1
|
Schapiro K, Rittenberg JD, Kenngott M, Marder E. I h block reveals separation of timescales in pyloric rhythm response to temperature changes in Cancer borealis. eLife 2024; 13:RP98844. [PMID: 39404608 PMCID: PMC11479588 DOI: 10.7554/elife.98844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Motor systems operate over a range of frequencies and relative timing (phase). We studied the role of the hyperpolarization-activated inward current (Ih) in regulating these features in the pyloric rhythm of the stomatogastric ganglion (STG) of the crab, Cancer borealis, as temperature was altered from 11°C to 21°C. Under control conditions, rhythm frequency increased monotonically with temperature, while the phases of the pyloric dilator (PD), lateral pyloric (LP), and pyloric (PY) neurons remained constant. Blocking Ih with cesium (Cs+) phase advanced PD offset, LP onset, and LP offset at 11°C, and the latter two further advanced as temperature increased. In Cs+ the frequency increase with temperature diminished and the Q10 of the frequency dropped from ~1.75 to ~1.35. Unexpectedly in Cs+, the frequency dynamics became non-monotonic during temperature transitions; frequency initially dropped as temperature increased, then rose once temperature stabilized, creating a characteristic 'jag'. Interestingly, these jags persisted during temperature transitions in Cs+ when the pacemaker was isolated by picrotoxin, although the temperature-induced change in frequency recovered to control levels. Overall, these data suggest that Ih plays an important role in maintaining smooth transitory responses and persistent frequency increases by different mechanisms in the pyloric circuitry during temperature fluctuations.
Collapse
Affiliation(s)
- Kyra Schapiro
- Biology Department, Brandeis UniversityWalthamUnited States
| | - JD Rittenberg
- Biology Department, Brandeis UniversityWalthamUnited States
| | - Max Kenngott
- Biology Department, Brandeis UniversityWalthamUnited States
| | - Eve Marder
- Biology Department, Brandeis UniversityWalthamUnited States
- Volen Center and Biology Department, Brandeis UniversityWalthamUnited States
| |
Collapse
|
2
|
Schapiro KA, Rittenberg JD, Kenngott M, Marder E. I h Block Reveals Separation of Timescales in Pyloric Rhythm Response to Temperature Changes in Cancer borealis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.04.592541. [PMID: 38766157 PMCID: PMC11100622 DOI: 10.1101/2024.05.04.592541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Motor systems operate over a range of frequencies and relative timing (phase). We studied the contribution of the hyperpolarization-activated inward current (Ih) to frequency and phase in the pyloric rhythm of the stomatogastric ganglion (STG) of the crab, Cancer borealis as temperature was altered from 11°C to 21°C. Under control conditions, the frequency of the rhythm increased monotonically with temperature, while the phases of the pyloric dilator (PD), lateral pyloric (LP), and pyloric (PY) neurons remained constant. When we blocked Ih with cesium (Cs+) PD offset, LP onset, and LP offset were all phase advanced in Cs+ at 11°C, and the latter two further advanced as temperature increased. In Cs+ the steady state increase in pyloric frequency with temperature diminished and the Q10 of the pyloric frequency dropped from ~1.75 to ~1.35. Unexpectedly in Cs+, the frequency displayed non-monotonic dynamics during temperature transitions; the frequency initially dropped as temperature increased, then rose once temperature stabilized, creating a characteristic "jag". Interestingly, these jags were still present during temperature transitions in Cs+ when the pacemaker was isolated by picrotoxin, although the temperature-induced change in frequency recovered to control levels. Overall, these data suggest that Ih plays an important role in the ability of this circuit to produce smooth transitory responses and persistent frequency increases by different mechanisms during temperature fluctuations.
Collapse
Affiliation(s)
- Kyra A Schapiro
- Volen Center and Biology Department, Brandeis University, Waltham, MA 02454 USA
| | - J D Rittenberg
- Volen Center and Biology Department, Brandeis University, Waltham, MA 02454 USA
| | - Max Kenngott
- Volen Center and Biology Department, Brandeis University, Waltham, MA 02454 USA
| | - Eve Marder
- Volen Center and Biology Department, Brandeis University, Waltham, MA 02454 USA
| |
Collapse
|
3
|
More-Potdar S, Golowasch J. Oscillatory network spontaneously recovers both activity and robustness after prolonged removal of neuromodulators. Front Cell Neurosci 2023; 17:1280575. [PMID: 38162002 PMCID: PMC10757639 DOI: 10.3389/fncel.2023.1280575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/08/2023] [Indexed: 01/03/2024] Open
Abstract
Robustness of neuronal activity is a property necessary for a neuronal network to withstand perturbations, which may otherwise disrupt or destroy the system. The robustness of complex systems has been shown to depend on a number of features of the system, including morphology and heterogeneity of the activity of the component neurons, size of the networks, synaptic connectivity, and neuromodulation. The activity of small networks, such as the pyloric network of the crustacean stomatogastric nervous system, appears to be robust despite some of the factors not being consistent with the expected properties of complex systems, e.g., small size and homogeneity of the synaptic connections. The activity of the pyloric network has been shown to be stable and robust in a neuromodulatory state-dependent manner. When neuromodulatory inputs are severed, activity is initially disrupted, losing both stability and robustness. Over the long term, however, stable activity homeostatically recovers without the restoration of neuromodulatory input. The question we address in this study is whether robustness can also be restored as the network reorganizes itself to compensate for the loss of neuromodulatory input and recovers the lost activity. Here, we use temperature changes as a perturbation to probe the robustness of the network's activity. We develop a simple metric of robustness, i.e., the variances of the network phase relationships, and show that robustness is indeed restored simultaneously along with its stable network activity, indicating that, whatever the reorganization of the network entails, it is deep enough also to restore this important property.
Collapse
Affiliation(s)
| | - Jorge Golowasch
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ, United States
| |
Collapse
|
4
|
Martinez D, Anwar H, Bose A, Bucher DM, Nadim F. Short-term synaptic dynamics control the activity phase of neurons in an oscillatory network. eLife 2019; 8:46911. [PMID: 31180323 PMCID: PMC6590986 DOI: 10.7554/elife.46911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/08/2019] [Indexed: 11/17/2022] Open
Abstract
In oscillatory systems, neuronal activity phase is often independent of network frequency. Such phase maintenance requires adjustment of synaptic input with network frequency, a relationship that we explored using the crab, Cancer borealis, pyloric network. The burst phase of pyloric neurons is relatively constant despite a > two fold variation in network frequency. We used noise input to characterize how input shape influences burst delay of a pyloric neuron, and then used dynamic clamp to examine how burst phase depends on the period, amplitude, duration, and shape of rhythmic synaptic input. Phase constancy across a range of periods required a proportional increase of synaptic duration with period. However, phase maintenance was also promoted by an increase of amplitude and peak phase of synaptic input with period. Mathematical analysis shows how short-term synaptic plasticity can coordinately change amplitude and peak phase to maximize the range of periods over which phase constancy is achieved.
Collapse
Affiliation(s)
- Diana Martinez
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, Newark, United States
| | - Haroon Anwar
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, Newark, United States
| | - Amitabha Bose
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, United States
| | - Dirk M Bucher
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, Newark, United States
| | - Farzan Nadim
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, Newark, United States.,Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, United States
| |
Collapse
|
5
|
Anwar H, Li X, Bucher D, Nadim F. Functional roles of short-term synaptic plasticity with an emphasis on inhibition. Curr Opin Neurobiol 2017; 43:71-78. [PMID: 28122326 DOI: 10.1016/j.conb.2017.01.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 11/16/2022]
Abstract
Almost all synapses show activity-dependent dynamic changes in efficacy. Numerous studies have explored the mechanisms underlying different forms of short-term synaptic plasticity (STP), but the functional role of STP for circuit output and animal behavior is less understood. This is particularly true for inhibitory synapses that can play widely varied roles in circuit activity. We review recent findings on the role of synaptic STP in sensory, pattern generating, thalamocortical, and hippocampal networks, with a focus on synaptic inhibition. These studies show a variety of functions including sensory adaptation and gating, dynamic gain control and rhythm generation. Because experimental manipulations of STP are difficult and nonspecific, a clear demonstration of STP function often requires a combination of experimental and computational techniques.
Collapse
Affiliation(s)
- Haroon Anwar
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, 323 Martin Luther King Blvd, Newark, NJ 07102, United States
| | - Xinping Li
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, 323 Martin Luther King Blvd, Newark, NJ 07102, United States
| | - Dirk Bucher
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, 323 Martin Luther King Blvd, Newark, NJ 07102, United States
| | - Farzan Nadim
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, 323 Martin Luther King Blvd, Newark, NJ 07102, United States.
| |
Collapse
|
6
|
Hamood AW, Marder E. Animal-to-Animal Variability in Neuromodulation and Circuit Function. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2015; 79:21-8. [PMID: 25876630 PMCID: PMC4610821 DOI: 10.1101/sqb.2014.79.024828] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Each animal alive in the world is different from all other individuals, while sharing most attributes of form and function with others of the same species. Still other attributes are shared within a phylum, and still others are common to most eukaryotic organisms. All animals have mechanisms that modulate the strength of their synapses or alter the intrinsic excitability of component neurons. What animal-to-animal variability in behavior arises from differences in neuronal structure, ion channel expression, or connectivity, and what variability arises from neuromodulation of brain states? Conversely, can robust behavior be maintained despite variability in circuit components by the action of neuromodulatory inputs? These are fundamental issues relevant to all nervous systems that have been illuminated by many years of study of the small, rhythmic motor circuits found in the crustacean stomatogastric nervous system.
Collapse
Affiliation(s)
- Albert W Hamood
- Volen Center and Biology Department, Brandeis University, Brandeis University, Waltham, Massachusetts 02454
| | - Eve Marder
- Volen Center and Biology Department, Brandeis University, Brandeis University, Waltham, Massachusetts 02454
| |
Collapse
|
7
|
QUANTITATIVE REEVALUATION OF THE EFFECTS OF SHORT- AND LONG-TERM REMOVAL OF DESCENDING MODULATORY INPUTS ON THE PYLORIC RHYTHM OF THE CRAB, CANCER BOREALIS. eNeuro 2015; 2. [PMID: 25914899 PMCID: PMC4408878 DOI: 10.1523/eneuro.0058-14.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Neuromodulatory inputs are known to strongly influence the intrinsic excitability of individual neurons and the networks in which the targets of modulation are found. It is therefore important to understand how nervous systems respond to altered neuromodulatory environments. The crustacean stomatogastric ganglion (STG) receives descending neuromodulatory inputs from three anterior ganglia: the paired commissural ganglia (CoGs), and the single esophageal ganglion (OG). In this paper, we provide the first detailed and quantitative analyses of the short- and long-term effects of removal of these descending inputs (decentralization) on the pyloric rhythm of the STG. Thirty minutes after decentralization, the mean frequency of the pyloric rhythm dropped from 1.20 Hz in control to 0.52 Hz. Whereas the relative phase of pyloric neuron activity was approximately constant across frequency in the controls, after decentralization this changed markedly. Nine control preparations kept for 5–6 d in vitro maintained pyloric rhythm frequencies close to their initial values. Nineteen decentralized preparations kept for 5–6 d dropped slightly in frequency from those seen at 30 min following decentralization, but then displayed stable activity over 6 d. Bouts of higher frequency activity were intermittently seen in both control and decentralized preparations, but the bouts began earlier and were more frequent in the decentralized preparations. Although the bouts may indicate that the removal of the modulatory inputs triggered changes in neuronal excitability, these changes did not produce obvious long-lasting changes in the frequency of the decentralized preparations.
Collapse
|
8
|
Marder E, Haddad SA, Goeritz ML, Rosenbaum P, Kispersky T. How can motor systems retain performance over a wide temperature range? Lessons from the crustacean stomatogastric nervous system. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:851-6. [PMID: 25552317 PMCID: PMC4552768 DOI: 10.1007/s00359-014-0975-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/04/2014] [Accepted: 12/09/2014] [Indexed: 10/31/2022]
Abstract
Marine invertebrates, such as lobsters and crabs, deal with a widely and wildly fluctuating temperature environment. Here, we describe the effects of changing temperature on the motor patterns generated by the stomatogastric nervous system of the crab, Cancer borealis. Over a broad range of "permissive" temperatures, the pyloric rhythm increases in frequency but maintains its characteristic phase relationships. Nonetheless, at more extreme high temperatures, the normal triphasic pyloric rhythm breaks down, or "crashes". We present both experimental and computational approaches to understanding the stability of both single neurons and networks to temperature perturbations, and discuss data that shows that the "crash" temperatures themselves may be environmentally regulated. These approaches provide insight into how the nervous system can be stable to a global perturbation, such as temperature, in spite of the fact that all biological processes are temperature dependent.
Collapse
Affiliation(s)
- Eve Marder
- Volen Center and Biology Department, MS 013, Brandeis University, 415 South St., Waltham, MA, 02454, USA
| | | | | | | | | |
Collapse
|
9
|
Abstract
A variety of neurons and synapses shows a maximal response at a preferred frequency, generally considered to be important in shaping network activity. We are interested in whether all neurons and synapses in a recurrent oscillatory network can have preferred frequencies and, if so, whether these frequencies are the same or correlated, and whether they influence the network activity. We address this question using identified neurons in the pyloric network of the crab Cancer borealis. Previous work has shown that the pyloric pacemaker neurons exhibit membrane potential resonance whose resonance frequency is correlated with the network frequency. The follower lateral pyloric (LP) neuron makes reciprocally inhibitory synapses with the pacemakers. We find that LP shows resonance at a higher frequency than the pacemakers and the network frequency falls between the two. We also find that the reciprocal synapses between the pacemakers and LP have preferred frequencies but at significantly lower values. The preferred frequency of the LP to pacemaker synapse is correlated with the presynaptic preferred frequency, which is most pronounced when the peak voltage of the LP waveform is within the dynamic range of the synaptic activation curve and a shift in the activation curve by the modulatory neuropeptide proctolin shifts the frequency preference. Proctolin also changes the power of the LP neuron resonance without significantly changing the resonance frequency. These results indicate that different neuron types and synapses in a network may have distinct preferred frequencies, which are subject to neuromodulation and may interact to shape network oscillations.
Collapse
|
10
|
Golowasch J. Ionic Current Variability and Functional Stability in the Nervous System. Bioscience 2014; 64:570-580. [PMID: 26069342 DOI: 10.1093/biosci/biu070] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Identified neurons in different animals express ionic currents at highly variable levels (population variability). If neuronal identity is associated with stereotypical function, as is the case in genetically identical neurons or in unambiguously identified individual neurons, this variability poses a conundrum: How is activity the same if the components that generate it-ionic current levels-are different? In some cases, ionic current variability across similar neurons generates an output gradient. However, many neurons produce very similar output activity, despite substantial variability in ionic conductances. It appears that, in many such cells, conductance levels of one ionic current vary in proportion to the conductance levels of another current. As a result, in a population of neurons, these conductances appear to be correlated. Here, I review theoretical and experimental work that suggests that neuronal ionic current correlation can reduce the global ionic current variability and can contribute to functional stability.
Collapse
Affiliation(s)
- Jorge Golowasch
- Federated Department of Biological Sciences, at the New Jersey Institute of Technology and Rutgers University, in Newark
| |
Collapse
|
11
|
Soofi W, Goeritz ML, Kispersky TJ, Prinz AA, Marder E, Stein W. Phase maintenance in a rhythmic motor pattern during temperature changes in vivo. J Neurophysiol 2014; 111:2603-13. [PMID: 24671541 DOI: 10.1152/jn.00906.2013] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Central-pattern-generating neural circuits function reliably throughout an animal's life, despite constant molecular turnover and environmental perturbations. Fluctuations in temperature pose a problem to the nervous systems of poikilotherms because their body temperature follows the ambient temperature, thus affecting the temperature-dependent dynamics of various subcellular components that constitute neuronal circuits. In the crustacean stomatogastric nervous system, the pyloric circuit produces a triphasic rhythm comprising the output of the pyloric dilator, lateral pyloric, and pyloric constrictor neurons. In vitro, the phase relationships of these neurons are maintained over a fourfold change in pyloric frequency as temperature increases from 7°C to 23°C. To determine whether these temperature effects are also found in intact crabs, in the presence of sensory feedback and neuromodulator-rich environments, we measured the temperature dependence of the pyloric frequency and phases in vivo by implanting extracellular electrodes into Cancer borealis and Cancer pagurus and shifting tank water temperature from 11°C to 26°C. Pyloric frequency in the intact crab increased significantly with temperature (Q10 = 2-2.5), while pyloric phases were generally conserved. For a subset of the C. borealis experiments, animals were subsequently dissected and the stomatogastric ganglion subjected to a similar temperature ramp in vitro. We found that the maximal frequency attained at high temperatures in vivo is lower than it is under in vitro conditions. Our results demonstrate that, over a wide temperature range, the phases of the pyloric rhythm in vivo are generally preserved, but that the frequency range is more restricted than it is in vitro.
Collapse
Affiliation(s)
- Wafa Soofi
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Marie L Goeritz
- Department of Biology and Volen Center, Brandeis University, Waltham, Massachusetts
| | - Tilman J Kispersky
- Department of Biology and Volen Center, Brandeis University, Waltham, Massachusetts
| | - Astrid A Prinz
- Department of Biology, Emory University, Atlanta, Georgia
| | - Eve Marder
- Department of Biology and Volen Center, Brandeis University, Waltham, Massachusetts
| | - Wolfgang Stein
- School of Biological Sciences, Illinois State University, Normal, Illinois; and Institute for Neurobiology, Ulm University, Ulm, Germany
| |
Collapse
|
12
|
Kvarta MD, Harris-Warrick RM, Johnson BR. Neuromodulator-evoked synaptic metaplasticity within a central pattern generator network. J Neurophysiol 2012; 108:2846-56. [PMID: 22933725 PMCID: PMC3545119 DOI: 10.1152/jn.00586.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 08/27/2012] [Indexed: 12/18/2022] Open
Abstract
Synapses show short-term activity-dependent dynamics that alter the strength of neuronal interactions. This synaptic plasticity can be tuned by neuromodulation as a form of metaplasticity. We examined neuromodulator-induced metaplasticity at a graded chemical synapse in a model central pattern generator (CPG), the pyloric network of the spiny lobster stomatogastric ganglion. Dopamine, serotonin, and octopamine each produce a unique motor pattern from the pyloric network, partially through their modulation of synaptic strength in the network. We characterized synaptic depression and its amine modulation at the graded synapse from the pyloric dilator neuron to the lateral pyloric neuron (PD→LP synapse), driving the PD neuron with both long square pulses and trains of realistic waveforms over a range of presynaptic voltages. We found that the three amines can differentially affect the amplitude of graded synaptic transmission independently of the synaptic dynamics. Low concentrations of dopamine had weak and variable effects on the strength of the graded inhibitory postsynaptic potentials (gIPSPs) but reliably accelerated the onset of synaptic depression and recovery from depression independently of gIPSP amplitude. Octopamine enhanced gIPSP amplitude but decreased the amount of synaptic depression; it slowed the onset of depression and accelerated its recovery during square pulse stimulation. Serotonin reduced gIPSP amplitude but increased the amount of synaptic depression and accelerated the onset of depression. These results suggest that amine-induced metaplasticity at graded chemical synapses can alter the parameters of synaptic dynamics in multiple and independent ways.
Collapse
Affiliation(s)
- Mark D Kvarta
- Department of Neurobiology and Behavior, S. G. Mudd Hall, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
13
|
Benita JM, Guillamon A, Deco G, Sanchez-Vives MV. Synaptic depression and slow oscillatory activity in a biophysical network model of the cerebral cortex. Front Comput Neurosci 2012; 6:64. [PMID: 22973221 PMCID: PMC3428579 DOI: 10.3389/fncom.2012.00064] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 08/09/2012] [Indexed: 11/30/2022] Open
Abstract
Short-term synaptic depression (STD) is a form of synaptic plasticity that has a large impact on network computations. Experimental results suggest that STD is modulated by cortical activity, decreasing with activity in the network and increasing during silent states. Here, we explored different activity-modulation protocols in a biophysical network model for which the model displayed less STD when the network was active than when it was silent, in agreement with experimental results. Furthermore, we studied how trains of synaptic potentials had lesser decay during periods of activity (UP states) than during silent periods (DOWN states), providing new experimental predictions. We next tackled the inverse question of what is the impact of modifying STD parameters on the emergent activity of the network, a question difficult to answer experimentally. We found that synaptic depression of cortical connections had a critical role to determine the regime of rhythmic cortical activity. While low STD resulted in an emergent rhythmic activity with short UP states and long DOWN states, increasing STD resulted in longer and more frequent UP states interleaved with short silent periods. A still higher synaptic depression set the network into a non-oscillatory firing regime where DOWN states no longer occurred. The speed of propagation of UP states along the network was not found to be modulated by STD during the oscillatory regime; it remained relatively stable over a range of values of STD. Overall, we found that the mutual interactions between synaptic depression and ongoing network activity are critical to determine the mechanisms that modulate cortical emergent patterns.
Collapse
Affiliation(s)
- Jose M Benita
- Department of Applied Mathematics I - EPSEB, Universitat Politècnica de Catalunya Barcelona, Spain
| | | | | | | |
Collapse
|
14
|
Oh M, Zhao S, Matveev V, Nadim F. Neuromodulatory changes in short-term synaptic dynamics may be mediated by two distinct mechanisms of presynaptic calcium entry. J Comput Neurosci 2012; 33:573-85. [PMID: 22710936 DOI: 10.1007/s10827-012-0402-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 05/09/2012] [Accepted: 05/23/2012] [Indexed: 10/28/2022]
Abstract
Although synaptic output is known to be modulated by changes in presynaptic calcium channels, additional pathways for calcium entry into the presynaptic terminal, such as non-selective channels, could contribute to modulation of short term synaptic dynamics. We address this issue using computational modeling. The neuropeptide proctolin modulates the inhibitory synapse from the lateral pyloric (LP) to the pyloric dilator (PD) neuron, two slow-wave bursting neurons in the pyloric network of the crab Cancer borealis. Proctolin enhances the strength of this synapse and also changes its dynamics. Whereas in control saline the synapse shows depression independent of the amplitude of the presynaptic LP signal, in proctolin, with high-amplitude presynaptic LP stimulation the synapse remains depressing while low-amplitude stimulation causes facilitation. We use simple calcium-dependent release models to explore two alternative mechanisms underlying these modulatory effects. In the first model, proctolin directly targets calcium channels by changing their activation kinetics which results in gradual accumulation of calcium with low-amplitude presynaptic stimulation, leading to facilitation. The second model uses the fact that proctolin is known to activate a non-specific cation current I ( MI ). In this model, we assume that the MI channels have some permeability to calcium, modeled to be a result of slow conformation change after binding calcium. This generates a gradual increase in calcium influx into the presynaptic terminals through the modulatory channel similar to that described in the first model. Each of these models can explain the modulation of the synapse by proctolin but with different consequences for network activity.
Collapse
Affiliation(s)
- Myongkeun Oh
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | | | | | | |
Collapse
|
15
|
Tonic nanomolar dopamine enables an activity-dependent phase recovery mechanism that persistently alters the maximal conductance of the hyperpolarization-activated current in a rhythmically active neuron. J Neurosci 2012; 31:16387-97. [PMID: 22072689 DOI: 10.1523/jneurosci.3770-11.2011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The phases at which network neurons fire in rhythmic motor outputs are critically important for the proper generation of motor behaviors. The pyloric network in the crustacean stomatogastric ganglion generates a rhythmic motor output wherein neuronal phase relationships are remarkably invariant across individuals and throughout lifetimes. The mechanisms for maintaining these robust phase relationships over the long-term are not well described. Here we show that tonic nanomolar dopamine (DA) acts at type 1 DA receptors (D1Rs) to enable an activity-dependent mechanism that can contribute to phase maintenance in the lateral pyloric (LP) neuron. The LP displays continuous rhythmic bursting. The activity-dependent mechanism was triggered by a prolonged decrease in LP burst duration, and it generated a persistent increase in the maximal conductance (G(max)) of the LP hyperpolarization-activated current (I(h)), but only in the presence of steady-state DA. Interestingly, micromolar DA produces an LP phase advance accompanied by a decrease in LP burst duration that abolishes normal LP network function. During a 1 h application of micromolar DA, LP phase recovered over tens of minutes because, the activity-dependent mechanism enabled by steady-state DA was triggered by the micromolar DA-induced decrease in LP burst duration. Presumably, this mechanism restored normal LP network function. These data suggest steady-state DA may enable homeostatic mechanisms that maintain motor network output during protracted neuromodulation. This DA-enabled, activity-dependent mechanism to preserve phase may be broadly relevant, as diminished dopaminergic tone has recently been shown to reduce I(h) in rhythmically active neurons in the mammalian brain.
Collapse
|
16
|
Bose A, Booth V. Co-existent activity patterns in inhibitory neuronal networks with short-term synaptic depression. J Theor Biol 2011; 272:42-54. [PMID: 21145899 DOI: 10.1016/j.jtbi.2010.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 10/18/2010] [Accepted: 12/01/2010] [Indexed: 10/18/2022]
Abstract
A network of two neurons mutually coupled through inhibitory synapses that display short-term synaptic depression is considered. We show that synaptic depression expands the number of possible activity patterns that the network can display and allows for co-existence of different patterns. Specifically, the network supports different types of n-m anti-phase firing patterns, where one neuron fires n spikes followed by the other neuron firing m spikes. When maximal synaptic conductances are identical, n-n anti-phase firing patterns are obtained and there are conductance intervals over which different pairs of these solutions co-exist. The multitude of n-m anti-phase patterns and their co-existence are not found when the synapses are non-depressing. Geometric singular perturbation methods for dynamical systems are applied to the original eight-dimensional model system to derive a set of one-dimensional conditions for the existence and co-existence of different anti-phase solutions. The generality and validity of these conditions are demonstrated through numerical simulations utilizing the Hodgkin-Huxley and Morris-Lecar neuronal models.
Collapse
Affiliation(s)
- Amitabha Bose
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | | |
Collapse
|
17
|
Variability, compensation, and modulation in neurons and circuits. Proc Natl Acad Sci U S A 2011; 108 Suppl 3:15542-8. [PMID: 21383190 DOI: 10.1073/pnas.1010674108] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
I summarize recent computational and experimental work that addresses the inherent variability in the synaptic and intrinsic conductances in normal healthy brains and shows that multiple solutions (sets of parameters) can produce similar circuit performance. I then discuss a number of issues raised by this observation, such as which parameter variations arise from compensatory mechanisms and which reflect insensitivity to those particular parameters. I ask whether networks with different sets of underlying parameters can nonetheless respond reliably to neuromodulation and other global perturbations. At the computational level, I describe a paradigm shift in which it is becoming increasingly common to develop families of models that reflect the variance in the biological data that the models are intended to illuminate rather than single, highly tuned models. On the experimental side, I discuss the inherent limitations of overreliance on mean data and suggest that it is important to look for compensations and correlations among as many system parameters as possible, and between each system parameter and circuit performance. This second paradigm shift will require moving away from measurements of each system component in isolation but should reveal important previously undescribed principles in the organization of complex systems such as brains.
Collapse
|
18
|
Tang LS, Goeritz ML, Caplan JS, Taylor AL, Fisek M, Marder E. Precise temperature compensation of phase in a rhythmic motor pattern. PLoS Biol 2010; 8. [PMID: 20824168 PMCID: PMC2930868 DOI: 10.1371/journal.pbio.1000469] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 07/20/2010] [Indexed: 11/19/2022] Open
Abstract
Most animal species are cold-blooded, and their neuronal circuits must maintain function despite environmental temperature fluctuations. The central pattern generating circuits that produce rhythmic motor patterns depend on the orderly activation of circuit neurons. We describe the effects of temperature on the pyloric rhythm of the stomatogastric ganglion of the crab, Cancer borealis. The pyloric rhythm is a triphasic motor pattern in which the Pyloric Dilator (PD), Lateral Pyloric (LP), and Pyloric (PY) neurons fire in a repeating sequence. While the frequency of the pyloric rhythm increased about 4-fold (Q(10) approximately 2.3) as the temperature was shifted from 7 degrees C to 23 degrees C, the phase relationships of the PD, LP, and PY neurons showed almost perfect temperature compensation. The Q(10)'s of the input conductance, synaptic currents, transient outward current (I(A)), and the hyperpolarization-activated inward current (I(h)), all of which help determine the phase of LP neuron activity, ranged from 1.8 to 4. We studied the effects of temperature in >1,000 computational models (with different sets of maximal conductances) of a bursting neuron and the LP neuron. Many bursting models failed to monotonically increase in frequency as temperature increased. Temperature compensation of LP neuron phase was facilitated when model neurons' currents had Q(10)'s close to 2. Together, these data indicate that although diverse sets of maximal conductances may be found in identified neurons across animals, there may be strong evolutionary pressure to restrict the Q(10)'s of the processes that contribute to temperature compensation of neuronal circuits.
Collapse
Affiliation(s)
- Lamont S. Tang
- Volen Center and Biology Department, Brandeis University, Waltham, Massachusetts, United States of America
| | - Marie L. Goeritz
- Volen Center and Biology Department, Brandeis University, Waltham, Massachusetts, United States of America
| | - Jonathan S. Caplan
- Volen Center and Biology Department, Brandeis University, Waltham, Massachusetts, United States of America
| | - Adam L. Taylor
- Volen Center and Biology Department, Brandeis University, Waltham, Massachusetts, United States of America
| | - Mehmet Fisek
- Volen Center and Biology Department, Brandeis University, Waltham, Massachusetts, United States of America
| | - Eve Marder
- Volen Center and Biology Department, Brandeis University, Waltham, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
19
|
Mouser C, Nadim F, Bose A. Maintaining phase of the crustacean tri-phasic pyloric rhythm. J Math Biol 2008; 57:161-81. [PMID: 18084765 PMCID: PMC2475598 DOI: 10.1007/s00285-007-0150-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 11/22/2007] [Indexed: 10/22/2022]
Abstract
We construct and analyze a model network of the pyloric rhythm of the crustacean stomatogastric ganglion consisting of an oscillator neuron that inhibits two reciprocally inhibitory follower neurons. We derive analytic expressions that determine the phase of firing of the follower neurons with respect to the oscillator. An important aspect of the model is the inclusion of synapses that exhibit short-term synaptic depression. We show that these type of synapses allow there to be a complicated relationship between the intrinsic properties of the neurons and the synapses between them in determining phase relationships. Our analysis reveals the circumstances and ranges of cycle periods under which these properties work in concert with or independently from one another. In particular, we show that phase maintenance over a range of oscillator periods can be enhanced through the interplay of the two follower neurons if the synapses between these neurons are depressing. Since our model represents the core of the oscillatory pyloric network, the results of our analysis can be compared to experimental data and used to make predictions about the biological network.
Collapse
Affiliation(s)
- Christina Mouser
- Department of Mathematical Sciences, Medgar Evers College of CUNY, Brooklyn, NY 11225:
| | - Farzan Nadim
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102:
| | - Amitabha Bose
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102:
| |
Collapse
|
20
|
Stoelzel CR, Bereshpolova Y, Gusev AG, Swadlow HA. The impact of an LGNd impulse on the awake visual cortex: synaptic dynamics and the sustained/transient distinction. J Neurosci 2008; 28:5018-28. [PMID: 18463255 PMCID: PMC2713607 DOI: 10.1523/jneurosci.4726-07.2008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 03/19/2008] [Accepted: 03/24/2008] [Indexed: 11/21/2022] Open
Abstract
We used spike-triggered current source-density analysis to examine axonal and postsynaptic currents generated in the visual cortex of awake rabbits by spontaneous spikes of individual sustained and transient dorsal lateral geniculate nucleus (LGNd) neurons. Using these data, we asked whether sustained/transient sensory responses are related to short-term synaptic dynamics at the thalamocortical synapse. Most sustained (34 of 40) and transient (24 of 25) neurons generated axonal and monosynaptic responses in layer 4 and/or 6 of the aligned cortical domain, with input from transient neurons arriving approximately 0.3 ms earlier and 100-200 microm deeper. Postsynaptic cortical responses generated by both thalamic cell classes were reduced in amplitude after a preceding impulse and slowly recovered over a period of >750 ms. We interpret this to reflect interval-dependent recovery from chronic depression at the thalamocortical synapse, caused by significant spontaneous firing of LGNd cells (approximately 8 Hz). Surprisingly, postsynaptic cortical responses generated by spontaneous spikes of sustained thalamic neurons were more depressed than those of transient neurons. This difference was seen both in layers 4 and 6. The depression saturated rapidly with multiple preceding impulses, and postsynaptic responses generated by sustained neurons during maintained visual stimulation remained sufficiently robust to allow a sustained flow of information to the cortex. Our results indicate a relationship between the sensory response properties of thalamic neurons and the short-term dynamics of their synapses, and suggest that cortical recipients of sustained and transient thalamic inputs will differ considerably in their response modulation by prior impulse activity.
Collapse
Affiliation(s)
- Carl R. Stoelzel
- Department of Psychology, University of Connecticut, Storrs, Connecticut 06269
| | - Yulia Bereshpolova
- Department of Psychology, University of Connecticut, Storrs, Connecticut 06269
| | - Alexander G. Gusev
- Department of Psychology, University of Connecticut, Storrs, Connecticut 06269
| | - Harvey A. Swadlow
- Department of Psychology, University of Connecticut, Storrs, Connecticut 06269
| |
Collapse
|
21
|
Mouser C, Nadim F, Bose A. Maintaining phase of the tri-phasic crab pyloric rhythm. BMC Neurosci 2007. [PMCID: PMC4436388 DOI: 10.1186/1471-2202-8-s2-p97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
22
|
Rabbah P, Nadim F. Distinct synaptic dynamics of heterogeneous pacemaker neurons in an oscillatory network. J Neurophysiol 2007; 97:2239-53. [PMID: 17202242 PMCID: PMC2435166 DOI: 10.1152/jn.01161.2006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Many rhythmically active networks involve heterogeneous populations of pacemaker neurons with potentially distinct synaptic outputs that can be differentially targeted by extrinsic inputs or neuromodulators, thereby increasing possible network output patterns. To understand the roles of heterogeneous pacemaker neurons, we characterized differences in synaptic output from the anterior burster (AB) and pyloric dilator (PD) neurons in the lobster pyloric network. These intrinsically distinct neurons are strongly electrically coupled, coactive, and constitute the pyloric pacemaker ensemble. During pyloric oscillations, the pacemaker neurons produce compound inhibitory synaptic connections to the follower lateral pyloric (LP) and pyloric constrictor (PY) neurons, which fire out of phase with AB/PD and with different delay times. Using pharmacological blockers, we separated the synapses originating from the AB and PD neurons and investigated their temporal dynamics. These synapses exhibited distinct short-term dynamics, depending on the presynaptic neuron type, and had different relative contributions to the total synaptic output depending on waveform shape and cycle frequency. However, paired comparisons revealed that the amplitude or dynamics of synapses from either the AB or PD neuron did not depend on the postsynaptic neuron type, LP or PY. To address the functional implications of these findings, we examined the correlation between synaptic inputs from the pacemakers and the burst onset phase of the LP and PY neurons in the ongoing pyloric rhythm. These comparisons showed that the activity of the LP and PY neurons is influenced by the peak phase and amplitude of the synaptic inputs from the pacemaker neurons.
Collapse
Affiliation(s)
- Pascale Rabbah
- Department of Mathematical Sciences, New Jersey Institute of Technology, 323 Martin Luther King Blvd., Newark, NJ 07102, USA
| | | |
Collapse
|
23
|
Marder E, Bucher D. Understanding Circuit Dynamics Using the Stomatogastric Nervous System of Lobsters and Crabs. Annu Rev Physiol 2007; 69:291-316. [PMID: 17009928 DOI: 10.1146/annurev.physiol.69.031905.161516] [Citation(s) in RCA: 470] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Studies of the stomatogastric nervous systems of lobsters and crabs have led to numerous insights into the cellular and circuit mechanisms that generate rhythmic motor patterns. The small number of easily identifiable neurons allowed the establishment of connectivity diagrams among the neurons of the stomatogastric ganglion. We now know that (a) neuromodulatory substances reconfigure circuit dynamics by altering synaptic strength and voltage-dependent conductances and (b) individual neurons can switch among different functional circuits. Computational and experimental studies of single-neuron and network homeostatic regulation have provided insight into compensatory mechanisms that can underlie stable network performance. Many of the observations first made using the stomatogastric nervous system can be generalized to other invertebrate and vertebrate circuits.
Collapse
Affiliation(s)
- Eve Marder
- Volen Center and Biology Department, Brandeis University, Waltham, Massachusetts 02454, USA.
| | | |
Collapse
|
24
|
Abstract
Central pattern generators (CPGs) are circuits that generate organized and repetitive motor patterns, such as those underlying feeding, locomotion and respiration. We summarize recent work on invertebrate CPGs which has provided new insights into how rhythmic motor patterns are produced and how they are controlled by higher-order command and modulatory interneurons.
Collapse
Affiliation(s)
- Eve Marder
- Volen Center, MS 013, Brandeis University, Watham, Massachusetts 02454-9110, USA.
| | | | | | | |
Collapse
|
25
|
Rabbah P, Nadim F. Synaptic dynamics do not determine proper phase of activity in a central pattern generator. J Neurosci 2005; 25:11269-78. [PMID: 16339022 PMCID: PMC6725900 DOI: 10.1523/jneurosci.3284-05.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 10/12/2005] [Accepted: 10/24/2005] [Indexed: 11/21/2022] Open
Abstract
Rhythmic motor activity often requires neuronal output to the muscles to arrive in a particular sequence. At the pattern-generator level, this requires distinct activity phases in different groups of constituent neurons. The phase differences between rhythmically active neurons in a network are thought to arise from the interplay between their intrinsic properties and the temporal dynamics of synapses among these neurons. In the rhythmically active pyloric network of the lobster Panulirus interruptus, synaptic connections from the pacemaker ensemble to the follower neurons [lateral pyloric (LP) and pyloric constrictor (PY)] are thought to be primarily responsible for the proper phase of activity (pacemaker-LP-PY) across all frequencies (0.5-2 Hz) of the pyloric rhythm. We test this hypothesis by characterizing the synapses from the pacemaker ensemble to the LP and PY neurons. Paired comparisons show that these two synapses are not significantly different in strength or in the extent of short-term depression. To examine the level to which intrinsic properties of the follower neurons determine their relative activity phase, we block all chemical synapses within the network and drive the LP and PY neurons rhythmically using artificial synaptic currents with identical strength and dynamics implemented with the dynamic-clamp technique. In response to these identical synaptic inputs, the LP and PY neurons maintain the proper relative phase of activity. These results strongly indicate that the relative phase of activity among these follower neurons within the pyloric network is not dictated by their synaptic inputs but is solely determined by their distinct intrinsic properties.
Collapse
Affiliation(s)
- Pascale Rabbah
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102, USA
| | | |
Collapse
|
26
|
Bucher D, Prinz AA, Marder E. Animal-to-animal variability in motor pattern production in adults and during growth. J Neurosci 2005; 25:1611-9. [PMID: 15716396 PMCID: PMC6725924 DOI: 10.1523/jneurosci.3679-04.2005] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Which features of network output are well preserved during growth of the nervous system and across different preparations of the same size? To address this issue, we characterized the pyloric rhythms generated by the stomatogastric nervous systems of 99 adult and 12 juvenile lobsters (Homarus americanus). Anatomical studies of single pyloric network neurons and of the whole stomatogastric ganglion (STG) showed that the STG and its neurons grow considerably from juvenile to adult. Despite these changes in size, intracellularly recorded membrane potential waveforms of pyloric network neurons and the phase relationships in the pyloric rhythm were very similar between juvenile and adult preparations. Across adult preparations, the cycle period and number of spikes per burst were not tightly maintained, but the mean phase relationships were independent of the period of the rhythm and relatively tightly maintained across preparations. We interpret this as evidence for homeostatic regulation of network activity.
Collapse
Affiliation(s)
- Dirk Bucher
- Volen Center and Biology Department, Brandeis University, Waltham, Massachusetts 02454-9110, USA.
| | | | | |
Collapse
|
27
|
Mamiya A, Nadim F. Target-Specific Short-Term Dynamics Are Important for the Function of Synapses in an Oscillatory Neural Network. J Neurophysiol 2005; 94:2590-602. [PMID: 15972837 DOI: 10.1152/jn.00110.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Short-term dynamics such as facilitation and depression are present in most synapses and are often target-specific even for synapses from the same type of neuron. We examine the dynamics and possible functions of two synapses from the same presynaptic neuron in the rhythmically active pyloric network of the spiny lobster. Using simultaneous recordings, we show that the synapses from the lateral pyloric (LP) neuron to the pyloric dilator (PD; a member of the pyloric pacemaker ensemble) and the pyloric constrictor (PY) neurons both show short-term depression. However, the postsynaptic potentials produced by the LP-to-PD synapse are larger in amplitude, depress less, and recover faster than those produced by the LP-to-PY synapse. The main function of the LP-to-PD synapse is to slow down the pyloric rhythm. However, in some cases, it slows down the rhythm only when it is fast and has no effect or to speeds up when it is slow. In contrast, the LP-to-PY synapse functions to delay the activity of the PY neuron; this delay increases as the cycle period becomes longer. Using a computational model, we show that the short-term dynamics of synaptic depression observed for each of these synapses are tailored to their individual functions and that replacing the dynamics of either synapse with the other would disrupt these functions. Together, the experimental and modeling results suggest that the target-specific features of short-term synaptic depression are functionally important for synapses efferent from the same presynaptic neuron.
Collapse
Affiliation(s)
- Akira Mamiya
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, USA
| | | |
Collapse
|
28
|
Abstract
A depressing synapse transforms a time interval into a voltage amplitude. The effect of that transformation on the output of the neuron and network depends on the kinetics of synaptic depression and properties of the postsynaptic neuron and network. Using as examples neural circuits that incorporate depressing synapses, we show how short-term depression can contribute to a surprising variety of time-dependent computational and behavioral tasks.
Collapse
Affiliation(s)
- Lucinda A Grande
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
29
|
Greenberg I, Manor Y. Synaptic depression in conjunction with A-current channels promote phase constancy in a rhythmic network. J Neurophysiol 2004; 93:656-77. [PMID: 15356180 DOI: 10.1152/jn.00640.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In many central pattern generators, pairs of neurons maintain an approximately fixed phase despite large changes in the frequency. The mechanisms underlying phase maintenance are not clear. Previous theoretical work suggested that inhibitory synapses that show short-term depression could play a critical role in this respect. In this work we examine how the interaction between synaptic depression and the kinetics of a transient potassium (A-like) current could be advantageous for phase constancy in a rhythmic network. To demonstrate the mechanism in the context of a realistic central pattern generator, we constructed a detailed model of the crustacean pyloric circuit. The frequency of the rhythm was modified by changing the level of a ligand-activated current in one of the pyloric neurons. We examined how the time difference of firing activities between two selected neurons in this circuit is affected by synaptic depression, A-current, and a combination of the two. We tuned the parameters of the model such that with synaptic depression alone, or A-current alone, phase was not maintained between these two neurons. However, when these two components came together, they acted synergistically to maintain the phase across a wide range of cycle periods. This suggests that synaptic depression may be necessary to allow an A-current to delay a postsynaptic neuron in a frequency-dependent manner, such that phase invariance is ensured.
Collapse
Affiliation(s)
- Idan Greenberg
- Life Sciences Department and Zlotowski Center for Neurosciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, Israel 84105
| | | |
Collapse
|
30
|
Mamiya A, Nadim F. Dynamic interaction of oscillatory neurons coupled with reciprocally inhibitory synapses acts to stabilize the rhythm period. J Neurosci 2004; 24:5140-50. [PMID: 15175383 PMCID: PMC6729201 DOI: 10.1523/jneurosci.0482-04.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the rhythmically active pyloric circuit of the spiny lobster, the pyloric dilator (PD) neurons are members of the pacemaker group of neurons that make inhibitory synapses onto the follower lateral pyloric (LP) neuron. The LP neuron, in turn, makes a depressing inhibitory synapse to the PD neurons, providing the sole inhibitory feedback from the pyloric network to its pacemakers. This study investigates the dynamic interaction between the pyloric cycle period, the two types of neurons, and the feedback synapse in biologically realistic conditions. When the rhythm period was changed, the membrane potential waveform of the LP neuron was affected with a consistent pattern. These changes in the LP neuron waveform directly affected the dynamics of the LP to PD synapse and caused the postsynaptic potential (PSP) in the PD neurons to both peak earlier in phase and become larger in amplitude. Using an artificial synapse implemented in dynamic clamp, we show that when the LP to PD PSP occurred early in phase, it acted to speed up the pyloric rhythm, and larger PSPs also strengthened this trend. Together, these results indicate that interactions between these two types of neurons can dynamically change in response to increases in the rhythm period, and this dynamic change provides a negative feedback to the pacemaker group that could work to stabilize the rhythm period.
Collapse
Affiliation(s)
- Akira Mamiya
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102, USA
| | | |
Collapse
|