1
|
Gutjahr R, Bothe MS, Jonsson T, Chagnaud BP. Diversification of pectoral control through motor pool extension. Proc Natl Acad Sci U S A 2024; 121:e2413415121. [PMID: 39602261 PMCID: PMC11626184 DOI: 10.1073/pnas.2413415121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/19/2024] [Indexed: 11/29/2024] Open
Abstract
Flexible control of pectoral appendages enables motor behaviors of vastly different strength, speed, and amplitude, as in a human playing the piano or throwing a ball. Such control necessitates a fine-tuned, coordinated activation of motoneurons, which is facilitated by spatially ordered motoneuron pools in mammals. While differently sized neurons are known to contribute to different strengths of pectoral movements, it remains unclear how these pectoral motor pools are organized in less complex pectoral systems as those of teleost fish. We show how pectoral motor control can be extended to increase the speed- and amplitude-range of motor behaviors by investigating anatomical and physiological features of pectoral motoneurons and the motor pools they form in freshwater hatchet fish, well-known for their pectoral aerial escape response. Through the differentiation of one motor pool, the pectoral motor network of hatchet fish acquired additional flexibility to enable specific control of vastly different amplitudes, velocities, and strengths. Similar neuronal organization patterns have been described for controlling fast, intermediate, and slow axial muscles in zebrafish and in tetrapod motor systems controlling pectoral limbs. We show that hatchet fish share organizational principles of their pectoral motor pools with those found in other motor networks in both teleosts and tetrapods. Our data thus suggest that principles of spatial and physiological differentiation of motor pools associated with different pectoral muscles and behaviors might be deeply homologous between actinopterygian and sarcopterygian vertebrates.
Collapse
Affiliation(s)
- Ruth Gutjahr
- Department of Biology, University of Graz, Graz8010, Austria
| | | | - Thorin Jonsson
- Department of Biology, University of Graz, Graz8010, Austria
| | | |
Collapse
|
2
|
Andrews G, Andrews G, Leung YF, Suter DM. A robust paradigm for studying regeneration after traumatic spinal cord injury in zebrafish. J Neurosci Methods 2024; 410:110243. [PMID: 39117153 PMCID: PMC11395912 DOI: 10.1016/j.jneumeth.2024.110243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Zebrafish are vertebrates with a high potential of regeneration after injury in the central nervous system. Therefore, they have emerged as a useful model system for studying traumatic spinal cord injuries. NEW METHOD Using larval zebrafish, we have developed a robust paradigm to model the effects of anterior spinal cord injury, which correspond to the debilitating injuries of the cervical and thoracic regions in humans. Our new paradigm consists of a more anterior injury location compared to previous studies, a modified behavioral assessment using the visual motor response, and a new data analysis code. RESULTS Our approach enables a spinal cord injury closer to the hindbrain with more functional impact compared to previous studies using a more posterior injury location. Results reported in this work reveal recovery over seven days following spinal cord injury. COMPARING WITH EXISTING METHODS The present work describes a modified paradigm for the in vivo study of spinal cord regeneration after injury using larval zebrafish, including an anterior injury location, a robust behavioral assessment, and a new data analysis software. CONCLUSIONS Our findings lay the foundation for applying this paradigm to study the effects of drugs, nutrition, and other treatments to improve the regeneration process.
Collapse
Affiliation(s)
- Gentry Andrews
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Geoffrey Andrews
- School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN 47907, USA
| | - Yuk Fai Leung
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Daniel M Suter
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA; Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA; Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA; Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
3
|
Bothe MS, Kohl T, Felmy F, Gallant J, Chagnaud BP. Timing and precision of rattlesnake spinal motoneurons are determined by the KV7 2/3 potassium channel. Curr Biol 2024; 34:286-297.e5. [PMID: 38157862 DOI: 10.1016/j.cub.2023.11.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/11/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
The evolution of novel motor behaviors requires modifications in the central pattern generators (CPGs) controlling muscle activity. How such changes gradually lead to novel behaviors remains enigmatic due to the long time course of evolution. Rattlesnakes provide a unique opportunity to investigate how a locomotor CPG was evolutionarily modified to generate a novel behavior-in this case, acoustic signaling. We show that motoneurons (MNs) in the body and tail spinal cord of rattlesnakes possess fundamentally different physiological characteristics, which allow MNs in the tail to integrate and transmit CPG output for controlling superfast muscles with high temporal precision. Using patch-clamp electrophysiology, we demonstrate that these differences in locomotor and rattle MNs are mainly determined by KV72/3 potassium channels. However, although KV72/3 exerted a significantly different influence on locomotor and rattle MN physiology, single-cell RNA-seq unexpectedly did not reveal any differences in KV72/3 channels' expression. VIDEO ABSTRACT.
Collapse
Affiliation(s)
| | - Tobias Kohl
- TUM School of Life Science, Technical University of Munich, 85354 Munich, Germany
| | - Felix Felmy
- Institute of Zoology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Jason Gallant
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Boris P Chagnaud
- Institute of Biology, University of Graz, 8010 Graz, Austria; Department of Biology II, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
4
|
Carbo-Tano M, Lapoix M, Jia X, Thouvenin O, Pascucci M, Auclair F, Quan FB, Albadri S, Aguda V, Farouj Y, Hillman EMC, Portugues R, Del Bene F, Thiele TR, Dubuc R, Wyart C. The mesencephalic locomotor region recruits V2a reticulospinal neurons to drive forward locomotion in larval zebrafish. Nat Neurosci 2023; 26:1775-1790. [PMID: 37667039 PMCID: PMC10545542 DOI: 10.1038/s41593-023-01418-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/24/2023] [Indexed: 09/06/2023]
Abstract
The mesencephalic locomotor region (MLR) is a brain stem area whose stimulation triggers graded forward locomotion. How MLR neurons recruit downstream vsx2+ (V2a) reticulospinal neurons (RSNs) is poorly understood. Here, to overcome this challenge, we uncovered the locus of MLR in transparent larval zebrafish and show that the MLR locus is distinct from the nucleus of the medial longitudinal fasciculus. MLR stimulations reliably elicit forward locomotion of controlled duration and frequency. MLR neurons recruit V2a RSNs via projections onto somata in pontine and retropontine areas, and onto dendrites in the medulla. High-speed volumetric imaging of neuronal activity reveals that strongly MLR-coupled RSNs are active for steering or forward swimming, whereas weakly MLR-coupled medullary RSNs encode the duration and frequency of the forward component. Our study demonstrates how MLR neurons recruit specific V2a RSNs to control the kinematics of forward locomotion and suggests conservation of the motor functions of V2a RSNs across vertebrates.
Collapse
Affiliation(s)
- Martin Carbo-Tano
- Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Institut National de la Santé et de la Recherche Médicale U1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Assistance Publique-Hôpitaux de Paris, Campus Hospitalier Pitié-Salpêtrière, Paris, France
| | - Mathilde Lapoix
- Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Institut National de la Santé et de la Recherche Médicale U1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Assistance Publique-Hôpitaux de Paris, Campus Hospitalier Pitié-Salpêtrière, Paris, France
| | - Xinyu Jia
- Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Institut National de la Santé et de la Recherche Médicale U1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Assistance Publique-Hôpitaux de Paris, Campus Hospitalier Pitié-Salpêtrière, Paris, France
| | - Olivier Thouvenin
- Institut Langevin, École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris, Paris Sciences et Lettres, Centre National de la Recherche Scientifique, Paris, France
| | - Marco Pascucci
- Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Institut National de la Santé et de la Recherche Médicale U1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Assistance Publique-Hôpitaux de Paris, Campus Hospitalier Pitié-Salpêtrière, Paris, France
- Université Paris-Saclay, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Centre National de la Recherche Scientifique, NeuroSpin, Baobab, Centre d'études de Saclay, Gif-sur-Yvette, France
- The American University of Paris, Paris, France
| | - François Auclair
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, Quebec, Canada
| | - Feng B Quan
- Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Institut National de la Santé et de la Recherche Médicale U1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Assistance Publique-Hôpitaux de Paris, Campus Hospitalier Pitié-Salpêtrière, Paris, France
| | - Shahad Albadri
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
| | - Vernie Aguda
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Younes Farouj
- Institute of Neuroscience, Technical University of Munich, Munich, Germany
| | - Elizabeth M C Hillman
- Laboratory for Functional Optical Imaging, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA
| | - Ruben Portugues
- Institute of Neuroscience, Technical University of Munich, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Filippo Del Bene
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
| | - Tod R Thiele
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Réjean Dubuc
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, Quebec, Canada.
- Groupe de Recherche en Activité Physique Adaptée, Department of Exercise Science, Université du Québec à Montréal, Montréal, Quebec, Canada.
| | - Claire Wyart
- Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Institut National de la Santé et de la Recherche Médicale U1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Assistance Publique-Hôpitaux de Paris, Campus Hospitalier Pitié-Salpêtrière, Paris, France.
| |
Collapse
|
5
|
Dubuc R, Cabelguen JM, Ryczko D. Locomotor pattern generation and descending control: a historical perspective. J Neurophysiol 2023; 130:401-416. [PMID: 37465884 DOI: 10.1152/jn.00204.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023] Open
Abstract
The ability to generate and control locomotor movements depends on complex interactions between many areas of the nervous system, the musculoskeletal system, and the environment. How the nervous system manages to accomplish this task has been the subject of investigation for more than a century. In vertebrates, locomotion is generated by neural networks located in the spinal cord referred to as central pattern generators. Descending inputs from the brain stem initiate, maintain, and stop locomotion as well as control speed and direction. Sensory inputs adapt locomotor programs to the environmental conditions. This review presents a comparative and historical overview of some of the neural mechanisms underlying the control of locomotion in vertebrates. We have put an emphasis on spinal mechanisms and descending control.
Collapse
Affiliation(s)
- Réjean Dubuc
- Groupe de Recherche en Activité Physique Adaptée, Département des Sciences de l'Activité Physique, Université du Québec à Montréal, Montreal, Quebec, Canada
- Groupe de Recherche sur le Système Nerveux Central, Département de Neurosciences, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-Marie Cabelguen
- Institut National de la Santé et de la Recherche Médicale (INSERM) U 1215-Neurocentre Magendie, Université de Bordeaux, Bordeaux Cedex, France
| | - Dimitri Ryczko
- Département de Pharmacologie-Physiologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
- Neurosciences Sherbrooke, Sherbrooke, Quebec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
6
|
Lacroix-Ouellette P, Dubuc R. Brainstem neural mechanisms controlling locomotion with special reference to basal vertebrates. Front Neural Circuits 2023; 17:910207. [PMID: 37063386 PMCID: PMC10098025 DOI: 10.3389/fncir.2023.910207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Over the last 60 years, the basic neural circuitry responsible for the supraspinal control of locomotion has progressively been uncovered. Initially, significant progress was made in identifying the different supraspinal structures controlling locomotion in mammals as well as some of the underlying mechanisms. It became clear, however, that the complexity of the mammalian central nervous system (CNS) prevented researchers from characterizing the detailed cellular mechanisms involved and that animal models with a simpler nervous system were needed. Basal vertebrate species such as lampreys, xenopus embryos, and zebrafish became models of choice. More recently, optogenetic approaches have considerably revived interest in mammalian models. The mesencephalic locomotor region (MLR) is an important brainstem region known to control locomotion in all vertebrate species examined to date. It controls locomotion through intermediary cells in the hindbrain, the reticulospinal neurons (RSNs). The MLR comprises populations of cholinergic and glutamatergic neurons and their specific contribution to the control of locomotion is not fully resolved yet. Moreover, the downward projections from the MLR to RSNs is still not fully understood. Reporting on discoveries made in different animal models, this review article focuses on the MLR, its projections to RSNs, and the contribution of these neural elements to the control of locomotion. Excellent and detailed reviews on the brainstem control of locomotion have been recently published with emphasis on mammalian species. The present review article focuses on findings made in basal vertebrates such as the lamprey, to help direct new research in mammals, including humans.
Collapse
Affiliation(s)
| | - Réjean Dubuc
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
- Department of Physical Activity Sciences, Université du Québec à Montréal, Montréal, QC, Canada
- Research Group for Adapted Physical Activity, Université du Québec à Montréal, Montréal, QC, Canada
- *Correspondence: Réjean Dubuc,
| |
Collapse
|
7
|
Wu MY, Carbo-Tano M, Mirat O, Lejeune FX, Roussel J, Quan FB, Fidelin K, Wyart C. Spinal sensory neurons project onto the hindbrain to stabilize posture and enhance locomotor speed. Curr Biol 2021; 31:3315-3329.e5. [PMID: 34146485 DOI: 10.1016/j.cub.2021.05.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 03/12/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022]
Abstract
In the spinal cord, cerebrospinal fluid-contacting neurons (CSF-cNs) are GABAergic interoceptive sensory neurons that detect spinal curvature via a functional coupling with the Reissner fiber. This mechanosensory system has recently been found to be involved in spine morphogenesis and postural control but the underlying mechanisms are not fully understood. In zebrafish, CSF-cNs project an ascending and ipsilateral axon reaching two to six segments away. Rostralmost CSF-cNs send their axons ipsilaterally into the hindbrain, a brain region containing motor nuclei and reticulospinal neurons (RSNs), which send descending motor commands to spinal circuits. Until now, the synaptic connectivity of CSF-cNs has only been investigated in the spinal cord, where they synapse onto motor neurons and premotor excitatory interneurons. The identity of CSF-cN targets in the hindbrain and the behavioral relevance of these sensory projections from the spinal cord to the hindbrain are unknown. Here, we provide anatomical and molecular evidence that rostralmost CSF-cNs synapse onto the axons of large RSNs including Mauthner cells and V2a neurons. Functional anatomy and optogenetically assisted mapping reveal that rostral CSF-cNs also synapse onto the soma and dendrites of cranial motor neurons innervating hypobranchial muscles. During acousto-vestibular evoked escape responses, ablation of rostralmost CSF-cNs results in a weaker escape response with a decreased C-bend amplitude, lower speed, and deficient postural control. Our study demonstrates that spinal sensory feedback enhances speed and stabilizes posture, and reveals a novel spinal gating mechanism acting on the output of descending commands sent from the hindbrain to the spinal cord.
Collapse
Affiliation(s)
- Ming-Yue Wu
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
| | - Martin Carbo-Tano
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France.
| | - Olivier Mirat
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
| | - Francois-Xavier Lejeune
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
| | - Julian Roussel
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
| | - Feng B Quan
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
| | - Kevin Fidelin
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France
| | - Claire Wyart
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, 75013 Paris, France.
| |
Collapse
|
8
|
Neuronal Circuits That Control Rhythmic Pectoral Fin Movements in Zebrafish. J Neurosci 2020; 40:6678-6690. [PMID: 32703904 DOI: 10.1523/jneurosci.1484-20.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022] Open
Abstract
The most basic form of locomotion in limbed vertebrates consists of alternating activities of the flexor and extensor muscles within each limb coupled with left/right limb alternation. Although larval zebrafish are not limbed, their pectoral fin movements exhibit the following fundamental aspects of this basic movement: abductor/adductor alternation (corresponding to flexor/extensor alternation) and left/right fin alternation. Because of the simplicity of their movements and the compact neural organization of their spinal cords, zebrafish can serve as a good model to identify the neuronal networks of the central pattern generator (CPG) that controls rhythmic appendage movements. Here, we set out to investigate neuronal circuits underlying rhythmic pectoral fin movements in larval zebrafish, using transgenic fish that specifically express GFP in abductor or adductor motor neurons (MNs) and candidate CPG neurons. First, we showed that spiking activities of abductor and adductor MNs were essentially alternating. Second, both abductor and adductor MNs received rhythmic excitatory and inhibitory synaptic inputs in their active and inactive phases, respectively, indicating that the MN spiking activities are controlled in a push-pull manner. Further, we obtained the following evidence that dmrt3a-expressing commissural inhibitory neurons are involved in regulating the activities of abductor MNs: (1) strong inhibitory synaptic connections were found from dmrt3a neurons to abductor MNs; and (2) ablation of dmrt3a neurons shifted the spike timing of abductor MNs. Thus, in this simple system of abductor/adductor alternation, the last-order inhibitory inputs originating from the contralaterally located neurons play an important role in controlling the firing timings of MNs.SIGNIFICANCE STATEMENT Pectoral fin movements in larval zebrafish exhibit fundamental aspects of basic rhythmic appendage movement: alternation of the abductor and adductor (corresponding to flexor-extensor alternation) coupled with left-right alternation. We set out to investigate the neuronal circuits underlying rhythmic pectoral fin movements in larval zebrafish. We showed that both abductor and adductor MNs received rhythmic excitatory and inhibitory synaptic inputs in their active and inactive phases, respectively. This indicates that MN activities are controlled in a push-pull manner. We further obtained evidence that dmrt3a-expressing commissural inhibitory neurons exert an inhibitory effect on abductor MNs. The current study marks the first step toward the identification of central pattern generator organization for rhythmic fin movements.
Collapse
|
9
|
Behavioral Characterization of dmrt3a Mutant Zebrafish Reveals Crucial Aspects of Vertebrate Locomotion through Phenotypes Related to Acceleration. eNeuro 2020; 7:ENEURO.0047-20.2020. [PMID: 32357958 PMCID: PMC7235372 DOI: 10.1523/eneuro.0047-20.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/02/2020] [Accepted: 04/19/2020] [Indexed: 12/16/2022] Open
Abstract
Vertebrate locomotion is orchestrated by spinal interneurons making up a central pattern generator. Proper coordination of activity, both within and between segments, is required to generate the desired locomotor output. This coordination is altered during acceleration to ensure the correct recruitment of muscles for the chosen speed. The transcription factor Dmrt3 has been proposed to shape the patterned output at different gaits in horses and mice. Vertebrate locomotion is orchestrated by spinal interneurons making up a central pattern generator. Proper coordination of activity, both within and between segments, is required to generate the desired locomotor output. This coordination is altered during acceleration to ensure the correct recruitment of muscles for the chosen speed. The transcription factor Dmrt3 has been proposed to shape the patterned output at different gaits in horses and mice. Here, we characterized dmrt3a mutant zebrafish, which showed a strong, transient, locomotor phenotype in developing larvae. During beat-and-glide swimming, mutant larvae showed fewer and shorter movements with decreased velocity and acceleration. Developmental compensation likely occurs as the analyzed behaviors did not differ from wild-type at older larval stages. However, analysis of maximum swim speed in juveniles suggests that some defects persist within the mature locomotor network of dmrt3a mutants. Our results reveal the pivotal role Dmrt3 neurons play in shaping the patterned output during acceleration in vertebrates.
Collapse
|
10
|
Ehrlich DE, Schoppik D. A primal role for the vestibular sense in the development of coordinated locomotion. eLife 2019; 8:e45839. [PMID: 31591962 PMCID: PMC6783269 DOI: 10.7554/elife.45839] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 08/22/2019] [Indexed: 12/16/2022] Open
Abstract
Mature locomotion requires that animal nervous systems coordinate distinct groups of muscles. The pressures that guide the development of coordination are not well understood. To understand how and why coordination might emerge, we measured the kinematics of spontaneous vertical locomotion across early development in zebrafish (Danio rerio) . We found that zebrafish used their pectoral fins and bodies synergistically during upwards swims. As larvae developed, they changed the way they coordinated fin and body movements, allowing them to climb with increasingly stable postures. This fin-body synergy was absent in vestibular mutants, suggesting sensed imbalance promotes coordinated movements. Similarly, synergies were systematically altered following cerebellar lesions, identifying a neural substrate regulating fin-body coordination. Together these findings link the vestibular sense to the maturation of coordinated locomotion. Developing zebrafish improve postural stability by changing fin-body coordination. We therefore propose that the development of coordinated locomotion is regulated by vestibular sensation.
Collapse
Affiliation(s)
- David E Ehrlich
- Department of OtolaryngologyNew York University School of MedicineNew YorkUnited States
- Department of Neuroscience & PhysiologyNew York University School of MedicineNew YorkUnited States
- Neuroscience InstituteNew York University School of MedicineNew YorkUnited States
| | - David Schoppik
- Department of OtolaryngologyNew York University School of MedicineNew YorkUnited States
- Department of Neuroscience & PhysiologyNew York University School of MedicineNew YorkUnited States
- Neuroscience InstituteNew York University School of MedicineNew YorkUnited States
| |
Collapse
|
11
|
Jay M, McLean DL. Reconciling the functions of even-skipped interneurons during crawling, swimming, and walking. CURRENT OPINION IN PHYSIOLOGY 2019; 8:188-192. [PMID: 31667448 DOI: 10.1016/j.cophys.2019.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In all bilaterally symmetric animals, movements across the body are coordinated by interneurons that traverse the midline. Recent work is beginning to tease apart the functional complexity of interneurons labeled by the homeodomain transcription factor even-skipped, which provide a phylogenetically-conserved source of commissural excitation during locomotion in both vertebrates and invertebrates. Here we review recent studies of the roles of even-skipped neurons during locomotion in flies (EL neurons), fishes, frogs, and mice (V0v neurons). Comparisons across species reveal commonalities, which include the functional organization of even-skipped circuits based on birth order, the link between increased muscular complexity and even-skipped neuron diversity, and the hierarchical organization of even-skipped circuits based on their control of escape versus exploratory movements. We discuss how stronger links between different species enable testable predictions to further the discovery of principles of locomotor network organization.
Collapse
Affiliation(s)
- Michael Jay
- Department of Neurobiology Northwestern University EVANSTON, IL USA
| | - David L McLean
- Department of Neurobiology Northwestern University EVANSTON, IL USA
| |
Collapse
|
12
|
Liu Q, Yang H, Zhang J, Wang J. A new model of the spinal locomotor networks of a salamander and its properties. BIOLOGICAL CYBERNETICS 2018; 112:369-385. [PMID: 29790009 DOI: 10.1007/s00422-018-0759-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/28/2018] [Indexed: 06/08/2023]
Abstract
A salamander is an ideal animal for studying the spinal locomotor network mechanism of vertebrates from an evolutionary perspective since it represents the transition from an aquatic to a terrestrial animal. However, little is known about the spinal locomotor network of a salamander. A spinal locomotor network model is a useful tool for exploring the working mechanism of the spinal networks of salamanders. A new spinal locomotor network model for a salamander is built for a three-dimensional (3D) biomechanical model of the salamander using a novel locomotion-controlled neural network model. Based on recent experimental data on the spinal circuitry and observational results of gaits of vertebrates, we assume that different interneuron sets recruited for mediating the frequency of spinal circuits are also related to the generation of different gaits. The spinal locomotor networks of salamanders are divided into low-frequency networks for walking and high-frequency networks for swimming. Additionally, a new topological structure between the body networks and limb networks is built, which only uses the body networks to coordinate the motion of limbs. There are no direct synaptic connections among limb networks. These techniques differ from existing salamander spinal locomotor network models. A simulation is performed and analyzed to validate the properties of the new spinal locomotor networks of salamanders. The simulation results show that the new spinal locomotor networks can generate a forward walking gait, a backward walking gait, a swimming gait, and a turning gait during swimming and walking. These gaits can be switched smoothly by changing external inputs from the brainstem. These properties are consistent with those of a real salamander. However, it is still difficult for the new spinal locomotor networks to generate highly efficient turning during walking, 3D swimming, nonrhythmic movements, and so on. New experimental data are required for further validation.
Collapse
Affiliation(s)
- Qiang Liu
- School of Electric Engineering, Huaihai Institute of Technology, Lianyungang, 222005, China.
| | - Huizhen Yang
- School of Electric Engineering, Huaihai Institute of Technology, Lianyungang, 222005, China
| | - Jinxue Zhang
- School of Electric Engineering, Huaihai Institute of Technology, Lianyungang, 222005, China
| | - Jingzhuo Wang
- School of Electric Engineering, Huaihai Institute of Technology, Lianyungang, 222005, China
| |
Collapse
|
13
|
Abstract
A large diversity of fishes struggle early in life to forage on zooplankton while under the threat of predation. Some species, such as zebrafish (Danio rerio), acquire an ability to forage in the dark during growth as larvae, but it is unclear how this is achieved. We investigated the functional basis of this foraging by video-recording larval and juvenile zebrafish as they preyed on zooplankton (Artemia sp.) under infrared illumination. We found that foraging improved with age, to the extent that 1-month-old juveniles exhibited a capture rate that was an order of magnitude greater than that of hatchlings. At all ages, the ability to forage in the dark was diminished when we used a chemical treatment to compromise the cranial superficial neuromasts, which facilitate flow sensing. However, a morphological analysis showed no developmental changes in these receptors that could enhance sensitivity. We tested whether the improvement in foraging with age could instead be a consequence of learning by raising fish that were naïve to the flow of prey. After 1 month of growth, both groups foraged with a capture rate that was significantly less than that of fish that had the opportunity to learn and indistinguishable from that of fish with no ability to sense flow. This suggests that larval fish learn to use water flow to forage in the dark. This ability could enhance resource acquisition under reduced competition and predation. Furthermore, our findings offer an example of learning in a model system that offers promise for understanding its neurophysiological basis.
Collapse
Affiliation(s)
- Andres Carrillo
- Department of Ecology & Evolutionary Biology, University of California, Irvine, Irvine, CA 92617, USA
| | - Matthew J McHenry
- Department of Ecology & Evolutionary Biology, University of California, Irvine, Irvine, CA 92617, USA
| |
Collapse
|
14
|
McLean DL, Dougherty KJ. Peeling back the layers of locomotor control in the spinal cord. Curr Opin Neurobiol 2015; 33:63-70. [PMID: 25820136 DOI: 10.1016/j.conb.2015.03.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 11/18/2022]
Abstract
Vertebrate locomotion is executed by networks of neurons within the spinal cord. Here, we describe recent advances in our understanding of spinal locomotor control provided by work using optical and genetic approaches in mice and zebrafish. In particular, we highlight common observations that demonstrate simplification of limb and axial motor pool coordination by spinal network modularity, differences in the deployment of spinal modules at increasing speeds of locomotion, and functional hierarchies in the regulation of locomotor rhythm and pattern. We also discuss the promise of intersectional genetic strategies for better resolution of network components and connectivity, which should help us continue to close the gap between theory and function.
Collapse
Affiliation(s)
- David L McLean
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| | - Kimberly J Dougherty
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Itoh M, Hatta K. Munch's SCREAM: A spontaneous movement by zebrafish larvae featuring strong abduction of both pectoral fins often associated with a sudden bend. Neurosci Res 2014; 94:17-27. [PMID: 25527305 DOI: 10.1016/j.neures.2014.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/15/2014] [Accepted: 12/03/2014] [Indexed: 12/01/2022]
Abstract
Stereotyped movement of paired pectoral fins in zebrafish larvae could be considered a simple model with which to investigate the neural basis of behavior. Using a high-speed camera, we explored the repertoire of pectoral fin movements by naturally behaving larvae at 5-6 days post-fertilization. Previously, two types of fin movements were characterized in association with locomotion: 'CRAWLing,' an alternating fin movement associated with slow swimming, and 'TUCKing,' the adduction of both fins associated with fast swimming. We here describe a third mode of fin movement, which we call 'Munch's SCREAM', in which both pectoral fins were flipped anteriorly so that they reached the skin on the sides of the head, thus covering the otic vesicles. This behavior occurred spontaneously and was often associated with a slight regression or a sudden bending and change in body orientation. It could be also induced effectively in the agarose-embedded larvae by tactile stimulation on the skin around the eye and nose, some of which are associated with struggling, in which waves of bending propagate from the tail to the head. Larvae can still CRAWL and perform the SCREAM even when their forebrain and midbrain have been removed, suggesting that the neural circuits involved in the SCREAM are present in the hindbrain and/or spinal cord.
Collapse
Affiliation(s)
- Mariko Itoh
- Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan.
| | - Kohei Hatta
- Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan.
| |
Collapse
|
16
|
Central pattern generator for vocalization: is there a vertebrate morphotype? Curr Opin Neurobiol 2014; 28:94-100. [PMID: 25050813 DOI: 10.1016/j.conb.2014.06.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/11/2014] [Accepted: 06/22/2014] [Indexed: 11/21/2022]
Abstract
Animals that generate acoustic signals for social communication are faced with two essential tasks: generate a temporally precise signal and inform the auditory system about the occurrence of one's own sonic signal. Recent studies of sound producing fishes delineate a hindbrain network comprised of anatomically distinct compartments coding equally distinct neurophysiological properties that allow an organism to meet these behavioral demands. A set of neural characters comprising a vocal-sonic central pattern generator (CPG) morphotype is proposed for fishes and tetrapods that shares evolutionary developmental origins with pectoral appendage motor systems.
Collapse
|
17
|
Hale ME. Developmental change in the function of movement systems: transition of the pectoral fins between respiratory and locomotor roles in zebrafish. Integr Comp Biol 2014; 54:238-49. [PMID: 24748600 PMCID: PMC4097112 DOI: 10.1093/icb/icu014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
An animal may experience strikingly different functional demands on its body’s systems through development. One way of meeting those demands is with temporary, stage-specific adaptations. This strategy requires the animal to develop appropriate morphological states or physiological pathways that address transient functional demands as well as processes that transition morphology, physiology, and function to that of the mature form. Recent research on ray-finned (actinopterygian) fishes is a developmental transition in function of the pectoral fin, thereby providing an opportunity to examine how an organism copes with changes in the roles of its morphology between stages of its life history. As larvae, zebrafish alternate their pectoral fins in coordination with the body axis during slow swimming. The movements of their fins do not appear to contribute to the production of thrust or to stability but instead exchange fluid near the body for cutaneous respiration. The morphology of the larval fin includes a simple stage-specific endoskeletal disc overlaid by fan-shaped adductor and abductor muscles. In contrast, the musculoskeletal system of the mature fin consists of a suite of muscles and bones. Fins are extended laterally during slow swimming of the adult, without the distinct, high-amplitude left-right fin alternation of the larval fin. The morphological and functional transition of the pectoral fin occurs through juvenile development. Early in this period, at about 3 weeks post-fertilization, the gills take over respiratory function, presumably freeing the fins for other roles. Kinematic data suggest that the loss of respiratory function does not lead to a rapid switch in patterns of fin movement but rather that both morphology and movement transition gradually through the juvenile stage of development. Studies relating structure to function often focus on stable systems that are arguably well adapted for the roles they play. Examining how animals navigate transitional periods, when the link of structure to function may be less taut, provides insight both into how animals contend with such change and into the developmental pressures that shape mature form and function.
Collapse
Affiliation(s)
- Melina E Hale
- University of Chicago, Organismal Biology and Anatomy
| |
Collapse
|
18
|
Westphal RE, O'Malley DM. Fusion of locomotor maneuvers, and improving sensory capabilities, give rise to the flexible homing strikes of juvenile zebrafish. Front Neural Circuits 2013; 7:108. [PMID: 23761739 PMCID: PMC3675323 DOI: 10.3389/fncir.2013.00108] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 05/21/2013] [Indexed: 12/01/2022] Open
Abstract
At 5 days post-fertilization and 4 mm in length, zebrafish larvae are successful predators of mobile prey items. The tracking and capture of 200 μm long Paramecia requires efficient sensorimotor transformations and precise neural controls that activate axial musculature for orientation and propulsion, while coordinating jaw muscle activity to engulf them. Using high-speed imaging, we report striking changes across ontogeny in the kinematics, structure and efficacy of zebrafish feeding episodes. Most notably, the discrete tracking maneuvers used by larval fish (turns, forward swims) become fused with prey capture swims to form the continuous, fluid homing strikes of juvenile and adult zebrafish. Across this same developmental time frame, the duration of feeding episodes become much shorter, with strikes occurring at broader angles and from much greater distances than seen with larval zebrafish. Moreover, juveniles use a surprisingly diverse array of motor patterns that constitute a flexible predatory strategy. This enhances the ability of zebrafish to capture more mobile prey items such as Artemia. Visually-guided tracking is complemented by the mechanosensory lateral line system. Neomycin ablation of lateral line hair cells reduced the accuracy of strikes and overall feeding rates, especially when neomycin-treated larvae and juveniles were placed in the dark. Darkness by itself reduced the distance from which strikes were launched, as visualized by infrared imaging. Rapid growth and changing morphology, including ossification of skeletal elements and differentiation of control musculature, present challenges for sustaining and enhancing predatory capabilities. The concurrent expansion of the cerebellum and subpallium (an ancestral basal ganglia) may contribute to the emergence of juvenile homing strikes, whose ontogeny possibly mirrors a phylogenetic expansion of motor capabilities.
Collapse
Affiliation(s)
- Rebecca E Westphal
- Department of Natural Sciences, North Shore Community College Lynn, MA, USA
| | | |
Collapse
|
19
|
Svendsen JC, Banet AI, Christensen RHB, Steffensen JF, Aarestrup K. Effects of intraspecific variation in reproductive traits, pectoral fin use and burst swimming on metabolic rates and swimming performance in the Trinidadian guppy (Poecilia reticulata). ACTA ACUST UNITED AC 2013; 216:3564-74. [PMID: 23737561 DOI: 10.1242/jeb.083089] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
There is considerable intraspecific variation in metabolic rates and locomotor performance in aquatic ectothermic vertebrates; however, the mechanistic basis remains poorly understood. Using pregnant Trinidadian guppies (Poecilia reticulata), a live-bearing teleost, we examined the effects of reproductive traits, pectoral fin use and burst-assisted swimming on swimming metabolic rate, standard metabolic rate (O2std) and prolonged swimming performance (Ucrit). Reproductive traits included reproductive allocation and pregnancy stage, the former defined as the mass of the reproductive tissues divided by the total body mass. Results showed that the metabolic rate increased curvilinearly with swimming speed. The slope of the relationship was used as an index of swimming cost. There was no evidence that reproductive traits correlated with swimming cost, O2std or Ucrit. In contrast, data revealed strong effects of pectoral fin use on swimming cost and Ucrit. Poecilia reticulata employed body-caudal fin (BCF) swimming at all tested swimming speeds; however, fish with a high simultaneous use of the pectoral fins exhibited increased swimming cost and decreased Ucrit. These data indicated that combining BCF swimming and pectoral fin movement over a wide speed range, presumably to support swimming stability and control, is an inefficient swimming behaviour. Finally, transition to burst-assisted swimming was associated with an increase in aerobic metabolic rate. Our study highlights factors other than swimming speed that affect swimming cost and suggests that intraspecific diversity in biomechanical performance, such as pectoral fin use, is an important source of variation in both locomotor cost and maximal performance.
Collapse
Affiliation(s)
- Jon C Svendsen
- Technical University of Denmark, National Institute of Aquatic Resources, Freshwater Fisheries, Vejlsøvej 39, DK-8600 Silkeborg, Denmark.
| | | | | | | | | |
Collapse
|
20
|
Renninger SL, Orger MB. Two-photon imaging of neural population activity in zebrafish. Methods 2013; 62:255-67. [PMID: 23727462 DOI: 10.1016/j.ymeth.2013.05.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 05/21/2013] [Accepted: 05/22/2013] [Indexed: 02/08/2023] Open
Abstract
Rapidly developing imaging technologies including two-photon microscopy and genetically encoded calcium indicators have opened up new possibilities for recording neural population activity in awake, behaving animals. In the small, transparent zebrafish, it is even becoming possible to image the entire brain of a behaving animal with single-cell resolution, creating brain-wide functional maps. In this chapter, we comprehensively review past functional imaging studies in zebrafish, and the insights that they provide into the functional organization of neural circuits. We further offer a basic primer on state-of-the-art methods for in vivo calcium imaging in the zebrafish, including building a low-cost two-photon microscope and highlight possible challenges and technical considerations.
Collapse
Affiliation(s)
- Sabine L Renninger
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Avenida Brasília, Doca de Pedrouços, Lisbon, Portugal
| | | |
Collapse
|