1
|
Tang A, Xu M, Chen X, Liu J, Wang J, Wang Y, Cai S, Shu Y, Zheng D, Yu T, Wang Y, Luo T, Yu S. Somatostatin-expressing Neurons in the Medial Prefrontal Cortex Promote Sevoflurane Anesthesia in Mice. Anesthesiology 2025; 142:844-862. [PMID: 39869666 DOI: 10.1097/aln.0000000000005394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
BACKGROUND The medial prefrontal cortex plays a crucial role in regulating consciousness. However, the specific functions of its excitatory and inhibitory networks during anesthesia remain uncertain. Here, the authors explored the hypothesis that somatostatin interneurons in the medial prefrontal cortex enhance the effects of sevoflurane anesthesia by increasing γ-aminobutyric acid (GABA) transmission to pyramidal neurons. METHODS Electroencephalography was utilized to reflect the depth of anesthesia. Immunostaining and fiber photometry were employed to assess neuronal activities and GABA delivery. The regulation of neuronal activity was achieved by chemogenetics and optogenetics. RESULTS The expression of c-Fos was increased in somatostatin neurons of the medial prefrontal cortex during sevoflurane anesthesia (air vs. sevoflurane: 26.4 ± 6.5% vs. 48 ± 6.2%; P = 0.0007; n = 5 mice). Chemogenetic inhibition or activation of somatostatin neurons in the medial prefrontal cortex reduced (from 84 ± 24 s to 51 ± 18 s; P = 0.008; n = 7 mice) or prolonged (from 97 ± 31 s to 140 ± 30 s; P = 0.006; n = 7 mice) the sevoflurane anesthesia recovery time. Increased GABA input to pyramidal neurons in the medial prefrontal cortex precedes sevoflurane-induced loss of consciousness (baseline vs . pre-loss of the righting reflex: from 0.46 ± 0.57% to 2.25 ± 1.42%; P = 0.031; n = 10 mice). Activation of somatostatin neurons in the medial prefrontal cortex leads to a significant reduction in calcium signals within local pyramidal neurons (baseline vs . 20 Hz stimulation: from -0.14 ± 0.52% to -10.08 ± 4.44%; P = 0.002; n = 10 mice). Additionally,GABA input on pyramidal neurons increased (baseline vs . 20 Hz stimulation: from -0.001 ± 0.001% to 0.28 ± 0.03%; P = 0.002; n = 7 mice) in a time-locked manner. Chemogenetic inhibition of pyramidal neurons prolonged the recovery from sevoflurane anesthesia in mice (from 101 ± 46 s to 136 ± 54 s; P = 0.017; n = 19 mice). CONCLUSIONS Cortical somatostatin neurons may inhibit local pyramidal neurons by enhancing GABA transmission, which increases the effectiveness of sevoflurane anesthesia.
Collapse
Affiliation(s)
- Aichen Tang
- School of Anesthesiology, Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (In Cultivation), Zunyi Medical University, Zunyi, China
| | - Mao Xu
- School of Anesthesiology, Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (In Cultivation), Zunyi Medical University, Zunyi, China
| | - Xizu Chen
- School of Anesthesiology,Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (In Cultivation), Zunyi Medical University, Zunyi, China
| | - Juan Liu
- School of Preclinical Medicine, Zunyi Medical University, Zunyi, China
| | - Jiamin Wang
- School of Preclinical Medicine, Zunyi Medical University, Zunyi, China
| | - Ying Wang
- School of Anesthesiology, Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (In Cultivation), Zunyi Medical University, Zunyi, China
| | - Shuang Cai
- School of Anesthesiology, Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (In Cultivation), Zunyi Medical University, Zunyi, China
| | - Yue Shu
- School of Anesthesiology, Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (In Cultivation), Zunyi Medical University, Zunyi, China
| | - Danxu Zheng
- School of Anesthesiology, Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (In Cultivation), Zunyi Medical University, Zunyi, China
| | - Tian Yu
- School of Anesthesiology, Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (In Cultivation), Zunyi Medical University, Zunyi, China
| | - Yuan Wang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Tianyuan Luo
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shouyang Yu
- School of Anesthesiology, Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (In Cultivation), Zunyi Medical University, Zunyi, China
| |
Collapse
|
2
|
Rimehaug AE, Dale AM, Arkhipov A, Einevoll GT. Uncovering population contributions to the extracellular potential in the mouse visual system using Laminar Population Analysis. PLoS Comput Biol 2024; 20:e1011830. [PMID: 39666739 DOI: 10.1371/journal.pcbi.1011830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 12/26/2024] [Accepted: 11/20/2024] [Indexed: 12/14/2024] Open
Abstract
The local field potential (LFP), the low-frequency part of the extracellular potential, reflects transmembrane currents in the vicinity of the recording electrode. Thought mainly to stem from currents caused by synaptic input, it provides information about neural activity complementary to that of spikes, the output of neurons. However, the many neural sources contributing to the LFP, and likewise the derived current source density (CSD), can often make it challenging to interpret. Efforts to improve its interpretability have included the application of statistical decomposition tools like principal component analysis (PCA) and independent component analysis (ICA) to disentangle the contributions from different neural sources. However, their underlying assumptions of, respectively, orthogonality and statistical independence are not always valid for the various processes or pathways generating LFP. Here, we expand upon and validate a decomposition algorithm named Laminar Population Analysis (LPA), which is based on physiological rather than statistical assumptions. LPA utilizes the multiunit activity (MUA) and LFP jointly to uncover the contributions of different populations to the LFP. To perform the validation of LPA, we used data simulated with the large-scale, biophysically detailed model of mouse V1 developed by the Allen Institute. We find that LPA can identify laminar positions within V1 and the temporal profiles of laminar population firing rates from the MUA. We also find that LPA can estimate the salient current sinks and sources generated by feedforward input from the lateral geniculate nucleus (LGN), recurrent activity in V1, and feedback input from the lateromedial (LM) area of visual cortex. LPA identifies and distinguishes these contributions with a greater accuracy than the alternative statistical decomposition methods, PCA and ICA. The contributions from different cortical layers within V1 could however not be robustly separated and identified with LPA. This is likely due to substantial synchrony in population firing rates across layers, which may be reduced with other stimulus protocols in the future. Lastly, we also demonstrate the application of LPA on experimentally recorded MUA and LFP from 24 animals in the publicly available Visual Coding dataset. Our results suggest that LPA can be used both as a method to estimate positions of laminar populations and to uncover salient features in LFP/CSD contributions from different populations.
Collapse
Affiliation(s)
| | - Anders M Dale
- Department of Neuroscience, University of California San Diego, San Diego, California, United States of America
| | - Anton Arkhipov
- Allen Institute, Seattle, Washington, United States of America
| | - Gaute T Einevoll
- Department of Physics, Norwegian University of Life Sciences, Ås, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
Ross G, Radtke-Schuller S, Frohlich F. Ferret as a model system for studying the anatomy and function of the prefrontal cortex: A systematic review. Neurosci Biobehav Rev 2024; 162:105701. [PMID: 38718987 PMCID: PMC11162921 DOI: 10.1016/j.neubiorev.2024.105701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/12/2024] [Accepted: 05/01/2024] [Indexed: 05/19/2024]
Abstract
There is a lack of consensus on anatomical nomenclature, standards of documentation, and functional equivalence of the frontal cortex between species. There remains a major gap between human prefrontal function and interpretation of findings in the mouse brain that appears to lack several key prefrontal areas involved in cognition and psychiatric illnesses. The ferret is an emerging model organism that has gained traction as an intermediate model species for the study of top-down cognitive control and other higher-order brain functions. However, this research has yet to benefit from synthesis. Here, we provide a summary of all published research pertaining to the frontal and/or prefrontal cortex of the ferret across research scales. The targeted location within the ferret brain is summarized visually for each experiment, and the anatomical terminology used at time of publishing is compared to what would be the appropriate term to use presently. By doing so, we hope to improve clarity in the interpretation of both previous and future publications on the comparative study of frontal cortex.
Collapse
Affiliation(s)
- Grace Ross
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - Susanne Radtke-Schuller
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Flavio Frohlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA; Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA; Department of Neurology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
4
|
Ramachandran S, Gao H, Yttri E, Yu K, He B. An Investigation of Parameter-Dependent Cell-Type Specific Effects of Transcranial Focused Ultrasound Stimulation Using an Awake Head-Fixed Rodent Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600515. [PMID: 38979298 PMCID: PMC11230196 DOI: 10.1101/2024.06.24.600515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Transcranial focused ultrasound (tFUS) is a promising neuromodulation technique able to target shallow and deep brain structures with high precision. Previous studies have demonstrated that tFUS stimulation responses are both cell-type specific and controllable through altering stimulation parameters. Specifically, tFUS can elicit time-locked neural activity in regular spiking units (RSUs) that is sensitive to increases in pulse repetition frequency (PRF), while time-locked responses are not seen in fast spiking units (FSUs). These findings suggest a unique capability of tFUS to alter circuit network dynamics with cell-type specificity; however, these results could be biased by the use of anesthesia, which significantly modulates neural activities. In this study, we develop an awake head-fixed rat model specifically designed for tFUS study, and address a key question if tFUS still has cell-type specificity under awake conditions. Using this novel animal model, we examined a series of PRFs and burst duty cycles (DCs) to determine their effects on neuronal subpopulations without anesthesia. We conclude that cell-type specific time-locked and delayed responses to tFUS as well as PRF and DC sensitivity are present in the awake animal model and that despite some differences in response, isoflurane anesthesia is not a major confound in studying the cell-type specificity of ultrasound neuromodulation. We further determine that, in an awake, head-fixed setting, the preferred PRF and DC for inducing time-locked excitation with our pulsed tFUS paradigm are 1500 Hz and 60%, respectively.
Collapse
|
5
|
Rimehaug AE, Dale AM, Arkhipov A, Einevoll GT. Uncovering population contributions to the extracellular potential in the mouse visual system using Laminar Population Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575805. [PMID: 38293236 PMCID: PMC10827114 DOI: 10.1101/2024.01.15.575805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The local field potential (LFP), the low-frequency part of the extracellular potential, reflects transmembrane currents in the vicinity of the recording electrode. Thought mainly to stem from currents caused by synaptic input, it provides information about neural activity complementary to that of spikes, the output of neurons. However, the many neural sources contributing to the LFP, and likewise the derived current source density (CSD), can often make it challenging to interpret. Efforts to improve its interpretability have included the application of statistical decomposition tools like principal component analysis (PCA) and independent component analysis (ICA) to disentangle the contributions from different neural sources. However, their underlying assumptions of, respectively, orthogonality and statistical independence are not always valid for the various processes or pathways generating LFP. Here, we expand upon and validate a decomposition algorithm named Laminar Population Analysis (LPA), which is based on physiological rather than statistical assumptions. LPA utilizes the multiunit activity (MUA) and LFP jointly to uncover the contributions of different populations to the LFP. To perform the validation of LPA, we used data simulated with the large-scale, biophysically detailed model of mouse V1 developed by the Allen Institute. We find that LPA can identify laminar positions within V1 and the temporal profiles of laminar population firing rates from the MUA. We also find that LPA can estimate the salient current sinks and sources generated by feedforward input from the lateral geniculate nucleus (LGN), recurrent activity in V1, and feedback input from the lateromedial (LM) area of visual cortex. LPA identifies and distinguishes these contributions with a greater accuracy than the alternative statistical decomposition methods, PCA and ICA. Lastly, we also demonstrate the application of LPA on experimentally recorded MUA and LFP from 24 animals in the publicly available Visual Coding dataset. Our results suggest that LPA can be used both as a method to estimate positions of laminar populations and to uncover salient features in LFP/CSD contributions from different populations.
Collapse
Affiliation(s)
| | - Anders M. Dale
- Department of Neuroscience, University of California San Diego, San Diego, California, USA
| | | | - Gaute T. Einevoll
- Department of Physics, Norwegian University of Life Sciences, Ås, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Zheng Y, Tang S, Zheng H, Wang X, Liu L, Yang Y, Zhen Y, Zheng Z. Noise improves the association between effects of local stimulation and structural degree of brain networks. PLoS Comput Biol 2023; 19:e1010866. [PMID: 37167331 PMCID: PMC10205011 DOI: 10.1371/journal.pcbi.1010866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/23/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023] Open
Abstract
Stimulation to local areas remarkably affects brain activity patterns, which can be exploited to investigate neural bases of cognitive function and modify pathological brain statuses. There has been growing interest in exploring the fundamental action mechanisms of local stimulation. Nevertheless, how noise amplitude, an essential element in neural dynamics, influences stimulation-induced brain states remains unknown. Here, we systematically examine the effects of local stimulation by using a large-scale biophysical model under different combinations of noise amplitudes and stimulation sites. We demonstrate that noise amplitude nonlinearly and heterogeneously tunes the stimulation effects from both regional and network perspectives. Furthermore, by incorporating the role of the anatomical network, we show that the peak frequencies of unstimulated areas at different stimulation sites averaged across noise amplitudes are highly positively related to structural connectivity. Crucially, the association between the overall changes in functional connectivity as well as the alterations in the constraints imposed by structural connectivity with the structural degree of stimulation sites is nonmonotonically influenced by the noise amplitude, with the association increasing in specific noise amplitude ranges. Moreover, the impacts of local stimulation of cognitive systems depend on the complex interplay between the noise amplitude and average structural degree. Overall, this work provides theoretical insights into how noise amplitude and network structure jointly modulate brain dynamics during stimulation and introduces possibilities for better predicting and controlling stimulation outcomes.
Collapse
Affiliation(s)
- Yi Zheng
- School of Mathematical Sciences, Beihang University, Beijing, China
- Key laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Beihang University, Beijing, China
| | - Shaoting Tang
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Key laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Beihang University, Beijing, China
- State Key Lab of Software Development Environment (NLSDE), Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, P.R. China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai, China
- School of Mathematical Sciences, Dalian University of Technology, Dalian, China
| | - Hongwei Zheng
- Beijing Academy of Blockchain and Edge Computing (BABEC), Beijing, China
| | - Xin Wang
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Key laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Beihang University, Beijing, China
- State Key Lab of Software Development Environment (NLSDE), Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, P.R. China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
| | - Longzhao Liu
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Key laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Beihang University, Beijing, China
- State Key Lab of Software Development Environment (NLSDE), Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, P.R. China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
| | - Yaqian Yang
- School of Mathematical Sciences, Beihang University, Beijing, China
- Key laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Beihang University, Beijing, China
| | - Yi Zhen
- School of Mathematical Sciences, Beihang University, Beijing, China
- Key laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Beihang University, Beijing, China
| | - Zhiming Zheng
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Key laboratory of Mathematics, Informatics and Behavioral Semantics (LMIB), Beihang University, Beijing, China
- State Key Lab of Software Development Environment (NLSDE), Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, P.R. China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai, China
- School of Mathematical Sciences, Dalian University of Technology, Dalian, China
| |
Collapse
|
7
|
Bureš Z, Pysanenko K, Syka J. Differences in auditory temporal processing in the left and right auditory cortices of the rat. Hear Res 2023; 430:108708. [PMID: 36753899 DOI: 10.1016/j.heares.2023.108708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
In the present study, we examined hemispheric differences in the representation and processing of temporally structured auditory stimuli. Neuronal responses evoked by sinusoidally frequency modulated (FM) tones, frequency sweeps, amplitude modulated (AM) tones and noise, click trains with constant inter-click intervals and natural vocalizations were recorded from the left (LAC) and right (RAC) auditory cortices in adult (4-6 months old) anaesthetized F344 rats. Using vector strength, modulation-transfer functions, van Rossum distances, or direction-selectivity index, representation and processing of structured auditory stimuli were compared in the LAC and the RAC. The RAC generally tended to exhibit a higher ability to synchronize with the stimulus, a higher reproducibility of responses, and a higher proportion of direction-selective units. The LAC, on the other hand, mostly had higher relative response magnitudes in the modulation transfer functions. Importantly, the hemispheric differences were dependent on the type of the stimulus and there was also a significant inter-individual variability. Our findings indicate that neural coding in the RAC is based more on timing of action potentials (temporal code), while the LAC uses more the response magnitudes (rate code). It is thus necessary to distinguish between the type of the neural code and the stimulus feature it encodes and reconsider the simple opinion about dominance of the LAC for temporal processing, as it may not hold in general for all types of temporally structured stimuli.
Collapse
Affiliation(s)
- Zbyněk Bureš
- Department of Cognitive Systems and Neurosciences, Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Prague, Czech Republic; Department of Otorhinolaryngology, 3rd Faculty of Medicine, University Hospital Královské Vinohrady, Charles University in Prague, Prague, Czech Republic.
| | - Kateryna Pysanenko
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Josef Syka
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic; Department of Cognitive Systems and Neurosciences, Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Prague, Czech Republic
| |
Collapse
|
8
|
Pinzuti E, Wollstadt P, Tüscher O, Wibral M. Information theoretic evidence for layer- and frequency-specific changes in cortical information processing under anesthesia. PLoS Comput Biol 2023; 19:e1010380. [PMID: 36701388 PMCID: PMC9904504 DOI: 10.1371/journal.pcbi.1010380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 02/07/2023] [Accepted: 01/05/2023] [Indexed: 01/27/2023] Open
Abstract
Nature relies on highly distributed computation for the processing of information in nervous systems across the entire animal kingdom. Such distributed computation can be more easily understood if decomposed into the three elementary components of information processing, i.e. storage, transfer and modification, and rigorous information theoretic measures for these components exist. However, the distributed computation is often also linked to neural dynamics exhibiting distinct rhythms. Thus, it would be beneficial to associate the above components of information processing with distinct rhythmic processes where possible. Here we focus on the storage of information in neural dynamics and introduce a novel spectrally-resolved measure of active information storage (AIS). Drawing on intracortical recordings of neural activity in ferrets under anesthesia before and after loss of consciousness (LOC) we show that anesthesia- related modulation of AIS is highly specific to different frequency bands and that these frequency-specific effects differ across cortical layers and brain regions. We found that in the high/low gamma band the effects of anesthesia result in AIS modulation only in the supergranular layers, while in the alpha/beta band the strongest decrease in AIS can be seen at infragranular layers. Finally, we show that the increase of spectral power at multiple frequencies, in particular at alpha and delta bands in frontal areas, that is often observed during LOC ('anteriorization') also impacts local information processing-but in a frequency specific way: Increases in isoflurane concentration induced a decrease in AIS in the alpha frequencies, while they increased AIS in the delta frequency range < 2Hz. Thus, the analysis of spectrally-resolved AIS provides valuable additional insights into changes in cortical information processing under anaesthesia.
Collapse
Affiliation(s)
- Edoardo Pinzuti
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- MEG Unit, Brain Imaging Center, Goethe University, Frankfurt/Main, Germany
| | - Patricia Wollstadt
- MEG Unit, Brain Imaging Center, Goethe University, Frankfurt/Main, Germany
| | - Oliver Tüscher
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Department of Psychiatry and Psychotherapy, Johannes Gutenberg University of Mainz, Mainz, Germany
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Michael Wibral
- Campus Institute for Dynamics of Biological Networks, Georg August University, Göttingen, Germany
| |
Collapse
|
9
|
Malik A, Eldaly ABM, Agadagba SK, Zheng Y, Chen X, He J, Chan LLH. Neuromodulation in the developing visual cortex after long-term monocular deprivation. Cereb Cortex 2022; 33:5636-5645. [PMID: 36396729 DOI: 10.1093/cercor/bhac448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/19/2022] Open
Abstract
Abstract
Neural dynamics are altered in the primary visual cortex (V1) during critical period monocular deprivation (MD). Synchronization of neural oscillations is pertinent to physiological functioning of the brain. Previous studies have reported chronic disruption of V1 functional properties such as ocular dominance, spatial acuity, and binocular matching after long-term monocular deprivation (LTMD). However, the possible neuromodulation and neural synchrony has been less explored. Here, we investigated the difference between juvenile and adult experience-dependent plasticity in mice from intracellular calcium signals with fluorescent indicators. We also studied alterations in local field potentials power bands and phase-amplitude coupling (PAC) of specific brain oscillations. Our results showed that LTMD in juveniles causes higher neuromodulatory changes as seen by high-intensity fluorescent signals from the non-deprived eye (NDE). Meanwhile, adult mice showed a greater response from the deprived eye (DE). LTMD in juvenile mice triggered alterations in the power of delta, theta, and gamma oscillations, followed by enhancement of delta–gamma PAC in the NDE. However, LTMD in adult mice caused alterations in the power of delta oscillations and enhancement of delta–gamma PAC in the DE. These markers are intrinsic to cortical neuronal processing during LTMD and apply to a wide range of nested oscillatory markers.
Collapse
Affiliation(s)
- Anju Malik
- City University of Hong Kong Department of Electrical Engineering, , Hong Kong SAR, P. R . China
| | - Abdelrahman B M Eldaly
- City University of Hong Kong Department of Electrical Engineering, , Hong Kong SAR, P. R . China
- Minia University Electrical Engineering Department, Faculty of Engineering, , Minia 61517 , Egypt
| | - Stephen K Agadagba
- City University of Hong Kong Department of Electrical Engineering, , Hong Kong SAR, P. R . China
| | - Yilin Zheng
- City University of Hong Kong Department of Neuroscience, , Hong Kong SAR, P. R . China
| | - Xi Chen
- City University of Hong Kong Department of Neuroscience, , Hong Kong SAR, P. R . China
| | - Jufang He
- City University of Hong Kong Department of Neuroscience, , Hong Kong SAR, P. R . China
| | - Leanne Lai-Hang Chan
- City University of Hong Kong Department of Electrical Engineering, , Hong Kong SAR, P. R . China
- City University of Hong Kong Center for Biosystems, Neuroscience, and Nanotechnology, , Hong Kong SAR, P. R . China
| |
Collapse
|
10
|
Bergman L, Krom AJ, Sela Y, Marmelshtein A, Hayat H, Regev N, Nir Y. Propofol anesthesia concentration rather than abrupt behavioral unresponsiveness linearly degrades responses in the rat primary auditory cortex. Cereb Cortex 2022; 32:5005-5019. [PMID: 35169834 DOI: 10.1093/cercor/bhab528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/27/2022] Open
Abstract
Despite extensive knowledge of its molecular and cellular effects, how anesthesia affects sensory processing remains poorly understood. In particular, it remains unclear whether anesthesia modestly or robustly degrades activity in primary sensory regions, and whether such changes are linked to anesthesia drug concentration versus behavioral unresponsiveness, which are typically confounded. Here, we used slow gradual intravenous propofol anesthesia induction together with auditory stimulation and intermittent assessment of behavioral responsiveness while recording epidural electroencephalogram, and neuronal spiking activity in primary auditory cortex (PAC) of eight rats. We found that all main components of neuronal activity including spontaneous firing rates, onset response magnitudes, onset response latencies, postonset neuronal silence duration, late-locking to 40 Hz click-trains, and offset responses, gradually changed in a dose-dependent manner with increasing anesthesia levels without showing abrupt shifts around loss of righting reflex or other time-points. Thus, the dominant factor affecting PAC responses is the anesthesia drug concentration rather than any sudden, dichotomous behavioral state changes. Our findings explain a wide array of seemingly conflicting results in the literature that, depending on the precise definition of wakefulness (vigilant vs. drowsy) and anesthesia (light vs. deep/surgical), report a spectrum of effects in primary regions ranging from minimal to dramatic differences.
Collapse
Affiliation(s)
- Lottem Bergman
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.,Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Aaron J Krom
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.,Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel.,Department of Anesthesiology and Critical Care Medicine, Hadassah Medical Organization, Jerusalem 91120, Israel
| | - Yaniv Sela
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Amit Marmelshtein
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Hanna Hayat
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Noa Regev
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yuval Nir
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel.,The Sieratzki-Sagol Center for Sleep Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel.,Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
11
|
State-dependent effects of neural stimulation on brain function and cognition. Nat Rev Neurosci 2022; 23:459-475. [PMID: 35577959 DOI: 10.1038/s41583-022-00598-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 01/02/2023]
Abstract
Invasive and non-invasive brain stimulation methods are widely used in neuroscience to establish causal relationships between distinct brain regions and the sensory, cognitive and motor functions they subserve. When combined with concurrent brain imaging, such stimulation methods can reveal patterns of neuronal activity responsible for regulating simple and complex behaviours at the level of local circuits and across widespread networks. Understanding how fluctuations in physiological states and task demands might influence the effects of brain stimulation on neural activity and behaviour is at the heart of how we use these tools to understand cognition. Here we review the concept of such 'state-dependent' changes in brain activity in response to neural stimulation, and consider examples from research on altered states of consciousness (for example, sleep and anaesthesia) and from task-based manipulations of selective attention and working memory. We relate relevant findings from non-invasive methods used in humans to those obtained from direct electrical and optogenetic stimulation of neuronal ensembles in animal models. Given the widespread use of brain stimulation as a research tool in the laboratory and as a means of augmenting or restoring brain function, consideration of the influence of changing physiological and cognitive states is crucial for increasing the reliability of these interventions.
Collapse
|
12
|
Evers K, Peters J, Senden M. Cortical Synchrony as a Mechanism of Collinear Facilitation and Suppression in Early Visual Cortex. Front Syst Neurosci 2021; 15:670702. [PMID: 34393729 PMCID: PMC8358273 DOI: 10.3389/fnsys.2021.670702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/02/2021] [Indexed: 11/29/2022] Open
Abstract
Stimulus-induced oscillations and synchrony among neuronal populations in visual cortex are well-established phenomena. Their functional role in cognition are, however, not well-understood. Recent studies have suggested that neural synchrony may underlie perceptual grouping as stimulus-frequency relationships and stimulus-dependent lateral connectivity profiles can determine the success or failure of synchronization among neuronal groups encoding different stimulus elements. We suggest that the same mechanism accounts for collinear facilitation and suppression effects where the detectability of a target Gabor stimulus is improved or diminished by the presence of collinear flanking Gabor stimuli. We propose a model of oscillators which represent three neuronal populations in visual cortex with distinct receptive fields reflecting the target and two flankers, respectively, and whose connectivity is determined by the collinearity of the presented Gabor stimuli. Our model simulations confirm that neuronal synchrony can indeed explain known collinear facilitation and suppression effects for attended and unattended stimuli.
Collapse
Affiliation(s)
- Kris Evers
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.,Maastricht Brain Imaging Center (M-BIC), Maastricht University, Maastricht, Netherlands
| | - Judith Peters
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.,Maastricht Brain Imaging Center (M-BIC), Maastricht University, Maastricht, Netherlands.,Department of Vision and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| | - Mario Senden
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.,Maastricht Brain Imaging Center (M-BIC), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
13
|
Steiner AR, Rousseau-Blass F, Schroeter A, Hartnack S, Bettschart-Wolfensberger R. Systematic Review: Anesthetic Protocols and Management as Confounders in Rodent Blood Oxygen Level Dependent Functional Magnetic Resonance Imaging (BOLD fMRI)-Part B: Effects of Anesthetic Agents, Doses and Timing. Animals (Basel) 2021; 11:ani11010199. [PMID: 33467584 PMCID: PMC7830239 DOI: 10.3390/ani11010199] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary To understand brain function in rats and mice functional magnetic resonance imaging of the brain is used. With this type of “brain scan” regional changes in blood flow and oxygen consumption are measured as an indirect surrogate for activity of brain regions. Animals are often anesthetized for the experiments to prevent stress and blurred images due to movement. However, anesthesia may alter the measurements, as blood flow within the brain is differently affected by different anesthetics, and anesthetics also directly affect brain function. Consequently, results obtained under one anesthetic protocol may not be comparable with those obtained under another, and/or not representative for awake animals and humans. We have systematically searched the existing literature for studies analyzing the effects of different anesthesia methods or studies that compared anesthetized and awake animals. Most studies reported that anesthetic agents, doses and timing had an effect on functional magnetic resonance imaging results. To obtain results which promote our understanding of brain function, it is therefore essential that a standard for anesthetic protocols for functional magnetic resonance is defined and their impact is well characterized. Abstract In rodent models the use of functional magnetic resonance imaging (fMRI) under anesthesia is common. The anesthetic protocol might influence fMRI readouts either directly or via changes in physiological parameters. As long as those factors cannot be objectively quantified, the scientific validity of fMRI in rodents is impaired. In the present systematic review, literature analyzing in rats and mice the influence of anesthesia regimes and concurrent physiological functions on blood oxygen level dependent (BOLD) fMRI results was investigated. Studies from four databases that were searched were selected following pre-defined criteria. Two separate articles publish the results; the herewith presented article includes the analyses of 83 studies. Most studies found differences in BOLD fMRI readouts with different anesthesia drugs and dose rates, time points of imaging or when awake status was compared to anesthetized animals. To obtain scientifically valid, reproducible results from rodent fMRI studies, stable levels of anesthesia with agents suitable for the model under investigation as well as known and objectively quantifiable effects on readouts are, thus, mandatory. Further studies should establish dose ranges for standardized anesthetic protocols and determine time windows for imaging during which influence of anesthesia on readout is objectively quantifiable.
Collapse
Affiliation(s)
- Aline R. Steiner
- Section of Anaesthesiology, Department of Clinical and Diagnostic Services, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
- Correspondence:
| | - Frédérik Rousseau-Blass
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | - Aileen Schroeter
- Institute for Biomedical Engineering, University and ETH Zurich, 8093 Zurich, Switzerland;
| | - Sonja Hartnack
- Section of Epidemiology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
| | - Regula Bettschart-Wolfensberger
- Section of Anaesthesiology, Department of Clinical and Diagnostic Services, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
| |
Collapse
|
14
|
Lee H, Tanabe S, Wang S, Hudetz AG. Differential Effect of Anesthesia on Visual Cortex Neurons with Diverse Population Coupling. Neuroscience 2020; 458:108-119. [PMID: 33309966 DOI: 10.1016/j.neuroscience.2020.11.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/16/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022]
Abstract
Cortical neurons display diverse firing patterns and synchronization properties. How anesthesia alters the firing response of different neuron groups relevant for sensory information processing is unclear. Here we investigated the graded effect of anesthesia on spontaneous and visual flash-induced spike activity of different neuron groups classified based on their spike waveform, firing rate, and population coupling (the extent neurons conform to population spikes). Single-unit activity was measured from multichannel extracellular recordings in deep layers of primary visual cortex of freely moving rats in wakefulness and at three concentrations of desflurane. Anesthesia generally decreased firing rate and increased population coupling and burstiness of neurons. Population coupling and firing rate became more correlated and the pairwise correlation between neurons became more predictable by their population coupling in anesthesia. During wakefulness, visual stimulation increased firing rate; this effect was the largest and the most prolonged in neurons that exhibited high population coupling and high firing rate. During anesthesia, the early increase in firing rate (20-150 ms post-stimulus) of these neurons was suppressed, their spike timing was delayed and split into two peaks. The late response (200-400 ms post-stimulus) of all neurons was also suppressed. We conclude that anesthesia alters the visual response of primarily high-firing highly coupled neurons, which may interfere with visual sensory processing. The increased association of population coupling and firing rate during anesthesia suggests a decrease in sensory information content.
Collapse
Affiliation(s)
- Heonsoo Lee
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sean Tanabe
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shiyong Wang
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anthony G Hudetz
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
15
|
State-Dependent Cortical Unit Activity Reflects Dynamic Brain State Transitions in Anesthesia. J Neurosci 2020; 40:9440-9454. [PMID: 33122389 DOI: 10.1523/jneurosci.0601-20.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 01/26/2023] Open
Abstract
Understanding the effects of anesthesia on cortical neuronal spiking and information transfer could help illuminate the neuronal basis of the conscious state. Recent investigations suggest that the brain state identified by local field potential spectrum is not stationary but changes spontaneously at a fixed level of anesthetic concentration. How cortical unit activity changes with dynamically transitioning brain states under anesthesia is unclear. Extracellular unit activity was measured with 64-channel silicon microelectrode arrays in cortical layers 5/6 of the primary visual cortex of chronically instrumented, freely moving male rats (n = 7) during stepwise reduction of the anesthetic desflurane (6%, 4%, 2%, and 0%). Unsupervised machine learning applied to multiunit spike patterns revealed five distinct brain states. A novel desynchronized brain state with increased spike rate variability, sample entropy, and EMG activity occurred in 6% desflurane with 40.0% frequency. The other four brain states reflected graded levels of anesthesia. As anesthesia deepened the spike rate of neurons decreased regardless of their spike rate profile at baseline conscious state. Actively firing neurons with wide-spiking pattern showed increased bursting activity along with increased spike timing variability, unit-to-population correlation, and unit-to-unit transfer entropy, despite the overall decrease in transfer entropy. The narrow-spiking neurons showed similar changes but to a lesser degree. These results suggest that (1) anesthetic effect on spike rate is distinct from sleep, (2) synchronously fragmented spiking pattern is a signature of anesthetic-induced unconsciousness, and (3) the paradoxical, desynchronized brain state in deep anesthesia contends the generally presumed monotonic, dose-dependent anesthetic effect on the brain.SIGNIFICANCE STATEMENT Recent studies suggest that spontaneous changes in brain state occur under anesthesia. However, the spiking behavior of cortical neurons associated with such state changes has not been investigated. We found that local brain states defined by multiunit activity had a nonunitary relationship with the current anesthetic level. A paradoxical brain state displaying asynchronous firing pattern and high EMG activity was found unexpectedly in deep anesthesia. In contrast, the synchronous fragmentation of neuronal spiking appeared to be a robust signature of the state of anesthesia. The findings challenge the assumption of monotonic, anesthetic dose-dependent behavior of cortical neuron populations. They enhance the interpretation of neuroscientific data obtained under anesthesia and the understanding of the neuronal basis of anesthetic-induced state of unconsciousness.
Collapse
|
16
|
Finn ES, Huber L, Bandettini PA. Higher and deeper: Bringing layer fMRI to association cortex. Prog Neurobiol 2020; 207:101930. [PMID: 33091541 DOI: 10.1016/j.pneurobio.2020.101930] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/22/2020] [Accepted: 10/12/2020] [Indexed: 01/13/2023]
Abstract
Recent advances in fMRI have enabled non-invasive measurements of brain function in awake, behaving humans at unprecedented spatial resolutions, allowing us to separate activity in distinct cortical layers. While most layer fMRI studies to date have focused on primary cortices, we argue that the next big steps forward in our understanding of cognition will come from expanding this technology into higher-order association cortex, to characterize depth-dependent activity during increasingly sophisticated mental processes. We outline phenomena and theories ripe for investigation with layer fMRI, including perception and imagery, selective attention, and predictive coding. We discuss practical and theoretical challenges to cognitive applications of layer fMRI, including localizing regions of interest in the face of substantial anatomical heterogeneity across individuals, designing appropriate task paradigms within the confines of acquisition parameters, and generating hypotheses for higher-order brain regions where the laminar circuitry is less well understood. We consider how applying layer fMRI in association cortex may help inform computational models of brain function as well as shed light on consciousness and mental illness, and issue a call to arms to our fellow methodologists and neuroscientists to bring layer fMRI to this next frontier.
Collapse
Affiliation(s)
- Emily S Finn
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA; Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA.
| | - Laurentius Huber
- MR-Methods Group, Maastricht Brain Imaging Center, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Peter A Bandettini
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
17
|
Graudejus O, Barton C, Ponce Wong RD, Rowan CC, Oswalt D, Greger B. A soft and stretchable bilayer electrode array with independent functional layers for the next generation of brain machine interfaces. J Neural Eng 2020; 17:056023. [PMID: 33052886 DOI: 10.1088/1741-2552/abb4a5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Brain-Machine Interfaces (BMIs) hold great promises for advancing neuroprosthetics, robotics, and for providing treatment options for severe neurological diseases. The objective of this work is the development and in vivo evaluation of electrodes for BMIs that meet the needs to record brain activity at sub-millimeter resolution over a large area of the cortex while being soft and electromechanically robust (i.e. stretchable). APPROACH Current electrodes require a trade-off between high spatiotemporal resolution and cortical coverage area. To address the needs for simultaneous high resolution and large cortical coverage, the prototype electrode array developed in this study employs a novel bilayer routing of soft and stretchable lead wires from the recording sites on the surface of the brain (electrocorticography, ECoG) to the data acquisition system. MAIN RESULTS To validate the recording characteristics, the array was implanted in healthy felines for up to 5 months. Neural signals recorded from both layers of the device showed elevated mid-frequency structures typical of local field potential (LFP) signals that were stable in amplitude over implant duration, and also exhibited consistent frequency-dependent modulation after anesthesia induction by Telazol. SIGNIFICANCE The successful development of a soft and stretchable large-area, high resolution micro ECoG electrode array (lahrμECoG) is an important step to meet the neurotechnological needs of advanced BMI applications.
Collapse
Affiliation(s)
- Oliver Graudejus
- School of Molecular Science, Arizona State University, Tempe, AZ, United States of America. BMSEED, Phoenix, AZ, United States of America
| | | | | | | | | | | |
Collapse
|
18
|
Dorsal prefrontal and premotor cortex of the ferret as defined by distinctive patterns of thalamo-cortical projections. Brain Struct Funct 2020; 225:1643-1667. [PMID: 32458050 PMCID: PMC7286872 DOI: 10.1007/s00429-020-02086-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 05/09/2020] [Indexed: 12/19/2022]
Abstract
Recent studies of the neurobiology of the dorsal frontal cortex (FC) of the ferret have illuminated its key role in the attention network, top-down cognitive control of sensory processing, and goal directed behavior. To elucidate the neuroanatomical regions of the dorsal FC, and delineate the boundary between premotor cortex (PMC) and dorsal prefrontal cortex (dPFC), we placed retrograde tracers in adult ferret dorsal FC anterior to primary motor cortex and analyzed thalamo-cortical connectivity. Cyto- and myeloarchitectural differences across dorsal FC and the distinctive projection patterns from thalamic nuclei, especially from the subnuclei of the medial dorsal (MD) nucleus and the ventral thalamic nuclear group, make it possible to clearly differentiate three separate dorsal FC fields anterior to primary motor cortex: polar dPFC (dPFCpol), dPFC, and PMC. Based on the thalamic connectivity, there is a striking similarity of the ferret's dorsal FC fields with other species. This possible homology opens up new questions for future comparative neuroanatomical and functional studies.
Collapse
|
19
|
Redinbaugh MJ, Phillips JM, Kambi NA, Mohanta S, Andryk S, Dooley GL, Afrasiabi M, Raz A, Saalmann YB. Thalamus Modulates Consciousness via Layer-Specific Control of Cortex. Neuron 2020; 106:66-75.e12. [PMID: 32053769 DOI: 10.1016/j.neuron.2020.01.005] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/26/2019] [Accepted: 01/07/2020] [Indexed: 02/08/2023]
Abstract
Functional MRI and electrophysiology studies suggest that consciousness depends on large-scale thalamocortical and corticocortical interactions. However, it is unclear how neurons in different cortical layers and circuits contribute. We simultaneously recorded from central lateral thalamus (CL) and across layers of the frontoparietal cortex in awake, sleeping, and anesthetized macaques. We found that neurons in thalamus and deep cortical layers are most sensitive to changes in consciousness level, consistent across different anesthetic agents and sleep. Deep-layer activity is sustained by interactions with CL. Consciousness also depends on deep-layer neurons providing feedback to superficial layers (not to deep layers), suggesting that long-range feedback and intracolumnar signaling are important. To show causality, we stimulated CL in anesthetized macaques and effectively restored arousal and wake-like neural processing. This effect was location and frequency specific. Our findings suggest layer-specific thalamocortical correlates of consciousness and inform how targeted deep brain stimulation can alleviate disorders of consciousness.
Collapse
Affiliation(s)
| | - Jessica M Phillips
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Niranjan A Kambi
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sounak Mohanta
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Samantha Andryk
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Gaven L Dooley
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mohsen Afrasiabi
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Aeyal Raz
- Department of Anesthesiology, Rambam Health Care Campus, Haifa 3109601, Israel; Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Yuri B Saalmann
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53706, USA; Wisconsin National Primate Research Center, Madison, WI 53715, USA.
| |
Collapse
|
20
|
Li D, Wang G, Xie H, Hu Y, Guan JS, Hilgetag CC. Multimodal Memory Components and Their Long-Term Dynamics Identified in Cortical Layers II/III but Not Layer V. Front Integr Neurosci 2019; 13:54. [PMID: 31632246 PMCID: PMC6779795 DOI: 10.3389/fnint.2019.00054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 09/09/2019] [Indexed: 01/12/2023] Open
Abstract
Activity patterns of cerebral cortical regions represent the current environment in which animals receive multi-modal inputs. These patterns are also shaped by the history of activity that reflects learned information on past multimodal exposures. We studied the long-term dynamics of cortical activity patterns during the formation of multimodal memories by analyzing in vivo high-resolution 2-photon mouse brain imaging data of Immediate Early Gene (IEG) expression, resolved by cortical layers. Strikingly, in superficial layers II/III, the patterns showed similar dynamics across structurally and functionally distinct cortical areas and the consistency of dynamic patterns lasted for one to several days. By contrast, in deep layer V, the activity dynamics varied across different areas, and the current activities were sensitive to the previous activities at different time points, depending on the cortical locations, indicating that the information stored in the cortex at different time points was distributed across different cortical areas. These results suggest different roles of superficial and deep layer neurons in the long-term multimodal representation of the environment.
Collapse
Affiliation(s)
- Dong Li
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guangyu Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Hong Xie
- Zhangjiang Laboratory, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Institute of Brain-Intelligence Technology, Shanghai, China
| | - Yi Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Ji-Song Guan
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Claus C Hilgetag
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Health Sciences, Boston University, Boston, MA, United States
| |
Collapse
|
21
|
Cortico-Thalamic Circuit Model for Bottom-Up and Top-Down Mechanisms in General Anesthesia Involving the Reticular Activating System. ARCHIVES OF NEUROSCIENCE 2019. [DOI: 10.5812/ans.95498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
22
|
Aggarwal A, Brennan C, Shortal B, Contreras D, Kelz MB, Proekt A. Coherence of Visual-Evoked Gamma Oscillations Is Disrupted by Propofol but Preserved Under Equipotent Doses of Isoflurane. Front Syst Neurosci 2019; 13:19. [PMID: 31139058 PMCID: PMC6519322 DOI: 10.3389/fnsys.2019.00019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/18/2019] [Indexed: 12/15/2022] Open
Abstract
Previous research demonstrates that the underlying state of the brain influences how sensory stimuli are processed. Canonically, the state of the brain has been defined by quantifying the spectral characteristics of spontaneous fluctuations in local field potentials (LFP). Here, we utilized isoflurane and propofol anesthesia to parametrically alter the spectral state of the murine brain. With either drug, we produce slow wave activity, with low anesthetic doses, or burst suppression, with higher doses. We find that while spontaneous LFP oscillations were similar, the average visual-evoked potential (VEP) was always smaller in amplitude and shorter in duration under propofol than under comparable doses of isoflurane. This diminished average VEP results from increased trial-to-trial variability in VEPs under propofol. One feature of single trial VEPs that was consistent in all animals was visual-evoked gamma band oscillation (20-60 Hz). This gamma band oscillation was coherent between trials in the early phase (<250 ms) of the visual evoked potential under isoflurane. Inter trial phase coherence (ITPC) of gamma oscillations was dramatically attenuated in the same propofol anesthetized mice despite similar spontaneous oscillations in the LFP. This suggests that while both anesthetics lead to loss of consciousness (LOC), elicit slow oscillations and burst suppression, only the isoflurane permits phase resetting of gamma oscillations by visual stimuli. These results demonstrate that accurate characterization of a brain state must include both spontaneous as well as stimulus-induced perturbations of brain activity.
Collapse
Affiliation(s)
- Adeeti Aggarwal
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Connor Brennan
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Brenna Shortal
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Diego Contreras
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Max B Kelz
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Alex Proekt
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
23
|
Superficial Layers Suppress the Deep Layers to Fine-tune Cortical Coding. J Neurosci 2019; 39:2052-2064. [PMID: 30651326 DOI: 10.1523/jneurosci.1459-18.2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 11/21/2022] Open
Abstract
The descending microcircuit from layer 2/3 (L2/3) to layer 5 (L5) is one of the strongest excitatory pathways in the cortex, presumably forming a core component of its feedforward hierarchy. To date, however, no experiments have selectively tested the impact of L2/3 activity on L5 during active sensation. We used optogenetic, cell-type-specific manipulation of L2/3 neurons in the barrel cortex of actively sensing mice (of either sex) to elucidate the significance of this pathway to sensory coding in L5. Contrary to standard models, activating L2/3 predominantly suppressed spontaneous activity in L5, whereas deactivating L2/3 mainly facilitated touch responses in L5. Somatostatin interneurons are likely important to this suppression because their optogenetic deactivation significantly altered the functional impact of L2/3 onto L5. The net effect of L2/3 was to enhance the stimulus selectivity and expand the range of L5 output. These data imply that the core cortical pathway increases the selectivity and expands the range of cortical output through feedforward inhibition.SIGNIFICANCE STATEMENT The primary sensory cortex contains six distinct layers that interact to form the basis of our perception. While rudimentary patterns of connectivity between the layers have been outlined quite extensively in vitro, functional relationships in vivo, particularly during active sensation, remain poorly understood. We used cell-type-specific optogenetics to test the functional relationship between layer 2/3 and layer 5. Surprisingly, we discovered that L2/3 primarily suppresses cortical output from L5. The recruitment of somatostatin-positive interneurons is likely fundamental to this relationship. The net effect of this translaminar suppression is to enhance the selectivity and expand the range of receptive fields, therefore potentially sharpening the perception of space.
Collapse
|
24
|
Park H, You N, Lee J, Suh M. Longitudinal study of hemodynamics and dendritic membrane potential changes in the mouse cortex following a soft cranial window installation. NEUROPHOTONICS 2019; 6:015006. [PMID: 30820438 PMCID: PMC6387987 DOI: 10.1117/1.nph.6.1.015006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/25/2019] [Indexed: 05/21/2023]
Abstract
The soft cranial window using polydimethylsiloxane allows direct multiple access to neural tissue during long-term monitoring. However, the chronic effects of soft window installation on the brain have not been fully studied. Here, we investigate the long-term effects of soft window installation on sensory-evoked cerebral hemodynamics and neuronal activity. We monitored the brain tissue immunocytohistology for 6 weeks postinstallation. Heightened reactive astrocytic and microglia levels were found at 2 weeks postinstallation. By 6 weeks postinstallation, mice had expression levels similar to those of normal animals. We recorded sensory-evoked hemodynamics of the barrel cortex and LFP during whisker stimulation at these time points. Animals at 6 weeks postinstallation showed stronger hemodynamic responses and focalized barrel mapping than 2-week postoperative mice. LFP recordings of 6-week postoperative mice also showed higher neural activity at the barrel column corresponding to the stimulated whisker. Furthermore, the expression level of interleukin- 1 β was highly upregulated at 2 weeks postinstallation. When we treated animals postoperatively with minocycline plus N-acetylcystein, a drug-suppressing inflammatory cytokine, these animals did not show declined hemodynamic responses and neuronal activities. This result suggests that neuroinflammation following soft window installation may alter hemodynamic and neuronal responses upon sensory stimulation.
Collapse
Affiliation(s)
- Hyejin Park
- Institute for Basic Science, Center for Neuroscience Imaging Research, Suwon, Republic of Korea
- Sungkyunkwan University, Department of Biological Sciences, Suwon, Republic of Korea
- Sungkyunkwan University, Biomedical Institute for Convergence, Suwon, Republic of Korea
| | - Nayeon You
- Institute for Basic Science, Center for Neuroscience Imaging Research, Suwon, Republic of Korea
- Sungkyunkwan University, Department of Biomedical Engineering, Suwon, Republic of Korea
| | - Juheon Lee
- Institute for Basic Science, Center for Neuroscience Imaging Research, Suwon, Republic of Korea
- Sungkyunkwan University, Department of Biomedical Engineering, Suwon, Republic of Korea
| | - Minah Suh
- Institute for Basic Science, Center for Neuroscience Imaging Research, Suwon, Republic of Korea
- Sungkyunkwan University, Biomedical Institute for Convergence, Suwon, Republic of Korea
- Sungkyunkwan University, Department of Biomedical Engineering, Suwon, Republic of Korea
- Sungkyunkwan University, SAHIST, Suwon, Republic of Korea
- Address all correspondence to Minah Suh, E-mail:
| |
Collapse
|
25
|
Michelson NJ, Kozai TDY. Isoflurane and ketamine differentially influence spontaneous and evoked laminar electrophysiology in mouse V1. J Neurophysiol 2018; 120:2232-2245. [PMID: 30067128 PMCID: PMC6295540 DOI: 10.1152/jn.00299.2018] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 12/20/2022] Open
Abstract
General anesthesia is ubiquitous in research and medicine, yet although the molecular mechanisms of anesthetics are well characterized, their ultimate influence on cortical electrophysiology remains unclear. Moreover, the influence that different anesthetics have on sensory cortexes at neuronal and ensemble scales is mostly unknown and represents an important gap in knowledge that has widespread relevance for neural sciences. To address this knowledge gap, this work explored the effects of isoflurane and ketamine/xylazine, two widely used anesthetic paradigms, on electrophysiological behavior in mouse primary visual cortex. First, multiunit activity and local field potentials were examined to understand how each anesthetic influences spontaneous activity. Then, the interlaminar relationships between populations of neurons at different cortical depths were studied to assess whether anesthetics influenced resting-state functional connectivity. Lastly, the spatiotemporal dynamics of visually evoked multiunit and local field potentials were examined to determine how each anesthetic alters communication of visual information. We found that isoflurane enhanced the rhythmicity of spontaneous ensemble activity at 10-40 Hz, which coincided with large increases in coherence between layer IV with superficial and deep layers. Ketamine preferentially increased local field potential power from 2 to 4 Hz, and the largest increases in coherence were observed between superficial and deep layers. Visually evoked responses across layers were diminished under isoflurane, and enhanced under ketamine anesthesia. These findings demonstrate that isoflurane and ketamine anesthesia differentially impact sensory processing in V1. NEW & NOTEWORTHY We directly compared electrophysiological responses in awake and anesthetized (isoflurane or ketamine) mice. We also proposed a method for quantifying and visualizing highly variable, evoked multiunit activity. Lastly, we observed distinct oscillatory responses to stimulus onset and offset in awake and isoflurane-anesthetized mice.
Collapse
Affiliation(s)
- Nicholas J Michelson
- Department of Bioengineering, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh , Pittsburgh, Pennsylvania
- Center for the Neural Basis of Cognition, University of Pittsburgh , Pittsburgh, Pennsylvania
- Center for Neuroscience, University of Pittsburgh , Pittsburgh, Pennsylvania
- McGowan Institute of Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
- NeuroTech Center, University of Pittsburgh Brain Institute , Pittsburgh, Pennsylvania
| |
Collapse
|
26
|
Fischer F, Pieper F, Galindo-Leon E, Engler G, Hilgetag CC, Engel AK. Intrinsic Functional Connectivity Resembles Cortical Architecture at Various Levels of Isoflurane Anesthesia. Cereb Cortex 2018; 28:2991-3003. [PMID: 29788295 PMCID: PMC6041950 DOI: 10.1093/cercor/bhy114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Indexed: 02/03/2023] Open
Abstract
Cortical single neuron activity and local field potential patterns change at different depths of general anesthesia. Here, we investigate the associated network level changes of functional connectivity. We recorded ongoing electrocorticographic (ECoG) activity from temporo-parieto-occipital cortex of 6 ferrets at various levels of isoflurane/nitrous oxide anesthesia and determined functional connectivity by computing amplitude envelope correlations. Through hierarchical clustering, we derived typical connectivity patterns corresponding to light, intermediate and deep anesthesia. Generally, amplitude correlation strength increased strongly with depth of anesthesia across all cortical areas and frequency bands. This was accompanied, at the deepest level, by the emergence of burst-suppression activity in the ECoG signal and a change of the spectrum of the amplitude envelope. Normalization of functional connectivity to the distribution of correlation coefficients showed that the topographical patterns remained similar across depths of anesthesia, reflecting the functional association of the underlying cortical areas. Thus, while strength and temporal properties of amplitude co-modulation vary depending on the activity of local neural circuits, their network-level interaction pattern is presumably most strongly determined by the underlying structural connectivity.
Collapse
Affiliation(s)
- Felix Fischer
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, Germany.,Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, Germany
| | - Florian Pieper
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, Germany
| | - Edgar Galindo-Leon
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, Germany
| | - Gerhard Engler
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, Germany
| | - Claus C Hilgetag
- Department of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, Germany
| |
Collapse
|
27
|
Hutt A, Lefebvre J, Hight D, Sleigh J. Suppression of underlying neuronal fluctuations mediates EEG slowing during general anaesthesia. Neuroimage 2018; 179:414-428. [PMID: 29920378 DOI: 10.1016/j.neuroimage.2018.06.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/03/2018] [Accepted: 06/12/2018] [Indexed: 11/25/2022] Open
Abstract
The physiological mechanisms by which anaesthetic drugs modulate oscillatory brain activity remain poorly understood. Combining human data, mathematical and computational analysis of both spiking and mean-field models, we investigated the spectral dynamics of encephalographic (EEG) beta-alpha oscillations, observed in human patients undergoing general anaesthesia. The effect of anaesthetics can be modelled as a reduction of neural fluctuation intensity, and/or an increase in inhibitory synaptic gain in the thalamo-cortical circuit. Unlike previous work, which suggested the primary importance of gamma-amino-butryic-acid (GABA) augmentation in causing a shift to low EEG frequencies, our analysis demonstrates that a non-linear transition, triggered by a simple decrease in neural fluctuation intensity, is sufficient to explain the clinically-observed appearance - and subsequent slowing - of the beta-alpha narrowband EEG peak. In our model, increased synaptic inhibition alone, did not correlate with the clinically-observed encephalographic spectral changes, but did cause the anaesthetic-induced decrease in neuronal firing rate. Taken together, our results show that such a non-linear transition results in functional fragmentation of cortical and thalamic populations; highly correlated intra-population dynamics triggered by anaesthesia decouple and isolate neural populations. Our results are able to parsimoniously unify and replicate the observed anaesthetic effects on both the EEG spectra and inter-regional connectivity, and further highlight the importance of neural activity fluctuations in the genesis of altered brain states.
Collapse
Affiliation(s)
- Axel Hutt
- Department FE 12 - Data Assimilation, Deutscher Wetterdienst, 63067, Offenbach am Main, Germany; Department of Mathematics and Statistics, University of Reading, Reading, RG6 6AX, UK.
| | - Jérémie Lefebvre
- Krembil Research Institute, University Health Network, Toronto, Ontario, M5T 2S8, Canada; Department of Mathematics, University of Toronto, Toronto, Ontario, M5T 2S8, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, M5T 2S8, Canada
| | - Darren Hight
- Department of Anaesthesiology, Waikato Clinical Campus, University of Auckland, Hamilton, 3240, New Zealand; Department of Anaesthesiology and Pain Therapy, University Hospital Bern, Inselspital, Bern, Switzerland
| | - Jamie Sleigh
- Department of Anaesthesiology, Waikato Clinical Campus, University of Auckland, Hamilton, 3240, New Zealand.
| |
Collapse
|
28
|
Sellers KK, Yu C, Zhou ZC, Stitt I, Li Y, Radtke-Schuller S, Alagapan S, Fröhlich F. Oscillatory Dynamics in the Frontoparietal Attention Network during Sustained Attention in the Ferret. Cell Rep 2017; 16:2864-2874. [PMID: 27626658 DOI: 10.1016/j.celrep.2016.08.055] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/15/2016] [Accepted: 08/17/2016] [Indexed: 01/08/2023] Open
Abstract
Sustained attention requires the coordination of neural activity across multiple cortical areas in the frontoparietal network, in particular the prefrontal cortex (PFC) and posterior parietal cortex (PPC). Previous work has demonstrated that activity in these brain regions is coordinated by neuronal oscillations of the local field potential (LFP). However, the underlying coordination of activity in terms of organization of single unit (SU) spiking activity has remained poorly understood, particularly in the freely moving animal. We found that long-range functional connectivity between anatomically connected PFC and PPC was mediated by oscillations in the theta frequency band. SU activity in PFC was phase locked to theta oscillations in PPC, and spiking activity in PFC and PPC was locked to local high-gamma activity. Together, our results support a model in which frequency-specific synchronization mediates functional connectivity between and within PFC and PPC of the frontoparietal attention network in the freely moving animal.
Collapse
Affiliation(s)
- Kristin K Sellers
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chunxiu Yu
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zhe Charles Zhou
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Iain Stitt
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yuhui Li
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Susanne Radtke-Schuller
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sankaraleengam Alagapan
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Flavio Fröhlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
29
|
Kim M, Kim S, Mashour GA, Lee U. Relationship of Topology, Multiscale Phase Synchronization, and State Transitions in Human Brain Networks. Front Comput Neurosci 2017; 11:55. [PMID: 28713258 PMCID: PMC5492767 DOI: 10.3389/fncom.2017.00055] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/07/2017] [Indexed: 12/29/2022] Open
Abstract
How the brain reconstitutes consciousness and cognition after a major perturbation like general anesthesia is an important question with significant neuroscientific and clinical implications. Recent empirical studies in animals and humans suggest that the recovery of consciousness after anesthesia is not random but ordered. Emergence patterns have been classified as progressive and abrupt transitions from anesthesia to consciousness, with associated differences in duration and electroencephalogram (EEG) properties. We hypothesized that the progressive and abrupt emergence patterns from the unconscious state are associated with, respectively, continuous and discontinuous synchronization transitions in functional brain networks. The discontinuous transition is explainable with the concept of explosive synchronization, which has been studied almost exclusively in network science. We used the Kuramato model, a simple oscillatory network model, to simulate progressive and abrupt transitions in anatomical human brain networks acquired from diffusion tensor imaging (DTI) of 82 brain regions. To facilitate explosive synchronization, distinct frequencies for hub nodes with a large frequency disassortativity (i.e., higher frequency nodes linking with lower frequency nodes, or vice versa) were applied to the brain network. In this simulation study, we demonstrated that both progressive and abrupt transitions follow distinct synchronization processes at the individual node, cluster, and global network levels. The characteristic synchronization patterns of brain regions that are “progressive and earlier” or “abrupt but delayed” account for previously reported behavioral responses of gradual and abrupt emergence from the unconscious state. The characteristic network synchronization processes observed at different scales provide new insights into how regional brain functions are reconstituted during progressive and abrupt emergence from the unconscious state. This theoretical approach also offers a principled explanation of how the brain reconstitutes consciousness and cognitive functions after physiologic (sleep), pharmacologic (anesthesia), and pathologic (coma) perturbations.
Collapse
Affiliation(s)
- Minkyung Kim
- Department of Physics, Pohang University of Science and TechnologyPohang, South Korea.,Center for Consciousness Science, University of Michigan Medical SchoolAnn Arbor, MI, United States
| | - Seunghwan Kim
- Department of Physics, Pohang University of Science and TechnologyPohang, South Korea
| | - George A Mashour
- Center for Consciousness Science, University of Michigan Medical SchoolAnn Arbor, MI, United States.,Department of Anesthesiology, University of Michigan Medical SchoolAnn Arbor, MI, United States
| | - UnCheol Lee
- Center for Consciousness Science, University of Michigan Medical SchoolAnn Arbor, MI, United States.,Department of Anesthesiology, University of Michigan Medical SchoolAnn Arbor, MI, United States
| |
Collapse
|
30
|
Wollstadt P, Sellers KK, Rudelt L, Priesemann V, Hutt A, Fröhlich F, Wibral M. Breakdown of local information processing may underlie isoflurane anesthesia effects. PLoS Comput Biol 2017; 13:e1005511. [PMID: 28570661 PMCID: PMC5453425 DOI: 10.1371/journal.pcbi.1005511] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 04/11/2017] [Indexed: 02/07/2023] Open
Abstract
The disruption of coupling between brain areas has been suggested as the mechanism underlying loss of consciousness in anesthesia. This hypothesis has been tested previously by measuring the information transfer between brain areas, and by taking reduced information transfer as a proxy for decoupling. Yet, information transfer is a function of the amount of information available in the information source—such that transfer decreases even for unchanged coupling when less source information is available. Therefore, we reconsidered past interpretations of reduced information transfer as a sign of decoupling, and asked whether impaired local information processing leads to a loss of information transfer. An important prediction of this alternative hypothesis is that changes in locally available information (signal entropy) should be at least as pronounced as changes in information transfer. We tested this prediction by recording local field potentials in two ferrets after administration of isoflurane in concentrations of 0.0%, 0.5%, and 1.0%. We found strong decreases in the source entropy under isoflurane in area V1 and the prefrontal cortex (PFC)—as predicted by our alternative hypothesis. The decrease in source entropy was stronger in PFC compared to V1. Information transfer between V1 and PFC was reduced bidirectionally, but with a stronger decrease from PFC to V1. This links the stronger decrease in information transfer to the stronger decrease in source entropy—suggesting reduced source entropy reduces information transfer. This conclusion fits the observation that the synaptic targets of isoflurane are located in local cortical circuits rather than on the synapses formed by interareal axonal projections. Thus, changes in information transfer under isoflurane seem to be a consequence of changes in local processing more than of decoupling between brain areas. We suggest that source entropy changes must be considered whenever interpreting changes in information transfer as decoupling. Currently we do not understand how anesthesia leads to loss of consciousness (LOC). One popular idea is that we loose consciousness when brain areas lose their ability to communicate with each other–as anesthetics might interrupt transmission on nerve fibers coupling them. This idea has been tested by measuring the amount of information transferred between brain areas, and taking this transfer to reflect the coupling itself. Yet, information that isn’t available in the source area can’t be transferred to a target. Hence, the decreases in information transfer could be related to less information being available in the source, rather than to a decoupling. We tested this possibility measuring the information available in source brain areas and found that it decreased under isoflurane anesthesia. In addition, a stronger decrease in source information lead to a stronger decrease of the information transfered. Thus, the input to the connection between brain areas determined the communicated information, not the strength of the coupling (which would result in a stronger decrease in the target). We suggest that interrupted information processing within brain areas has an important contribution to LOC, and should be focused on more in attempts to understand loss of consciousness under anesthesia.
Collapse
Affiliation(s)
- Patricia Wollstadt
- MEG Unit, Brain Imaging Center, Goethe University, Frankfurt/Main, Germany
- * E-mail: (PW); (VP)
| | - Kristin K. Sellers
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lucas Rudelt
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Viola Priesemann
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Bernstein Center for Computational Neuroscience, BCCN, Göttingen, Germany
- * E-mail: (PW); (VP)
| | - Axel Hutt
- Deutscher Wetterdienst, Section FE 12 - Data Assimilation, Offenbach/Main, Germany
- Department of Mathematics and Statistics, University of Reading, Reading, United Kingdom
| | - Flavio Fröhlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael Wibral
- MEG Unit, Brain Imaging Center, Goethe University, Frankfurt/Main, Germany
| |
Collapse
|
31
|
Wallace ML, van Woerden GM, Elgersma Y, Smith SL, Philpot BD. Ube3a loss increases excitability and blunts orientation tuning in the visual cortex of Angelman syndrome model mice. J Neurophysiol 2017; 118:634-646. [PMID: 28468997 DOI: 10.1152/jn.00618.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 12/15/2022] Open
Abstract
Angelman syndrome (AS) is a neurodevelopmental disorder caused by loss of the maternally inherited allele of UBE3AUbe3aSTOP/p+ mice recapitulate major features of AS in humans and allow conditional reinstatement of maternal Ube3a with the expression of Cre recombinase. We have recently shown that AS model mice exhibit reduced inhibitory drive onto layer (L)2/3 pyramidal neurons of visual cortex, which contributes to a synaptic excitatory/inhibitory imbalance. However, it remains unclear how this loss of inhibitory drive affects neural circuits in vivo. Here we examined visual cortical response properties in individual neurons to explore the consequences of Ube3a loss on intact cortical circuits and processing. Using in vivo patch-clamp electrophysiology, we measured the visually evoked responses to square-wave drifting gratings in L2/3 regular-spiking (RS) neurons in control mice, Ube3a-deficient mice, and mice in which Ube3a was conditionally reinstated in GABAergic neurons. We found that Ube3a-deficient mice exhibited enhanced pyramidal neuron excitability in vivo as well as weaker orientation tuning. These observations are the first to show alterations in cortical computation in an AS model, and they suggest a basis for cortical dysfunction in AS.NEW & NOTEWORTHY Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by the loss of the gene UBE3A Using electrophysiological recording in vivo, we describe visual cortical dysfunctions in a mouse model of AS. Aberrant cellular properties in AS model mice could be improved by reinstating Ube3a in inhibitory neurons. These findings suggest that inhibitory neurons play a substantial role in the pathogenesis of AS.
Collapse
Affiliation(s)
- Michael L Wallace
- Curriculum in Neurobiology, University of North Carolina, Chapel Hill, North Carolina
| | - Geeske M van Woerden
- Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ype Elgersma
- Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Spencer L Smith
- Curriculum in Neurobiology, University of North Carolina, Chapel Hill, North Carolina.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina.,Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina.,Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, North Carolina; and
| | - Benjamin D Philpot
- Curriculum in Neurobiology, University of North Carolina, Chapel Hill, North Carolina; .,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina.,Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina.,Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, North Carolina; and
| |
Collapse
|
32
|
Spontaneous activity in the piriform cortex extends the dynamic range of cortical odor coding. Proc Natl Acad Sci U S A 2017; 114:2407-2412. [PMID: 28196887 DOI: 10.1073/pnas.1620939114] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurons in the neocortex exhibit spontaneous spiking activity in the absence of external stimuli, but the origin and functions of this activity remain uncertain. Here, we show that spontaneous spiking is also prominent in a sensory paleocortex, the primary olfactory (piriform) cortex of mice. In the absence of applied odors, piriform neurons exhibit spontaneous firing at mean rates that vary systematically among neuronal classes. This activity requires the participation of NMDA receptors and is entirely driven by bottom-up spontaneous input from the olfactory bulb. Odor stimulation produces two types of spatially dispersed, odor-distinctive patterns of responses in piriform cortex layer 2 principal cells: Approximately 15% of cells are excited by odor, and another approximately 15% have their spontaneous activity suppressed. Our results show that, by allowing odor-evoked suppression as well as excitation, the responsiveness of piriform neurons is at least twofold less sparse than currently believed. Hence, by enabling bidirectional changes in spiking around an elevated baseline, spontaneous activity in the piriform cortex extends the dynamic range of odor representation and enriches the coding space for the representation of complex olfactory stimuli.
Collapse
|
33
|
Hudetz AG, Vizuete JA, Pillay S, Mashour GA. Repertoire of mesoscopic cortical activity is not reduced during anesthesia. Neuroscience 2016; 339:402-417. [PMID: 27751957 PMCID: PMC5118138 DOI: 10.1016/j.neuroscience.2016.10.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 10/20/2022]
Abstract
Consciousness has been linked to the repertoire of brain states at various spatiotemporal scales. Anesthesia is thought to modify consciousness by altering information integration in cortical and thalamocortical circuits. At a mesoscopic scale, neuronal populations in the cortex form synchronized ensembles whose characteristics are presumably state-dependent but this has not been rigorously tested. In this study, spontaneous neuronal activity was recorded with 64-contact microelectrode arrays in primary visual cortex of chronically instrumented, unrestrained rats under stepwise decreasing levels of desflurane anesthesia (8%, 6%, 4%, and 2% inhaled concentrations) and wakefulness (0% concentration). Negative phases of the local field potentials formed compact, spatially contiguous activity patterns (CAPs) that were not due to chance. The number of CAPs was 120% higher in wakefulness and deep anesthesia associated with burst-suppression than at intermediate levels of consciousness. The frequency distribution of CAP sizes followed a power-law with slope -1.5 in relatively deep anesthesia (8-6%) but deviated from that at the lighter levels. Temporal variance and entropy of CAP sizes were lowest in wakefulness (76% and 24% lower at 0% than at 8% desflurane, respectively) but changed little during recovery of consciousness. CAPs categorized by K-means clustering were conserved at all anesthesia levels and wakefulness, although their proportion changed in a state-dependent manner. These observations yield new knowledge about the dynamic landscape of ongoing population activity in sensory cortex at graded levels of anesthesia. The repertoire of population activity and self-organized criticality at the mesoscopic scale do not appear to contribute to anesthetic suppression of consciousness, which may instead depend on large-scale effects, more subtle dynamic properties, or changes outside of primary sensory cortex.
Collapse
Affiliation(s)
- Anthony G Hudetz
- Department of Anesthesiology, Center for Consciousness Science, Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States.
| | - Jeannette A Vizuete
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Siveshigan Pillay
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| | - George A Mashour
- Department of Anesthesiology, Center for Consciousness Science, Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
34
|
Nicotinic receptors in mouse prefrontal cortex modulate ultraslow fluctuations related to conscious processing. Proc Natl Acad Sci U S A 2016; 113:14823-14828. [PMID: 27911815 DOI: 10.1073/pnas.1614417113] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The prefrontal cortex (PFC) plays an important role in cognitive processes, including access to consciousness. The PFC receives significant cholinergic innervation and nicotinic acetylcholine receptors (nAChRs) contribute greatly to the effects of acetylcholine signaling. Using in vivo two-photon imaging of both awake and anesthetized mice, we recorded spontaneous, ongoing neuronal activity in layer II/III in the PFC of WT mice and mice deleted for different nAChR subunits. As in humans, this activity is characterized by synchronous ultraslow fluctuations and neuronal synchronicity is disrupted by light general anesthesia. Both the α7 and β2 nAChR subunits play an important role in the generation of ultraslow fluctuations that occur to a different extent during quiet wakefulness and light general anesthesia. The β2 subunit is specifically required for synchronized activity patterns. Furthermore, chronic application of mecamylamine, an antagonist of nAChRs, disrupts the generation of ultraslow fluctuations. Our findings provide new insight into the ongoing spontaneous activity in the awake and anesthetized state, and the role of cholinergic neurotransmission in the orchestration of cognitive functions.
Collapse
|
35
|
Gao YR, Ma Y, Zhang Q, Winder AT, Liang Z, Antinori L, Drew PJ, Zhang N. Time to wake up: Studying neurovascular coupling and brain-wide circuit function in the un-anesthetized animal. Neuroimage 2016; 153:382-398. [PMID: 27908788 PMCID: PMC5526447 DOI: 10.1016/j.neuroimage.2016.11.069] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 11/18/2016] [Accepted: 11/27/2016] [Indexed: 01/08/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) has allowed the noninvasive study of task-based and resting-state brain dynamics in humans by inferring neural activity from blood-oxygenation-level dependent (BOLD) signal changes. An accurate interpretation of the hemodynamic changes that underlie fMRI signals depends on the understanding of the quantitative relationship between changes in neural activity and changes in cerebral blood flow, oxygenation and volume. While there has been extensive study of neurovascular coupling in anesthetized animal models, anesthesia causes large disruptions of brain metabolism, neural responsiveness and cardiovascular function. Here, we review work showing that neurovascular coupling and brain circuit function in the awake animal are profoundly different from those in the anesthetized state. We argue that the time is right to study neurovascular coupling and brain circuit function in the awake animal to bridge the physiological mechanisms that underlie animal and human neuroimaging signals, and to interpret them in light of underlying neural mechanisms. Lastly, we discuss recent experimental innovations that have enabled the study of neurovascular coupling and brain-wide circuit function in un-anesthetized and behaving animal models.
Collapse
Affiliation(s)
- Yu-Rong Gao
- Neuroscience Graduate Program, Pennsylvania State University, University Park, PA 16802, Unidted States; Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, Unidted States
| | - Yuncong Ma
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, Unidted States
| | - Qingguang Zhang
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, Unidted States
| | - Aaron T Winder
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, Unidted States
| | - Zhifeng Liang
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, Unidted States
| | - Lilith Antinori
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, Unidted States
| | - Patrick J Drew
- Neuroscience Graduate Program, Pennsylvania State University, University Park, PA 16802, Unidted States; Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, Unidted States; Department of Neurosurgery, Pennsylvania State University, University Park, PA 16802, Unidted States; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, Unidted States.
| | - Nanyin Zhang
- Neuroscience Graduate Program, Pennsylvania State University, University Park, PA 16802, Unidted States; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, Unidted States.
| |
Collapse
|
36
|
Williams AJ, Zhou C, Sun QQ. Enhanced Burst-Suppression and Disruption of Local Field Potential Synchrony in a Mouse Model of Focal Cortical Dysplasia Exhibiting Spike-Wave Seizures. Front Neural Circuits 2016; 10:93. [PMID: 27891080 PMCID: PMC5102891 DOI: 10.3389/fncir.2016.00093] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/31/2016] [Indexed: 11/28/2022] Open
Abstract
Focal cortical dysplasias (FCDs) are a common cause of brain seizures and are often associated with intractable epilepsy. Here we evaluated aberrant brain neurophysiology in an in vivo mouse model of FCD induced by neonatal freeze lesions (FLs) to the right cortical hemisphere (near S1). Linear multi-electrode arrays were used to record extracellular potentials from cortical and subcortical brain regions near the FL in anesthetized mice (5–13 months old) followed by 24 h cortical electroencephalogram (EEG) recordings. Results indicated that FL animals exhibit a high prevalence of spontaneous spike-wave discharges (SWDs), predominately during sleep (EEG), and an increase in the incidence of hyper-excitable burst/suppression activity under general anesthesia (extracellular recordings, 0.5%–3.0% isoflurane). Brief periods of burst activity in the local field potential (LFP) typically presented as an arrhythmic pattern of increased theta-alpha spectral peaks (4–12 Hz) on a background of low-amplitude delta activity (1–4 Hz), were associated with an increase in spontaneous spiking of cortical neurons, and were highly synchronized in control animals across recording sites in both cortical and subcortical layers (average cross-correlation values ranging from +0.73 to +1.0) with minimal phase shift between electrodes. However, in FL animals, cortical vs. subcortical burst activity was strongly out of phase with significantly lower cross-correlation values compared to controls (average values of −0.1 to +0.5, P < 0.05 between groups). In particular, a marked reduction in the level of synchronous burst activity was observed, the closer the recording electrodes were to the malformation (Pearson’s Correlation = 0.525, P < 0.05). In a subset of FL animals (3/9), burst activity also included a spike or spike-wave pattern similar to the SWDs observed in unanesthetized animals. In summary, neonatal FLs increased the hyperexcitable pattern of burst activity induced by anesthesia and disrupted field potential synchrony between cortical and subcortical brain regions near the site of the cortical malformation. Monitoring the altered electrophysiology of burst activity under general anesthesia with multi-dimensional micro-electrode arrays may serve to define distinct neurophysiological biomarkers of epileptogenesis in human brain and improve techniques for surgical resection of epileptogenic malformed brain tissue.
Collapse
Affiliation(s)
- Anthony J Williams
- Department of Zoology and Physiology, University of Wyoming Laramie, WY, USA
| | - Chen Zhou
- Department of Zoology and Physiology, University of Wyoming Laramie, WY, USA
| | - Qian-Quan Sun
- Department of Zoology and Physiology, University of Wyoming Laramie, WY, USA
| |
Collapse
|
37
|
Reduced local field potential power in the medial prefrontal cortex by noxious stimuli. Brain Res Bull 2016; 127:92-99. [PMID: 27601092 DOI: 10.1016/j.brainresbull.2016.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/12/2016] [Accepted: 09/02/2016] [Indexed: 11/23/2022]
Abstract
Nociceptive signals produced by noxious stimuli at the periphery reach the brain through ascending pathways. These signals are processed by various brain areas and lead to activity changes in those areas. The medial prefrontal cortex (mPFC) is involved in higher cognitive functions and emotional processing. It receives projections from brain areas involved in nociception. In this study, we investigated how nociceptive input from the periphery changes the local field potential (LFP) activity in the mPFC. Three different types of noxious stimuli were applied to the hind paw contralateral to the LFP recording site. They were transcutaneous electrical stimulations, mechanical stimuli and a chemical stimulus (formalin injection). High intensity transcutaneous stimulations (10V to 50V) and noxious mechanical stimulus (pinch) significantly reduced the LFP power during the stimulating period (p<0.05), but not the low intensity subcutaneous stimulations (0.1V to 5V) and other innocuous mechanical stimuli (brush and pressure). More frequency bands were inhibited with increased intensity of transcutaneous electrical stimulation, and almost all frequency bands were inhibited by stimulations at or higher than 30v. Pinch significantly reduced the power for beta band and formalin injection significantly reduced the power of alpha and beta band. Our data demonstrated the noxious stimuli-induced reduction of LFP power in the mPFC, which indicates the active processing of nociceptive information by the mPFC.
Collapse
|
38
|
Zhou ZC, Salzwedel AP, Radtke-Schuller S, Li Y, Sellers KK, Gilmore JH, Shih YYI, Fröhlich F, Gao W. Resting state network topology of the ferret brain. Neuroimage 2016; 143:70-81. [PMID: 27596024 DOI: 10.1016/j.neuroimage.2016.09.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/17/2016] [Accepted: 09/01/2016] [Indexed: 12/22/2022] Open
Abstract
Resting state functional magnetic resonance imaging (rsfMRI) has emerged as a versatile tool for non-invasive measurement of functional connectivity patterns in the brain. RsfMRI brain dynamics in rodents, non-human primates, and humans share similar properties; however, little is known about the resting state functional connectivity patterns in the ferret, an animal model with high potential for developmental and cognitive translational study. To address this knowledge-gap, we performed rsfMRI on anesthetized ferrets using a 9.4T MRI scanner, and subsequently performed group-level independent component analysis (gICA) to identify functionally connected brain networks. Group-level ICA analysis revealed distributed sensory, motor, and higher-order networks in the ferret brain. Subsequent connectivity analysis showed interconnected higher-order networks that constituted a putative default mode network (DMN), a network that exhibits altered connectivity in neuropsychiatric disorders. Finally, we assessed ferret brain topological efficiency using graph theory analysis and found that the ferret brain exhibits small-world properties. Overall, these results provide additional evidence for pan-species resting-state networks, further supporting ferret-based studies of sensory and cognitive function.
Collapse
Affiliation(s)
- Zhe Charles Zhou
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Andrew P Salzwedel
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Susanne Radtke-Schuller
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Yuhui Li
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Kristin K Sellers
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Yen-Yu Ian Shih
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Small Animal Imaging Facility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Flavio Fröhlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Wei Gao
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States.
| |
Collapse
|
39
|
Neural response differences in the rat primary auditory cortex under anesthesia with ketamine versus the mixture of medetomidine, midazolam and butorphanol. Hear Res 2016; 339:69-79. [DOI: 10.1016/j.heares.2016.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/08/2016] [Accepted: 06/15/2016] [Indexed: 11/18/2022]
|
40
|
Orientation selectivity and the functional clustering of synaptic inputs in primary visual cortex. Nat Neurosci 2016; 19:1003-9. [PMID: 27294510 PMCID: PMC5240628 DOI: 10.1038/nn.4323] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/11/2016] [Indexed: 12/11/2022]
Abstract
The majority of neurons in primary visual cortex are tuned for stimulus orientation, but the factors that account for the range of orientation selectivities exhibited by cortical neurons remain unclear. To address this issue, we used in vivo 2-photon calcium imaging to characterize the orientation tuning and spatial arrangement of synaptic inputs to the dendritic spines of individual pyramidal neurons in layer 2/3 of ferret visual cortex. The summed synaptic input to individual neurons reliably predicted the neuron’s orientation preference, but did not account for differences in orientation selectivity among neurons. These differences reflected a robust input-output nonlinearity that could not be explained by spike threshold alone, and was strongly correlated with the spatial clustering of co-tuned synaptic inputs within the dendritic field. Dendritic branches with more co-tuned synaptic clusters exhibited greater rates of local dendritic calcium events supporting a prominent role for functional clustering of synaptic inputs in dendritic nonlinearities that shape orientation selectivity.
Collapse
|
41
|
Kum JE, Han HB, Choi JH. Pupil Size in Relation to Cortical States during Isoflurane Anesthesia. Exp Neurobiol 2016; 25:86-92. [PMID: 27122995 PMCID: PMC4844567 DOI: 10.5607/en.2016.25.2.86] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/15/2016] [Accepted: 02/15/2016] [Indexed: 11/19/2022] Open
Abstract
In neuronal recording studies on anesthetized animals, reliable measures for the transitional moment of consciousness are frequently required. Previous findings suggest that pupil fluctuations reflect the neuronal states during quiet wakefulness, whose correlation was unknown for the anesthetized condition. Here, we investigated the pupillary changes under isoflurane anesthesia simultaneously with the electroencephalogram (EEG) and electromyogram (EMG). The pupil was tracked by using a region-based active contour model. The dose was given to the animal in a stepwise increasing mode (simulating induction of anesthesia) or in a stepwise decreasing mode (simulating emergence of anesthesia). We found that the quickly widening pupil action (mydriasis) characterizes the transitional state in anesthesia. Mydriasis occurred only in the light dose in the emergence phase, and the events were accompanied by an increase of burst activity in the EEG followed by EMG activity in 47% of the mydriasis events. Our findings suggest that recording such pupil changes may offer a noncontact monitoring tool for indexing the transitional state of the brain, particularly when a lower threshold dose is applied.
Collapse
Affiliation(s)
- Jeung Eun Kum
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 02792, Korea.; Department of Neuroscience, University of Science and Technology, Daejon 34113, Korea
| | - Hio-Been Han
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 02792, Korea.; Department of Psychology, Yonsei University, Seoul 03722, Korea
| | - Jee Hyun Choi
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 02792, Korea.; Department of Neuroscience, University of Science and Technology, Daejon 34113, Korea
| |
Collapse
|
42
|
Dorso-Lateral Frontal Cortex of the Ferret Encodes Perceptual Difficulty during Visual Discrimination. Sci Rep 2016; 6:23568. [PMID: 27025995 PMCID: PMC4812342 DOI: 10.1038/srep23568] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/09/2016] [Indexed: 01/27/2023] Open
Abstract
Visual discrimination requires sensory processing followed by a perceptual decision. Despite a growing understanding of visual areas in this behavior, it is unclear what role top-down signals from prefrontal cortex play, in particular as a function of perceptual difficulty. To address this gap, we investigated how neurons in dorso-lateral frontal cortex (dl-FC) of freely-moving ferrets encode task variables in a two-alternative forced choice visual discrimination task with high- and low-contrast visual input. About two-thirds of all recorded neurons in dl-FC were modulated by at least one of the two task variables, task difficulty and target location. More neurons in dl-FC preferred the hard trials; no such preference bias was found for target location. In individual neurons, this preference for specific task types was limited to brief epochs. Finally, optogenetic stimulation confirmed the functional role of the activity in dl-FC before target touch; suppression of activity in pyramidal neurons with the ArchT silencing opsin resulted in a decrease in reaction time to touch the target but not to retrieve reward. In conclusion, dl-FC activity is differentially recruited for high perceptual difficulty in the freely-moving ferret and the resulting signal may provide top-down behavioral inhibition.
Collapse
|
43
|
Fazlali Z, Ranjbar-Slamloo Y, Adibi M, Arabzadeh E. Correlation between Cortical State and Locus Coeruleus Activity: Implications for Sensory Coding in Rat Barrel Cortex. Front Neural Circuits 2016; 10:14. [PMID: 27047339 PMCID: PMC4805600 DOI: 10.3389/fncir.2016.00014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 03/04/2016] [Indexed: 11/17/2022] Open
Abstract
Cortical state modulates the background activity of cortical neurons, and their evoked response to sensory stimulation. Multiple mechanisms are involved in switching between cortical states including various neuromodulatory systems. Locus Coeruleus (LC) is one of the major neuromodulatory nuclei in the brainstem with widespread projections throughout the brain and modulates the activity of cells and networks. Here, we quantified the link between the LC spontaneous activity, cortical state and sensory processing in the rat vibrissal somatosensory "barrel" cortex (BC). We simultaneously recorded unit activity from LC and BC along with prefrontal electroencephalogram (EEG) while presenting brief whisker deflections under urethane anesthesia. The ratio of low to high frequency components of EEG (referred to as the L/H ratio) was employed to identify cortical state. We found that the spontaneous activity of LC units exhibited a negative correlation with the L/H ratio. Cross-correlation analysis revealed that changes in LC firing preceded changes in the cortical state: the correlation of the LC firing profile with the L/H ratio was maximal at an average lag of -1.2 s. We further quantified BC neuronal responses to whisker stimulation during the synchronized and desynchronized states. In the desynchronized state, BC neurons showed lower stimulus detection threshold, higher response fidelity, and shorter response latency. The most prominent change was observed in the late phase of BC evoked activity (100-400 ms post stimulus onset): almost every BC unit exhibited a greater late response during the desynchronized state. Categorization of the BC evoked responses based on LC activity (into high and low LC discharge rates) resulted in highly similar response profiles compared to categorization based on the cortical state (low and high L/H ratios). These findings provide evidence for the involvement of the LC neuromodulatory system in desynchronization of cortical state and the consequent enhancement of sensory coding efficiency.
Collapse
Affiliation(s)
- Zeinab Fazlali
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM)Tehran, Iran
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National UniversityCanberra, ACT, Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function, The Australian National University NodeCanberra, ACT, Australia
| | - Yadollah Ranjbar-Slamloo
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM)Tehran, Iran
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National UniversityCanberra, ACT, Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function, The Australian National University NodeCanberra, ACT, Australia
| | - Mehdi Adibi
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National UniversityCanberra, ACT, Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function, The Australian National University NodeCanberra, ACT, Australia
| | - Ehsan Arabzadeh
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National UniversityCanberra, ACT, Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function, The Australian National University NodeCanberra, ACT, Australia
| |
Collapse
|
44
|
Tošić T, Sellers KK, Fröhlich F, Fedotenkova M, Beim Graben P, Hutt A. Statistical Frequency-Dependent Analysis of Trial-to-Trial Variability in Single Time Series by Recurrence Plots. Front Syst Neurosci 2016; 9:184. [PMID: 26834580 PMCID: PMC4712310 DOI: 10.3389/fnsys.2015.00184] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 12/18/2015] [Indexed: 01/27/2023] Open
Abstract
For decades, research in neuroscience has supported the hypothesis that brain dynamics exhibits recurrent metastable states connected by transients, which together encode fundamental neural information processing. To understand the system's dynamics it is important to detect such recurrence domains, but it is challenging to extract them from experimental neuroscience datasets due to the large trial-to-trial variability. The proposed methodology extracts recurrent metastable states in univariate time series by transforming datasets into their time-frequency representations and computing recurrence plots based on instantaneous spectral power values in various frequency bands. Additionally, a new statistical inference analysis compares different trial recurrence plots with corresponding surrogates to obtain statistically significant recurrent structures. This combination of methods is validated by applying it to two artificial datasets. In a final study of visually-evoked Local Field Potentials in partially anesthetized ferrets, the methodology is able to reveal recurrence structures of neural responses with trial-to-trial variability. Focusing on different frequency bands, the δ-band activity is much less recurrent than α-band activity. Moreover, α-activity is susceptible to pre-stimuli, while δ-activity is much less sensitive to pre-stimuli. This difference in recurrence structures in different frequency bands indicates diverse underlying information processing steps in the brain.
Collapse
Affiliation(s)
- Tamara Tošić
- Team Neurosys, InriaVillers-lès-Nancy, France; Loria, Centre National de la Recherche Scientifique, UMR no 7503Villers-lès-Nancy, France; Université de Lorraine, Loria, UMR no 7503Villers-lès-Nancy, France
| | - Kristin K Sellers
- Department of Psychiatry, University of North Carolina at Chapel HillChapel Hill, NC, USA; Neurobiology Curriculum, University of North Carolina at Chapel HillChapel Hill, NC, USA
| | - Flavio Fröhlich
- Department of Psychiatry, University of North Carolina at Chapel HillChapel Hill, NC, USA; Neurobiology Curriculum, University of North Carolina at Chapel HillChapel Hill, NC, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel HillChapel Hill, NC, USA; Department of Biomedical Engineering, University of North Carolina at Chapel HillChapel Hill, NC, USA; Neuroscience Center, University of North Carolina at Chapel HillChapel Hill, NC, USA
| | - Mariia Fedotenkova
- Team Neurosys, InriaVillers-lès-Nancy, France; Loria, Centre National de la Recherche Scientifique, UMR no 7503Villers-lès-Nancy, France; Université de Lorraine, Loria, UMR no 7503Villers-lès-Nancy, France
| | - Peter Beim Graben
- Department of German Studies and LinguisticsBerlin, Germany; Bernstein Center for Computational NeuroscienceBerlin, Germany
| | - Axel Hutt
- Team Neurosys, InriaVillers-lès-Nancy, France; Loria, Centre National de la Recherche Scientifique, UMR no 7503Villers-lès-Nancy, France; Université de Lorraine, Loria, UMR no 7503Villers-lès-Nancy, France
| |
Collapse
|
45
|
Yu C, Sellers KK, Radtke-Schuller S, Lu J, Xing L, Ghukasyan V, Li Y, Shih YYI, Murrow R, Fröhlich F. Structural and functional connectivity between the lateral posterior-pulvinar complex and primary visual cortex in the ferret. Eur J Neurosci 2016; 43:230-44. [PMID: 26505737 DOI: 10.1111/ejn.13116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/15/2015] [Accepted: 10/22/2015] [Indexed: 02/01/2023]
Abstract
The role of higher-order thalamic structures in sensory processing remains poorly understood. Here, we used the ferret (Mustela putorius furo) as a novel model species for the study of the lateral posterior (LP)-pulvinar complex and its structural and functional connectivity with area 17 [primary visual cortex (V1)]. We found reciprocal anatomical connections between the lateral part of the LP nucleus of the LP-pulvinar complex (LPl) and V1. In order to investigate the role of this feedback loop between LPl and V1 in shaping network activity, we determined the functional interactions between LPl and the supragranular, granular and infragranular layers of V1 by recording multiunit activity and local field potentials. Coherence was strongest between LPl and the supragranular V1, with the most distinct peaks in the delta and alpha frequency bands. Inter-area interaction measured by spike-phase coupling identified the delta frequency band being dominated by the infragranular V1 and multiple frequency bands that were most pronounced in the supragranular V1. This inter-area coupling was differentially modulated by full-field synthetic and naturalistic visual stimulation. We also found that visual responses in LPl were distinct from those in V1 in terms of their reliability. Together, our data support a model of multiple communication channels between LPl and the layers of V1 that are enabled by oscillations in different frequency bands. This demonstration of anatomical and functional connectivity between LPl and V1 in ferrets provides a roadmap for studying the interaction dynamics during behaviour, and a template for identifying the activity dynamics of other thalamo-cortical feedback loops.
Collapse
Affiliation(s)
- Chunxiu Yu
- Department of Psychiatry, University of North Carolina at Chapel Hill, 115 Mason Farm Road, NRB 4109F, Chapel Hill, NC, 27599, USA
| | - Kristin K Sellers
- Department of Psychiatry, University of North Carolina at Chapel Hill, 115 Mason Farm Road, NRB 4109F, Chapel Hill, NC, 27599, USA.,Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Susanne Radtke-Schuller
- Department of Psychiatry, University of North Carolina at Chapel Hill, 115 Mason Farm Road, NRB 4109F, Chapel Hill, NC, 27599, USA
| | - Jinghao Lu
- Department of Psychiatry, University of North Carolina at Chapel Hill, 115 Mason Farm Road, NRB 4109F, Chapel Hill, NC, 27599, USA
| | - Lei Xing
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Vladimir Ghukasyan
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yuhui Li
- Department of Psychiatry, University of North Carolina at Chapel Hill, 115 Mason Farm Road, NRB 4109F, Chapel Hill, NC, 27599, USA
| | - Yen-Yu I Shih
- Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Richard Murrow
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Neurosurgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Flavio Fröhlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, 115 Mason Farm Road, NRB 4109F, Chapel Hill, NC, 27599, USA.,Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
46
|
Abstract
BACKGROUND Neuronal interactions are fundamental for information processing, cognition, and consciousness. Anesthetics reduce spontaneous cortical activity; however, neuronal reactivity to sensory stimuli is often preserved or augmented. How sensory stimulus-related neuronal interactions change under anesthesia has not been elucidated. In this study, the authors investigated the visual stimulus-related cortical neuronal interactions during stepwise emergence from desflurane anesthesia. METHODS Parallel spike trains were recorded with 64-contact extracellular microelectrode arrays from the primary visual cortex of chronically instrumented, unrestrained rats (N = 6) at 8, 6, 4, and 2% desflurane anesthesia and wakefulness. Light flashes were delivered to the retina by transcranial illumination at 5- to 15-s randomized intervals. Information theoretical indices, integration and interaction complexity, were calculated from the probability distribution of coincident spike patterns and used to quantify neuronal interactions before and after flash stimulation. RESULTS Integration and complexity showed significant negative associations with desflurane concentration (N = 60). Flash stimulation increased integration and complexity at all anesthetic levels (N = 60); the effect on complexity was reduced in wakefulness. During stepwise withdrawal of desflurane, the largest increase in integration (74%) and poststimulus complexity (35%) occurred before reaching 4% desflurane concentration-a level associated with the recovery of consciousness according to the rats' righting reflex. CONCLUSIONS Neuronal interactions in the cerebral cortex are augmented during emergence from anesthesia. Visual flash stimuli enhance neuronal interactions in both wakefulness and anesthesia; the increase in interaction complexity is attenuated as poststimulus complexity reaches plateau. The critical changes in cortical neuronal interactions occur during transition to consciousness.
Collapse
|
47
|
Tan AYY. Spatial diversity of spontaneous activity in the cortex. Front Neural Circuits 2015; 9:48. [PMID: 26441547 PMCID: PMC4585302 DOI: 10.3389/fncir.2015.00048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 08/24/2015] [Indexed: 12/05/2022] Open
Abstract
The neocortex is a layered sheet across which a basic organization is thought to widely apply. The variety of spontaneous activity patterns is similar throughout the cortex, consistent with the notion of a basic cortical organization. However, the basic organization is only an outline which needs adjustments and additions to account for the structural and functional diversity across cortical layers and areas. Such diversity suggests that spontaneous activity is spatially diverse in any particular behavioral state. Accordingly, this review summarizes the laminar and areal diversity in cortical activity during fixation and slow oscillations, and the effects of attention, anesthesia and plasticity on the cortical distribution of spontaneous activity. Among questions that remain open, characterizing the spatial diversity in spontaneous membrane potential may help elucidate how differences in circuitry among cortical regions supports their varied functions. More work is also needed to understand whether cortical spontaneous activity not only reflects cortical circuitry, but also contributes to determining the outcome of plasticity, so that it is itself a factor shaping the functional diversity of the cortex.
Collapse
Affiliation(s)
- Andrew Y Y Tan
- Center for Perceptual Systems and Department of Neuroscience, The University of Texas at Austin Austin, TX, USA
| |
Collapse
|
48
|
How the cortico-thalamic feedback affects the EEG power spectrum over frontal and occipital regions during propofol-induced sedation. J Comput Neurosci 2015; 39:155-79. [PMID: 26256583 DOI: 10.1007/s10827-015-0569-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 07/05/2015] [Accepted: 07/13/2015] [Indexed: 12/16/2022]
Abstract
Increasing concentrations of the anaesthetic agent propofol initially induces sedation before achieving full general anaesthesia. During this state of anaesthesia, the observed specific changes in electroencephalographic (EEG) rhythms comprise increased activity in the δ- (0.5-4 Hz) and α- (8-13 Hz) frequency bands over the frontal region, but increased δ- and decreased α-activity over the occipital region. It is known that the cortex, the thalamus, and the thalamo-cortical feedback loop contribute to some degree to the propofol-induced changes in the EEG power spectrum. However the precise role of each structure to the dynamics of the EEG is unknown. In this paper we apply a thalamo-cortical neuronal population model to reproduce the power spectrum changes in EEG during propofol-induced anaesthesia sedation. The model reproduces the power spectrum features observed experimentally both in frontal and occipital electrodes. Moreover, a detailed analysis of the model indicates the importance of multiple resting states in brain activity. The work suggests that the α-activity originates from the cortico-thalamic relay interaction, whereas the emergence of δ-activity results from the full cortico-reticular-relay-cortical feedback loop with a prominent enforced thalamic reticular-relay interaction. This model suggests an important role for synaptic GABAergic receptors at relay neurons and, more generally, for the thalamus in the generation of both the δ- and the α- EEG patterns that are seen during propofol anaesthesia sedation.
Collapse
|
49
|
The 9th International Symposium on Memory and Awareness in Anesthesia (MAA9). Br J Anaesth 2015. [DOI: 10.1093/bja/aev204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
50
|
Sellers KK, Bennett DV, Hutt A, Williams JH, Fröhlich F. Awake vs. anesthetized: layer-specific sensory processing in visual cortex and functional connectivity between cortical areas. J Neurophysiol 2015; 113:3798-815. [PMID: 25833839 DOI: 10.1152/jn.00923.2014] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/30/2015] [Indexed: 01/03/2023] Open
Abstract
During general anesthesia, global brain activity and behavioral state are profoundly altered. Yet it remains mostly unknown how anesthetics alter sensory processing across cortical layers and modulate functional cortico-cortical connectivity. To address this gap in knowledge of the micro- and mesoscale effects of anesthetics on sensory processing in the cortical microcircuit, we recorded multiunit activity and local field potential in awake and anesthetized ferrets (Mustela putoris furo) during sensory stimulation. To understand how anesthetics alter sensory processing in a primary sensory area and the representation of sensory input in higher-order association areas, we studied the local sensory responses and long-range functional connectivity of primary visual cortex (V1) and prefrontal cortex (PFC). Isoflurane combined with xylazine provided general anesthesia for all anesthetized recordings. We found that anesthetics altered the duration of sensory-evoked responses, disrupted the response dynamics across cortical layers, suppressed both multimodal interactions in V1 and sensory responses in PFC, and reduced functional cortico-cortical connectivity between V1 and PFC. Together, the present findings demonstrate altered sensory responses and impaired functional network connectivity during anesthesia at the level of multiunit activity and local field potential across cortical layers.
Collapse
Affiliation(s)
- Kristin K Sellers
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Davis V Bennett
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Axel Hutt
- INRIA CR Nancy-Grand Est, Team Neurosys, Villers-les-Nancy, France
| | - James H Williams
- Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Flavio Fröhlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|