1
|
The Effect of Increasing Blood Flow Restriction Pressure When the Contractions Are Already Occlusive. J Sport Rehabil 2021; 31:152-157. [PMID: 34697249 DOI: 10.1123/jsr.2020-0402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/25/2021] [Accepted: 08/08/2021] [Indexed: 11/18/2022]
Abstract
CONTEXT Blood flow restricted exercise involves the use of external pressure to enhance fatigue and augment exercise adaptations. The mechanisms by which blood flow restricted exercise limits muscular endurance are not well understood. OBJECTIVE To determine how increasing blood flow restriction pressure impacts local muscular endurance, discomfort, and force steadiness when the contractions are already occlusive. DESIGN Within-participant, repeated-measures crossover design. SETTING University laboratory. PATIENTS A total of 22 individuals (13 males and 9 females). INTERVENTION Individuals performed a contraction at 30% of maximal isometric elbow flexion force for as long as possible. One arm completed the contraction with 100% of arterial occlusion pressure applied, while the other arm had 150% of arterial occlusion pressure applied. At the end of the protocol, individuals were asked to rate their perceived discomfort. MAIN OUTCOME MEASURES Time to task failure, discomfort, and force steadiness. RESULTS Individuals had a longer time to task failure when performing the 100% arterial occlusion condition compared with the 150% arterial occlusion pressure condition (time to task failure = 82.4 vs 70.8 s; Bayes factors = 5.77). There were no differences in discomfort between the 100% and 150% conditions (median discomfort = 5.5 vs 6; Bayes factors = 0.375) nor were there differences in force steadiness (SD of force output 3.16 vs 3.31 N; Bayes factors = 0.282). CONCLUSION The results of the present study suggest that, even when contractions are already occlusive, increasing the restriction pressure reduces local muscle endurance but does not impact discomfort or force steadiness. This provides an indication that mechanisms other than the direct alteration of blood flow are contributing to the increased fatigue with added restrictive pressure. Future studies are needed to examine neural mechanisms that may explain this finding.
Collapse
|
2
|
Martin-Rincon M, Gelabert-Rebato M, Perez-Valera M, Galvan-Alvarez V, Morales-Alamo D, Dorado C, Boushel R, Hallen J, Calbet JAL. Functional reserve and sex differences during exercise to exhaustion revealed by post-exercise ischaemia and repeated supramaximal exercise. J Physiol 2021; 599:3853-3878. [PMID: 34159610 DOI: 10.1113/jp281293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/17/2021] [Indexed: 01/13/2023] Open
Abstract
KEY POINTS Females have lower fatigability than males during single limb isometric and dynamic contractions, but whether sex-differences exist during high-intensity whole-body exercise remains unknown. This study shows that males and females respond similarly to repeated supramaximal whole-body exercise, and that at task failure a large functional reserve remains in both sexes. Using post-exercise ischaemia with repeated exercise, we have shown that this functional reserve depends on the glycolytic component of substrate-level phosphorylation and is almost identical in both sexes. Metaboreflex activation during post-exercise ischaemia and the O2 debt per kg of active lean mass are also similar in males and females after supramaximal exercise. Females have a greater capacity to extract oxygen during repeated supramaximal exercise and reach lower P ETC O 2 , experiencing a larger drop in brain oxygenation than males, without apparent negative repercussion on performance. Females had no faster recovery of performance after accounting for sex differences in lean mass. ABSTRACT The purpose of this study was to ascertain what mechanisms explain sex differences at task failure and to determine whether males and females have a functional reserve at exhaustion. Exercise performance, cardiorespiratory variables, oxygen deficit, and brain and muscle oxygenation were determined in 18 males and 18 females (21-36 years old) in two sessions consisting of three bouts of constant-power exercise at 120% of V ̇ O 2 max until exhaustion interspaced by 20 s recovery periods. In one of the two sessions, the circulation of both legs was occluded instantaneously (300 mmHg) during the recovery periods. Females had a higher muscle O2 extraction during fatiguing supramaximal exercise than males. Metaboreflex activation, and lean mass-adjusted O2 deficit and debt were similar in males and females. Compared to males, females reached lower P ETC O 2 and brain oxygenation during supramaximal exercise, without apparent negative consequences on performance. After the occlusions, males and females were able to restart exercising at 120% of V ̇ O 2 max , revealing a similar functional reserve, which depends on glycolytic component of substrate-level phosphorylation and its rate of utilization. After ischaemia, muscle O2 extraction was increased, and muscle V ̇ O 2 was similarly reduced in males and females. The physiological response to repeated supramaximal exercise to exhaustion is remarkably similar in males and females when differences in lean mass are considered. Both sexes fatigue with a large functional reserve, which depends on the glycolytic energy supply, yet females have higher oxygen extraction capacity, but reduced P ETC O 2 and brain oxygenation.
Collapse
Affiliation(s)
- Marcos Martin-Rincon
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Miriam Gelabert-Rebato
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Mario Perez-Valera
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Victor Galvan-Alvarez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - David Morales-Alamo
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Cecilia Dorado
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Robert Boushel
- School of Kinesiology, Faculty of Education, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jostein Hallen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Jose A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,School of Kinesiology, Faculty of Education, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
3
|
Ahmadi H, Herat N, Alizadeh S, Button DC, Granacher U, Behm DG. Effect of an inverted seated position with upper arm blood flow restriction on measures of elbow flexors neuromuscular performance. PLoS One 2021; 16:e0245311. [PMID: 34010275 PMCID: PMC8133415 DOI: 10.1371/journal.pone.0245311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/28/2021] [Indexed: 11/20/2022] Open
Abstract
Purpose The objective of the investigation was to determine the concomitant effects of upper arm blood flow restriction (BFR) and inversion on elbow flexors neuromuscular responses. Methods Randomly allocated, 13 volunteers performed four conditions in a within-subject design: rest (control, 1-min upright position without BFR), control (1-min upright with BFR), 1-min inverted (without BFR), and 1-min inverted with BFR. Evoked and voluntary contractile properties, before, during and after a 30-s maximum voluntary contraction (MVC) exercise intervention were examined as well as pain scale. Results Inversion induced significant pre-exercise intervention decreases in elbow flexors MVC (21.1%, ηp2 = 0.48, p = 0.02) and resting evoked twitch forces (29.4%, ηp2 = 0.34, p = 0.03). The 30-s MVC induced significantly greater pre- to post-test decreases in potentiated twitch force ( ηp2 = 0.61, p = 0.0009) during inversion (↓75%) than upright (↓65.3%) conditions. Overall, BFR decreased MVC force 4.8% ( ηp2 = 0.37, p = 0.05). For upright position, BFR induced 21.0% reductions in M-wave amplitude ( ηp2 = 0.44, p = 0.04). There were no significant differences for electromyographic activity or voluntary activation as measured with the interpolated twitch technique. For all conditions, there was a significant increase in pain scale between the 40–60 s intervals and post-30-s MVC (upright<inversion, and without BFR<BFR). Conclusion The concomitant application of inversion with elbow flexors BFR only amplified neuromuscular performance impairments to a small degree. Individuals who execute forceful contractions when inverted or with BFR should be cognizant that force output may be impaired.
Collapse
Affiliation(s)
- Hamid Ahmadi
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Nehara Herat
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Shahab Alizadeh
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Duane C. Button
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Urs Granacher
- Division of Training and Movement Science, University of Potsdam, Potsdam, Germany
| | - David G. Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
- * E-mail:
| |
Collapse
|
4
|
Yacyshyn AF, McNeil CJ. The Sexes Do Not Differ for Neural Responses to Submaximal Elbow Extensor Fatigue. Med Sci Sports Exerc 2021; 52:1992-2001. [PMID: 32195769 DOI: 10.1249/mss.0000000000002342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE To investigate possible sex-related differences in group III/IV muscle afferent feedback with isometric fatigue, we aimed to assess the effect of a sustained submaximal elbow extensor contraction on motoneuronal excitability (cervicomedullary motor evoked potential [CMEP]) and voluntary activation (VA). METHODS Twenty-four participants (12 females) performed a 15-min contraction at the level of EMG activity recorded at 15% of maximal torque. Each minute, CMEP were elicited by cervicomedullary stimulation with and without conditioning transcranial magnetic stimulation (TMS) delivered 100 ms earlier. Unconditioned and conditioned motor evoked potentials (MEP) in response to TMS were also recorded to assess motor cortical excitability. CMEP and MEP were normalized for changes in downstream excitability and expressed as percentage of their prefatigue (control) values. Postfatigue, VA was calculated from superimposed and resting tetani evoked by stimulation over triceps brachii. RESULTS Males were twice as strong as females, but the sexes did not differ for any variable during the fatigue protocol. On a 0-10 scale, RPE increased from ~2.5 to 9. The unconditioned CMEP did not change, whereas the conditioned CMEP was reduced by ~50%. By contrast, the unconditioned and conditioned MEP increased to ~200% and ~320% of the control values, respectively. At task termination, maximal torque was reduced ~40%, and VA was ~80%, down from a prefatigue value of ~96%. CONCLUSIONS Results support the scant published data on the elbow extensors and indicate no sex-related differences for isometric fatigue of this muscle group. The motoneuronal and VA data suggest that metabolite buildup and group III/IV muscle afferent activity were similar for females and males.
Collapse
Affiliation(s)
- Alexandra F Yacyshyn
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | | |
Collapse
|