1
|
Kladisios N, Wicke KD, Pätz-Warncke C, Felmy F. Species-Specific Adaptation for Ongoing High-Frequency Action Potential Generation in MNTB Neurons. J Neurosci 2023; 43:2714-2729. [PMID: 36898837 PMCID: PMC10089249 DOI: 10.1523/jneurosci.2320-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Comparative analysis of evolutionarily conserved neuronal circuits between phylogenetically distant mammals highlights the relevant mechanisms and specific adaptations to information processing. The medial nucleus of the trapezoid body (MNTB) is a conserved mammalian auditory brainstem nucleus relevant for temporal processing. While MNTB neurons have been extensively investigated, a comparative analysis of phylogenetically distant mammals and the spike generation is missing. To understand the suprathreshold precision and firing rate, we examined the membrane, voltage-gated ion channel and synaptic properties in Phyllostomus discolor (bat) and in Meriones unguiculatus (rodent) of either sex. Between the two species, the membrane properties of MNTB neurons were similar at rest with only minor differences, while larger dendrotoxin (DTX)-sensitive potassium currents were found in gerbils. Calyx of Held-mediated EPSCs were smaller and frequency dependence of short-term plasticity (STP) less pronounced in bats. Simulating synaptic train stimulations in dynamic clamp revealed that MNTB neurons fired with decreasing success rate near conductance threshold and at increasing stimulation frequency. Driven by STP-dependent conductance decrease, the latency of evoked action potentials increased during train stimulations. The spike generator showed a temporal adaptation at the beginning of train stimulations that can be explained by sodium current inactivation. Compared with gerbils, the spike generator of bats sustained higher frequency input-output functions and upheld the same temporal precision. Our data mechanistically support that MNTB input-output functions in bats are suited to sustain precise high-frequency rates, while for gerbils, temporal precision appears more relevant and an adaptation to high output-rates can be spared.SIGNIFICANCE STATEMENT Neurons in the mammalian medial nucleus of the trapezoid body (MNTB) convey precise, faithful inhibition vital for binaural hearing and gap detection. The MNTB's structure and function appear evolutionarily well conserved. We compared the cellular physiology of MNTB neurons in bat and gerbil. Because of their adaptations to echolocation or low frequency hearing both species are model systems for hearing research, yet with largely overlapping hearing ranges. We find that bat neurons sustain information transfer with higher ongoing rates and precision based on synaptic and biophysical differences in comparison to gerbils. Thus, even in evolutionarily conserved circuits species-specific adaptations prevail, highlighting the importance for comparative research to differentiate general circuit functions and their specific adaptations.
Collapse
Affiliation(s)
- Nikolaos Kladisios
- Institute of Zoology, University of Veterinary Medicine Hannover Foundation 30559 Hannover, Germany
- Hannover Graduate School for Neurosciences, Infection Medicine and Veterinary Sciences (HGNI), 30559 Hannover, Germany
| | - Kathrin D Wicke
- Institute of Zoology, University of Veterinary Medicine Hannover Foundation 30559 Hannover, Germany
- Hannover Graduate School for Neurosciences, Infection Medicine and Veterinary Sciences (HGNI), 30559 Hannover, Germany
| | - Christina Pätz-Warncke
- Institute of Zoology, University of Veterinary Medicine Hannover Foundation 30559 Hannover, Germany
| | - Felix Felmy
- Institute of Zoology, University of Veterinary Medicine Hannover Foundation 30559 Hannover, Germany
| |
Collapse
|
2
|
Scarpa GB, Starrett JR, Li GL, Brooks C, Morohashi Y, Yazaki-Sugiyama Y, Remage-Healey L. Estrogens rapidly shape synaptic and intrinsic properties to regulate the temporal precision of songbird auditory neurons. Cereb Cortex 2022; 33:3401-3420. [PMID: 35849820 PMCID: PMC10068288 DOI: 10.1093/cercor/bhac280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 01/14/2023] Open
Abstract
Sensory neurons parse millisecond-variant sound streams like birdsong and speech with exquisite precision. The auditory pallial cortex of vocal learners like humans and songbirds contains an unconventional neuromodulatory system: neuronal expression of the estrogen synthesis enzyme aromatase. Local forebrain neuroestrogens fluctuate when songbirds hear a song, and subsequently modulate bursting, gain, and temporal coding properties of auditory neurons. However, the way neuroestrogens shape intrinsic and synaptic properties of sensory neurons remains unknown. Here, using a combination of whole-cell patch clamp electrophysiology and calcium imaging, we investigate estrogenic neuromodulation of auditory neurons in a region resembling mammalian auditory association cortex. We found that estradiol rapidly enhances the temporal precision of neuronal firing via a membrane-bound G-protein coupled receptor and that estradiol rapidly suppresses inhibitory synaptic currents while sparing excitation. Notably, the rapid suppression of intrinsic excitability by estradiol was predicted by membrane input resistance and was observed in both males and females. These findings were corroborated by analysis of in vivo electrophysiology recordings, in which local estrogen synthesis blockade caused acute disruption of the temporal correlation of song-evoked firing patterns. Therefore, on a modulatory timescale, neuroestrogens alter intrinsic cellular properties and inhibitory neurotransmitter release to regulate the temporal precision of higher-order sensory neurons.
Collapse
Affiliation(s)
- Garrett B Scarpa
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, 639 N. Pleasant St., Amherst, MA 01003, United States
| | - Joseph R Starrett
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, 639 N. Pleasant St., Amherst, MA 01003, United States
| | - Geng-Lin Li
- Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, 83 Fenyang Rd, Xuhui District, Shanghai 200031, China
| | - Colin Brooks
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, 639 N. Pleasant St., Amherst, MA 01003, United States
| | - Yuichi Morohashi
- Okinawa Institute of Science and Technology (OIST) Graduate University, 1919-1 Tancha, Onna, Kunigami District, Okinawa, Japan
| | - Yoko Yazaki-Sugiyama
- Okinawa Institute of Science and Technology (OIST) Graduate University, 1919-1 Tancha, Onna, Kunigami District, Okinawa, Japan
| | - Luke Remage-Healey
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, 639 N. Pleasant St., Amherst, MA 01003, United States
| |
Collapse
|
3
|
Fu M, Zhang L, Xie X, Wang N, Xiao Z. Differential contributions of voltage-gated potassium channel subunits in enhancing temporal coding in the bushy cells of the ventral cochlear nucleus. J Neurophysiol 2021; 125:1954-1972. [PMID: 33852808 DOI: 10.1152/jn.00435.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Temporal coding precision of bushy cells in the ventral cochlear nucleus (VCN), critical for sound localization and communication, depends on the generation of rapid and temporally precise action potentials (APs). Voltage-gated potassium (Kv) channels are critically involved in this. The bushy cells in rat VCN express Kv1.1, 1.2, 1.3, 1.6, 3.1, 4.2, and 4.3 subunits. The Kv1.1 subunit contributes to the generation of a temporally precise single AP. However, the understanding of the functions of other Kv subunits expressed in the bushy cells is limited. Here, we investigated the functional diversity of Kv subunits concerning their contributions to temporal coding. We characterized the electrophysiological properties of the Kv channels with different subunits using whole cell patch-clamp recording and pharmacological methods. The neuronal firing pattern changed from single to multiple APs only when the Kv1.1 subunit was blocked. The Kv subunits, including the Kv1.1, 1.2, 1.6, or 3.1, were involved in enhancing temporal coding by lowering membrane excitability, shortening AP latencies, reducing jitter, and regulating AP kinetics. Meanwhile, all the Kv subunits contributed to rapid repolarization and sharpening peaks by narrowing half-width and accelerating fall rate, and the Kv1.1 subunit also affected the depolarization of AP. The Kv1.1, 1.2, and 1.6 subunits endowed bushy cells with a rapid time constant and a low input resistance of membrane for enhancing spike timing precision. The present results indicate that the Kv channels differentially affect intrinsic membrane properties to optimize the generation of rapid and reliable APs for temporal coding.NEW & NOTEWORTHY This study investigates the roles of Kv channels in effecting precision using electrophysiological and pharmacological methods in bushy cells. Different Kv channels have varying electrophysiological characteristics, which contribute to the interplay between changes in the membrane properties and regulation of neuronal excitability which then improve temporal coding. We conclude that the Kv channels are specialized to promote the precise and rapid coding of acoustic input by optimizing the generation of reliable APs.
Collapse
Affiliation(s)
- Mingyu Fu
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Lu Zhang
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiao Xie
- Nanhai Hospital, Southern Medical University, Foshan, Guangdong, China
| | - Ningqian Wang
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhongju Xiao
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Nanhai Hospital, Southern Medical University, Foshan, Guangdong, China
| |
Collapse
|
4
|
Takahashi M, Sanchez JT. Effects of Neurotrophin-3 on Intrinsic Neuronal Properties at a Central Auditory Structure. Neurosci Insights 2020; 15:2633105520980442. [PMID: 33354669 PMCID: PMC7734498 DOI: 10.1177/2633105520980442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/23/2020] [Indexed: 11/15/2022] Open
Abstract
Neurotrophins, a class of growth factor proteins that control neuronal proliferation, morphology, and apoptosis, are found ubiquitously throughout the nervous system. One particular neurotrophin (NT-3) and its cognate tyrosine receptor kinase (TrkC) have recently received attention as a possible therapeutic target for synaptopathic sensorineural hearing loss. Additionally, research shows that NT-3-TrkC signaling plays a role in establishing the sensory organization of frequency topology (ie, tonotopic order) in the cochlea of the peripheral inner ear. However, the neurotrophic effects of NT-3 on central auditory properties are unclear. In this study we examined whether NT-3-TrkC signaling affects the intrinsic electrophysiological properties at a first-order central auditory structure in chicken, known as nucleus magnocellularis (NM). Here, the expression pattern of specific neurotrophins is well known and tightly regulated. By using whole-cell patch-clamp electrophysiology, we show that NT-3 application to brainstem slices does not affect intrinsic properties of high-frequency neuronal regions but had robust effects for low-frequency neurons, altering voltage-dependent potassium functions, action potential repolarization kinetics, and passive membrane properties. We suggest that NT-3 may contribute to the precise establishment and organization of tonotopy in the central auditory pathway by playing a specialized role in regulating the development of intrinsic neuronal properties of low-frequency NM neurons.
Collapse
Affiliation(s)
- Momoko Takahashi
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
| | - Jason Tait Sanchez
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
- The Hugh Knowles Hearing Research Center, Northwestern University, Evanston, IL, USA
| |
Collapse
|
5
|
Kladisios N, Fischer L, Felmy F. Minimal Number of Required Inputs for Temporally Precise Action Potential Generation in Auditory Brainstem Nuclei. Front Cell Neurosci 2020; 14:592213. [PMID: 33250717 PMCID: PMC7674839 DOI: 10.3389/fncel.2020.592213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/07/2020] [Indexed: 11/18/2022] Open
Abstract
The auditory system relies on temporal precise information transfer, requiring an interplay of synchronously activated inputs and rapid postsynaptic integration. During late postnatal development synaptic, biophysical, and morphological features change to enable mature auditory neurons to perform their appropriate function. How the number of minimal required input fibers and the relevant EPSC time course integrated for action potential generation changes during late postnatal development is unclear. To answer these questions, we used in vitro electrophysiology in auditory brainstem structures from pre-hearing onset and mature Mongolian gerbils of either sex. Synaptic and biophysical parameters changed distinctively during development in the medial nucleus of the trapezoid body (MNTB), the medial superior olive (MSO), and the ventral and dorsal nucleus of the lateral lemniscus (VNLL and DNLL). Despite a reduction in input resistance in most cell types, all required fewer inputs in the mature stage to drive action potentials. Moreover, the EPSC decay time constant is a good predictor of the EPSC time used for action potential generation in all nuclei but the VNLL. Only in MSO neurons, the full EPSC time course is integrated by the neuron’s resistive element, while otherwise, the relevant EPSC time matches only 5–10% of the membrane time constant, indicating membrane charging as a dominant role for output generation. We conclude, that distinct developmental programs lead to a general increase in temporal precision and integration accuracy matched to the information relaying properties of the investigated nuclei.
Collapse
Affiliation(s)
- Nikolaos Kladisios
- Institute of Zoology, University of Veterinary Medicine, Hannover, Germany
| | - Linda Fischer
- Institute of Zoology, University of Veterinary Medicine, Hannover, Germany
| | - Felix Felmy
- Institute of Zoology, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
6
|
Eikelberg D, Lehmbecker A, Brogden G, Tongtako W, Hahn K, Habierski A, Hennermann JB, Naim HY, Felmy F, Baumgärtner W, Gerhauser I. Axonopathy and Reduction of Membrane Resistance: Key Features in a New Murine Model of Human G M1-Gangliosidosis. J Clin Med 2020; 9:jcm9041004. [PMID: 32252429 PMCID: PMC7230899 DOI: 10.3390/jcm9041004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
GM1-gangliosidosis is caused by a reduced activity of β-galactosidase (Glb1), resulting in intralysosomal accumulations of GM1. The aim of this study was to reveal the pathogenic mechanisms of GM1-gangliosidosis in a new Glb1 knockout mouse model. Glb1−/− mice were analyzed clinically, histologically, immunohistochemically, electrophysiologically and biochemically. Morphological lesions in the central nervous system were already observed in two-month-old mice, whereas functional deficits, including ataxia and tremor, did not start before 3.5-months of age. This was most likely due to a reduced membrane resistance as a compensatory mechanism. Swollen neurons exhibited intralysosomal storage of lipids extending into axons and amyloid precursor protein positive spheroids. Additionally, axons showed a higher kinesin and lower dynein immunoreactivity compared to wildtype controls. Glb1−/− mice also demonstrated loss of phosphorylated neurofilament positive axons and a mild increase in non-phosphorylated neurofilament positive axons. Moreover, marked astrogliosis and microgliosis were found, but no demyelination. In addition to the main storage material GM1, GA1, sphingomyelin, phosphatidylcholine and phosphatidylserine were elevated in the brain. In summary, the current Glb1−/− mice exhibit a so far undescribed axonopathy and a reduced membrane resistance to compensate the functional effects of structural changes. They can be used for detailed examinations of axon–glial interactions and therapy trials of lysosomal storage diseases.
Collapse
Affiliation(s)
- Deborah Eikelberg
- Department of Pathology, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany; (D.E.); (A.L.); (W.T.); (K.H.); (A.H.); (I.G.)
| | - Annika Lehmbecker
- Department of Pathology, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany; (D.E.); (A.L.); (W.T.); (K.H.); (A.H.); (I.G.)
| | - Graham Brogden
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany; (G.B.); (H.Y.N.)
| | - Witchaya Tongtako
- Department of Pathology, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany; (D.E.); (A.L.); (W.T.); (K.H.); (A.H.); (I.G.)
- c/o Faculty of Veterinary Science, Prince of Sonkla University, 5 Karnjanavanich Rd., Hat Yai, Songkhla 90110, Thailand
| | - Kerstin Hahn
- Department of Pathology, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany; (D.E.); (A.L.); (W.T.); (K.H.); (A.H.); (I.G.)
| | - Andre Habierski
- Department of Pathology, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany; (D.E.); (A.L.); (W.T.); (K.H.); (A.H.); (I.G.)
| | - Julia B. Hennermann
- Villa Metabolica, University of Mainz, Langenbeckstraße 2, D-55131 Mainz, Germany;
| | - Hassan Y. Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany; (G.B.); (H.Y.N.)
| | - Felix Felmy
- Department for Physiology and Cell Biology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany; (D.E.); (A.L.); (W.T.); (K.H.); (A.H.); (I.G.)
- Correspondence:
| | - Ingo Gerhauser
- Department of Pathology, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany; (D.E.); (A.L.); (W.T.); (K.H.); (A.H.); (I.G.)
| |
Collapse
|
7
|
Lin Z, Huang X, Zhou W, Zhang W, Liu Y, Bian T, Niu L, Meng L, Guo Y. Ultrasound Stimulation Modulates Voltage-Gated Potassium Currents Associated With Action Potential Shape in Hippocampal CA1 Pyramidal Neurons. Front Pharmacol 2019; 10:544. [PMID: 31178727 PMCID: PMC6538798 DOI: 10.3389/fphar.2019.00544] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/30/2019] [Indexed: 11/28/2022] Open
Abstract
Potassium channels (K+) play an important role in the regulation of cellular signaling. Dysfunction of potassium channels is associated with several severe ion channels diseases, such as long QT syndrome, episodic ataxia and epilepsy. Ultrasound stimulation has proven to be an effective non-invasive tool for the modulation of ion channels and neural activity. In this study, we demonstrate that ultrasound stimulation enables to modulate the potassium currents and has an impact on the shape modulation of action potentials (AP) in the hippocampal pyramidal neurons using whole-cell patch-clamp recordings in vitro. The results show that outward potassium currents in neurons increase significantly, approximately 13%, in response to 30 s ultrasound stimulation. Simultaneously, the increasing outward potassium currents directly decrease the resting membrane potential (RMP) from −64.67 ± 1.10 mV to −67.51 ± 1.35 mV. Moreover, the threshold current and AP fall rate increase while the reduction of AP half-width and after-hyperpolarization peak time is detected. During ultrasound stimulation, reduction of the membrane input resistance of pyramidal neurons can be found and shorter membrane time constant is achieved. Additionally, we verify that the regulation of potassium currents and shape of action potential is mainly due to the mechanical effects induced by ultrasound. Therefore, ultrasound stimulation may offer an alternative tool to treat some ion channels diseases related to potassium channels.
Collapse
Affiliation(s)
- Zhengrong Lin
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering - Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaowei Huang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering - Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Zhou
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering - Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wenjun Zhang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering - Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Key Laboratory of E&M, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| | - Yingzhe Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering - Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Sino-Dutch Biomedical and Information Engineering School, Northeastern University, Shenyang, China
| | - Tianyuan Bian
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering - Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Sino-Dutch Biomedical and Information Engineering School, Northeastern University, Shenyang, China
| | - Lili Niu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering - Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Long Meng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering - Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yanwu Guo
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Experience-Dependent Intrinsic Plasticity During Auditory Learning. J Neurosci 2018; 39:1206-1221. [PMID: 30541908 DOI: 10.1523/jneurosci.1036-18.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 11/14/2018] [Accepted: 12/05/2018] [Indexed: 11/21/2022] Open
Abstract
Song learning in zebra finches (Taeniopygia guttata) requires exposure to the song of a tutor, resulting in an auditory memory. This memory is the foundation for later sensorimotor learning, resulting in the production of a copy of the tutor's song. The cortical premotor nucleus HVC (proper name) is necessary for auditory and sensorimotor learning as well as the eventual production of adult song. We recently discovered that the intrinsic physiology of HVC neurons changes across stages of song learning, but are those changes the result of learning or are they experience-independent developmental changes? To test the role of auditory experience in driving intrinsic changes, patch-clamp experiments were performed comparing HVC neurons in juvenile birds with varying amounts of tutor exposure. The intrinsic physiology of HVC neurons changed as a function of tutor exposure. Counterintuitively, tutor deprivation resulted in juvenile HVC neurons showing an adult-like phenotype not present in tutor-exposed juveniles. Biophysical models were developed to predict which ion channels were modulated by experience. The models indicate that tutor exposure transiently suppressed the I h and T-type Ca2+ currents in HVC neurons that target the basal ganglia, whereas tutor exposure increased the resting membrane potential and decreased the spike amplitude in HVC neurons that drive singing. Our findings suggest that intrinsic plasticity may be part of the mechanism for auditory learning in the HVC. More broadly, models of learning and memory should consider intrinsic plasticity as a possible mechanism by which the nervous system encodes the lasting effects of experience.SIGNIFICANCE STATEMENT It is well established that learning involves plasticity of the synapses between neurons. However, the activity of a neural circuit can also be dramatically altered by changes in the intrinsic properties (ion channels) of the component neurons. The present experiments show experience-dependent changes in the intrinsic physiology of neurons in the cortical premotor nucleus HVC (proper name) in juvenile zebra finches (Taeniopygia guttata) during auditory learning of a tutor's song. Tutor deprivation does not "arrest" development of intrinsic properties, but rather results in neurons with a premature adult-like physiological phenotype. It is possible that auditory learning involves a form of nonsynaptic plasticity and that experience-dependent suppression of specific ion channels may work in concert with synaptic plasticity to promote vocal learning.
Collapse
|
9
|
Yu S, Lin Z, Xiao Z. [Changes of membrane properties and synaptic stability of rat retinal ganglion cells during postnatal development]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:1100-1106. [PMID: 30377110 DOI: 10.12122/j.issn.1673-4254.2018.09.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the changes in the membrane properties and synaptic stability of the rat retinal ganglion cells (RGCs) during postnatal development. METHODS Whole-cell patch-clamp technique was used to record the action potentials (AP) and miniature excitatory postsynaptic currents (mEPSC) of SD rat RGCs at postnatal days 7, 14 and 40. The active and passive membrane properties and the synaptic stability (measured by the amplitude, frequency, rise time and decay time of mEPSC) of the RGCs were analyzed using Patchmaster software. RESULTS Comparison of the RGCs in SD rats across different postnatal ages revealed significant changes in the electrophysiological characteristics of the RGCs during postnatal development. The discharge rate was significantly greater while the AP half-peak width was significantly smaller at postnatal day 15 (P15) than at P7 (P < 0.01), but were both similar between P15 and P40 (P=0.086); in terms of the passive membrane properties, the membrane time constant gradually decreased during the development. The frequency of mEPSCs increased significantly over time during postnatal development (P < 0.01), but was similar between P15 and P40 rats. CONCLUSIONS In SD rats, the membrane properties and synaptic stability of the RGCs undergo alterations following a specific pattern, which highlights a critical period where distinct changes occur in the electrophysiological characteristics of RGCs, followed by gradual stabilization over time. Such changes in the electrophysiological characteristics represent the basic characteristics of RGCs for visual signal processing, and understanding of this mechanism may provide insights into the exact role of the RGC in visual information processing.
Collapse
Affiliation(s)
- Siqi Yu
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhengrong Lin
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhongju Xiao
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
10
|
Lin Z, Zhou W, Huang X, Wang K, Tang J, Niu L, Meng L, Zheng H. On-Chip Ultrasound Modulation of Pyramidal Neuronal Activity in Hippocampal Slices. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zhengrong Lin
- Institute of Biomedical and Health Engineering; Shenzhen Institutes of Advanced Technology; Chinese Academy of Sciences; 1068 Xueyuan Avenue Shenzhen 518055 China
| | - Wei Zhou
- Institute of Biomedical and Health Engineering; Shenzhen Institutes of Advanced Technology; Chinese Academy of Sciences; 1068 Xueyuan Avenue Shenzhen 518055 China
| | - Xiaowei Huang
- Institute of Biomedical and Health Engineering; Shenzhen Institutes of Advanced Technology; Chinese Academy of Sciences; 1068 Xueyuan Avenue Shenzhen 518055 China
| | - Kaiyue Wang
- Institute of Biomedical and Health Engineering; Shenzhen Institutes of Advanced Technology; Chinese Academy of Sciences; 1068 Xueyuan Avenue Shenzhen 518055 China
| | - Jie Tang
- Department of Physiology; School of Basic Medical Sciences; Southern Medical University; 1023-1063 Shatai South Avenue Guangzhou 510515 China
| | - Lili Niu
- Institute of Biomedical and Health Engineering; Shenzhen Institutes of Advanced Technology; Chinese Academy of Sciences; 1068 Xueyuan Avenue Shenzhen 518055 China
| | - Long Meng
- Institute of Biomedical and Health Engineering; Shenzhen Institutes of Advanced Technology; Chinese Academy of Sciences; 1068 Xueyuan Avenue Shenzhen 518055 China
| | - Hairong Zheng
- Institute of Biomedical and Health Engineering; Shenzhen Institutes of Advanced Technology; Chinese Academy of Sciences; 1068 Xueyuan Avenue Shenzhen 518055 China
| |
Collapse
|
11
|
Fischer L, Leibold C, Felmy F. Resonance Properties in Auditory Brainstem Neurons. Front Cell Neurosci 2018; 12:8. [PMID: 29416503 PMCID: PMC5787568 DOI: 10.3389/fncel.2018.00008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/08/2018] [Indexed: 11/13/2022] Open
Abstract
Auditory signals carry relevant information on a large range of time scales from below milliseconds to several seconds. Different stages in the auditory brainstem are specialized to extract information in specific frequency domains. One biophysical mechanism to facilitate frequency specific processing are membrane potential resonances. Here, we provide data from three different brainstem nuclei that all exhibit high-frequency subthreshold membrane resonances that are all most likely based on low-threshold potassium currents. Fitting a linear model, we argue that, as long as neurons possess active subthreshold channels, the main determinant for their resonance behavior is the steady state membrane time constant. Tuning this leak conductance can shift membrane resonance frequencies over more than a magnitude and therefore provide a flexible mechanism to tune frequency-specific auditory processing.
Collapse
Affiliation(s)
- Linda Fischer
- Zoologisches Institut, Stiftung Tierärztliche Hochschule Hannover, Hannover, Germany
| | - Christian Leibold
- Department Biologie II, Ludwig-Maximilians-Universität München, Munich, Germany.,Bernstein Center for Computational Neuroscience Munich, Munich, Germany
| | - Felix Felmy
- Zoologisches Institut, Stiftung Tierärztliche Hochschule Hannover, Hannover, Germany
| |
Collapse
|
12
|
Schlüter T, Berger C, Rosengauer E, Fieth P, Krohs C, Ushakov K, Steel KP, Avraham KB, Hartmann AK, Felmy F, Nothwang HG. miR-96 is required for normal development of the auditory hindbrain. Hum Mol Genet 2018; 27:860-874. [DOI: 10.1093/hmg/ddy007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/30/2017] [Indexed: 12/17/2022] Open
Affiliation(s)
- Tina Schlüter
- Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Christina Berger
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians University Munich, 82152 Martinsried, Germany
| | - Elena Rosengauer
- Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Pascal Fieth
- Computational Theoretical Physics Group, Institute of Physics, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Constanze Krohs
- Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Kathy Ushakov
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Karen P Steel
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Alexander K Hartmann
- Computational Theoretical Physics Group, Institute of Physics, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Felix Felmy
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians University Munich, 82152 Martinsried, Germany
- Institute of Zoology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Hans Gerd Nothwang
- Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
- Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| |
Collapse
|
13
|
Porres CP, Grothe B, Felmy F. Breakdown of Excitability by Attenuated PRV-152 Infection in Auditory Brainstem Neurons of Mongolian Gerbils. Neuroscience 2017; 367:1-9. [PMID: 29069619 DOI: 10.1016/j.neuroscience.2017.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 11/27/2022]
Abstract
Pseudorabies virus (PRV), a neurovirulent α-herpesvirus, spreads between neurons at synaptic connections. PRV-infected neurons have been shown to exhibit functional deficits with the attenuated PRV152 Bartha strain negatively influencing neuronal functioning in in vitro model systems. However, the impact of this attenuated PRV152 Bartha strain on the native central nervous system has not been fully explored. Using a combination of in vivo stereotactic injections and post-hoc in vitro whole-cell recordings, we investigated the functional impact of PRV152 Bartha in the auditory system of juvenile Mongolian gerbils. The specificity of this virus strain to spread exclusively trans-synaptically in a retrograde fashion and the well-defined structure of the ascending auditory brainstem pathways allowed us to determine the physiological alterations in primary and secondary infected neurons. We find at primary and secondary infections sites, the inferior colliculus (IC) and dorsal nucleus of the lateral lemniscus respectively, a reduced excitability of infected cells. The loss of excitability is manifested by an increase in current threshold and a loss of action potential generation. The minor changes in the approximated passive membrane parameters induced by the infection cannot explain the full loss in excitability, indicating that channel densities and properties have changed. This impact on neuronal functioning might contribute to the lethal neurovirulent effects of PRV viruses as vital neuronal circuits might cease activity. Since the detrimental effects of the attenuated PRV152 Bartha strain are reduced compared to wild-type strains, it comprises an excellent tool to study the neuropathological mechanisms of viral infections.
Collapse
Affiliation(s)
- Christian P Porres
- Department Biology II, Division of Neurobiology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Benedikt Grothe
- Department Biology II, Division of Neurobiology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Felix Felmy
- Department Biology II, Division of Neurobiology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany; Institute of Zoology, University of Veterinary Medicine Hannover, 30599 Hannover, Germany.
| |
Collapse
|
14
|
Neuronal Intrinsic Physiology Changes During Development of a Learned Behavior. eNeuro 2017; 4:eN-NWR-0297-17. [PMID: 29062887 PMCID: PMC5649544 DOI: 10.1523/eneuro.0297-17.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 09/07/2017] [Indexed: 01/14/2023] Open
Abstract
Juvenile male zebra finches learn their songs over distinct auditory and sensorimotor stages, the former requiring exposure to an adult tutor song pattern. The cortical premotor nucleus HVC (acronym is name) plays a necessary role in both learning stages, as well as the production of adult song. Consistent with neural network models where synaptic plasticity mediates developmental forms of learning, exposure to tutor song drives changes in the turnover, density, and morphology of HVC synapses during vocal development. A network's output, however, is also influenced by the intrinsic properties (e.g., ion channels) of the component neurons, which could change over development. Here, we use patch clamp recordings to show cell-type-specific changes in the intrinsic physiology of HVC projection neurons as a function of vocal development. Developmental changes in HVC neurons that project to the basal ganglia include an increased voltage sag response to hyperpolarizing currents and an increased rebound depolarization following hyperpolarization. Developmental changes in HVC neurons that project to vocal-motor cortex include a decreased resting membrane potential and an increased spike amplitude. HVC interneurons, however, show a relatively stable range of intrinsic features across vocal development. We used mathematical models to deduce possible changes in ionic currents that underlie the physiological changes and to show that the magnitude of the observed changes could alter HVC circuit function. The results demonstrate developmental plasticity in the intrinsic physiology of HVC projection neurons and suggest that intrinsic plasticity may have a role in the process of song learning.
Collapse
|
15
|
Corelease of Inhibitory Neurotransmitters in the Mouse Auditory Midbrain. J Neurosci 2017; 37:9453-9464. [PMID: 28847813 DOI: 10.1523/jneurosci.1125-17.2017] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/07/2017] [Accepted: 08/23/2017] [Indexed: 11/21/2022] Open
Abstract
The central nucleus of the inferior colliculus (ICC) of the auditory midbrain, which integrates most ascending auditory information from lower brainstem regions, receives prominent long-range inhibitory input from the ventral nucleus of the lateral lemniscus (VNLL), a region thought to be important for temporal pattern discrimination. Histological evidence suggests that neurons in the VNLL release both glycine and GABA in the ICC, but functional evidence for their corelease is lacking. We took advantage of the GlyT2-Cre mouse line (both male and female) to target expression of ChR2 to glycinergic afferents in the ICC and made whole-cell recordings in vitro while exciting glycinergic fibers with light. Using this approach, it was clear that a significant fraction of glycinergic boutons corelease GABA in the ICC. Viral injections were used to target ChR2 expression specifically to glycinergic fibers ascending from the VNLL, allowing for activation of fibers from a single source of ascending input in a way that has not been previously possible in the ICC. We then investigated aspects of the glycinergic versus GABAergic current components to probe functional consequences of corelease. Surprisingly, the time course and short-term plasticity of synaptic signaling were nearly identical for the two transmitters. We therefore conclude that the two neurotransmitters may be functionally interchangeable and that multiple receptor subtypes subserving inhibition may offer diverse mechanisms for maintaining inhibitory homeostasis.SIGNIFICANCE STATEMENT Corelease of neurotransmitters is a common feature of the brain. GABA and glycine corelease is particularly common in the spinal cord and brainstem, but its presence in the midbrain is unknown. We show corelease of GABA and glycine for the first time in the central nucleus of the inferior colliculus of the auditory midbrain. Glycine and GABA are both inhibitory neurotransmitters involved in fast synaptic transmission, so we explored differences between the currents to establish a physiological foundation for functional differences in vivo In contrast to the auditory brainstem, coreleased GABAergic and glycinergic currents in the midbrain are strikingly similar. This apparent redundancy may ensure homeostasis if one neurotransmitter system is compromised.
Collapse
|
16
|
Fischer L, Scherbarth F, Chagnaud B, Felmy F. Intrinsic frequency response patterns in mechano-sensory neurons of the leech. Biol Open 2017; 6:993-999. [PMID: 28546342 PMCID: PMC5550909 DOI: 10.1242/bio.023960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Animals employ mechano-sensory systems to detect and explore their environment. Mechano-sensation encompasses stimuli such as constant pressure, surface movement or vibrations at various intensities that need to be segregated in the central nervous system. Besides different receptor structures, sensory filtering via intrinsic response properties could provide a convenient way to solve this problem. In leech, three major mechano-sensory cell types can be distinguished, according to their stimulus sensitivity, as nociceptive, pressure and touch cells. Using intracellular recordings, we show that the different mechano-sensory neuron classes in Hirudo medicinalis differentially respond supra-threshold to distinct frequencies of sinusoidal current injections between 0.2 and 20 Hz. Nociceptive cells responded with a low-pass filter characteristic, pressure cells as high-pass filters and touch cells as an intermediate band-pass filter. Each class of mechano-sensory neurons is thus intrinsically tuned to a specific frequency range of voltage oscillation that could help segregate mechano-sensory information centrally. Summary: Mechano-sensitive neurons of leech are intrinsically tuned to generate somatic input-output functions with distinct filter properties.
Collapse
Affiliation(s)
- Linda Fischer
- Institute of Zoology, University of Veterinary Medicine Hannover, Buenteweg 17, Hannover 30559, Germany
| | - Frank Scherbarth
- Institute of Zoology, University of Veterinary Medicine Hannover, Buenteweg 17, Hannover 30559, Germany
| | - Boris Chagnaud
- Department Biology II, Ludwig-Maximilians-University Munich, Großhadener Straße 2, Planegg/Martinsried 82152, Germany
| | - Felix Felmy
- Institute of Zoology, University of Veterinary Medicine Hannover, Buenteweg 17, Hannover 30559, Germany
| |
Collapse
|
17
|
Felix Ii RA, Gourévitch B, Gómez-Álvarez M, Leijon SCM, Saldaña E, Magnusson AK. Octopus Cells in the Posteroventral Cochlear Nucleus Provide the Main Excitatory Input to the Superior Paraolivary Nucleus. Front Neural Circuits 2017; 11:37. [PMID: 28620283 PMCID: PMC5449481 DOI: 10.3389/fncir.2017.00037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/19/2017] [Indexed: 12/26/2022] Open
Abstract
Auditory streaming enables perception and interpretation of complex acoustic environments that contain competing sound sources. At early stages of central processing, sounds are segregated into separate streams representing attributes that later merge into acoustic objects. Streaming of temporal cues is critical for perceiving vocal communication, such as human speech, but our understanding of circuits that underlie this process is lacking, particularly at subcortical levels. The superior paraolivary nucleus (SPON), a prominent group of inhibitory neurons in the mammalian brainstem, has been implicated in processing temporal information needed for the segmentation of ongoing complex sounds into discrete events. The SPON requires temporally precise and robust excitatory input(s) to convey information about the steep rise in sound amplitude that marks the onset of voiced sound elements. Unfortunately, the sources of excitation to the SPON and the impact of these inputs on the behavior of SPON neurons have yet to be resolved. Using anatomical tract tracing and immunohistochemistry, we identified octopus cells in the contralateral cochlear nucleus (CN) as the primary source of excitatory input to the SPON. Cluster analysis of miniature excitatory events also indicated that the majority of SPON neurons receive one type of excitatory input. Precise octopus cell-driven onset spiking coupled with transient offset spiking make SPON responses well-suited to signal transitions in sound energy contained in vocalizations. Targets of octopus cell projections, including the SPON, are strongly implicated in the processing of temporal sound features, which suggests a common pathway that conveys information critical for perception of complex natural sounds.
Collapse
Affiliation(s)
- Richard A Felix Ii
- Unit of Audiology, Department of Clinical Science, Intervention and Technology, Karolinska InstitutetStockholm, Sweden
| | - Boris Gourévitch
- Institut Pasteur, Unité de Génétique et Physiologie de l'AuditionParis, France.,Institut National de la Santé et de la Recherche Médicale, UMRS 1120Paris, France.,Université Pierre et Marie CurieParis, France
| | - Marcelo Gómez-Álvarez
- Unit of Audiology, Department of Clinical Science, Intervention and Technology, Karolinska InstitutetStockholm, Sweden.,Neuroscience Institute of Castilla y León (INCyL), Universidad de SalamancaSalamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL)Salamanca, Spain
| | - Sara C M Leijon
- Unit of Audiology, Department of Clinical Science, Intervention and Technology, Karolinska InstitutetStockholm, Sweden
| | - Enrique Saldaña
- Neuroscience Institute of Castilla y León (INCyL), Universidad de SalamancaSalamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL)Salamanca, Spain
| | - Anna K Magnusson
- Unit of Audiology, Department of Clinical Science, Intervention and Technology, Karolinska InstitutetStockholm, Sweden
| |
Collapse
|
18
|
Distinct Neural Properties in the Low-Frequency Region of the Chicken Cochlear Nucleus Magnocellularis. eNeuro 2017; 4:eN-NWR-0016-17. [PMID: 28413822 PMCID: PMC5388668 DOI: 10.1523/eneuro.0016-17.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/17/2017] [Accepted: 03/05/2017] [Indexed: 12/03/2022] Open
Abstract
Topography in the avian cochlear nucleus magnocellularis (NM) is represented as gradually increasing characteristic frequency (CF) along the caudolateral-to-rostromedial axis. In this study, we characterized the organization and cell biophysics of the caudolateral NM (NMc) in chickens (Gallus gallus). Examination of cellular and dendritic architecture first revealed that NMc contains small neurons and extensive dendritic processes, in contrast to adendritic, large neurons located more rostromedially. Individual dye-filling study further demonstrated that NMc is divided into two subregions, with NMc2 neurons having larger and more complex dendritic fields than NMc1. Axonal tract tracing studies confirmed that NMc1 and NMc2 neurons receive afferent inputs from the auditory nerve and the superior olivary nucleus, similar to the adendritic NM. However, the auditory axons synapse with NMc neurons via small bouton-like terminals, unlike the large end bulb synapses on adendritic NM neurons. Immunocytochemistry demonstrated that most NMc2 neurons express cholecystokinin but not calretinin, distinct from NMc1 and adendritic NM neurons that are cholecystokinin negative and mostly calretinin positive. Finally, whole-cell current clamp recordings revealed that NMc neurons require significantly lower threshold current for action potential generation than adendritic NM neurons. Moreover, in contrast to adendritic NM neurons that generate a single-onset action potential, NMc neurons generate multiple action potentials to suprathreshold sustained depolarization. Taken together, our data indicate that NMc contains multiple neuron types that are structurally, connectively, molecularly, and physiologically different from traditionally defined NM neurons, emphasizing specialized neural properties for processing low-frequency sounds.
Collapse
|
19
|
Weatherstone JH, Kopp-Scheinpflug C, Pilati N, Wang Y, Forsythe ID, Rubel EW, Tempel BL. Maintenance of neuronal size gradient in MNTB requires sound-evoked activity. J Neurophysiol 2016; 117:756-766. [PMID: 27881722 PMCID: PMC5304411 DOI: 10.1152/jn.00528.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/21/2016] [Indexed: 12/12/2022] Open
Abstract
Neurons of the medial nucleus of the trapezoid body (MNTB) act as fast-spiking inhibitory interneurons within the auditory brain stem. The MNTB is topographically organized, with low sound frequencies encoded laterally and high frequencies medially. We discovered a cell size gradient along this axis: lateral neurons are larger than medial neurons. The absence of this gradient in deaf mice lacking plasma membrane calcium ATPase 2 suggests an activity-dependent, calcium-mediated mechanism that controls neuronal soma size. The medial nucleus of the trapezoid body (MNTB) is an important source of inhibition during the computation of sound location. It transmits fast and precisely timed action potentials at high frequencies; this requires an efficient calcium clearance mechanism, in which plasma membrane calcium ATPase 2 (PMCA2) is a key component. Deafwaddler (dfw2J) mutant mice have a null mutation in PMCA2 causing deafness in homozygotes (dfw2J/dfw2J) and high-frequency hearing loss in heterozygotes (+/dfw2J). Despite the deafness phenotype, no significant differences in MNTB volume or cell number were observed in dfw2J homozygous mutants, suggesting that PMCA2 is not required for MNTB neuron survival. The MNTB tonotopic axis encodes high to low sound frequencies across the medial to lateral dimension. We discovered a cell size gradient along this axis: lateral neuronal somata are significantly larger than medially located somata. This size gradient is decreased in +/dfw2J and absent in dfw2J/dfw2J. The lack of acoustically driven input suggests that sound-evoked activity is required for maintenance of the cell size gradient. This hypothesis was corroborated by selective elimination of auditory hair cell activity with either hair cell elimination in Pou4f3 DTR mice or inner ear tetrodotoxin (TTX) treatment. The change in soma size was reversible and recovered within 7 days of TTX treatment, suggesting that regulation of the gradient is dependent on synaptic activity and that these changes are plastic rather than permanent. NEW & NOTEWORTHY Neurons of the medial nucleus of the trapezoid body (MNTB) act as fast-spiking inhibitory interneurons within the auditory brain stem. The MNTB is topographically organized, with low sound frequencies encoded laterally and high frequencies medially. We discovered a cell size gradient along this axis: lateral neurons are larger than medial neurons. The absence of this gradient in deaf mice lacking plasma membrane calcium ATPase 2 suggests an activity-dependent, calcium-mediated mechanism that controls neuronal soma size.
Collapse
Affiliation(s)
- Jessica H Weatherstone
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, and Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington.,Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, and Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington
| | - Conny Kopp-Scheinpflug
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom; .,Division of Neurobiology, Department Biology II, Ludwig-Maximilians University Munich, Planegg-Martinsried, Germany
| | - Nadia Pilati
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom.,Autifony Srl Laboratories, Medicines Research Centre, Verona, Italy; and
| | - Yuan Wang
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, and Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington.,Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida
| | - Ian D Forsythe
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| | - Edwin W Rubel
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, and Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington
| | - Bruce L Tempel
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, and Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington.,Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, and Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
20
|
Yassin L, Pecka M, Kajopoulos J, Gleiss H, Li L, Leibold C, Felmy F. Differences in synaptic and intrinsic properties result in topographic heterogeneity of temporal processing of neurons within the inferior colliculus. Hear Res 2016; 341:79-90. [DOI: 10.1016/j.heares.2016.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 10/21/2022]
|
21
|
Hong H, Rollman L, Feinstein B, Sanchez JT. Developmental Profile of Ion Channel Specializations in the Avian Nucleus Magnocellularis. Front Cell Neurosci 2016; 10:80. [PMID: 27065805 PMCID: PMC4811932 DOI: 10.3389/fncel.2016.00080] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/14/2016] [Indexed: 11/18/2022] Open
Abstract
Ultrafast and temporally precise action potentials (APs) are biophysical specializations of auditory brainstem neurons; properties necessary for encoding sound localization and communication cues. Fundamental to these specializations are voltage dependent potassium (KV) and sodium (NaV) ion channels. Here, we characterized the functional development of these ion channels and quantified how they shape AP properties in the avian cochlear nucleus magnocellularis (NM). We report that late developing NM neurons (embryonic [E] days 19–21) generate fast APs that reliably phase lock to sinusoidal inputs at 75 Hz. In contrast, early developing neurons (<E12) have slower and less reliable APs that preferentially fire to lower frequencies (5–10 Hz). With development, the membrane time constant of NM neurons became faster, while input resistance and capacitance decreased. Change in input resistance was due to a 2-fold increase in KV current from E10 to E21 and when high-voltage activated potassium (K+HVA) channels were blocked, APs for all ages became significantly slower. This was most evident for early developing neurons where the ratio of K+HVA current accounted for ~85% of the total KV response. This ratio dropped to ~50% for late developing neurons, suggesting a developmental upregulation of low-voltage activated potassium (K+LVA) channels. Indeed, blockade of K+LVA eliminated remaining current and increased neural excitability for late developing neurons. We also report developmental changes in the amplitude, kinetics and voltage dependence of NaV currents. For early developing neurons, increase in NaV current amplitude was due to channel density while channel conductance dominated for late developing neurons. From E10 to E21, NaV channel currents became faster but differed in their voltage dependence; early developing neurons (<E16) had similar NaV channel inactivation voltages while late developing NM neurons (>E19) contained NaV channels that inactivate at more negative voltages, suggesting alterations in NaV channel subtypes. Taken together, our results indicate that the refinement of passive and active ion channel properties operate differentially in order to develop fast and reliable APs in the avian NM.
Collapse
Affiliation(s)
- Hui Hong
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, The Hugh Knowles Hearing Research Center, School of Communication, Northwestern University Evanston, IL, USA
| | - Lisia Rollman
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, The Hugh Knowles Hearing Research Center, School of Communication, Northwestern University Evanston, IL, USA
| | - Brooke Feinstein
- Department of Neurobiology and Interdepartmental Neuroscience Program, Weinberg College of Arts and Sciences, Northwestern University Evanston, IL, USA
| | - Jason Tait Sanchez
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, The Hugh Knowles Hearing Research Center, School of Communication, Northwestern UniversityEvanston, IL, USA; Department of Neurobiology and Interdepartmental Neuroscience Program, Weinberg College of Arts and Sciences, Northwestern UniversityEvanston, IL, USA
| |
Collapse
|
22
|
Caspari F, Baumann VJ, Garcia-Pino E, Koch U. Heterogeneity of Intrinsic and Synaptic Properties of Neurons in the Ventral and Dorsal Parts of the Ventral Nucleus of the Lateral Lemniscus. Front Neural Circuits 2015; 9:74. [PMID: 26635535 PMCID: PMC4649059 DOI: 10.3389/fncir.2015.00074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/30/2015] [Indexed: 11/13/2022] Open
Abstract
The ventral nucleus of the lateral lemniscus (VNLL) provides a major inhibitory projection to the inferior colliculus (IC). Neurons in the VNLL respond with various firing patterns and different temporal precision to acoustic stimulation. The present study investigates the underlying intrinsic and synaptic properties of various cell types in different regions of the VNLL, using in vitro electrophysiological recordings from acute brain slices of mice and immunohistochemistry. We show that the biophysical membrane properties and excitatory input characteristics differed between dorsal and ventral VNLL neurons. Neurons in the ventral VNLL displayed an onset-type firing pattern and little hyperpolarization-activated current (Ih). Stimulation of lemniscal inputs evoked a large all-or-none excitatory response similar to Calyx of Held synapses in neurons in the lateral part of the ventral VNLL. Neurons that were located within the fiber tract of the lateral lemniscus, received several and weak excitatory input fibers. In the dorsal VNLL onset-type and sustained firing neurons were intermingled. These neurons showed large Ih and were strongly immunopositive for the hyperpolarization-activated cyclic nucleotide-gated channel 1 (HCN1) subunit. Both neuron types received several excitatory inputs that were weaker and slower compared to ventrolateral VNLL neurons. Using a mouse model that expresses channelrhodopsin under the promotor of the vesicular GABA transporter (VGAT) suggests that dorsal and ventral neurons were inhibitory since they were all depolarized by light stimulation. The diverse membrane and input properties in dorsal and ventral VNLL neurons suggest differential roles of these neurons for sound processing.
Collapse
Affiliation(s)
- Franziska Caspari
- Neurophysiology, Institute of Biology, Freie Universität Berlin Berlin, Germany
| | - Veronika J Baumann
- Neurophysiology, Institute of Biology, Freie Universität Berlin Berlin, Germany
| | | | - Ursula Koch
- Neurophysiology, Institute of Biology, Freie Universität Berlin Berlin, Germany
| |
Collapse
|
23
|
Ono M, Ito T. Functional organization of the mammalian auditory midbrain. J Physiol Sci 2015; 65:499-506. [PMID: 26362672 PMCID: PMC10718034 DOI: 10.1007/s12576-015-0394-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 08/22/2015] [Indexed: 12/12/2022]
Abstract
The inferior colliculus (IC) is a critical nexus between the auditory brainstem and the forebrain. Parallel auditory pathways that emerge from the brainstem are integrated in the IC. In this integration, de-novo auditory information processed as local and ascending inputs converge via the complex neural circuit of the IC. However, it is still unclear how information is processed within the neural circuit. The purpose of this review is to give an anatomical and physiological overview of the IC neural circuit. We address the functional organization of the IC where the excitatory and inhibitory synaptic inputs interact to shape the responses of IC neurons to sound.
Collapse
Affiliation(s)
- Munenori Ono
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030-3401, USA.
- Department of Physiology, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan.
| | - Tetsufumi Ito
- Department of Anatomy, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, 910-1193, Japan
- Research and Education Program for Life Science, University of Fukui, Fukui, Fukui, 910-8507, Japan
| |
Collapse
|