1
|
Isabella SL, D'Alonzo M, Mioli A, Arcara G, Pellegrino G, Di Pino G. Artificial embodiment displaces cortical neuromagnetic somatosensory responses. Sci Rep 2024; 14:22279. [PMID: 39333283 PMCID: PMC11437133 DOI: 10.1038/s41598-024-72460-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/06/2024] [Indexed: 09/29/2024] Open
Abstract
Integrating artificial limbs as part of one's body involves complex neuroplastic changes resulting from various sensory inputs. While somatosensory feedback is crucial, plastic processes that enable embodiment remain unknown. We investigated this using somatosensory evoked fields (SEFs) in the primary somatosensory cortex (S1) following the Rubber Hand Illusion (RHI), known to quickly induce artificial limb embodiment. During electrical stimulation of the little finger and thumb, 19 adults underwent neuromagnetic recordings before and after the RHI. We found early SEF displacement, including an illusion-brain correlation between extent of embodiment and specific changes to the first cortical response at 20 ms in Area 3b, within S1. Furthermore, we observed a posteriorly directed displacement at 35 ms towards Area 1, known to be important for visual integration during touch perception. That this second displacement was unrelated to extent of embodiment implies a functional distinction between neuroplastic changes of these components and areas. The earlier shift in Area 3b may shape extent of limb ownership, while subsequent displacement into Area 1 may relate to early visual-tactile integration that initiates embodiment. Here we provide evidence for multiple neuroplastic processes in S1-lasting beyond the illusion-supporting integration of artificial limbs like prostheses within the body representation.
Collapse
Affiliation(s)
- Silvia L Isabella
- NeXT: Neurophsyiology and Neuro-Engineering of Human-Technology Interaction Research Unit, Universita' Campus Bio-Medico di Roma, Rome, Italy.
- San Camillo IRCCS Research Hospital, Venice, Italy.
| | - Marco D'Alonzo
- NeXT: Neurophsyiology and Neuro-Engineering of Human-Technology Interaction Research Unit, Universita' Campus Bio-Medico di Roma, Rome, Italy
| | - Alessandro Mioli
- NeXT: Neurophsyiology and Neuro-Engineering of Human-Technology Interaction Research Unit, Universita' Campus Bio-Medico di Roma, Rome, Italy
| | | | - Giovanni Pellegrino
- Epilepsy program, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Giovanni Di Pino
- NeXT: Neurophsyiology and Neuro-Engineering of Human-Technology Interaction Research Unit, Universita' Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
2
|
Pokorny L, Jarczok TA, Bender S. Topography and lateralization of long-latency trigeminal somatosensory evoked potentials. Clin Neurophysiol 2021; 135:37-50. [PMID: 35026539 DOI: 10.1016/j.clinph.2021.11.073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/20/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Long-latency trigeminal somatosensory evoked potentials (SSEPs) have not been sufficiently studied regarding their topography and lateralization. SSEPs are hypothesized to contribute to the evoked potentials after transcranial magnetic stimulation (TMS). This study focused on trigeminal SSEPs with latencies > 100 ms, potentially overlapping with TMS-evoked N100. METHODS In 14 healthy subjects, the trigeminus was electrically stimulated on the left and right forehead, and time-course, topography, and lateralization of trigeminal SSEPs were examined in 64-channel electroencephalogram (EEG). SSEPs were then compared to TMS-evoked potentials when TMS was applied to the left and right dorsolateral prefrontal cortex. RESULTS Trigeminal stimulation produced a somatosensory N140 with topographic maximum over centroparietal electrodes with larger amplitudes contra- than ipsilaterally to the stimulation. Contralateral potentials after TMS were partly comparable in their topography but differed in latencies. CONCLUSIONS SSEPs generated by electrical stimulation of the trigeminus occurred over somatosensory areas with a contralateral lateralization. Therefore, contralateral potentials after TMS should be interpreted with caution, as they may include somatosensory components. SIGNIFICANCE The topography and lateralization of long-latency trigeminal SSEPs should be considered in future TMS-EEG designs.
Collapse
Affiliation(s)
- Lena Pokorny
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany.
| | - Tomasz Antoni Jarczok
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany; Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Frankfurt, Germany; Department of Child and Adolescent Psychiatry and Psychotherapy, KJF Klinik Josefinum, Kapellenstrasse 30, 86154, Augsburg, Germany.
| | - Stephan Bender
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany.
| |
Collapse
|
3
|
Geocadin RG, Callaway CW, Fink EL, Golan E, Greer DM, Ko NU, Lang E, Licht DJ, Marino BS, McNair ND, Peberdy MA, Perman SM, Sims DB, Soar J, Sandroni C. Standards for Studies of Neurological Prognostication in Comatose Survivors of Cardiac Arrest: A Scientific Statement From the American Heart Association. Circulation 2019; 140:e517-e542. [DOI: 10.1161/cir.0000000000000702] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significant improvements have been achieved in cardiac arrest resuscitation and postarrest resuscitation care, but mortality remains high. Most of the poor outcomes and deaths of cardiac arrest survivors have been attributed to widespread brain injury. This brain injury, commonly manifested as a comatose state, is a marker of poor outcome and a major basis for unfavorable neurological prognostication. Accurate prognostication is important to avoid pursuing futile treatments when poor outcome is inevitable but also to avoid an inappropriate withdrawal of life-sustaining treatment in patients who may otherwise have a chance of achieving meaningful neurological recovery. Inaccurate neurological prognostication leading to withdrawal of life-sustaining treatment and deaths may significantly bias clinical studies, leading to failure in detecting the true study outcomes. The American Heart Association Emergency Cardiovascular Care Science Subcommittee organized a writing group composed of adult and pediatric experts from neurology, cardiology, emergency medicine, intensive care medicine, and nursing to review existing neurological prognostication studies, the practice of neurological prognostication, and withdrawal of life-sustaining treatment. The writing group determined that the overall quality of existing neurological prognostication studies is low. As a consequence, the degree of confidence in the predictors and the subsequent outcomes is also low. Therefore, the writing group suggests that neurological prognostication parameters need to be approached as index tests based on relevant neurological functions that are directly related to the functional outcome and contribute to the quality of life of cardiac arrest survivors. Suggestions to improve the quality of adult and pediatric neurological prognostication studies are provided.
Collapse
|
4
|
He J, Lu H, Young L, Deng R, Callow D, Tong S, Jia X. Real-time quantitative monitoring of cerebral blood flow by laser speckle contrast imaging after cardiac arrest with targeted temperature management. J Cereb Blood Flow Metab 2019; 39:1161-1171. [PMID: 29283290 PMCID: PMC6547180 DOI: 10.1177/0271678x17748787] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Brain injury is the main cause of mortality and morbidity after cardiac arrest (CA). Changes in cerebral blood flow (CBF) after reperfusion are associated with brain injury and recovery. To characterize the relative CBF (rCBF) after CA, 14 rats underwent 7 min asphyxia-CA and were randomly treated with 6 h post-resuscitation normothermic (36.5-37.5℃) or hypothermic- (32-34℃) targeted temperature management (TTM) (N = 7). rCBF was monitored by a laser speckle contrast imaging (LSCI) technique. Brain recovery was evaluated by neurologic deficit score (NDS) and quantitative EEG - information quantity (qEEG-IQ). There were regional differences in rCBF among veins of distinct cerebral areas and heterogeneous responses among the three components of the vascular system. Hypothermia immediately following return of spontaneous circulation led to a longer hyperemia duration (19.7 ± 1.8 vs. 12.7 ± 0.8 min, p < 0.01), a lower rCBF (0.73 ± 0.01 vs. 0.79 ± 0.01; p < 0.001) at the hypoperfusion phase, a better NDS (median [25th-75th], 74 [61-77] vs. 49 [40-77], p < 0.01), and a higher qEEG-IQ (0.94 ± 0.02 vs. 0.77 ± 0.02, p < 0.001) compared with normothermic TTM. High resolution LSCI technique demonstrated hypothermic TTM extends hyperemia duration, delays onset of hypoperfusion phase and lowered rCBF, which is associated with early restoration of electrophysiological recovery and improved functional outcome after CA.
Collapse
Affiliation(s)
- Junyun He
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hongyang Lu
- 2 School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Leanne Young
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA.,3 Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ruoxian Deng
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA.,3 Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel Callow
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shanbao Tong
- 2 School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Xiaofeng Jia
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA.,3 Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,4 Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA.,5 Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.,6 Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Behensky AA, Katnik C, Yin H, Cuevas J. Activation of Sigma Receptors With Afobazole Modulates Microglial, but Not Neuronal, Apoptotic Gene Expression in Response to Long-Term Ischemia Exposure. Front Neurosci 2019; 13:414. [PMID: 31156357 PMCID: PMC6529844 DOI: 10.3389/fnins.2019.00414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/11/2019] [Indexed: 12/14/2022] Open
Abstract
Stroke continues to be a leading cause of death and serious long-term disability. The lack of therapeutic options for treating stroke at delayed time points (≥6 h post-stroke) remains a challenge. The sigma receptor agonist, afobazole, an anxiolytic used clinically in Russia, has been shown to reduce neuronal and glial cell injury following ischemia and acidosis; both of which have been shown to play important roles following an ischemic stroke. However, the mechanism(s) responsible for this cytoprotection remain unknown. Experiments were carried out on isolated microglia from neonatal rats and cortical neurons from embryonic rats to gain further insight into these mechanisms. Prolonged exposure to in vitro ischemia resulted in microglial cell death, which was associated with increased expression of the pro-apoptotic protein, Bax, the death protease, caspase-3, and reduced expression in the anti-apoptotic protein Bcl-2. Incubation of cells with afobazole during ischemia decreased the number of microglia expressing both Bax and caspase-3, and increased cells expressing Bcl-2, which resulted in a concomitant enhancement in cell survival. In similar experiments, incubation of neurons under in vitro ischemic conditions resulted in higher expression of Bax and caspase-3, while at the same time expression of Bcl-2 was decreased. However, unlike observations made in microglial cells, afobazole was unable to modulate the expression of these apoptotic proteins, but a reduction in neuronal death was still noted. The functional state of surviving neurons was assessed by measuring metabolic activity, resting membrane potential, and responses to membrane depolarizations. Results showed that these neurons maintained membrane potential but had low metabolic activity and were unresponsive to membrane depolarizations. However, while these neurons were not fully functional, there was significant protection by afobazole against long-term ischemia-induced cell death. Thus, the effects of sigma receptor activation on microglial and neuronal responses to ischemia differ significantly.
Collapse
Affiliation(s)
- Adam A Behensky
- Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, Tampa, FL, United States
| | - Christopher Katnik
- Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, Tampa, FL, United States
| | - Huquan Yin
- Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, Tampa, FL, United States
| | - Javier Cuevas
- Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
6
|
Du J, Chen H, Zhou K, Jia X. Quantitative Multimodal Evaluation of Passaging Human Neural Crest Stem Cells for Peripheral Nerve Regeneration. Stem Cell Rev Rep 2018; 14:92-100. [PMID: 28780695 DOI: 10.1007/s12015-017-9758-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Peripheral nerve injury is a major burden to societies worldwide, however, current therapy options (e.g. autologous nerve grafts) are unable to produce satisfactory outcomes. Many studies have shown that stem cell transplantation holds great potential for peripheral nerve repair, and human neural crest stem cells (hNCSCs), which give rise to a variety of tissues in the peripheral nervous system, are particularly promising. NCSCs are one of the best candidates for clinical translation, however, to ensure the viability and quality of NCSCs for research and clinical use, the effect of in vitro cell passaging on therapeutic effects needs be evaluated given that passaging is required to expand NCSCs to meet the demands of transplantation in preclinical research and clinical trials. To date, no study has investigated the quality of NCSCs past the 5th passage in vivo. In this study, we employed a multimodal evaluation system to investigate changes in outcomes between transplantation with 5th (p5) and 6th passage (p6) NCSCs in a 15 mm rat sciatic nerve injury and repair model. Using CatWalk gait analysis, gastrocnemius muscle index, electrophysiology, immunohistochemistry, and histomorphometric analysis, we showed that p6 NCSCs demonstrated decreased cell survival, Schwann-cell differentiation, axonal growth, and functional outcomes compared to p5 NCSCs (all p < 0.05). In conclusion, p6 NCSCs showed significantly reduced therapeutic efficacy compared to p5 NCSCs for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Jian Du
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 559, Baltimore, MD, 21201, USA
| | - Huanwen Chen
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 559, Baltimore, MD, 21201, USA
| | - Kailiang Zhou
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 559, Baltimore, MD, 21201, USA.,Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, 10 South Pine Street, MSTF Building 559, Baltimore, MD, 21201, USA. .,Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China. .,Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
7
|
Du J, Zhen G, Chen H, Zhang S, Qing L, Yang X, Lee G, Mao HQ, Jia X. Optimal electrical stimulation boosts stem cell therapy in nerve regeneration. Biomaterials 2018; 181:347-359. [PMID: 30098570 PMCID: PMC6201278 DOI: 10.1016/j.biomaterials.2018.07.015] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/07/2018] [Accepted: 07/10/2018] [Indexed: 12/29/2022]
Abstract
Peripheral nerve injuries often lead to incomplete recovery and contribute to significant disability to approximately 360,000 people in the USA each year. Stem cell therapy holds significant promise for peripheral nerve regeneration, but maintenance of stem cell viability and differentiation potential in vivo are still major obstacles for translation. Using a made-in-house 96-well vertical electrical stimulation (ES) platform, we investigated the effects of different stimulating pulse frequency, duration and field direction on human neural crest stem cell (NCSC) differentiation. We observed dendritic morphology with enhanced neuronal differentiation for NCSCs cultured on cathodes subject to 20 Hz, 100μs pulse at a potential gradient of 200 mV/mm. We further evaluated the effect of a novel cell-based therapy featuring optimized pulsatile ES of NCSCs for in vivo transplantation following peripheral nerve regeneration. 15 mm critical-sized sciatic nerve injuries were generated with subsequent surgical repair in sixty athymic nude rats. Injured animals were randomly assigned into five groups (N = 12 per group): blank control, ES, NCSC, NCSC + ES, and autologous nerve graft. The optimized ES was applied immediately after surgical repair for 1 h in ES and NCSC + ES groups. Recovery was assessed by behavioral (CatWalk gait analysis), wet muscle-mass, histomorphometric, and immunohistochemical analyses at either 6 or 12 weeks after surgery (N = 6 per group). Gastrocnemius muscle wet mass measurements in ES + NCSC group were comparable to autologous nerve transplantation and significantly higher than other groups (p < 0.05). Quantitative histomorphometric analysis and catwalk gait analysis showed similar improvements by ES on NCSCs (p < 0.05). A higher number of viable NCSCs was shown via immunochemical analysis, with higher Schwann cell (SC) differentiation in the NCSC + ES group compared to the NCSC group (p < 0.05). Overall, ES on NCSC transplantation significantly enhanced nerve regeneration after injury and repair, and was comparable to autograft treatment. Thus, ES can be a potent alternative to biochemical and physical cues for modulating stem cell survival and differentiation. This novel cell-based intervention presents an effective and safe approach for improved outcomes after peripheral nerve repair.
Collapse
Affiliation(s)
- Jian Du
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Gehua Zhen
- Department of Orthopaedics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Huanwen Chen
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Shuming Zhang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Materials Science and Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Liming Qing
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Xiuli Yang
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Gabsang Lee
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Hai-Quan Mao
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Materials Science and Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Department of Anatomy Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
8
|
Altwegg-Boussac T, Schramm AE, Ballestero J, Grosselin F, Chavez M, Lecas S, Baulac M, Naccache L, Demeret S, Navarro V, Mahon S, Charpier S. Cortical neurons and networks are dormant but fully responsive during isoelectric brain state. Brain 2017; 140:2381-2398. [PMID: 29050394 DOI: 10.1093/brain/awx175] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/29/2017] [Indexed: 01/30/2023] Open
Abstract
A continuous isoelectric electroencephalogram reflects an interruption of endogenously-generated activity in cortical networks and systematically results in a complete dissolution of conscious processes. This electro-cerebral inactivity occurs during various brain disorders, including hypothermia, drug intoxication, long-lasting anoxia and brain trauma. It can also be induced in a therapeutic context, following the administration of high doses of barbiturate-derived compounds, to interrupt a hyper-refractory status epilepticus. Although altered sensory responses can be occasionally observed on an isoelectric electroencephalogram, the electrical membrane properties and synaptic responses of individual neurons during this cerebral state remain largely unknown. The aim of the present study was to characterize the intracellular correlates of a barbiturate-induced isoelectric electroencephalogram and to analyse the sensory-evoked synaptic responses that can emerge from a brain deprived of spontaneous electrical activity. We first examined the sensory responsiveness from patients suffering from intractable status epilepticus and treated by administration of thiopental. Multimodal sensory responses could be evoked on the flat electroencephalogram, including visually-evoked potentials that were significantly amplified and delayed, with a high trial-to-trial reproducibility compared to awake healthy subjects. Using an analogous pharmacological procedure to induce prolonged electro-cerebral inactivity in the rat, we could describe its cortical and subcortical intracellular counterparts. Neocortical, hippocampal and thalamo-cortical neurons were all silent during the isoelectric state and displayed a flat membrane potential significantly hyperpolarized compared with spontaneously active control states. Nonetheless, all recorded neurons could fire action potentials in response to intracellularly injected depolarizing current pulses and their specific intrinsic electrophysiological features were preserved. Manipulations of the membrane potential and intracellular injection of chloride in neocortical neurons failed to reveal an augmented synaptic inhibition during the isoelectric condition. Consistent with the sensory responses recorded from comatose patients, large and highly reproducible somatosensory-evoked potentials could be generated on the inactive electrocorticogram in rats. Intracellular recordings revealed that the underlying neocortical pyramidal cells responded to sensory stimuli by complex synaptic potentials able to trigger action potentials. As in patients, sensory responses in the isoelectric state were delayed compared to control responses and exhibited an elevated reliability during repeated stimuli. Our findings demonstrate that during prolonged isoelectric brain state neurons and synaptic networks are dormant rather than excessively inhibited, conserving their intrinsic properties and their ability to integrate and propagate environmental stimuli.
Collapse
Affiliation(s)
- Tristan Altwegg-Boussac
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Adrien E Schramm
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Jimena Ballestero
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Fanny Grosselin
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Mario Chavez
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Sarah Lecas
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France.,UPMC Univ Paris 06, F-75005, Paris, France
| | - Michel Baulac
- Epilepsy Unit, Clinical Neurophysiology Department, AP-HP, Hôpital Pitié-Salpêtrière, F-75013, Paris, France
| | - Lionel Naccache
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France.,Evoked Potential Unit, Neurophysiology Department, AP-HP, Hôpital Pitié-Salpêtrière, F-75013, Paris, France
| | - Sophie Demeret
- Intensive Care Unit of Neurology, Neurology Department, AP-HP, Hôpital Pitié-Salpêtrière, F-75013, Paris, France
| | - Vincent Navarro
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France.,Epilepsy Unit, Clinical Neurophysiology Department, AP-HP, Hôpital Pitié-Salpêtrière, F-75013, Paris, France
| | - Séverine Mahon
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Stéphane Charpier
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France.,UPMC Univ Paris 06, F-75005, Paris, France
| |
Collapse
|
9
|
Prolonged hypothermia exposure diminishes neuroprotection for severe ischemic-hypoxic primary neurons. Cryobiology 2016; 72:141-7. [PMID: 26802735 DOI: 10.1016/j.cryobiol.2016.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/28/2015] [Accepted: 01/18/2016] [Indexed: 01/19/2023]
Abstract
This study aimed to identify optimal mild hypothermic (MH) condition that would provide the best protection for neuronal cells undergoing severe ischemia and hypoxia. We also sought to determine if longer exposure to mild hypothermia would confer greater protection to severe ischemia and hypoxia in these cells. We designed a primary neuronal cell model for severe glucose and oxygen deprivation/reoxygenation (OGD/R) to simulate the hypoxic-ischemic condition of patients with severe stroke, trauma, or hypoxic-ischemic encephalopathy. We evaluated the viability of these neurons following 3 h of OGD/R and variable MH conditions including different temperatures and durations of OGD/R exposure. We further explored the effects of the optimal MH condition on several parts which are associated with mitochondrial apoptosis pathway: intracellular calcium, reactive oxygen species (ROS), and mitochondrial transmembrane potential (MTP). The results of this study showed that the apoptosis proportion (AP) and cell viability proportion (CVP) after OGD/R significantly varied depending on which MH condition cells were exposed to (p < 0.001). Further, our findings showed that prolonged MH reduced the neuroprotection to AP and CVP. We also determined that the optimal MH conditions (34 °C for 4.5 h) reduced intracellular calcium, ROS, and recovered MTP. These findings indicate that there is an optimal MH treatment strategy for severely hypoxia-ischemic neurons, prolonged duration might diminish the neuroprotection, and that MH treatment likely initiates neuroprotection by inhibiting the mitochondrial apoptosis pathway.
Collapse
|
10
|
Zanatta P, Linassi F, Mazzarolo AP, Aricò M, Bosco E, Bendini M, Sorbara C, Ori C, Carron M, Scarpa B. Pain-related Somato Sensory Evoked Potentials: a potential new tool to improve the prognostic prediction of coma after cardiac arrest. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:403. [PMID: 26573633 PMCID: PMC4647335 DOI: 10.1186/s13054-015-1119-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 10/28/2015] [Indexed: 11/23/2022]
Abstract
Introduction Early prediction of a good outcome in comatose patients after cardiac arrest still remains an unsolved problem. The main aim of the present study was to examine the accuracy of middle-latency SSEP triggered by a painful electrical stimulation on median nerves to predict a favorable outcome. Methods No- and low-flow times, pupillary reflex, Glasgow motor score and biochemical data were evaluated at ICU admission. The following were considered within 72 h of cardiac arrest: highest creatinine value, hyperthermia occurrence, EEG, SSEP at low- (10 mA) and high-intensity (50 mA) stimulation, and blood pressure reactivity to 50 mA. Intensive care treatments were also considered. Data were compared to survival, consciousness recovery and 6-month CPC (Cerebral Performance Category). Results Pupillary reflex and EEG were statistically significant in predicting survival; the absence of blood pressure reactivity seems to predict brain death within 7 days of cardiac arrest. Middle- and short-latency SSEP were statistically significant in predicting consciousness recovery, and middle-latency SSEP was statistically significant in predicting 6-month CPC outcome. The prognostic capability of 50 mA middle-latency-SSEP was demonstrated to occur earlier than that of EEG reactivity. Conclusions Neurophysiological evaluation constitutes the key to early information about the neurological prognostication of postanoxic coma. In particular, the presence of 50 mA middle-latency SSEP seems to be an early and reliable predictor of good neurological outcome, and its absence constitutes a marker of poor prognosis. Moreover, the absence 50 mA blood pressure reactivity seems to identify patients evolving towards the brain death.
Collapse
Affiliation(s)
- Paolo Zanatta
- Department of Anaesthesia and Intensive Care, Intraoperative and Critical Care Neurophysiology in Cardiac Surgery, Treviso Regional Hospital, Azienda Ospedaliera Ulss 9, Piazzale Ospedale 1, 31100, Treviso, Italy.
| | - Federico Linassi
- Neuromonitoring Project, Department of Anesthesia and Intensive Care, Treviso Regional Hospital, Piazzale Ospedale, 1, 31100, Treviso, TV, Italy.
| | - Anna Paola Mazzarolo
- Neuromonitoring Project, Department of Anesthesia and Intensive Care, Treviso Regional Hospital, Piazzale Ospedale, 1, 31100, Treviso, TV, Italy.
| | - Maria Aricò
- Neuromonitoring Project, Department of Anesthesia and Intensive Care, Treviso Regional Hospital, Piazzale Ospedale, 1, 31100, Treviso, TV, Italy.
| | - Enrico Bosco
- Department of Anaesthesia and Intensive Care, Intraoperative and Critical Care Neurophysiology in Cardiac Surgery, Treviso Regional Hospital, Azienda Ospedaliera Ulss 9, Piazzale Ospedale 1, 31100, Treviso, Italy.
| | - Matteo Bendini
- Unit of Neuroradiology, Treviso Regional Hospital, Piazzale Ospedale, 1, 31100, Treviso, TV, Italy.
| | - Carlo Sorbara
- Department of Anaesthesia and Intensive Care, Intraoperative and Critical Care Neurophysiology in Cardiac Surgery, Treviso Regional Hospital, Azienda Ospedaliera Ulss 9, Piazzale Ospedale 1, 31100, Treviso, Italy.
| | - Carlo Ori
- Department of Anesthesia and Intensive Care, Padova University Hospital, Via 8 Febbraio 1848, 2, 35122, Padova, PD, Italy.
| | - Michele Carron
- Department of Anesthesia and Intensive Care, Padova University Hospital, Via 8 Febbraio 1848, 2, 35122, Padova, PD, Italy.
| | - Bruno Scarpa
- Department of Statistical Sciences, Padova University, Via 8 Febbraio 1848, 2, 35122, Padova, PD, Italy.
| |
Collapse
|
11
|
Stoyanova II, Hofmeijer J, van Putten MJAM, le Feber J. Acyl Ghrelin Improves Synapse Recovery in an In Vitro Model of Postanoxic Encephalopathy. Mol Neurobiol 2015; 53:6136-6143. [PMID: 26541885 PMCID: PMC5085991 DOI: 10.1007/s12035-015-9502-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 10/19/2015] [Indexed: 11/04/2022]
Abstract
Comatose patients after cardiac arrest have a poor prognosis. Approximately half never awakes as a result of severe diffuse postanoxic encephalopathy. Several neuroprotective agents have been tested, however without significant effect. In the present study, we used cultured neuronal networks as a model system to study the general synaptic damage caused by temporary severe hypoxia and the possibility to restrict it by ghrelin treatment. Briefly, we applied hypoxia (pO2 lowered from 150 to 20 mmHg) during 6 h in 55 cultures. Three hours after restoration of normoxia, half of the cultures were treated with ghrelin for 24 h, while the other, non-supplemented, were used as a control. All cultures were processed immunocytochemically for detection of the synaptic marker synaptophysin. We observed that hypoxia led to drastic decline of the number of synapses, followed by some recovery after return to normoxia, but still below the prehypoxic level. Additionally, synaptic vulnerability was selective: large- and small-sized neurons were more susceptible to synaptic damage than the medium-sized ones. Ghrelin treatment significantly increased the synapse density, as compared with the non-treated controls or with the prehypoxic period. The effect was detected in all neuronal subtypes. In conclusion, exogenous ghrelin has a robust impact on the recovery of cortical synapses after hypoxia. It raises the possibility that ghrelin or its analogs may have a therapeutic potential for treatment of postanoxic encephalopathy.
Collapse
Affiliation(s)
- Irina I Stoyanova
- Department of Clinical Neurophysiology, Faculty of Science and Technology, University of Twente, Building Carré 3714, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
| | - Jeannette Hofmeijer
- Department of Clinical Neurophysiology, Faculty of Science and Technology, University of Twente, Building Carré 3714, P.O. Box 217, 7500 AE, Enschede, The Netherlands.,Department of Neurology, Rijnstate Hospital, Arnhem, The Netherlands
| | - Michel J A M van Putten
- Department of Clinical Neurophysiology, Faculty of Science and Technology, University of Twente, Building Carré 3714, P.O. Box 217, 7500 AE, Enschede, The Netherlands.,Department of Clinical Neurophysiology, Medisch Spectrum Twente, Enschede, The Netherlands
| | - Joost le Feber
- Department of Clinical Neurophysiology, Faculty of Science and Technology, University of Twente, Building Carré 3714, P.O. Box 217, 7500 AE, Enschede, The Netherlands.,Department of Biomedical Signals and Systems, EWI, University of Twente, Enschede, The Netherlands
| |
Collapse
|
12
|
Electrophysiological Monitoring of Brain Injury and Recovery after Cardiac Arrest. Int J Mol Sci 2015; 16:25999-6018. [PMID: 26528970 PMCID: PMC4661797 DOI: 10.3390/ijms161125938] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/19/2015] [Accepted: 10/21/2015] [Indexed: 11/16/2022] Open
Abstract
Reliable prognostic methods for cerebral functional outcome of post cardiac-arrest (CA) patients are necessary, especially since therapeutic hypothermia (TH) as a standard treatment. Traditional neurophysiological prognostic indicators, such as clinical examination and chemical biomarkers, may result in indecisive outcome predictions and do not directly reflect neuronal activity, though they have remained the mainstay of clinical prognosis. The most recent advances in electrophysiological methods--electroencephalography (EEG) pattern, evoked potential (EP) and cellular electrophysiological measurement--were developed to complement these deficiencies, and will be examined in this review article. EEG pattern (reactivity and continuity) provides real-time and accurate information for early-stage (particularly in the first 24 h) hypoxic-ischemic (HI) brain injury patients with high sensitivity. However, the signal is easily affected by external stimuli, thus the measurements of EP should be combined with EEG background to validate the predicted neurologic functional result. Cellular electrophysiology, such as multi-unit activity (MUA) and local field potentials (LFP), has strong potential for improving prognostication and therapy by offering additional neurophysiologic information to understand the underlying mechanisms of therapeutic methods. Electrophysiology provides reliable and precise prognostication on both global and cellular levels secondary to cerebral injury in cardiac arrest patients treated with TH.
Collapse
|
13
|
Chen C, Maybhate A, Thakor NV, Jia X. Effect of hypothermia on cortical and thalamic signals in anesthetized rats. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2013:6317-20. [PMID: 24111185 DOI: 10.1109/embc.2013.6610998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Beneficial effects of hypothermia on subjects with neuro-pathologies have been well demonstrated in both animal studies and clinical trials. Although it is known that temperature significantly impacts neurological injuries, the underlying mechanism remains unclear. We studied the effect of temperature modulation on neural signals in the cortex and the thalamus in uninjured brains of anesthetized rats. Six rats were divided into a hypothermic (32 to 34 °C, n=3) and a hyperthermic group (38.5 to 39.5 °C, n=3). EEG, and extracellular signals from somatosensory cortex and the ventral posterolateral nucleus of thalamus were recorded at different temperature phases (normothermia (36.5 to 37.5 °C) and hypothermia or hyperthermia). During hypothermia, similar burst suppression (BS) patterns were observed in cortical and thalamic signals as in EEG, but thalamic activity was not completely under suppression when both EEG and cortical signals were electrically silent. In addition, our results showed that hypothermia significantly increased the burst suppression ratio (BSR) in EEG, cortical and thalamic signals by 3.42, 3.25, 7.29 times respectively (P<0.01), and prolonged the latency of neuronal response in cortex to median nerve stimulation from 9 ms to 16 ms (P<0.01). Furthermore, during normothermia, the correlation coefficient between thalamic and cortical signals was 0.35±0.02 while during hypothermia, it decreased to 0.16±0.03 with statistical significance (P<0.01). These results can potentially assist in better understanding the effects of hypothermia.
Collapse
|
14
|
van Putten MJAM, Tjepkema-Cloostermans MC, Hofmeijer J. Infraslow EEG activity modulates cortical excitability in postanoxic encephalopathy. J Neurophysiol 2015; 113:3256-67. [PMID: 25695645 DOI: 10.1152/jn.00714.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 02/17/2015] [Indexed: 11/22/2022] Open
Abstract
Infraslow activity represents an important component of physiological and pathological brain function. We study infraslow activity (<0.1 Hz) in 41 patients with postanoxic coma after cardiac arrest, including the relationship between infraslow activity and EEG power in the 3-30 Hz range, using continuous full-band scalp EEG. In all patients, infraslow activity (0.015-0.06 Hz) was present, irrespective of neurological outcome or EEG activity in the conventional frequency bands. In two patients, low-amplitude (10-30 μV) infraslow activity was present while the EEG showed no rhythmic activity above 0.5 Hz. In 13/15 patients with a good outcome and 20/26 patients with a poor one, EEG power in the 3-30 Hz frequency range was correlated with the phase of infraslow activity, quantified by the modulation index. In 9/14 patients with burst-suppression with identical bursts, bursts appeared in clusters, phase-locked to the infraslow oscillations. This is substantiated by a simulation of burst-suppression in a minimal computational model. Infraslow activity is preserved in postanoxic encephalopathy and modulates cortical excitability. The strongest modulation is observed in patients with severe postanoxic encephalopathy and burst-suppression with identical bursts.
Collapse
Affiliation(s)
- Michel J A M van Putten
- Department of Neurology and Clinical Neurophysiology, Medisch Spectrum Twente, Enschede, the Netherlands; Clinical Neurophysiology, MIRA-Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, the Netherlands; and
| | - Marleen C Tjepkema-Cloostermans
- Department of Neurology and Clinical Neurophysiology, Medisch Spectrum Twente, Enschede, the Netherlands; Clinical Neurophysiology, MIRA-Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, the Netherlands; and
| | - Jeannette Hofmeijer
- Clinical Neurophysiology, MIRA-Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, the Netherlands; and Department of Neurology, Rijnstate Ziekenhuis, Arnhem, the Netherlands
| |
Collapse
|
15
|
Pfeifer R, Weitzel S, Günther A, Berrouschot J, Fischer M, Isenmann S, Figulla HR. Investigation of the inter-observer variability effect on the prognostic value of somatosensory evoked potentials of the median nerve (SSEP) in cardiac arrest survivors using an SSEP classification. Resuscitation 2013; 84:1375-81. [DOI: 10.1016/j.resuscitation.2013.05.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 05/21/2013] [Accepted: 05/21/2013] [Indexed: 11/25/2022]
|
16
|
Chen C, Maybhate A, Israel D, Thakor NV, Jia X. Assessing thalamocortical functional connectivity with Granger causality. IEEE Trans Neural Syst Rehabil Eng 2013; 21:725-733. [PMID: 23864221 DOI: 10.1109/tnsre.2013.2271246] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Assessment of network connectivity across multiple brain regions is critical to understanding the mechanisms underlying various neurological disorders. Conventional methods for assessing dynamic interactions include cross-correlation and coherence analysis. However, these methods do not reveal the direction of information flow, which is important for studying the highly directional neurological system. Granger causality (GC) analysis can characterize the directional influences between two systems. We tested GC analysis for its capability to capture directional interactions within both simulated and in vivo neural networks. The simulated networks consisted of Hindmarsh-Rose neurons; GC analysis was used to estimate the causal influences between two model networks. Our analysis successfully detected asymmetrical interactions between these networks ( , t -test). Next, we characterized the relationship between the "electrical synaptic strength" in the model networks and interactions estimated by GC analysis. We demonstrated the novel application of GC to monitor interactions between thalamic and cortical neurons following ischemia induced brain injury in a rat model of cardiac arrest (CA). We observed that during the post-CA acute period the GC interactions from the thalamus to the cortex were consistently higher than those from the cortex to the thalamus ( 1.983±0.278 times higher, p = 0.021). In addition, the dynamics of GC interactions between the thalamus and the cortex were frequency dependent. Our study demonstrated the feasibility of GC to monitor the dynamics of thalamocortical interactions after a global nervous system injury such as CA-induced ischemia, and offers preferred alternative applications in characterizing other inter-regional interactions in an injured brain.
Collapse
Affiliation(s)
- Cheng Chen
- C. Chen was with the Department of Biomedical Engineering, the Johns Hopkins University, Baltimore, MD 21218 USA
| | - Anil Maybhate
- C. Chen was with the Department of Biomedical Engineering, the Johns Hopkins University, Baltimore, MD 21218 USA
| | - David Israel
- C. Chen was with the Department of Biomedical Engineering, the Johns Hopkins University, Baltimore, MD 21218 USA
| | - Nitish V Thakor
- C. Chen was with the Department of Biomedical Engineering, the Johns Hopkins University, Baltimore, MD 21218 USA
| | - Xiaofeng Jia
- C. Chen was with the Department of Biomedical Engineering, the Johns Hopkins University, Baltimore, MD 21218 USA
| |
Collapse
|
17
|
Chen S, Mohajerani MH, Xie Y, Murphy TH. Optogenetic analysis of neuronal excitability during global ischemia reveals selective deficits in sensory processing following reperfusion in mouse cortex. J Neurosci 2012; 32:13510-9. [PMID: 23015440 PMCID: PMC6621379 DOI: 10.1523/jneurosci.1439-12.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 06/26/2012] [Accepted: 07/21/2012] [Indexed: 12/30/2022] Open
Abstract
We have developed an approach to directly probe neuronal excitability during the period beginning with induction of global ischemia and extending after reperfusion using transgenic mice expressing channelrhodopsin-2 (ChR2) to activate deep layer cortical neurons independent of synaptic or sensory stimulation. Spontaneous, ChR2, or forepaw stimulation-evoked electroencephalogram (EEG) or local field potential (LFP) records were collected from the somatosensory cortex. Within 20 s of ischemia, a >90% depression of spontaneous 0.3-3 Hz EEG and LFP power was detected. Ischemic depolarization followed EEG depression with a ∼2 min delay. Surprisingly, neuronal excitability, as assessed by the ChR2-mediated EEG response, was intact during the period of strong spontaneous EEG suppression and actually increased before ischemic depolarization. In contrast, a decrease in the somatosensory-evoked potential (forepaw-evoked potential, reflecting cortical synaptic transmission) was coincident with the EEG suppression. After 5 min of ischemia, the animal was reperfused, and the ChR2-mediated response mostly recovered within 30 min (>80% of preischemia value). However, the recovery of the somatosensory-evoked potential was significantly delayed compared with the ChR2-mediated response (<40% of preischemia value at 60 min). By assessing intrinsic optical signals in combination with EEG, we found that neuronal excitability approached minimal values when the spreading ischemic depolarization wave propagated to the ChR2-stimulated cortex. Our results indicate that the ChR2-mediated EEG/LFP response recovers much faster than sensory-evoked EEG/LFP activity in vivo following ischemia and reperfusion, defining a period where excitable but synaptically silent neurons are present.
Collapse
Affiliation(s)
- Shangbin Chen
- Department of Psychiatry, Brain Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Majid H. Mohajerani
- Department of Psychiatry, Brain Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Yicheng Xie
- Department of Psychiatry, Brain Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Timothy H. Murphy
- Department of Psychiatry, Brain Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|