1
|
Najera RA, Mahavadi AK, Khan AU, Boddeti U, Del Bene VA, Walker HC, Bentley JN. Alternative patterns of deep brain stimulation in neurologic and neuropsychiatric disorders. Front Neuroinform 2023; 17:1156818. [PMID: 37415779 PMCID: PMC10320008 DOI: 10.3389/fninf.2023.1156818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023] Open
Abstract
Deep brain stimulation (DBS) is a widely used clinical therapy that modulates neuronal firing in subcortical structures, eliciting downstream network effects. Its effectiveness is determined by electrode geometry and location as well as adjustable stimulation parameters including pulse width, interstimulus interval, frequency, and amplitude. These parameters are often determined empirically during clinical or intraoperative programming and can be altered to an almost unlimited number of combinations. Conventional high-frequency stimulation uses a continuous high-frequency square-wave pulse (typically 130-160 Hz), but other stimulation patterns may prove efficacious, such as continuous or bursting theta-frequencies, variable frequencies, and coordinated reset stimulation. Here we summarize the current landscape and potential clinical applications for novel stimulation patterns.
Collapse
Affiliation(s)
- Ricardo A. Najera
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anil K. Mahavadi
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anas U. Khan
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ujwal Boddeti
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Victor A. Del Bene
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Harrison C. Walker
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - J. Nicole Bentley
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
2
|
Campbell BA, Favi Bocca L, Escobar Sanabria D, Almeida J, Rammo R, Nagel SJ, Machado AG, Baker KB. The impact of pulse timing on cortical and subthalamic nucleus deep brain stimulation evoked potentials. Front Hum Neurosci 2022; 16:1009223. [PMID: 36204716 PMCID: PMC9532054 DOI: 10.3389/fnhum.2022.1009223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
The impact of pulse timing is an important factor in our understanding of how to effectively modulate the basal ganglia thalamocortical (BGTC) circuit. Single pulse low-frequency DBS-evoked potentials generated through electrical stimulation of the subthalamic nucleus (STN) provide insight into circuit activation, but how the long-latency components change as a function of pulse timing is not well-understood. We investigated how timing between stimulation pulses delivered in the STN region influence the neural activity in the STN and cortex. DBS leads implanted in the STN of five patients with Parkinson's disease were temporarily externalized, allowing for the delivery of paired pulses with inter-pulse intervals (IPIs) ranging from 0.2 to 10 ms. Neural activation was measured through local field potential (LFP) recordings from the DBS lead and scalp EEG. DBS-evoked potentials were computed using contacts positioned in dorsolateral STN as determined through co-registered post-operative imaging. We quantified the degree to which distinct IPIs influenced the amplitude of evoked responses across frequencies and time using the wavelet transform and power spectral density curves. The beta frequency content of the DBS evoked responses in the STN and scalp EEG increased as a function of pulse-interval timing. Pulse intervals <1.0 ms apart were associated with minimal to no change in the evoked response. IPIs from 1.5 to 3.0 ms yielded a significant increase in the evoked response, while those >4 ms produced modest, but non-significant growth. Beta frequency activity in the scalp EEG and STN LFP response was maximal when IPIs were between 1.5 and 4.0 ms. These results demonstrate that long-latency components of DBS-evoked responses are pre-dominantly in the beta frequency range and that pulse interval timing impacts the level of BGTC circuit activation.
Collapse
Affiliation(s)
- Brett A. Campbell
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Leonardo Favi Bocca
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - David Escobar Sanabria
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Julio Almeida
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Richard Rammo
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Sean J. Nagel
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Andre G. Machado
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Kenneth B. Baker
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
- *Correspondence: Kenneth B. Baker
| |
Collapse
|
3
|
Wang Z, Feng Z, Yuan Y, Yang G, Hu Y, Zheng L. Bifurcations in the firing of neuronal population caused by a small difference in pulse parameters during sustained stimulations in rat hippocampus in vivo. IEEE Trans Biomed Eng 2022; 69:2893-2904. [PMID: 35254971 DOI: 10.1109/tbme.2022.3157342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE The bifurcation of neuronal firing is one of important nonlinear phenomena in the nervous system and is characterized by a significant change in the rate or temporal pattern of neuronal firing on responding to a small disturbance from external inputs. Previous studies have reported firing bifurcations for individual neurons, not for a population of neurons. We hypothesized that the integrated firing of a neuronal population could also show a bifurcation behavior that should be important in certain situations such as deep brain stimulations. The hypothesis was verified by experiments of rat hippocampus in vivo. METHODS Stimulation sequences of paired-pulses with two different inter-pulse-intervals (IPIs) or with two different pulse intensities were applied on the alveus of hippocampal CA1 region in anaesthetized rats. The amplitude and area of antidromic population spike (APS) were used as indices to evaluate the differences in the responses of neuronal population to the different pulses in stimulations. RESULTS During sustained paired-pulse stimulations with a high mean pulse frequency such as ~130 Hz, a small difference of only a few percent in the two IPIs or in the two intensities was able to generate a sequence of evoked APSs with a substantial bifurcation in their amplitudes and areas. CONCLUSION Small differences in the excitatory inputs can cause nonlinearly enlarged differences in the induced firing of neuronal populations. SIGNIFICANCE The novel dynamics and bifurcation of neuronal responses to electrical stimulations provide important clues for developing new paradigms to extend neural stimulations to treat more diseases.
Collapse
|
4
|
Eles JR, Stieger KC, Kozai TDY. The temporal pattern of Intracortical Microstimulation pulses elicits distinct temporal and spatial recruitment of cortical neuropil and neurons. J Neural Eng 2020; 18. [PMID: 33075762 DOI: 10.1088/1741-2552/abc29c] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The spacing or distribution of stimulation pulses of therapeutic neurostimulation waveforms-referred to here as the Temporal Pattern (TP)-has emerged as an important parameter for tuning the response to deep-brain stimulation and intracortical microstimulation (ICMS). While it has long been assumed that modulating the TP of ICMS may be effective by altering the rate coding of the neural response, it is unclear how it alters the neural response at the neural network level. The present study is designed to elucidate the neural response to TP at the network level. APPROACH We use in vivo two-photon imaging of ICMS in mice expressing the calcium sensor Thy1-GCaMP or the glutamate sensor hSyn-iGluSnFr to examine the layer II/III neural response to stimulations with different TPs. We study the neuronal calcium and glutamate response to TPs with the same average frequency (10Hz) and same total charge injection, but varying degrees of bursting. We also investigate one control pattern with an average frequency of 100Hz and 10X the charge injection. MAIN RESULTS Stimulation trains with the same average frequency (10 Hz) and same total charge injection but distinct temporal patterns recruits distinct sets of neurons. More-than-half (60% of 309 cells) prefer one temporal pattern over the other. Despite their distinct spatial recruitment patterns, both cells exhibit similar ability to follow 30s trains of both TPs without failing, and they exhibit similar levels of glutamate release during stimulation. Both neuronal calcium and glutamate release train to the bursting TP pattern (~21-fold increase in relative power at the frequency of bursting. Bursting also results in a statistically significant elevation in the correlation between somatic calcium activity and neuropil activity, which we explore as a metric for inhibitory-excitatory tone. Interestingly, soma-neuropil correlation during the bursting pattern is a statistically significant predictor of cell preference for TP, which exposes a key link between inhibitory-excitatory tone. Finally, using mesoscale imaging, we show that both TPs result in distal inhibition during stimulation, which reveals complex spatial and temporal interactions between temporal pattern and inhibitory-excitatory tone in ICMS. SIGNIFICANCE Our results may ultimately suggest that TP is a valuable parameter space to modulate inhibitory-excitatory tone as well as distinct network activity in ICMS. This presents a broader mechanism of action than rate coding, as previously thought. By implicating these additional mechanisms, TP may have broader utility in the clinic and should be pursued to expand the efficacy of ICMS therapies.
Collapse
Affiliation(s)
- James R Eles
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, UNITED STATES
| | - Kevin C Stieger
- Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, UNITED STATES
| | - Takashi D Yoshida Kozai
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave, 5059-BST3, Pittsburgh, PA 15213, USA, Pittsburgh, Pennsylvania, UNITED STATES
| |
Collapse
|
5
|
Bello EM, Agnesi F, Xiao Y, Dao J, Johnson MD. Frequency-dependent spike-pattern changes in motor cortex during thalamic deep brain stimulation. J Neurophysiol 2020; 124:1518-1529. [PMID: 32965147 DOI: 10.1152/jn.00198.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cerebellar-receiving area of the motor thalamus is the primary anatomical target for treating essential tremor with deep brain stimulation (DBS). Although neuroimaging studies have shown that higher stimulation frequencies in this target correlate with increased cortical metabolic activity, less is known about the cellular-level functional changes that occur in the primary motor cortex (M1) with thalamic stimulation and how these changes depend on the frequency of DBS. In this study, we used a preclinical animal model of DBS to collect single-unit spike recordings in M1 before, during, and after DBS targeting the cerebellar-receiving area of the motor thalamus (VPLo, nucleus ventralis posterior lateralis pars oralis). The effects of VPLo-DBS on M1 spike rates, interspike interval entropy, and peristimulus phase-locking were compared across stimulus pulse train frequencies ranging from 10 to 130 Hz. Although VPLo-DBS modulated the spike rates of 20-50% of individual M1 cells in a frequency-dependent manner, the population-level average spike rate only weakly depended on stimulation frequency. In contrast, the population-level entropy measure showed a pronounced decrease with high-frequency stimulation, caused by a subpopulation of cells that exhibited strong phase-locking and general spike-pattern regularization. Contrarily, low-frequency stimulation induced an entropy increase (spike-pattern disordering) in a relatively large portion of the recorded population, which diminished with higher stimulation frequencies. These results also suggest that changes in phase-locking and spike-pattern entropy are not necessarily equivalent pattern phenomena, but rather that they should both be weighed when quantifying stimulation-induced spike-pattern changes.NEW & NOTEWORTHY The network mechanisms of thalamic deep brain stimulation (DBS) are not well understood at the cellular level. This study investigated the neuronal firing rate and pattern changes in the motor cortex resulting from stimulation of the cerebellar-receiving area of the motor thalamus. We showed that there is a nonintuitive relationship between general entropy-based spike-pattern measures and phase-locked regularization to DBS.
Collapse
Affiliation(s)
- Edward M Bello
- Department of Biomedical Engineering, University of Minnesota, Minneapolis
| | - Filippo Agnesi
- Department of Biomedical Engineering, University of Minnesota, Minneapolis
| | - Yizi Xiao
- Department of Biomedical Engineering, University of Minnesota, Minneapolis
| | - Joan Dao
- Department of Biomedical Engineering, University of Minnesota, Minneapolis
| | - Matthew D Johnson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis
| |
Collapse
|
6
|
Zheng L, Feng Z, Hu H, Wang Z, Yuan Y, Wei X. The Appearance Order of Varying Intervals Introduces Extra Modulation Effects on Neuronal Firing Through Non-linear Dynamics of Sodium Channels During High-Frequency Stimulations. Front Neurosci 2020; 14:397. [PMID: 32528237 PMCID: PMC7263357 DOI: 10.3389/fnins.2020.00397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 03/30/2020] [Indexed: 11/13/2022] Open
Abstract
Electrical pulse stimulation in the brain has shown success in treating several brain disorders with constant pulse frequency or constant inter-pulse interval (IPI). Varying IPI may offer a variety of novel stimulation paradigms and may extend the clinical applications. However, a lack of understanding of neuronal responses to varying IPI limits its informed applications. In this study, to investigate the effects of varying IPI, we performed both rat experiments and computational modeling by applying high-frequency stimulation (HFS) to efferent axon fibers of hippocampal pyramidal cells. Antidromically evoked population spikes (PSs) were used to evaluate the neuronal responses to pulse stimulations with different IPI patterns including constant IPI, gradually varying IPI, and randomly varying IPI. All the varying IPI sequences were uniformly distributed in the same interval range of 10 to 5 ms (i.e., 100 to 200 Hz). The experimental results showed that the mean correlation coefficient of PS amplitudes to the lengths of preceding IPI during HFS with random IPI (0.72 ± 0.04, n = 7 rats) was significantly smaller than the corresponding correlation coefficient during HFS with gradual IPI (0.92 ± 0.03, n = 7 rats, P < 0.001, t-test). The PS amplitudes induced by the random IPI covered a wider range, over twice as much as that induced by the gradual IPI, indicating additional effects induced by merely changing the appearance order of IPI. The computational modeling reproduced these experimental results and provided insights into these modulatory effects through the mechanism of non-linear dynamics of sodium channels and potassium accumulation in the narrow peri-axonal space. The simulation results showed that the HFS-induced increase of extracellular potassium ([K+] o ) elevated the membrane potential of axons, delayed the recovery course of sodium channels that were repeatedly activated and inactivated during HFS, and resulted in intermittent neuronal firing. Because of non-linear membrane dynamics, random IPI recruited more neurons to fire together following specific sub-sequences of pulses than gradual IPI, thereby widening the range of PS amplitudes. In conclusion, the study demonstrated novel HFS effects of neuronal modulation induced by merely changing the appearance order of the same group of IPI of pulses, which may inform the development of new stimulation patterns to meet different demands for treating various brain diseases.
Collapse
Affiliation(s)
- Lvpiao Zheng
- Key Laboratory of Biomedical Engineering for Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Zhouyan Feng
- Key Laboratory of Biomedical Engineering for Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Hanhan Hu
- Key Laboratory of Biomedical Engineering for Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Zhaoxiang Wang
- Key Laboratory of Biomedical Engineering for Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Yue Yuan
- Key Laboratory of Biomedical Engineering for Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Xuefeng Wei
- Department of Biomedical Engineering, The College of New Jersey, Ewing, NJ, United States
| |
Collapse
|
7
|
Wong JK, Hess CW, Almeida L, Middlebrooks EH, Christou EA, Patrick EE, Shukla AW, Foote KD, Okun MS. Deep brain stimulation in essential tremor: targets, technology, and a comprehensive review of clinical outcomes. Expert Rev Neurother 2020; 20:319-331. [PMID: 32116065 DOI: 10.1080/14737175.2020.1737017] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: Essential tremor (ET) is a common movement disorder with an estimated prevalence of 0.9% worldwide. Deep brain stimulation (DBS) is an established therapy for medication refractory and debilitating tremor. With the arrival of next generation technology, the implementation and delivery of DBS has been rapidly evolving. This review will highlight the current applications and constraints for DBS in ET.Areas covered: The mechanism of action, targets for neuromodulation, next generation guidance techniques, symptom-specific applications, and long-term efficacy will be reviewed.Expert opinion: The posterior subthalamic area and zona incerta are alternative targets to thalamic DBS in ET. However, they may be associated with additional stimulation-induced side effects. Novel stimulation paradigms and segmented electrodes provide innovative approaches to DBS programming and stimulation-induced side effects.
Collapse
Affiliation(s)
- Joshua K Wong
- Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Christopher W Hess
- Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Leonardo Almeida
- Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | | | - Evangelos A Christou
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Erin E Patrick
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA
| | - Aparna Wagle Shukla
- Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Kelly D Foote
- Fixel Institute for Neurological Diseases, Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
8
|
Swan BD, Brocker DT, Gross RE, Turner DA, Grill WM. Effects of ramped-frequency thalamic deep brain stimulation on tremor and activity of modeled neurons. Clin Neurophysiol 2019; 131:625-634. [PMID: 31978847 DOI: 10.1016/j.clinph.2019.11.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 11/18/2019] [Accepted: 11/23/2019] [Indexed: 11/25/2022]
Abstract
OBJECTIVE We conducted intraoperative measurements of tremor to quantify the effects of temporally patterned ramped-frequency DBS trains on tremor. METHODS Seven patterns of stimulation were tested in nine subjects with thalamic DBS for essential tremor: stimulation 'off', three ramped-frequency stimulation (RFS) trains from 130 → 50 Hz, 130 → 60 Hz, and 235 → 90 Hz, and three constant frequency stimulation (CFS) trains at 72, 82, and 130 Hz. The same patterns were applied to a computational model of the thalamic neural network. RESULTS Temporally patterned 130 → 60 Hz ramped-frequency trains suppressed tremor relative to stimulation 'off,' but 130 → 50 Hz, 130 → 60 Hz, and 235 → 90 Hz ramped-frequency trains were no more effective than constant frequency stimulation with the same mean interpulse interval (IPI). Computational modeling revealed that rhythmic burst-driver inputs to thalamus were masked during DBS, but long IPIs, concurrent with pauses in afferent cerebellar and cortical firing, allowed propagation of bursting activity. The mean firing rate of bursting-type model neurons as well as the firing pattern entropy of model neurons were both strongly correlated with tremor power across stimulation conditions. CONCLUSION Frequency-ramped DBS produced equivalent tremor suppression as constant frequency thalamic DBS. Tremor-related thalamic burst activity may result from burst-driver input, rather than by an intrinsic rebound mechanism. SIGNIFICANCE Ramping stimulation frequency may exacerbate thalamic burst firing by introducing consecutive pauses of increasing duration to the stimulation pattern.
Collapse
Affiliation(s)
- Brandon D Swan
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - David T Brocker
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University Hospital, Atlanta, GA, USA
| | - Dennis A Turner
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC, USA; Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC, USA; Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA; Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
9
|
De Jesus S, Okun MS, Foote KD, Martinez-Ramirez D, Roper JA, Hass CJ, Shahgholi L, Akbar U, Wagle Shukla A, Raike RS, Almeida L. Square Biphasic Pulse Deep Brain Stimulation for Parkinson's Disease: The BiP-PD Study. Front Hum Neurosci 2019; 13:368. [PMID: 31680918 PMCID: PMC6811491 DOI: 10.3389/fnhum.2019.00368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/30/2019] [Indexed: 11/13/2022] Open
Abstract
Background Conventional Parkinson’s disease (PD) deep brain stimulation (DBS) utilizes a pulse with an active phase and a passive charge-balancing phase. A pulse-shaping strategy that eliminates the passive phase may be a promising approach to addressing movement disorders. Objectives The current study assessed the safety and tolerability of square biphasic pulse shaping (sqBIP) DBS for use in PD. Methods This small pilot safety and tolerability study compared sqBiP versus conventional DBS. Nine were enrolled. The safety and tolerability were assessed over a 3-h period on sqBiP. Friedman’s test compared blinded assessments at baseline, washout, and 30 min, 1 h, 2 h, and 3 h post sqBIP. Results Biphasic pulses were safe and well tolerated by all participants. SqBiP performed as well as conventional DBS without significant differences in motor scores nor accelerometer or gait measures. Conclusion Biphasic pulses were well-tolerated and provided similar benefit to conventional DBS. Further studies should address effectiveness of sqBIP in select PD patients.
Collapse
Affiliation(s)
- Sol De Jesus
- Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States.,Department of Neurology, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Michael S Okun
- Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States
| | - Kelly D Foote
- Department of Neurosurgery, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States
| | - Daniel Martinez-Ramirez
- Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States.,Tecnologico de Monterrey, Escuela de Medicina Ignacio A. Santos, Monterrey, Mexico
| | - Jaimie A Roper
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Chris J Hass
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Leili Shahgholi
- Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States
| | - Umer Akbar
- Department of Neurology, Brown University, Providence, RI, United States
| | - Aparna Wagle Shukla
- Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States
| | - Robert S Raike
- Restorative Therapies Group Implantables, Research and Core Technology, Medtronic, Minneapolis, MN, United States
| | - Leonardo Almeida
- Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States
| |
Collapse
|
10
|
Fasano A, Helmich RC. Tremor habituation to deep brain stimulation: Underlying mechanisms and solutions. Mov Disord 2019; 34:1761-1773. [PMID: 31433906 DOI: 10.1002/mds.27821] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 07/01/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022] Open
Abstract
DBS of the ventral intermediate nucleus is an extremely effective treatment for essential tremor, although a waning benefit is observed after a variable time in a variable proportion of patients (ranging from 0% to 73%), a concept historically defined as "tolerance." Tolerance is currently an established concept in the medical community, although there is debate on its real existence. In fact, very few publications have actually addressed the problem, thus making tolerance a typical example of science based on "eminence rather than evidence." The underpinnings of the phenomena associated with the progressive loss of DBS benefit are not fully elucidated, although the interplay of different-not mutually exclusive-factors has been advocated. In this viewpoint, we gathered the evidence explaining the progressive loss of benefit observed after DBS. We grouped these factors in three categories: disease-related factors (tremor etiology and progression); surgery-related factors (electrode location, microlesional effect and placebo); and stimulation-related factors (not optimized stimulation, stimulation-induced side effects, habituation, and tremor rebound). We also propose possible pathophysiological explanations for the phenomenon and define a nomenclature of the associated features: early versus late DBS failure; tremor rebound versus habituation (to be preferred over tolerance). Finally, we provide a practical approach for preventing and treating this loss of DBS benefit, and we draft a possible roadmap for the research to come. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada; Division of Neurology, University of Toronto, Toronto, Ontario, Canada.,Krembil Brain Institute, Toronto, Ontario, Canada.,CenteR for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, Ontario, Canada
| | - Rick C Helmich
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Nijmegen, The Netherlands
| |
Collapse
|
11
|
Adams SD, Bennet KE, Tye SJ, Berk M, Kouzani AZ. Development of a miniature device for emerging deep brain stimulation paradigms. PLoS One 2019; 14:e0212554. [PMID: 30789946 PMCID: PMC6383994 DOI: 10.1371/journal.pone.0212554] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 02/05/2019] [Indexed: 11/18/2022] Open
Abstract
Deep brain stimulation (DBS) is a neuromodulatory approach for treatment of several neurological and psychiatric disorders. A new focus on optimising the waveforms used for stimulation is emerging regarding the mechanism of DBS treatment. Many existing DBS devices offer only a limited set of predefined waveforms, mainly rectangular, and hence are inapt for exploring the emerging paradigm. Advances in clinical DBS are moving towards incorporating new stimulation parameters, yet we remain limited in our capacity to test these in animal models, arguably a critical first step. Accordingly, there is a need for the development of new miniature, low-power devices to enable investigation into the new DBS paradigms in preclinical settings. The ideal device would allow for flexibility in the stimulation waveforms, while remaining suitable for chronic, tetherless, biphasic deep brain stimulation. In this work, we elucidate several key parameters in a DBS system, identify gaps in existing solutions, and propose a new device to support preclinical DBS. The device allows for a high degree of flexibility in the output waveform with easily altered shape, frequency, pulse-width and amplitude. The device is suitable for both traditional and modern stimulation schemes, including those using non-rectangular waveforms, as well as delayed feedback schemes. The device incorporates active charge balancing to ensure safe operation, and allows for simple production of custom biphasic waveforms. This custom waveform output is unique in the field of preclinical DBS devices, and could be advantageous in performing future DBS studies investigating new treatment paradigms. This tetherless device can be easily and comfortably carried by an animal in a back-mountable configuration. The results of in-vitro tests are presented and discussed.
Collapse
Affiliation(s)
- Scott D. Adams
- Deakin University, School of Engineering, Geelong, Victoria, Australia
| | - Kevin E. Bennet
- Division of Engineering, Mayo Clinic, Rochester, MN, United States of America
| | - Susannah J. Tye
- Queensland Brain Institute, the University of Queensland, St Lucia QLD, Australia
| | - Michael Berk
- Deakin University, School of Medicine, IMPACT SRC, Barwon Health, Geelong, Victoria, Australia
| | - Abbas Z. Kouzani
- Deakin University, School of Engineering, Geelong, Victoria, Australia
- * E-mail:
| |
Collapse
|
12
|
Feng Z, Ma W, Wang Z, Qiu C, Hu H. Small Changes in Inter-Pulse-Intervals Can Cause Synchronized Neuronal Firing During High-Frequency Stimulations in Rat Hippocampus. Front Neurosci 2019; 13:36. [PMID: 30766474 PMCID: PMC6365434 DOI: 10.3389/fnins.2019.00036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/15/2019] [Indexed: 01/04/2023] Open
Abstract
Deep brain stimulation (DBS) traditionally utilizes electrical pulse sequences with a constant frequency, i.e., constant inter-pulse-interval (IPI), to treat certain brain disorders in clinic. Stimulation sequences with varying frequency have been investigated recently to improve the efficacy of existing DBS therapy and to develop new treatments. However, the effects of such sequences are inconclusive. The present study tests the hypothesis that stimulations with varying IPI can generate neuronal activity markedly different from the activity induced by stimulations with constant IPI. And, the crucial factor causing the distinction is the relative differences in IPI lengths rather than the absolute lengths of IPI nor the average lengths of IPI. In rat experiments in vivo, responses of neuronal populations to applied stimulation sequences were collected during stimulations with both constant IPI (control) and random IPI. The stimulations were applied in the efferent fibers antidromically (in alveus) or in the afferent fibers orthodromically (in Schaffer collaterals) of pyramidal cells, the principal cells of hippocampal CA1 region. Amplitudes and areas of population spike (PS) waveforms were used to evaluate the neuronal responses induced by different stimulation paradigms. During the periods of both antidromic and orthodromic high-frequency stimulation (HFS), the HFS with random IPI induced synchronous neuronal firing with large PS even if the lengths of random IPI were limited to a small range of 5-10 ms, corresponding to a frequency range 100-200 Hz. The large PS events did not appear during control stimulations with a constant frequency at 100, 200, or 130 Hz (i.e., the mean frequency of HFS with random IPI uniformly distributed within 5-10 ms). Presumably, nonlinear dynamics in neuronal responses to random IPI might cause the generation of synchronous firing under the situation without any long pauses in HFS sequences. The results indicate that stimulations with random IPI can generate salient impulses to brain tissues and modulate the synchronization of neuronal activity, thereby providing potential stimulation paradigms for extending DBS therapy in treating more brain diseases, such as disorders of consciousness and vegetative states.
Collapse
Affiliation(s)
- Zhouyan Feng
- Key Lab of Biomedical Engineering for Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Weijian Ma
- Key Lab of Biomedical Engineering for Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Zhaoxiang Wang
- Key Lab of Biomedical Engineering for Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Chen Qiu
- Key Lab of Biomedical Engineering for Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Hanhan Hu
- Key Lab of Biomedical Engineering for Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Yi G, Grill WM. Frequency-dependent antidromic activation in thalamocortical relay neurons: effects of synaptic inputs. J Neural Eng 2018; 15:056001. [PMID: 29893711 DOI: 10.1088/1741-2552/aacbff] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) generates action potentials (APs) in presynaptic axons and fibers of passage. The APs may be antidromically propagated to invade the cell body and/or orthodromically transmitted to downstream structures, thereby affecting widespread targets distant from the electrode. Activation of presynaptic terminals also causes trans-synaptic effects, which in turn alter the excitability of the post-synaptic neurons. Our aim was to determine how synaptic inputs affect the antidromic invasion of the cell body. APPROACH We used a biophysically-based multi-compartment model to simulate antidromic APs in thalamocortical relay (TC) neurons. We applied distributed synaptic inputs to the model and quantified how excitatory and inhibitory inputs contributed to the fidelity of antidromic activation over a range of antidromic frequencies. MAIN RESULTS Antidromic activation exhibited strong frequency dependence, which arose from the hyperpolarizing afterpotentials in the cell body and its respective recovery cycle. Low-frequency axonal spikes faithfully invaded the soma, whereas frequent failures of antidromic activation occurred at high frequencies. The frequency-dependent pattern of the antidromic activation masked burst-driver inputs to TC neurons from the cerebellum in a frequency-dependent manner. Antidromic activation also depended on the excitability of the cell body. Excitatory synaptic inputs improved the fidelity of antidromic activation by increasing the excitability, and inhibitory inputs suppressed antidromic activation by reducing soma excitability. Stimulus-induced depolarization of neuronal segments also facilitated antidromic propagation and activation. SIGNIFICANCE The results reveal that synaptic inputs, stimulus frequency, and electrode position regulate antidromic activation of the cell body during extracellular stimulation. These findings provide a biophysical basis for interpreting the widespread inhibition/activation of target nuclei during DBS.
Collapse
Affiliation(s)
- Guosheng Yi
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States of America. School of Electrical and Information Engineering, Tianjin University, Tianjin, People's Republic of China
| | | |
Collapse
|
14
|
Deep brain stimulation induces sparse distributions of locally modulated neuronal activity. Sci Rep 2018; 8:2062. [PMID: 29391468 PMCID: PMC5794783 DOI: 10.1038/s41598-018-20428-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/18/2018] [Indexed: 12/17/2022] Open
Abstract
Deep brain stimulation (DBS) therapy is a potent tool for treating a range of brain disorders. High frequency stimulation (HFS) patterns used in DBS therapy are known to modulate neuronal spike rates and patterns in the stimulated nucleus; however, the spatial distribution of these modulated responses are not well understood. Computational models suggest that HFS modulates a volume of tissue spatially concentrated around the active electrode. Here, we tested this theory by investigating modulation of spike rates and patterns in non-human primate motor thalamus while stimulating the cerebellar-receiving area of motor thalamus, the primary DBS target for treating Essential Tremor. HFS inhibited spike activity in the majority of recorded cells, but increasing stimulation amplitude also shifted the response to a greater degree of spike pattern modulation. Modulated responses in both categories exhibited a sparse and long-range spatial distribution within motor thalamus, suggesting that stimulation preferentially affects afferent and efferent axonal processes traversing near the active electrode and that the resulting modulated volume strongly depends on the local connectome of these axonal processes. Such findings have important implications for current clinical efforts building predictive computational models of DBS therapy, developing directional DBS lead technology, and formulating closed-loop DBS strategies.
Collapse
|
15
|
Ramirez-Zamora A, Giordano JJ, Gunduz A, Brown P, Sanchez JC, Foote KD, Almeida L, Starr PA, Bronte-Stewart HM, Hu W, McIntyre C, Goodman W, Kumsa D, Grill WM, Walker HC, Johnson MD, Vitek JL, Greene D, Rizzuto DS, Song D, Berger TW, Hampson RE, Deadwyler SA, Hochberg LR, Schiff ND, Stypulkowski P, Worrell G, Tiruvadi V, Mayberg HS, Jimenez-Shahed J, Nanda P, Sheth SA, Gross RE, Lempka SF, Li L, Deeb W, Okun MS. Evolving Applications, Technological Challenges and Future Opportunities in Neuromodulation: Proceedings of the Fifth Annual Deep Brain Stimulation Think Tank. Front Neurosci 2018; 11:734. [PMID: 29416498 PMCID: PMC5787550 DOI: 10.3389/fnins.2017.00734] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/15/2017] [Indexed: 12/21/2022] Open
Abstract
The annual Deep Brain Stimulation (DBS) Think Tank provides a focal opportunity for a multidisciplinary ensemble of experts in the field of neuromodulation to discuss advancements and forthcoming opportunities and challenges in the field. The proceedings of the fifth Think Tank summarize progress in neuromodulation neurotechnology and techniques for the treatment of a range of neuropsychiatric conditions including Parkinson's disease, dystonia, essential tremor, Tourette syndrome, obsessive compulsive disorder, epilepsy and cognitive, and motor disorders. Each section of this overview of the meeting provides insight to the critical elements of discussion, current challenges, and identified future directions of scientific and technological development and application. The report addresses key issues in developing, and emphasizes major innovations that have occurred during the past year. Specifically, this year's meeting focused on technical developments in DBS, design considerations for DBS electrodes, improved sensors, neuronal signal processing, advancements in development and uses of responsive DBS (closed-loop systems), updates on National Institutes of Health and DARPA DBS programs of the BRAIN initiative, and neuroethical and policy issues arising in and from DBS research and applications in practice.
Collapse
Affiliation(s)
- Adolfo Ramirez-Zamora
- Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States,*Correspondence: Adolfo Ramirez-Zamora
| | - James J. Giordano
- Department of Neurology, Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC, United States
| | - Aysegul Gunduz
- J. Crayton Pruitt Family Department of Biomedical Engineering, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States
| | - Peter Brown
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Justin C. Sanchez
- Biological Technologies Office, Defense Advanced Research Projects Agency, Arlington, VA, United States
| | - Kelly D. Foote
- Department of Neurosurgery, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States
| | - Leonardo Almeida
- Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States
| | - Philip A. Starr
- Department of Neurological Surgery, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Helen M. Bronte-Stewart
- Departments of Neurology and Neurological Sciences and Neurosurgery, Stanford University, Stanford, CA, United States
| | - Wei Hu
- Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States
| | - Cameron McIntyre
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Wayne Goodman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Doe Kumsa
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, United States Food and Drug Administration, White Oak Federal Research Center, Silver Spring, MD, United States
| | - Warren M. Grill
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Harrison C. Walker
- Division of Movement Disorders, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States,Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Matthew D. Johnson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Jerrold L. Vitek
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - David Greene
- NeuroPace, Inc., Mountain View, CA, United States
| | - Daniel S. Rizzuto
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States
| | - Dong Song
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Theodore W. Berger
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Robert E. Hampson
- Physiology and Pharmacology, Wake Forest University School of Medicine, Wake Forest University, Winston-Salem, NC, United States
| | - Sam A. Deadwyler
- Physiology and Pharmacology, Wake Forest University School of Medicine, Wake Forest University, Winston-Salem, NC, United States
| | - Leigh R. Hochberg
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Harvard University, Boston, MA, United States,Center for Neurorestoration and Neurotechnology, Rehabilitation R and D Service, Veterans Affairs Medical Center, Providence, RI, United States,School of Engineering and Brown Institute for Brain Science, Brown University, Providence, RI, United States
| | - Nicholas D. Schiff
- Laboratory of Cognitive Neuromodulation, Feil Family Brain Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | | | - Greg Worrell
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Vineet Tiruvadi
- Department of Biomedical Engineering, Georgia Institute of Technology, Emory University School of Medicine, Emory University, Atlanta, GA, United States
| | - Helen S. Mayberg
- Departments of Psychiatry, Neurology, and Radiology, Emory University School of Medicine, Emory University, Atlanta, GA, United States
| | - Joohi Jimenez-Shahed
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Pranav Nanda
- Department of Neurological Surgery, The Neurological Institute, Columbia University Herbert and Florence Irving Medical Center, Colombia University, New York, NY, United States
| | - Sameer A. Sheth
- Department of Neurological Surgery, The Neurological Institute, Columbia University Herbert and Florence Irving Medical Center, Colombia University, New York, NY, United States
| | - Robert E. Gross
- Department of Neurosurgery, Emory University, Atlanta, GA, United States
| | - Scott F. Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Luming Li
- National Engineering Laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China,Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Beijing, China,Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| | - Wissam Deeb
- Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States
| | - Michael S. Okun
- Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States
| |
Collapse
|
16
|
Square biphasic pulse deep brain stimulation for essential tremor: The BiP tremor study. Parkinsonism Relat Disord 2017; 46:41-46. [PMID: 29102253 DOI: 10.1016/j.parkreldis.2017.10.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 10/02/2017] [Accepted: 10/19/2017] [Indexed: 11/20/2022]
Abstract
BACKGROUND Conventional deep brain stimulation (DBS) utilizes regular, high frequency pulses to treat medication-refractory symptoms in essential tremor (ET). Modifications of DBS pulse shape to achieve improved effectiveness is a promising approach. OBJECTIVES The current study assessed the safety, tolerability and effectiveness of square biphasic pulse shaping as an alternative to conventional ET DBS. METHODS This pilot study compared biphasic pulses (BiP) versus conventional DBS pulses (ClinDBS). Eleven ET subjects with clinically optimized ventralis intermedius nucleus DBS were enrolled. Objective measures were obtained over 3 h while ON BiP stimulation. RESULTS There was observed benefit in the Fahn-Tolosa Tremor Rating Scale (TRS) for BiP conditions when compared to the DBS off condition and to ClinDBS setting. Total TRS scores during the DBS OFF condition (28.5 IQR = 24.5-35.25) were significantly higher than the other time points. Following active DBS, TRS improved to (20 IQR = 13.8-24.3) at ClinDBS setting and to (16.5 IQR = 12-20.75) at the 3 h period ON BiP stimulation (p = 0.001). Accelerometer recordings revealed improvement in tremor at rest (χ2 = 16.1, p = 0.006), posture (χ2 = 15.9, p = 0.007) and with action (χ2 = 32.1, p=<0.001) when comparing median total scores at ClinDBS and OFF DBS conditions to 3 h ON BiP stimulation. There were no adverse effects and gait was not impacted. CONCLUSION BiP was safe, tolerable and effective on the tremor symptoms when tested up to 3 h. This study demonstrated the feasibility of applying a novel DBS waveform in the clinic setting. Larger prospective studies with longer clinical follow-up will be required.
Collapse
|
17
|
Baizabal-Carvallo JF, Alonso-Juarez M. Low-frequency deep brain stimulation for movement disorders. Parkinsonism Relat Disord 2016; 31:14-22. [DOI: 10.1016/j.parkreldis.2016.07.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/21/2016] [Accepted: 07/28/2016] [Indexed: 12/24/2022]
|
18
|
Swan BD, Brocker DT, Hilliard JD, Tatter SB, Gross RE, Turner DA, Grill WM. Short pauses in thalamic deep brain stimulation promote tremor and neuronal bursting. Clin Neurophysiol 2015; 127:1551-1559. [PMID: 26330131 DOI: 10.1016/j.clinph.2015.07.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 07/01/2015] [Accepted: 07/17/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE We conducted intraoperative measurements of tremor during DBS containing short pauses (⩽50 ms) to determine if there is a minimum pause duration that preserves tremor suppression. METHODS Nine subjects with ET and thalamic DBS participated during IPG replacement surgery. Patterns of DBS included regular 130 Hz stimulation interrupted by 0, 15, 25 or 50 ms pauses. The same patterns were applied to a model of the thalamic network to quantify effects of pauses on activity of model neurons. RESULTS All patterns of DBS decreased tremor relative to 'off'. Patterns with pauses generated less tremor reduction than regular high frequency DBS. The model revealed that rhythmic burst-driver inputs to thalamus were masked during DBS, but pauses in stimulation allowed propagation of bursting activity. The mean firing rate of bursting-type model neurons as well as the firing pattern entropy of model neurons were both strongly correlated with tremor power across stimulation conditions. CONCLUSIONS The temporal pattern of stimulation influences the efficacy of thalamic DBS. Pauses in stimulation resulted in decreased tremor suppression indicating that masking of pathological bursting is a mechanism of thalamic DBS for tremor. SIGNIFICANCE Pauses in stimulation decreased the efficacy of open-loop DBS for suppression of tremor.
Collapse
Affiliation(s)
- Brandon D Swan
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - David T Brocker
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Justin D Hilliard
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Stephen B Tatter
- Department of Neurosurgery, Wake Forest University Baptist Medical Center, Winston-Salem, NC, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Dennis A Turner
- Department of Surgery, Duke University Medical Center, Durham, NC, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Surgery, Duke University Medical Center, Durham, NC, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC, USA; Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
19
|
Summerson SR, Aazhang B, Kemere C. Investigating irregularly patterned deep brain stimulation signal design using biophysical models. Front Comput Neurosci 2015; 9:78. [PMID: 26167150 PMCID: PMC4481153 DOI: 10.3389/fncom.2015.00078] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 06/10/2015] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder which follows from cell loss of dopaminergic neurons in the substantia nigra pars compacta (SNc), a nucleus in the basal ganglia (BG). Deep brain stimulation (DBS) is an electrical therapy that modulates the pathological activity to treat the motor symptoms of PD. Although this therapy is currently used in clinical practice, the sufficient conditions for therapeutic efficacy are unknown. In this work we develop a model of critical motor circuit structures in the brain using biophysical cell models as the base components and then evaluate performance of different DBS signals in this model to perform comparative studies of their efficacy. Biological models are an important tool for gaining insights into neural function and, in this case, serve as effective tools for investigating innovative new DBS paradigms. Experiments were performed using the hemi-parkinsonian rodent model to test the same set of signals, verifying the obedience of the model to physiological trends. We show that antidromic spiking from DBS of the subthalamic nucleus (STN) has a significant impact on cortical neural activity, which is frequency dependent and additionally modulated by the regularity of the stimulus pulse train used. Irregular spacing between stimulus pulses, where the amount of variability added is bounded, is shown to increase diversification of response of basal ganglia neurons and reduce entropic noise in cortical neurons, which may be fundamentally important to restoration of information flow in the motor circuit.
Collapse
Affiliation(s)
- Samantha R Summerson
- Department of Electrical Engineering and Computer Science, University of California, Berkeley Berkeley, CA, USA
| | - Behnaam Aazhang
- Department of Electrical and Computer Engineering, Rice University Houston, TX, USA
| | - Caleb Kemere
- Department of Electrical and Computer Engineering, Rice University Houston, TX, USA ; Department of Neuroscience, Baylor College of Medicine Houston, TX, USA
| |
Collapse
|
20
|
Andres DS, Gomez F, Ferrari FAS, Cerquetti D, Merello M, Viana R, Stoop R. Multiple-time-scale framework for understanding the progression of Parkinson's disease. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:062709. [PMID: 25615131 DOI: 10.1103/physreve.90.062709] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Indexed: 06/04/2023]
Abstract
Parkinson's disease is marked by neurodegenerative processes that affect the pattern of discharge of basal ganglia neurons. The main features observed in the parkinsonian globus pallidus pars interna (GPi), a subdomain of the basal ganglia that is involved in the regulation of voluntary movement, are pathologically increased and synchronized neuronal activity. How these changes affect the implemented neuronal code is not well understood. Our experimental temporal structure-function analysis shows that in parkinsonian animals the rate-coding window of GPi neurons needed for the proper performance of voluntary actions is reduced. The model of the GPi network that we develop and discuss here reveals indeed that the size of the rate-coding window shrinks as the network activity increases and is expanded if the coupling strength among the neurons is increased. This leads to the novel interpretation that the pathological neuronal synchronization in Parkinson's disease in the GPi is the result of a collective attempt to counterbalance the shrinking of the rate-coding window due to increased activity in GPi neurons.
Collapse
Affiliation(s)
- D S Andres
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland and Institute for Neurological Research Raul Carrea, Fleni Institute, Buenos Aires, Argentina and Society in Science, The Branco-Weiss Fellowship, administered by ETH Zurich, Switzerland
| | - F Gomez
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - F A S Ferrari
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland and Physics Department, Federal University of Parana, Curitiba, Brazil
| | - D Cerquetti
- Institute for Neurological Research Raul Carrea, Fleni Institute, Buenos Aires, Argentina
| | - M Merello
- Institute for Neurological Research Raul Carrea, Fleni Institute, Buenos Aires, Argentina
| | - R Viana
- Physics Department, Federal University of Parana, Curitiba, Brazil
| | - R Stoop
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
21
|
Response of human thalamic neurons to high-frequency stimulation. PLoS One 2014; 9:e96026. [PMID: 24804767 PMCID: PMC4013084 DOI: 10.1371/journal.pone.0096026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 04/02/2014] [Indexed: 11/20/2022] Open
Abstract
Thalamic deep brain stimulation (DBS) is an effective treatment for tremor, but the mechanisms of action remain unclear. Previous studies of human thalamic neurons to noted transient rebound bursting activity followed by prolonged inhibition after cessation of high frequency extracellular stimulation, and the present study sought to identify the mechanisms underlying this response. Recordings from 13 thalamic neurons exhibiting low threshold spike (LTS) bursting to brief periods of extracellular stimulation were made during surgeries to implant DBS leads in 6 subjects with Parkinson's disease. The response immediately after cessation of stimulation included a short epoch of burst activity, followed by a prolonged period of silence before a return to LTS bursting. A computational model of a population of thalamocortical relay neurons and presynaptic axons terminating on the neurons was used to identify cellular mechanisms of the observed responses. The model included the actions of neuromodulators through inhibition of a non-pertussis toxin sensitive K+ current (IKL), activation of a pertussis toxin sensitive K+ current (IKG), and a shift in the activation curve of the hyperpolarization-activated cation current (Ih). The model replicated well the measured responses, and the prolonged inhibition was associated most strongly with changes in IKG while modulation of IKL or Ih had minimal effects on post-stimulus inhibition suggesting that neuromodulators released in response to high frequency stimulation are responsible for mediating the post-stimulation bursting and subsequent long duration silence of thalamic neurons. The modeling also indicated that the axons of the model neurons responded robustly to suprathreshold stimulation despite the inhibitory effects on the soma. The findings suggest that during DBS the axons of thalamocortical neurons are activated while the cell bodies are inhibited thus blocking the transmission of pathological signals through the network and replacing them with high frequency regular firing.
Collapse
|
22
|
Feng Z, Yu Y, Guo Z, Cao J, Durand DM. High frequency stimulation extends the refractory period and generates axonal block in the rat hippocampus. Brain Stimul 2014; 7:680-9. [PMID: 24938914 DOI: 10.1016/j.brs.2014.03.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/19/2014] [Accepted: 03/27/2014] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The therapeutic mechanisms of deep brain stimulations (DBS) are not fully understood. Axonal block induced by high frequency stimulation (HFS) has been suggested as one possible underlying mechanism of DBS. OBJECTIVE To investigate the mechanism of the generation of HFS-induced axonal block. METHODS High frequency pulse trains were applied to the fiber tracts of alveus and Schaffer collaterals in the hippocampal CA1 neurons in anaesthetized rats at 50, 100 and 200 Hz. The amplitude changes of antidromic-evoked population spikes (APS) were measured to determine the degree of axonal block. The amplitude ratio of paired-pulse evoked APS was used to assess the changes of refractory period. RESULTS There were two distinct recovery stages of axonal block following the termination of HFS. One frequency-dependent faster phase followed by another frequency-independent slower phase. Experiments with specially designed temporal patterns of stimulation showed that HFS produced an extension of the duration of axonal refractory period thereby causing a fast recovery phase of the axonal block. Thus, prolonged gaps inserted within HFS trains could eliminate the axonal block and induced large population spikes and even epileptiform activity in the upstream or downstream regions. CONCLUSIONS Extension of refractory period plays an important role on HFS induced axonal block. Stimulation pattern with properly designed pauses could be beneficial for different requirements of excitation or inhibition in DBS therapies.
Collapse
Affiliation(s)
- Zhouyan Feng
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, PR China.
| | - Ying Yu
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
| | - Zheshan Guo
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
| | - Jiayue Cao
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
| | - Dominique M Durand
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
23
|
Patel N, Ondo W, Jimenez-Shahed J. Habituation and rebound to thalamic deep brain stimulation in long-term management of tremor associated with demyelinating neuropathy. Int J Neurosci 2014; 124:919-25. [DOI: 10.3109/00207454.2014.895345] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Hung HY, Tsai ST, Lin SH, Jiang JL, Chen SY. Uneven benefits of subthalamic nucleus deep brain stimulation in Parkinson's disease—A 7-year cross-sectional study. Tzu Chi Med J 2013. [DOI: 10.1016/j.tcmj.2013.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
25
|
Swan BD, Grill WM, Turner DA. Investigation of deep brain stimulation mechanisms during implantable pulse generator replacement surgery. Neuromodulation 2013; 17:419-24; discussion 424. [PMID: 24118257 DOI: 10.1111/ner.12123] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/11/2013] [Accepted: 08/27/2013] [Indexed: 01/11/2023]
Abstract
BACKGROUND Direct testing of deep brain stimulation (DBS) mechanisms in humans is needed to assess therapy and to understand stimulation effects. OBJECTIVE We developed an innovative paradigm for investigation of DBS on human movement disorders. Temporary connection to the DBS electrode during implantable pulse generator (IPG) replacement permitted analysis of novel patterns of stimulation on motor symptoms, which could enhance efficacy and improve battery life. MATERIALS AND METHODS Patients enrolled in this prospective, Institutional Review Board-approved study underwent IPG replacement using local (monitored) anesthesia. Following device explant, the DBS electrode was connected to an external, isolated electrical stimulator using a sterile adapter cable. Different temporal patterns of stimulation were delivered while quantifying upper-extremity tremor (tri-axial accelerometry) or bradykinesia (finger-tapping). Upon experiment completion, the new IPG was implanted. RESULTS Among 159 IPG replacements from 2005 to 2011, 56 patients agreed to the research study (16 essential tremor [ET], 31 Parkinson's disease [PD], 5 mixed ET/PD tremor, 3 multiple sclerosis, 1 tremor/myoclonus). Surgical procedures were extended by 42 ± 8.2 min in 37 patients completing the study. Motor symptoms varied with stimulation pattern, with some patterns showing improved tremor or bradykinesia control. No postoperative infections or complications were observed in the 159 patients. CONCLUSION IPG replacement occurs when the DBS/brain interface is stable and patients demonstrate symptom reduction with known stimulation parameters. Conducting research at this time point avoids DBS implant issues, including temporary microlesion effects, fluctuating electrode impedances, and technical limitations of contemporary IPGs, providing advantageous conditions to conduct translational DBS research with minimal additional risk to research subjects.
Collapse
Affiliation(s)
- Brandon D Swan
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | | |
Collapse
|
26
|
Hess CW, Vaillancourt DE, Okun MS. The temporal pattern of stimulation may be important to the mechanism of deep brain stimulation. Exp Neurol 2013; 247:296-302. [PMID: 23399890 DOI: 10.1016/j.expneurol.2013.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 01/30/2013] [Accepted: 02/01/2013] [Indexed: 10/27/2022]
Abstract
Deep brain stimulation (DBS) has emerged as an important and potentially powerful treatment option for the management of carefully selected patients with advanced Parkinson's disease (PD) who are not adequately controlled by standard medication therapy. Though considerable advances have been made, the mechanisms underlying the therapeutic effects of DBS remain unclear despite its clinical efficacy. It is now widely held that both excitation and inhibition can occur secondary to stimulation, and it is suspected that abnormal synchronized oscillations may also be important in the mechanism of DBS. Other potentially important processes, including blood flow changes, local and upstream neurogenesis, and the modulation of neurotransmitters through stimulation of bordering astrocytes are also being investigated. Recent research has suggested that the temporal pattern of DBS stimulation is also an important variable in DBS neuromodulation, yet the extent of its influence on DBS efficacy has yet to be determined. As high stimulation frequency alone does not appear to be sufficient for optimal symptom suppression, attention to stimulation pattern might lead to more effective symptom control and reduced side effects, possibly at a lower frequency. Stimulation pattern may be potentially amenable to therapeutic modulation and its role in the clinical efficacy of DBS should be addressed through further focus and research.
Collapse
Affiliation(s)
- Christopher W Hess
- Center for Parkinson's Disease and Other Movement Disorders, Columbia University Medical Center, New York, NY, USA
| | | | | |
Collapse
|
27
|
Humphries MD, Gurney K. Network effects of subthalamic deep brain stimulation drive a unique mixture of responses in basal ganglia output. Eur J Neurosci 2012; 36:2240-51. [PMID: 22805068 DOI: 10.1111/j.1460-9568.2012.08085.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deep brain stimulation (DBS) is a remarkably successful treatment for the motor symptoms of Parkinson's disease. High-frequency stimulation of the subthalamic nucleus (STN) within the basal ganglia is a main clinical target, but the physiological mechanisms of therapeutic STN DBS at the cellular and network level are unclear. We set out to begin to address the hypothesis that a mixture of responses in the basal ganglia output nuclei, combining regularized firing and inhibition, is a key contributor to the effectiveness of STN DBS. We used our computational model of the complete basal ganglia circuit to show how such a mixture of responses in basal ganglia output naturally arises from the network effects of STN DBS. We replicated the diversification of responses recorded in a primate STN DBS study to show that the model's predicted mixture of responses is consistent with therapeutic STN DBS. We then showed how this 'mixture of response' perspective suggests new ideas for DBS mechanisms: first, that the therapeutic frequency of STN DBS is above 100 Hz because the diversification of responses exhibits a step change above this frequency; and second, that optogenetic models of direct STN stimulation during DBS have proven therapeutically ineffective because they do not replicate the mixture of basal ganglia output responses evoked by electrical DBS.
Collapse
Affiliation(s)
- Mark D Humphries
- Group for Neural Theory, Department d'Etudes Cognitives, Ecole Normale Superieure, 29 rue d'Ulm, 75005 Paris, France.
| | | |
Collapse
|
28
|
Rubin JE, McIntyre CC, Turner RS, Wichmann T. Basal ganglia activity patterns in parkinsonism and computational modeling of their downstream effects. Eur J Neurosci 2012; 36:2213-28. [PMID: 22805066 DOI: 10.1111/j.1460-9568.2012.08108.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The availability of suitable animal models and the opportunity to record electrophysiologic data in movement disorder patients undergoing neurosurgical procedures has allowed researchers to investigate parkinsonism-related changes in neuronal firing patterns in the basal ganglia and associated areas of the thalamus and cortex. These studies have shown that parkinsonism is associated with increased activity in the basal ganglia output nuclei, along with increases in burst discharges, oscillatory firing and synchronous firing patterns throughout the basal ganglia. Computational approaches have the potential to play an important role in the interpretation of these data. Such efforts can provide a formalized view of neuronal interactions in the network of connections between the basal ganglia, thalamus, and cortex, allow for the exploration of possible contributions of particular network components to parkinsonism, and potentially result in new conceptual frameworks and hypotheses that can be subjected to biological testing. It has proven very difficult, however, to integrate the wealth of the experimental findings into coherent models of the disease. In this review, we provide an overview of the abnormalities in neuronal activity that have been associated with parkinsonism. Subsequently, we discuss some particular efforts to model the pathophysiologic mechanisms that may link abnormal basal ganglia activity to the cardinal parkinsonian motor signs and may help to explain the mechanisms underlying the therapeutic efficacy of deep brain stimulation for Parkinson's disease. We emphasize the logical structure of these computational studies, making clear the assumptions from which they proceed and the consequences and predictions that follow from these assumptions.
Collapse
Affiliation(s)
- Jonathan E Rubin
- Department of Mathematics and Center for the Neural Basis of Cognition, University of Pittsburgh, 301 Thackeray Hall, Pittsburgh, PA 15260, USA
| | | | | | | |
Collapse
|
29
|
Walker HC, Huang H, Gonzalez CL, Bryant JE, Killen J, Knowlton RC, Montgomery EB, Cutter GC, Yildirim A, Guthrie BL, Watts RL. Short latency activation of cortex by clinically effective thalamic brain stimulation for tremor. Mov Disord 2012; 27:1404-12. [PMID: 22926754 DOI: 10.1002/mds.25137] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 06/04/2012] [Accepted: 07/12/2012] [Indexed: 01/04/2023] Open
Abstract
Deep brain stimulation (DBS) relieves disabling symptoms of neurologic and psychiatric diseases when medical treatments fail, yet its therapeutic mechanism is unknown. We hypothesized that ventral intermediate (VIM) nucleus stimulation for essential tremor activates the cortex at short latencies, and that this potential is related to the suppression of tremor in the contralateral arm. We measured cortical activity with electroencephalography in 5 subjects (seven brain hemispheres) across a range of stimulator settings, and reversal of the anode and cathode electrode contacts minimized the stimulus artifact, allowing visualization of brain activity. Regression quantified the relationship between stimulation parameters and both the peak of the short latency potential and tremor suppression. Stimulation generated a polyphasic event-related potential in the ipsilateral sensorimotor cortex, with peaks at discrete latencies beginning less than 1 ms after stimulus onset (mean latencies 0.9 ± 0.2, 5.6 ± 0.7, and 13.9 ± 1.4 ms, denoted R1, R2, and R3, respectively). R1 showed more fixed timing than the subsequent peaks in the response (P < 0.0001, Levene's test), and R1 amplitude and frequency were both closely associated with tremor suppression (P < 0.0001, respectively). These findings demonstrate that effective VIM thalamic stimulation for essential tremor activates the cerebral cortex at approximately 1 ms after the stimulus pulse. The association between this short latency potential and tremor suppression suggests that DBS may improve tremor by synchronizing the precise timing of discharges in nearby axons and, by extension, the distributed motor network to the stimulation frequency or one of its subharmonics.
Collapse
Affiliation(s)
- Harrison C Walker
- Department of Neurology, University of Alabama Birmingham, Birmingham, Alabama, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Birdno MJ, Kuncel AM, Dorval AD, Turner DA, Gross RE, Grill WM. Stimulus features underlying reduced tremor suppression with temporally patterned deep brain stimulation. J Neurophysiol 2011; 107:364-83. [PMID: 21994263 DOI: 10.1152/jn.00906.2010] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Deep brain stimulation (DBS) provides dramatic tremor relief when delivered at high-stimulation frequencies (more than ∼100 Hz), but its mechanisms of action are not well-understood. Previous studies indicate that high-frequency stimulation is less effective when the stimulation train is temporally irregular. The purpose of this study was to determine the specific characteristics of temporally irregular stimulus trains that reduce their effectiveness: long pauses, bursts, or irregularity per se. We isolated these characteristics in stimulus trains and conducted intraoperative measurements of postural tremor in eight volunteers. Tremor varied significantly across stimulus conditions (P < 0.015), and stimulus trains with pauses were significantly less effective than stimulus trains without (P < 0.002). There were no significant differences in tremor between trains with or without bursts or between trains that were irregular or periodic. Thus the decreased effectiveness of temporally irregular DBS trains is due to long pauses in the stimulus trains, not the degree of temporal irregularity alone. We also conducted computer simulations of neuronal responses to the experimental stimulus trains using a biophysical model of the thalamic network. Trains that suppressed tremor in volunteers also suppressed fluctuations in thalamic transmembrane potential at the frequency associated with cerebellar burst-driver inputs. Clinical and computational findings indicate that DBS suppresses tremor by masking burst-driver inputs to the thalamus and that pauses in stimulation prevent such masking. Although stimulation of other anatomic targets may provide tremor suppression, we propose that the most relevant neuronal targets for effective tremor suppression are the afferent cerebellar fibers that terminate in the thalamus.
Collapse
Affiliation(s)
- Merrill J Birdno
- Duke Univ., Dept. of Biomedical Engineering, Hudson Hall, Rm. 136, Box 90281, Durham, NC 27708-0281, USA
| | | | | | | | | | | |
Collapse
|
31
|
Baker KB, Zhang J, Vitek JL. Pallidal stimulation: effect of pattern and rate on bradykinesia in the non-human primate model of Parkinson's disease. Exp Neurol 2011; 231:309-13. [PMID: 21767534 DOI: 10.1016/j.expneurol.2011.06.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 06/20/2011] [Accepted: 06/23/2011] [Indexed: 11/17/2022]
Abstract
Deep brain stimulation (DBS) involves the delivery of continuous, fixed-frequency electrical pulses to specific brain regions; however the reliance of therapeutic benefit on the fixed-frequency nature of the stimulation pattern is currently unknown. To address this, we investigated the effect of changes in the pattern and frequency of DBS in the internal segment of the globus pallidus (GPi) on bradykinesia in a single, hemi-parkinsonian monkey. Therapeutic parameters (i.e., contacts, pulse width, amplitude) were established for fixed-frequency stimulation at 135 Hz based on improved movement times during a reach and retrieval task. Thereafter, the pattern and frequency of stimulation were varied to assess the effect of variability, bursting and oscillatory patterns of stimulation on bradykinesia. During fixed-frequency stimulation, performance improved as a function of increasing pulse rate (P<0.01). Using a temporally irregular pattern at the same average frequency failed to alter therapeutic benefit relative to the fixed-frequency condition. Introducing an 80 Hz burst pattern (20 bursts/s at 4 pulses/burst) improved bradykinesia (P<0.01) relative to both "OFF" and 80 Hz fixed-frequency conditions, yielding results comparable to fixed-frequency stimulation at 135 Hz with 40% less current drain. Compared to burst and fixed-frequency stimulations, oscillatory patterns at 4 and 8 Hz were less effective. These results suggest that lower frequency stimulation delivered in a regular bursting pattern may be equally effective and require lower energy than higher frequency continuous patterns of stimulation, thereby prolonging battery life and call into question the role of bursting activity in the pathogenesis of bradykinesia.
Collapse
Affiliation(s)
- Kenneth B Baker
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
32
|
Heming EA, Choo R, Davies JN, Kiss ZHT. Designing a thalamic somatosensory neural prosthesis: consistency and persistence of percepts evoked by electrical stimulation. IEEE Trans Neural Syst Rehabil Eng 2011; 19:477-82. [PMID: 21622082 DOI: 10.1109/tnsre.2011.2152858] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Intuitive somatosensory feedback is required for fine motor control. Here we explored whether thalamic electrical stimulation could provide the necessary durations and consistency of percepts for a human somatosensory neural prosthetic. Continuous and cycling high-frequency (185 Hz, 0.21 ms pulse duration charge balanced square wave) electrical pulses with the cycling patterns varying between 7% and 67% of duty cycle were applied in five patients with chronically implanted deep brain stimulators. Stimulation produced similar percepts to those elicited immediately after surgery. While consecutive continuous stimuli produced decreasing durations of sensation, the amplitude and type of percept did not change. Cycling stimulation with shorter duty cycles produced more persisting percepts. These features suggest that the thalamus could provide a site for stable and enduring sensations necessary for a long term somatosensory neural prosthesis.
Collapse
Affiliation(s)
- Ethan A Heming
- Department of Clinical Neurosciences, University of Calgary, Calgary, T2N 4N1 AB, Canada
| | | | | | | |
Collapse
|
33
|
Santaniello S, Fiengo G, Glielmo L, Grill WM. Closed-Loop Control of Deep Brain Stimulation: A Simulation Study. IEEE Trans Neural Syst Rehabil Eng 2011; 19:15-24. [PMID: 20889437 DOI: 10.1109/tnsre.2010.2081377] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
34
|
Cheung S, Larson P. Tinnitus modulation by deep brain stimulation in locus of caudate neurons (area LC). Neuroscience 2010; 169:1768-78. [DOI: 10.1016/j.neuroscience.2010.06.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 06/03/2010] [Accepted: 06/03/2010] [Indexed: 12/29/2022]
|
35
|
Dorval AD, Kuncel AM, Birdno MJ, Turner DA, Grill WM. Deep brain stimulation alleviates parkinsonian bradykinesia by regularizing pallidal activity. J Neurophysiol 2010; 104:911-21. [PMID: 20505125 DOI: 10.1152/jn.00103.2010] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Deep brain stimulation (DBS) of the basal ganglia can alleviate the motor symptoms of Parkinson's disease although the therapeutic mechanisms are unclear. We hypothesize that DBS relieves symptoms by minimizing pathologically disordered neuronal activity in the basal ganglia. In human participants with parkinsonism and clinically effective deep brain leads, regular (i.e., periodic) high-frequency stimulation was replaced with irregular (i.e., aperiodic) stimulation at the same mean frequency (130 Hz). Bradykinesia, a symptomatic slowness of movement, was quantified via an objective finger tapping protocol in the absence and presence of regular and irregular DBS. Regular DBS relieved bradykinesia more effectively than irregular DBS. A computational model of the relevant neural structures revealed that output from the globus pallidus internus was more disordered and thalamic neurons made more transmission errors in the parkinsonian condition compared with the healthy condition. Clinically therapeutic, regular DBS reduced firing pattern disorder in the computational basal ganglia and minimized model thalamic transmission errors, consistent with symptom alleviation by clinical DBS. However, nontherapeutic, irregular DBS neither reduced disorder in the computational basal ganglia nor lowered model thalamic transmission errors. Thus we show that clinically useful DBS alleviates motor symptoms by regularizing basal ganglia activity and thereby improving thalamic relay fidelity. This work demonstrates that high-frequency stimulation alone is insufficient to alleviate motor symptoms: DBS must be highly regular. Descriptive models of pathophysiology that ignore the fine temporal resolution of neuronal spiking in favor of average neural activity cannot explain the mechanisms of DBS-induced symptom alleviation.
Collapse
Affiliation(s)
- Alan D Dorval
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.
| | | | | | | | | |
Collapse
|
36
|
Network perspectives on the mechanisms of deep brain stimulation. Neurobiol Dis 2009; 38:329-37. [PMID: 19804831 DOI: 10.1016/j.nbd.2009.09.022] [Citation(s) in RCA: 289] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 09/21/2009] [Accepted: 09/27/2009] [Indexed: 10/20/2022] Open
Abstract
Deep brain stimulation (DBS) is an established medical therapy for the treatment of movement disorders and shows great promise for several other neurological disorders. However, after decades of clinical utility the underlying therapeutic mechanisms remain undefined. Early attempts to explain the mechanisms of DBS focused on hypotheses that mimicked an ablative lesion to the stimulated brain region. More recent scientific efforts have explored the wide-spread changes in neural activity generated throughout the stimulated brain network. In turn, new theories on the mechanisms of DBS have taken a systems-level approach to begin to decipher the network activity. This review provides an introduction to some of the network based theories on the function and pathophysiology of the cortico-basal-ganglia-thalamo-cortical loops commonly targeted by DBS. We then analyze some recent results on the effects of DBS on these networks, with a focus on subthalamic DBS for the treatment of Parkinson's disease. Finally we attempt to summarize how DBS could be achieving its therapeutic effects by overriding pathological network activity.
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW Tremor continuously attracts the attention of clinicians and basic researchers in search of pathophysiological, molecular and genetic mechanisms of the oscillatory activity. RECENT FINDINGS A widespread dynamic network of cortical and subcortical oscillators taking part in tremor generation intermittently has been postulated. Essential tremor is accompanied by functional deficits but may also occur along with subtle cerebellar changes. According to recent epidemiological studies there may be a link of essential tremor with Parkinson's disease. Many of the epidemiologic studies suffer from small cohorts, small effects or the lack of a definite test for essential tremor leaving the diagnosis a pure clinical one. A very recent large genome-wide association study has revealed that the LINGO1 gene is associated with an increased risk for essential tremor. Topiramate is becoming the best-established second line treatment for essential tremor. Targets for deep brain stimulation in the grey matter below the ventral intermediate nucleus of the thalamus seem to be most effective. SUMMARY New concepts of the central origin of tremors stimulate the search for new therapeutic targets for tremor suppression outside the basal ganglia and thalamus (e.g. cortex). The role of structural neurodegenerative changes in essential tremor remains an open question. Further studies on specific subgroups of patients are necessary.
Collapse
|
38
|
de Paor AM, Lowery MM. Analysis of the mechanism of action of deep brain stimulation using the concepts of dither injection and the equivalent nonlinearity. IEEE Trans Biomed Eng 2009; 56:2717-20. [PMID: 19369145 DOI: 10.1109/tbme.2009.2019962] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Deep brain stimulation (DBS) is a widely applied clinical procedure for the alleviation of pathological neural activity, and is particularly effective in suppressing the symptoms of Parkinson's disease. The mechanisms of action of DBS remain to be fully elucidated. In this paper, we present an application to DBS of the concepts of dither injection and equivalent nonlinearity from the theory of nonlinear feedback control systems. We propose that this model provides a framework for understanding the mechanism by which an injected high-frequency signal can quench undesired oscillations in closed-loop systems of interacting neurons in the brain.
Collapse
Affiliation(s)
- Annraoi M de Paor
- School of Electrical, Electronic and Mechanical Engineering, University College Dublin, Dublin 4, Ireland.
| | | |
Collapse
|
39
|
Abstract
The frequency of stimulation is one of the primary factors determining the effectiveness of deep brain stimulation (DBS) in relieving tremor. DBS efficacy, however, may depend not only on the average frequency of stimulation, but also on the temporal pattern of stimulation. We conducted intraoperative measurements of the effect of temporally irregular DBS (nonconstant interpulse intervals) on tremor. As the coefficient of variation of irregular high frequency DBS trains increased, they became less effective at reducing tremor (mixed effects regression model, P<0.04). These data provide evidence that the effects of DBS are dependent not only on the average frequency of DBS, but also on the regularity of the temporal spacing of DBS pulses.
Collapse
|
40
|
Birdno MJ, Grill WM. Mechanisms of deep brain stimulation in movement disorders as revealed by changes in stimulus frequency. Neurotherapeutics 2008; 5:14-25. [PMID: 18164480 PMCID: PMC2200868 DOI: 10.1016/j.nurt.2007.10.067] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Deep brain stimulation (DBS) is an established treatment for symptoms in movement disorders and is under investigation for symptom management in persons with psychiatric disorders and epilepsy. Nevertheless, there remains disagreement regarding the physiological mechanisms responsible for the actions of DBS, and this lack of understanding impedes both the design of DBS systems for treating novel diseases and the effective tuning of current DBS systems. Currently available data indicate that effective DBS overrides pathological bursts, low frequency oscillations, synchronization, and disrupted firing patterns present in movement disorders, and replaces them with more regularized firing. Although it is likely that the specific mechanism(s) by which DBS exerts its effects varies between diseases and target nuclei, the overriding of pathological activity appears to be ubiquitous. This review provides an overview of changes in motor symptoms with changes in DBS frequency and highlights parallels between the changes in motor symptoms and the changes in cellular activity that appear to underlie the motor symptoms.
Collapse
Affiliation(s)
- Merrill J. Birdno
- grid.26009.3d0000000419367961Department of Biomedical Engineering, Duke University, Hudson Hall, Room 136, Box 90281, 27708-0281 Durham, NC
| | - Warren M. Grill
- grid.26009.3d0000000419367961Department of Biomedical Engineering, Duke University, Hudson Hall, Room 136, Box 90281, 27708-0281 Durham, NC
| |
Collapse
|