity by high-performance liquid chromatography, and ceramide subspecies and total ceramide using mass spectrometry. Diaphragm force was depressed and fatigue accelerated by CHF. Diaphragm neutral SMase activity was increased by 20% in CHF, while acid SMase activity was unchanged. We also found that CHF increased the content of C18 -, C20 -, and C24 -ceramide subspecies and total ceramide. Downstream of ceramide degradation, diaphragm sphingosine was unchanged, and sphingosine-1-phosphate level was increased in CHF. CONCLUSION Our major novel finding was that diaphragm dysfunction in CHF rats was accompanied by higher diaphragm neutral SMase activity, which is expected to cause the observed increase in diaphragm ceramide content.
Collapse
Affiliation(s)
- Hyacinth M Empinado
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL
| | | | | | | | | | | |
Collapse
|
39
|
Pathophysiology and Potential Clinical Applications for Testing of Peripheral Chemosensitivity in Heart Failure. Curr Heart Fail Rep 2014; 11:126-33. [DOI: 10.1007/s11897-014-0188-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Abstract
OPINION STATEMENT Complex sleep apnea currently refers to the emergence and persistence of central apneas and hypopneas following the application of positive airway pressure therapy in patients with obstructive sleep apnea. However, this narrow definition is an "outcome" and does not capture the spectrum of pathological activation of the respiratory chemoreflex in sleep apnea. The International Classification of Sleep Disorders - 3rd edition recognizes the phenomenon of Treatment-Related Central Sleep Apnea, but the phenotype is usually evident prior to onset of therapy. The key polysomnographic characteristics of chemoreflex modulated and mediated sleep apnea are nonrapid eye movement (NREM) dominance of respiratory events, short (<30 seconds) or long (>60 seconds) cycle time with a self-similar metronomic timing, and spontaneous improvement during rapid eye movement (REM) sleep. Thus, the majority of chemoreflex effects go unrecognized due to the bias toward obstructive sleep apnea's current scoring criteria. Any treatment of apparently obstructive sleep apnea, including surgery and oral appliances, can expose chemoreflex-driven instabilities. As both sleep fragmentation and a narrow CO2 reserve or increased loop gain drive the disease, sedatives (to induce longer periods of stable NREM sleep and reduce the destabilizing effects of arousals in NREM sleep) and CO2-based stabilization approaches are logical. Adaptive ventilation reduces mean hyperventilation yet can induce ventilator-patient desynchrony, while enhanced expiratory rebreathing space (EERS, dead space during positive pressure therapy) and CO2 manipulation directly stabilize respiratory control by moving CO2 above the apnea threshold. Carbonic anhydrase inhibition can provide further adjunctive benefits. Novel pharmacological approaches may target mediators of carotid body hypoxic sensitization, such as the balance between gas neurotransmitters. In complex apnea patients, single mode therapy is unlikely to be successful, and the power of multi-modality therapy should be harnessed for optimal outcomes.
Collapse
|
41
|
Del Rio R, Marcus NJ, Schultz HD. Carotid chemoreceptor ablation improves survival in heart failure: rescuing autonomic control of cardiorespiratory function. J Am Coll Cardiol 2013; 62:2422-2430. [PMID: 24013056 DOI: 10.1016/j.jacc.2013.07.079] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/19/2013] [Accepted: 07/01/2013] [Indexed: 01/08/2023]
Abstract
OBJECTIVES This study sought to investigate whether selective ablation of the carotid body (CB) chemoreceptors improves cardiorespiratory control and survival during heart failure. BACKGROUND Chronic heart failure (CHF) is a recognized health problem worldwide, and novel treatments are needed to better improve life quality and decrease mortality. Enhanced carotid chemoreflex drive from the CB is thought to contribute significantly to autonomic dysfunction, abnormal breathing patterns, and increased mortality in heart failure. METHODS Chronic heart failure was induced by coronary ligation in rats. Selective CB denervation was performed to remove carotid chemoreflex drive in the CHF state (16 weeks post-myocardial infarction). Indexes of autonomic and respiratory function were assessed in CB intact and CB denervated animals. CB denervation at 2 weeks post-myocardial infarction was performed to evaluate whether early targeted CB ablation decreases the progression of left ventricular dysfunction, cardiac remodeling, and arrhythmic episodes and improves survival. RESULTS The CHF rats developed increased CB chemoreflex drive and chronic central pre-sympathetic neuronal activation, increased indexes of elevated sympathetic outflow, increased breathing variability and apnea incidence, and desensitization of the baroreflex. Selective CB ablation reduced the central pre-sympathetic neuronal activation by 40%, normalized indexes of sympathetic outflow and baroreflex sensitivity, and reduced the incidence of apneas in CHF animals from 16.8 ± 1.8 events/h to 8.0 ± 1.4 events/h. Remarkably, when CB ablation was performed early, cardiac remodeling, deterioration of left ventricle ejection fraction, and cardiac arrhythmias were reduced. Most importantly, the rats that underwent early CB ablation exhibited an 85% survival rate compared with 45% survival in CHF rats without the intervention. CONCLUSIONS Carotid chemoreceptors play a seminal role in the pathogenesis of heart failure, and their targeted ablation might be of therapeutic value to reduce cardiorespiratory dysfunction and improve survival during CHF.
Collapse
Affiliation(s)
- Rodrigo Del Rio
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Noah J Marcus
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Harold D Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska.
| |
Collapse
|