1
|
Rouhi S, Rahmani S, Shanesazzadeh F, Ahmadvand T, Namazi M, Fardmanesh M, Kiani S. Stimulation of spinal cord according to recorded theta hippocampal rhythm during rat move on treadmill. BIOMED ENG-BIOMED TE 2023:bmt-2022-0420. [PMID: 36872631 DOI: 10.1515/bmt-2022-0420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/20/2023] [Indexed: 03/07/2023]
Abstract
OBJECTIVES Several studies have revealed that after spinal cord injury (SCI), in acute and sub-acute phase the spinal cord neurons below the injury are alive and could stimulate by use of electrical pulses. Spinal cord electrical stimulation could generate movement for paralyzed limbs and is a rehabilitation strategy for paralyzed patients. An innovative idea for controlling spinal cord electrical stimulation onset time is presented in current study. METHODS In our method, the time of applying electrical pulse on the spinal cord is according to rat behavioral movement and two movements behaviors are recognized only based on rat EEG theta rhythm on the treadmill line. Briefly, 5 rats were placed on the treadmill and the animals experienced zero or 12 m/min speeds. RESULTS These speeds were recognized based on EEG signals and off-line periodogram analysis. Finally, the electrical stimulation pulses had been applied to the spinal cord if the results of the EEG analysis had detected running behavior. CONCLUSIONS These findings may guide future research in utilizing theta rhythms for the recognition of animal motor behavior and designing electrical stimulation systems based on it.
Collapse
Affiliation(s)
- Shahin Rouhi
- Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran.,Department of Stem Cell and Developmental Biology, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Brain and Cognitive Science, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Saeid Rahmani
- Institute for Research in Fundamental Science (IPM), Tehran, Iran
| | | | - Tala Ahmadvand
- School of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | - Mahrokh Namazi
- School of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | - Mehdi Fardmanesh
- School of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | - Sahar Kiani
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Brain and Cognitive Science, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
2
|
Yang CCH, Kuo TBJ, Chen CH, Li WY, Hung CT, Li JY. Older rats show slow modulation of hippocampal theta rhythm during voluntary running. Exp Gerontol 2023; 173:112092. [PMID: 36669709 DOI: 10.1016/j.exger.2023.112092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/18/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Aging causes brain function degeneration and slows many motor and behavioural responses. The hippocampal theta rhythm (4-12 Hz) is related to cognition and locomotion. However, the findings on aging-related changes in the frequency and amplitude of hippocampal theta oscillations have been inconsistent. We hypothesized that older rats have slower responses in terms of hippocampal theta rhythm during voluntary wheel running than do young adult rats. By simultaneously recording electroencephalography and physical activity (PA), we evaluated theta oscillations in 8-week-old (young adult) and 60-week-old (middle-aged) rats before and during wheel running, which was conducted only during the rats' 12-h dark period. To test the alterations of hippocampal theta rhythm in voluntary wheel running, we analyzed the signals without (8-s) or with (2-s) chronological order. No significant difference was observed in total frequency (TP, 4-12 Hz), low-frequency (LT, 4-6.5 Hz), or high-frequency (9.5-12 Hz) theta activity between active waking and overall running in either group. The theta oscillations were slower in the middle-aged rats than in the young adult rats during wheel running but increased during running for both age groups. During wheel running, the middle-aged rats exhibited an increased LT, which was related to PA. On the basis of the chronological order of running, the young adult rats exhibited increased TP, and the middle-aged rats exhibited significant increases in middle-frequency (MT, 6.5-9.5 Hz) theta activity. The dominant modulations of MT in the middle-aged rats may have caused nonsignificant changes in total activity. These between-group differences in theta rhythm characteristics during voluntary running provide insights into age-related brain function decline.
Collapse
Affiliation(s)
- Cheryl C H Yang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan; Sleep Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Education and Research, Taipei City Hospital, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Terry B J Kuo
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan; Sleep Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Education and Research, Taipei City Hospital, Taipei, Taiwan; Clinical Research Center, Tsoutun Psychiatric Center, Ministry of Health and Welfare, Nantou, Taiwan
| | - Chun-Hsiu Chen
- Department of Health and Leisure Management, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Wei-Yi Li
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chang-Tsen Hung
- Department of Health and Leisure Management, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Jia-Yi Li
- Sleep Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Health and Leisure Management, Yuanpei University of Medical Technology, Hsinchu, Taiwan.
| |
Collapse
|
3
|
Effectiveness of regular physical activity in preventing the progression of arterial hypertension: improved cardiovascular autonomic control during sleep. Hypertens Res 2022; 45:1213-1216. [PMID: 35581497 DOI: 10.1038/s41440-022-00942-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 04/16/2022] [Indexed: 11/08/2022]
|
4
|
Roles of sleep-related cardiovascular autonomic functions in voluntary-exercise-induced alleviation of hypertension in spontaneously hypertensive rats. Hypertens Res 2022; 45:1154-1167. [PMID: 35459851 DOI: 10.1038/s41440-022-00916-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022]
Abstract
Autonomic dysfunction and sleep problems are closely associated with hypertension and predict cardiovascular morbidity and mortality. Animal studies and clinical observations have identified exercise as an important factor in preventing and treating hypertension. However, the roles of autonomic function and sleep in the antihypertensive mechanisms of exercise are still not fully understood. This study aimed to clarify the physiological mechanisms associated with autonomic function and sleep through wheel exercise. Male spontaneously hypertensive rats (SHRs) were grouped into a wheel-exercised group and a sedentary group (controls). Electroencephalogram, electromyogram, electrocardiogram, and mean arterial pressure (MAP) were recorded simultaneously for 24 h once a week over 11 weeks. Wheel exercise was initiated in the SHRs at 12 weeks old and continued for another eight weeks. A significant suppression in the age-related elevation of MAP was noted in the SHRs undergoing wheel exercise. The reduction in MAP was correlated with increased parasympathetic activity and baroreflex sensitivity and decreased sympathetic activity, mainly during quiet sleep. Exercise increased the paradoxical sleep time and theta power (associated with cognitive function) but not the delta power (an indicator of sleep depth) or the attenuation of circadian rhythm flattening (characterized by increased wakefulness and less sleep during the light period and the opposite during the dark period). Furthermore, the exercise-induced changes in autonomic function occurred before those in sleep patterns, which were dependent on each other. In conclusion, wheel exercise can modulate sleep-related cardiovascular dysfunction and the flattening of circadian rhythm, preventing the progression of hypertension, which reduces the incidence of cardiovascular diseases.
Collapse
|
5
|
Kuo TB, Yang CC, Hung CT, Chen CH, Lan TH, Li JY. Behavioural consistency and hippocampal theta rhythm can reflect age-related anxiety during the behaviour test. Exp Gerontol 2022; 163:111808. [DOI: 10.1016/j.exger.2022.111808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/02/2022] [Accepted: 04/10/2022] [Indexed: 11/28/2022]
|
6
|
Belviranlı M, Okudan N. Differential effects of voluntary and forced exercise trainings on spatial learning ability and hippocampal biomarkers in aged female rats. Neurosci Lett 2022; 773:136499. [PMID: 35121056 DOI: 10.1016/j.neulet.2022.136499] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
This study aimed to compare the effects of voluntary and forced exercise trainings on cognitive functions and to evaluate their relationship with hippocampal synaptic proteins, neurotrophic factors and markers of oxidative damage in aged female rats. Aged female rats were randomly assigned to control, voluntary exercise training and forced exercise training groups. Voluntary or forced exercise trainings were performed for 12 weeks. At the end of the training period, cognitive functions of the animals were assessed with Morris water maze (MWM) test. After the behavioral test, hippocampus tissues were taken for the analysis of synaptophysin, acetylcholinesterase (AChE), brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), malondialdehyde (MDA), protein carbonyl (PC), glutathione (GSH) and superoxide dismutase (SOD). During the MWM test, the number of platform crossings was higher in the voluntary exercise group than in the control group (P < 0.05). In the hippocampus tissue, levels of the synaptophysin, BDNF, NGF and SOD were higher, but MDA levels were lower in the voluntary exercise group than in the control group (P < 0.05). Additionally, hippocampal AChE concentration was higher, but PC levels were lower in the both voluntary and forced exercise groups than in the control group (P < 0.05). In conclusion, voluntary exercise was more effective intervention to improve spatial learning ability in aging process. Increased neurotrophic factors, synaptic proteins, and improved oxidative damage may play a role in these positive effects.
Collapse
Affiliation(s)
- Muaz Belviranlı
- Selçuk University, School of Medicine, Department of Physiology, Konya, Turkey.
| | - Nilsel Okudan
- Selçuk University, School of Medicine, Department of Physiology, Konya, Turkey
| |
Collapse
|
7
|
Chen CW, Wu CH, Liou YS, Kuo KL, Chung CH, Lin YT, Kuo TBJ, Yang CCH. Roles of cardiovascular autonomic regulation and sleep patterns in high blood pressure induced by mild cold exposure in rats. Hypertens Res 2021; 44:662-673. [PMID: 33742169 DOI: 10.1038/s41440-021-00619-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/08/2020] [Accepted: 12/18/2020] [Indexed: 11/09/2022]
Abstract
Increased blood pressure (BP) caused by exposure to cold temperatures can partially explain the increased incidence of cardiovascular events in winter. However, the physiological mechanisms involved in cold-induced high BP are not well established. Many studies have focused on physiological responses to severe cold exposure. In this study, we aimed to perform a comprehensive analysis of cardiovascular autonomic function and sleep patterns in rats during exposure to mild cold, a condition relevant to humans in subtropical areas, to clarify the physiological mechanisms underlying mild cold-induced hypertension. BP, electroencephalography, electromyography, electrocardiography, and core body temperature were continuously recorded in normotensive Wistar-Kyoto rats over 24 h. All rats were housed in thermoregulated chambers at ambient temperatures of 23, 18, and 15 °C in a randomized crossover design. These 24-h physiological recordings either with or without sleep scoring showed that compared with the control temperature of 23 °C, the lower ambient temperatures of 18 and 15 °C not only increased BP, vascular sympathetic activity, and heart rate but also decreased overall autonomic activity, parasympathetic activity, and baroreflex sensitivity in rats. In addition, cold exposure reduced the delta power percentage and increased the incidence of interruptions during sleep. Moreover, a correlation analysis revealed that all of these cold-induced autonomic dysregulation and sleep problems were associated with elevation of BP. In conclusion, mild cold exposure elicits autonomic dysregulation and poor sleep quality, causing BP elevation, which may have critical implications for cold-related cardiovascular events.
Collapse
Affiliation(s)
- Chieh-Wen Chen
- Sleep Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Cheng-Han Wu
- Sleep Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Syuan Liou
- Sleep Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Kuan-Liang Kuo
- Institute of BioMedical Informatics, National Yang-Ming University, Taipei, Taiwan
- Family Medicine Department, Taipei City Hospital, Renai Branch, Taipei, Taiwan
| | - Cheng-Hung Chung
- Sleep Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Ting Lin
- Sleep Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Terry B J Kuo
- Sleep Research Center, National Yang-Ming University, Taipei, Taiwan.
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan.
- Institute of BioMedical Informatics, National Yang-Ming University, Taipei, Taiwan.
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan.
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan.
| | - Cheryl C H Yang
- Sleep Research Center, National Yang-Ming University, Taipei, Taiwan.
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan.
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan.
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan.
| |
Collapse
|
8
|
Bergel A, Tiran E, Deffieux T, Demené C, Tanter M, Cohen I. Adaptive modulation of brain hemodynamics across stereotyped running episodes. Nat Commun 2020; 11:6193. [PMID: 33273463 PMCID: PMC7713412 DOI: 10.1038/s41467-020-19948-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022] Open
Abstract
During locomotion, theta and gamma rhythms are essential to ensure timely communication between brain structures. However, their metabolic cost and contribution to neuroimaging signals remain elusive. To finely characterize neurovascular interactions during locomotion, we simultaneously recorded mesoscale brain hemodynamics using functional ultrasound (fUS) and local field potentials (LFP) in numerous brain structures of freely-running overtrained rats. Locomotion events were reliably followed by a surge in blood flow in a sequence involving the retrosplenial cortex, dorsal thalamus, dentate gyrus and CA regions successively, with delays ranging from 0.8 to 1.6 seconds after peak speed. Conversely, primary motor cortex was suppressed and subsequently recruited during reward uptake. Surprisingly, brain hemodynamics were strongly modulated across trials within the same recording session; cortical blood flow sharply decreased after 10-20 runs, while hippocampal responses strongly and linearly increased, particularly in the CA regions. This effect occurred while running speed and theta activity remained constant and was accompanied by an increase in the power of hippocampal, but not cortical, high-frequency oscillations (100-150 Hz). Our findings reveal distinct vascular subnetworks modulated across fast and slow timescales and suggest strong hemodynamic adaptation, despite the repetition of a stereotyped behavior.
Collapse
Affiliation(s)
- Antoine Bergel
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris Seine-Neuroscience, 75005, Paris, France.
- Physique pour la Médecine Paris, INSERM U1273, ESPCI Paris, CNRS FRE 2031, PSL Université Recherche, Paris, France.
| | - Elodie Tiran
- Physique pour la Médecine Paris, INSERM U1273, ESPCI Paris, CNRS FRE 2031, PSL Université Recherche, Paris, France
| | - Thomas Deffieux
- Physique pour la Médecine Paris, INSERM U1273, ESPCI Paris, CNRS FRE 2031, PSL Université Recherche, Paris, France
| | - Charlie Demené
- Physique pour la Médecine Paris, INSERM U1273, ESPCI Paris, CNRS FRE 2031, PSL Université Recherche, Paris, France
| | - Mickaël Tanter
- Physique pour la Médecine Paris, INSERM U1273, ESPCI Paris, CNRS FRE 2031, PSL Université Recherche, Paris, France.
| | - Ivan Cohen
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris Seine-Neuroscience, 75005, Paris, France.
| |
Collapse
|
9
|
Li JY, Kuo TBJ, Hung CT, Yang CCH. Voluntary exercise enhances hippocampal theta rhythm and cognition in the rat. Behav Brain Res 2020; 399:112916. [PMID: 32949643 DOI: 10.1016/j.bbr.2020.112916] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022]
Abstract
Regular exercise promotes learning and memory functions. Theta activity is known to relate to various cognitive functions. An increase in theta power may be related to higher cognitive functioning and learning functions. However, evidence is lacking to directly confirm that exercise training can increase the theta activity and promote various cognitive functions simultaneously. We hypothesize that long-term voluntary exercise increases the activity of hippocampal theta rhythm and enhances memory behavior. We used the voluntary wheel running model and a training period of 8 weeks. We started the training when the rats were 12 weeks old. Before and after intervention, we performed a 24 -h electrophysiological recording and 8-arm radial maze test to analyze the hippocampal theta rhythm in awake stage, and spatial memory functions. We discovered that middle to high range frequency (6.5-12 Hz) of theta power was increased after exercise intervention. In addition, the working memory error of 8-arm radial maze test in the exercise group decreased significantly after the 8 weeks of treatment, and these reductions were negatively correlated with hippocampal theta activity. Our results demonstrate that 8-weeks voluntary exercise increases both hippocampal theta amplitude and spatial memory in the rats.
Collapse
Affiliation(s)
- Jia-Yi Li
- Department of Health and Leisure Management, Yuanpei University of Medical Technology, Hsinchu, Taiwan; Sleep Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Terry B J Kuo
- Sleep Research Center, National Yang-Ming University, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan; Brain Research Center, National Yang-Ming University, Taipei, Taiwan; Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | - Chang-Tsen Hung
- Department of Health and Leisure Management, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Cheryl C H Yang
- Sleep Research Center, National Yang-Ming University, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan; Brain Research Center, National Yang-Ming University, Taipei, Taiwan; Department of Education and Research, Taipei City Hospital, Taipei, Taiwan.
| |
Collapse
|
10
|
Li JY, Kuo TBJ, Yang CCH. Behaviour consistency is a sensitive tool for distinguishing the effects of aging on physical activity. Behav Brain Res 2020; 389:112619. [PMID: 32348871 DOI: 10.1016/j.bbr.2020.112619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/24/2020] [Accepted: 03/15/2020] [Indexed: 11/16/2022]
Abstract
We attempted to establish a novel parameter of behaviour consistency to help determine the effect of age on physical activity. Using the speed of movement to quantify behaviour might not be sufficient to determine this effect. The slowing of motor activities that occurs with aging is related to the decline of the aging brain. Previous studies have found different running-related hippocampal theta rhythm responses in the aging and exercise model. Therefore, we hypothesized that a familiarity with the environment and physical strength affect behavioural consistency in rats during running exercises. For this study, we used a treadmill and 30-minute running test at constant speeds and compared changes in the triaxial accelerometer and hippocampal theta rhythm between adult and middle-aged rats. No significant differences in RR intervals, mean cross-correlations (MCCs), or the proportion of good correlation coefficient (PGCC) were observed between adult and middle-aged rats in awake states before running on the treadmill. The root mean square (RMS) of the triaxial acceleration vectors in middle-aged rats was higher than that in adult rats. In the treadmill running tests, the RMS observed in middle-aged rats was significantly lower than that observed in adult rats. MCC and PGCC, which indicate movement consistencies, were significantly higher in middle-aged rats than they were in adult rats during the entire running test. However, only the RMS of the adult rats showed a negative correlation with exercise duration. Both MCC and PGCC were positively correlated with exercise duration. By contrast, a similar phenomenon was not found in the changes or differences in hippocampal theta rhythms between these two groups. Therefore, we consider that the MCC and PGCC could distinguish age-related movement differences and indicate coordination/adaptation during exercise. Changes in physical activity and alterations in the hippocampal theta rhythm were not different between the groups.
Collapse
Affiliation(s)
- Jia-Yi Li
- Department of Health and Leisure Management, Yuanpei University of Medical Technology, Hsinchu, Taiwan; Sleep Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Terry B J Kuo
- Sleep Research Center, National Yang-Ming University, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan; Brain Research Center, National Yang-Ming University, Taipei, Taiwan; Department of Education and Research, Taipei City Hospital, Taipei, Taiwan; Digital Medicine Center, National Yang-Ming University, Taipei, Taiwan.
| | - Cheryl C H Yang
- Sleep Research Center, National Yang-Ming University, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan; Brain Research Center, National Yang-Ming University, Taipei, Taiwan; Department of Education and Research, Taipei City Hospital, Taipei, Taiwan.
| |
Collapse
|
11
|
Li JY, Chen CW, Liu TH, Kuo TB, Yang CC. Exercise Prevents Hypertension and Disrupts the Correlation Between Vascular Sympathetic Activity and Age-Related Increase in Blood Pressure in SHRs. Am J Hypertens 2019; 32:1091-1100. [PMID: 31342054 DOI: 10.1093/ajh/hpz115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/28/2019] [Accepted: 07/17/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Hypertension usually accompanies the elevated sympathetic activity and sleep interruption. Few researches explored the dynamic changes and possible correlations in cardiovascular functions and sleep patterns during the development of hypertension. In contrast, exercise training provides several benefits on cardiovascular and sleep function in hypertensive subjects. However, controlling various factors during a long period of exercise training is difficult in hypertensive subjects, an animal model may be essential. This study aimed to explore dynamic changes in cardiovascular functions and sleep patterns during the development period of hypertension (10-20 weeks old) in spontaneously hypertensive rats (SHRs) and effects of exercise intervention. METHODS We used the treadmill exercise model for 8 weeks and started when SHRs were 12 weeks old. Electroencephalogram, electromyogram, electrocardiogram, and blood pressure (BP) were recorded simultaneously for 24 hours once a week over 11 weeks. RESULTS Untrained SHRs revealed the age-related increments in BP, and the significant increasing slopes of differences on BP and vascular sympathetic activity were observed during the development period of hypertension. Compared with untrained rats, age-related increases in BP and vascular sympathetic activity were significantly suppressed in trained SHRs. Nevertheless, trained SHRs showed more quiet sleep time at partial weeks. The positive correlation between the differences from 10 weeks of vascular sympathetic activity and BP was disappeared in trained SHRs. CONCLUSIONS There existed the significant correlation between the dynamic changes of vascular sympathetic activity and age-related elevation of BP during the development period of hypertension; however, exercise prevented hypertension and disrupted this correlation.
Collapse
Affiliation(s)
- Jia-Yi Li
- Department of Health and Leisure Management, Yuanpei University of Medical Technology, Hsinchu, Taiwan
- Sleep Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Chieh-Wen Chen
- Sleep Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Tsung-Han Liu
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Terry Bj Kuo
- Sleep Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
- Digital Medicine Center, National Yang-Ming University, Taipei, Taiwan
| | - Cheryl Ch Yang
- Sleep Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
12
|
Mohammed HS, Khadrawy YA, El-Sherbini TM, Amer HM. Electrocortical and Biochemical Evaluation of Antidepressant Efficacy of Formulated Nanocurcumin. Appl Biochem Biotechnol 2018; 187:1096-1112. [DOI: 10.1007/s12010-018-2866-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/20/2018] [Indexed: 10/28/2022]
|
13
|
Abstract
PURPOSE OF REVIEW Physical activity is increasingly recommended for chronic pain. In this review, we briefly survey recent, high-quality meta-analyses on the effects of exercise in human chronic pain populations, followed by a critical discussion of the rodent literature. RECENT FINDINGS Most meta-analytical studies on the effects of exercise in human chronic pain populations describe moderate improvements in various types of chronic pain, despite substantial variability in the outcomes reported in the primary literature. The most consistent findings suggest that while greater adherence to exercise programs produces better outcomes, there is minimal support for the superiority of one type of exercise over another. The rodent literature similarly suggests that while regular exercise reduces hypersensitivity in rodent models of chronic pain, exercise benefits do not appear to relate to either the type of injury or any particular facet of the exercise paradigm. Potential factors underlying these results are discussed, including the putative involvement of stress-induced analgesic effects associated with certain types of exercise paradigms. Exercise research using rodent models of chronic pain would benefit from increased attention to the role of stress in exercise-induced analgesia, as well as the incorporation of more clinically relevant exercise paradigms.
Collapse
Affiliation(s)
- Mark Henry Pitcher
- Pain and Integrative Neuroscience Laboratory, National Center for Complementary and Integrative Health, National Institutes of Health, Room 1E-420, 35A Convent Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
14
|
Reduced capacity of autonomic and baroreflex control associated with sleep pattern in spontaneously hypertensive rats with a nondipping profile. J Hypertens 2017; 35:558-570. [DOI: 10.1097/hjh.0000000000001205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Modest Amounts of Voluntary Exercise Reduce Pain- and Stress-Related Outcomes in a Rat Model of Persistent Hind Limb Inflammation. THE JOURNAL OF PAIN 2017; 18:687-701. [PMID: 28185925 DOI: 10.1016/j.jpain.2017.01.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 11/23/2022]
Abstract
Aerobic exercise improves outcomes in a variety of chronic health conditions, yet the support for exercise-induced effects on chronic pain in humans is mixed. Although many rodent studies have examined the effects of exercise on persistent hypersensitivity, the most used forced exercise paradigms that are known to be highly stressful. Because stress can also produce analgesic effects, we studied how voluntary exercise, known to reduce stress in healthy subjects, alters hypersensitivity, stress, and swelling in a rat model of persistent hind paw inflammation. Our data indicate that voluntary exercise rapidly and effectively reduces hypersensitivity as well as stress-related outcomes without altering swelling. Moreover, the level of exercise is unrelated to the analgesic and stress-reducing effects, suggesting that even modest amounts of exercise may impart significant benefit in persistent inflammatory pain states. PERSPECTIVE Modest levels of voluntary exercise reduce pain- and stress-related outcomes in a rat model of persistent inflammatory pain, independently of the amount of exercise. As such, consistent, self-regulated activity levels may be more relevant to health improvement in persistent pain states than standardized exercise goals.
Collapse
|
16
|
Meireles AL, Marques MR, Segabinazi E, Spindler C, Piazza FV, Salvalaggio GS, Augustin OA, Achaval M, Marcuzzo S. Association of environmental enrichment and locomotor stimulation in a rodent model of cerebral palsy: Insights of biological mechanisms. Brain Res Bull 2017; 128:58-67. [DOI: 10.1016/j.brainresbull.2016.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 10/29/2016] [Accepted: 12/06/2016] [Indexed: 11/25/2022]
|
17
|
Seo H, Park CH, Choi S, Kim W, Jeon BD, Ryu S. Effects of voluntary exercise on apoptosis and cortisol after chronic restraint stress in mice. J Exerc Nutrition Biochem 2016; 20:16-23. [PMID: 27757383 PMCID: PMC5067423 DOI: 10.20463/jenb.2016.09.20.3.3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 09/06/2016] [Accepted: 09/06/2016] [Indexed: 01/05/2023] Open
Abstract
[Purpose] To determine whether voluntary exercise (wheel running) has the potential of relieving stress. [Methods] In this study, restraint stress with or without voluntary wheel running was performed for mice housed in individual cages. A total of 21 ICR male mice were assigned into control (CON), restraint stress with voluntary exercise (RSVE), or restraint stress (RS) without voluntary exercise groups (n = 7 each). [Results] No significant difference in body weight increase was found among the three groups, although CON and RS groups had a tendency of having smaller body weight increase compared to the RSVE group. No significant difference in the expression level of liver heat shock protein 70, Bcl-2, or p53 was found among the three groups. However, caspase-3 protein level in RS group was significantly higher than that in the other two groups. Blood cortisol concentration in RS was higher (p < 0.05) than that in RSVE or CON group. It was the lowest (p < 0.05) in the RSVE group. [Conclusion] Our findings suggest that apoptosis caused by chronic restraint stress might be suppressed by voluntary exercise in mice.
Collapse
Affiliation(s)
- Hyobin Seo
- Department of Leisure Sports, Kyungpook National University, Sangju Republic of Korea
| | - Chun-Hyung Park
- Department of Leisure Sports, Kyungpook National University, Sangju Republic of Korea
| | - Seokrip Choi
- Department of Sports Rehabilitation, Daegu Health College, Daegu Republic of Korea
| | - Woocheol Kim
- Department of Sports Rehabilitation, Daegu Health College, Daegu Republic of Korea
| | - Byung-Duk Jeon
- Department of Physical Education Leisure, Suseong College, Daegu Republic of Korea
| | - Seungpil Ryu
- Department of Leisure Sports, Kyungpook National University, Sangju Republic of Korea
| |
Collapse
|
18
|
Li JY, Kuo TB, Yang CC. Aged rats show dominant modulation of lower frequency hippocampal theta rhythm during running. Exp Gerontol 2016; 83:63-70. [DOI: 10.1016/j.exger.2016.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/30/2016] [Accepted: 08/02/2016] [Indexed: 10/21/2022]
|
19
|
Mohammed HS. Transcranial low-level infrared laser irradiation ameliorates depression induced by reserpine in rats. Lasers Med Sci 2016; 31:1651-1656. [DOI: 10.1007/s10103-016-2033-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 07/13/2016] [Indexed: 11/28/2022]
|
20
|
Yi SS. Effects of exercise on brain functions in diabetic animal models. World J Diabetes 2015; 6:583-597. [PMID: 25987956 PMCID: PMC4434079 DOI: 10.4239/wjd.v6.i4.583] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/16/2015] [Accepted: 02/09/2015] [Indexed: 02/05/2023] Open
Abstract
Human life span has dramatically increased over several decades, and the quality of life has been considered to be equally important. However, diabetes mellitus (DM) characterized by problems related to insulin secretion and recognition has become a serious health problem in recent years that threatens human health by causing decline in brain functions and finally leading to neurodegenerative diseases. Exercise is recognized as an effective therapy for DM without medication administration. Exercise studies using experimental animals are a suitable option to overcome this drawback, and animal studies have improved continuously according to the needs of the experimenters. Since brain health is the most significant factor in human life, it is very important to assess brain functions according to the different exercise conditions using experimental animal models. Generally, there are two types of DM; insulin-dependent type 1 DM and an insulin-independent type 2 DM (T2DM); however, the author will mostly discuss brain functions in T2DM animal models in this review. Additionally, many physiopathologic alterations are caused in the brain by DM such as increased adiposity, inflammation, hormonal dysregulation, uncontrolled hyperphagia, insulin and leptin resistance, and dysregulation of neurotransmitters and declined neurogenesis in the hippocampus and we describe how exercise corrects these alterations in animal models. The results of changes in the brain environment differ according to voluntary, involuntary running exercises and resistance exercise, and gender in the animal studies. These factors have been mentioned in this review, and this review will be a good reference for studying how exercise can be used with therapy for treating DM.
Collapse
|
21
|
Škop V, Malínská H, Trnovská J, Hüttl M, Cahová M, Blachnio-Zabielska A, Baranowski M, Burian M, Oliyarnyk O, Kazdová L. Positive effects of voluntary running on metabolic syndrome-related disorders in non-obese hereditary hypertriacylglycerolemic rats. PLoS One 2015; 10:e0122768. [PMID: 25830228 PMCID: PMC4382201 DOI: 10.1371/journal.pone.0122768] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/18/2015] [Indexed: 12/20/2022] Open
Abstract
While metabolic syndrome is often associated with obesity, 25% of humans suffering from it are not obese and the effect of physical activity remains unclear in such cases. Therefore, we used hereditary hypertriaclyglycerolemic (HHTg) rats as a unique model for studying the effect of spontaneous physical activity [voluntary running (VR)] on metabolic syndrome-related disorders, such as dyslipidemia, in non-obese subjects. Adult HHTg males were fed standard (CD) or high-sucrose (HSD) diets ad libitum for four weeks. Within both dietary groups, some of the rats had free access to a running wheel (CD+VR, HSD+VR), whereas the controls (CD, HSD) had no possibility of extra physical activity. At the end of the four weeks, we measured the effects of VR on various metabolic syndrome-associated parameters: (i) biochemical parameters, (ii) the content and composition of triacylglycerols (TAG), diacylglycerols (DAG), ceramides and membrane phospholipids, and (iii) substrate utilization in brown adipose tissue. In both dietary groups, VR led to various positive effects: reduced epididymal and perirenal fat depots; increased epididymal adipose tissue lipolysis; decreased amounts of serum TAG, non-esterified fatty acids and insulin; a higher insulin sensitivity index. While tissue ceramide content was not affected, decreased TAG accumulation resulted in reduced and modified liver, heart and skeletal muscle DAG. VR also had a beneficial effect on muscle membrane phospholipid composition. In addition, compared with the CD group, the CD+VR rats exhibited increased fatty acid oxidation and protein content in brown adipose tissue. Our results confirm that physical activity in a non-obese model of severe dyslipidemia has many beneficial effects and can even counteract the negative effects of sucrose consumption. Furthermore, they suggest that the mechanism by which these effects are modulated involves a combination of several positive changes in lipid metabolism.
Collapse
Affiliation(s)
- Vojtěch Škop
- Center for experimental medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
- * E-mail:
| | - Hana Malínská
- Center for experimental medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jaroslava Trnovská
- Center for experimental medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Martina Hüttl
- Center for experimental medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Monika Cahová
- Center for experimental medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | - Marcin Baranowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Martin Burian
- Center for experimental medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Olena Oliyarnyk
- Center for experimental medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Ludmila Kazdová
- Center for experimental medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
22
|
Balakrishnan S, Pearce RA. Midazolam and atropine alter theta oscillations in the hippocampal CA1 region by modulating both the somatic and distal dendritic dipoles. Hippocampus 2014; 24:1212-31. [PMID: 24862458 DOI: 10.1002/hipo.22307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2014] [Indexed: 11/09/2022]
Abstract
Theta (4-12 Hz) oscillations in the hippocampus play an important role in learning and memory. They are altered by a wide variety of drugs that impair memory, and these effects may underlie or contribute to drug-induced amnesia. However, the network mechanisms linking drug actions with changes in memory formation remain poorly defined. Here, we used a multisite linear electrode array to measure local field potentials simultaneously across the CA1 layers of the hippocampus during active exploration, and employed current source density analysis and computational modeling to investigate how midazolam and atropine-two amnestic drugs that are used clinically and experimentally-change the relative timing and strength of the drivers of θ-oscillations. We found that two dipoles are present, with active inputs that are centered at the soma and the distal apical dendrite and passive return pathways that overlap in the mid-apical dendrite. Both drugs shifted the position of the phase reversal in the local field potential that occurred in the mid-apical dendritic region, but in opposite directions, by changing the strength of the dendritic pole, without altering the somatic pole or relative timing. Computational modeling showed that this constellation of changes, as well as an additional effect on a variably present mid-apical pole, could be produced by simultaneous changes in the active somatic and distal dendritic inputs. These network-level changes, produced by two amnestic drugs that target different types of receptors, may thus serve as a common basis for impaired memory encoding.
Collapse
Affiliation(s)
- Shilpashree Balakrishnan
- Neuroscience Training Program and Department of Anesthesiology, University of Wisconsin, Madison, Wisconsin
| | | |
Collapse
|