1
|
Giusti G, Santarcangelo EL. Nitric Oxide in the Hypnotizability-Related Interoception: A Scoping Review. Int J Clin Exp Hypn 2025; 73:156-174. [PMID: 40063712 DOI: 10.1080/00207144.2025.2468979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/29/2024] [Accepted: 10/07/2024] [Indexed: 05/02/2025]
Abstract
Interoception - the sense of the body - includes the perception of visceral signals and its integration with many other information in the central nervous system. Hypnotizability levels are associated with interoceptive accuracy and sensitivity, likely due to different insula gray matter volume, and different availability of vascular nitric oxide during sensory and cognitive tasks in peripheral arteries and in the brain. This theoretical review deals with the relevance of possible hypnotizability-related nitric oxide availability at various levels of the central nervous system to interoception and, consequently, to physiological and pathological conditions, such as emotion, sleep disturbance, eating behavior, and cardiovascular illness. Moreover, the review suggests that hypnotic assessment could be a predictor of the efficacy of therapies based on improvement of interoception.
Collapse
Affiliation(s)
- Gioia Giusti
- Department of Neuroscience, Rehabilitation, Ophthalmology, and Maternal and Child Sciences, University of Genoa, Genoa, Italy
| | - Enrica Laura Santarcangelo
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
2
|
Simone L, Caruana F, Elena B, Del Sorbo S, Jezzini A, Rozzi S, Luppino G, Gerbella M. Anatomo-functional organization of insular networks: From sensory integration to behavioral control. Prog Neurobiol 2025; 247:102748. [PMID: 40074022 DOI: 10.1016/j.pneurobio.2025.102748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/24/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
Classically, the insula is considered an associative multisensory cortex where emotional awareness emerges through the integration of interoceptive and exteroceptive information, along with autonomic regulation. However, since early intracortical microstimulation (ICMS) studies, the insular cortex has also been conceived as a mosaic of anatomo-functional sectors processing various types of sensory information to generate specific overt behaviors. Based on this, the insula has been subdivided into distinct functional fields: an anterior field associated with oroalimentary behaviors, a middle field involved dorsally in hand movements and ventrally in emotional reactions, and a posterior field engaged in axial and proximal movements. Nevertheless, the anatomo-functional networks through which these fields produce motor behaviors remain largely unknown. To fill this gap in the present study, we investigated the connectivity of the macaque insula using a multimodal approach which combines resting-state fMRI with data from tract-tracing injections in insular functional fields defined by ICMS, as well as in brain areas known to be connected to the insula and characterized by specific somatotopic organization. The results revealed that each insular functional field takes part in distinct somatotopically organized network modulating specific motor or visceromotor behaviors, extending previous models that subdivide the insula primarily based on the types of interoceptive and exteroceptive information it receives. Our findings posit the various insular sectors as interfaces that synthesize diverse interoceptive and exteroceptive inputs into coherent subjective experiences and decision-making processes, within an embodied and enactive framework, that moves beyond the traditional dichotomy between sensory experience and motor behavior.
Collapse
Affiliation(s)
- Luciano Simone
- Department of Medicine and Surgery (DIMEC), Neuroscience Unit, University of Parma, Italy.
| | - Fausto Caruana
- Institute of Neuroscience, National Research Council of Italy (CNR), Parma, Italy
| | - Borra Elena
- Department of Medicine and Surgery (DIMEC), Neuroscience Unit, University of Parma, Italy
| | - Simone Del Sorbo
- Institute of Neuroscience, National Research Council of Italy (CNR), Parma, Italy
| | - Ahmad Jezzini
- Department of Medical Education, Texas Tech University Health Sciences Center (TTUHSC), Lubbock, TX, USA
| | - Stefano Rozzi
- Department of Medicine and Surgery (DIMEC), Neuroscience Unit, University of Parma, Italy
| | - Giuseppe Luppino
- Department of Medicine and Surgery (DIMEC), Neuroscience Unit, University of Parma, Italy
| | - Marzio Gerbella
- Department of Medicine and Surgery (DIMEC), Neuroscience Unit, University of Parma, Italy.
| |
Collapse
|
3
|
Guo J, Wang J, Liang P, Tian E, Liu D, Guo Z, Chen J, Zhang Y, Zhou Z, Kong W, Crans DC, Lu Y, Zhang S. Vestibular dysfunction leads to cognitive impairments: State of knowledge in the field and clinical perspectives (Review). Int J Mol Med 2024; 53:36. [PMID: 38391090 PMCID: PMC10914312 DOI: 10.3892/ijmm.2024.5360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/08/2024] [Indexed: 02/24/2024] Open
Abstract
The vestibular system may have a critical role in the integration of sensory information and the maintenance of cognitive function. A dysfunction in the vestibular system has a significant impact on quality of life. Recent research has provided evidence of a connection between vestibular information and cognitive functions, such as spatial memory, navigation and attention. Although the exact mechanisms linking the vestibular system to cognition remain elusive, researchers have identified various pathways. Vestibular dysfunction may lead to the degeneration of cortical vestibular network regions and adversely affect synaptic plasticity and neurogenesis in the hippocampus, ultimately contributing to neuronal atrophy and cell death, resulting in memory and visuospatial deficits. Furthermore, the extent of cognitive impairment varies depending on the specific type of vestibular disease. In the present study, the current literature was reviewed, potential causal relationships between vestibular dysfunction and cognitive performance were discussed and directions for future research were proposed.
Collapse
Affiliation(s)
- Jiaqi Guo
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jun Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Pei Liang
- Department of Psychology, Faculty of Education, Hubei University, Wuhan, Hubei 430062, P.R. China
| | - E Tian
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Dan Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhaoqi Guo
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jingyu Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yuejin Zhang
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
- Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhanghong Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Debbie C. Crans
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Yisheng Lu
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
- Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Sulin Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
4
|
Mohammadi M, Carriot J, Mackrous I, Cullen KE, Chacron MJ. Neural populations within macaque early vestibular pathways are adapted to encode natural self-motion. PLoS Biol 2024; 22:e3002623. [PMID: 38687807 PMCID: PMC11086886 DOI: 10.1371/journal.pbio.3002623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 05/10/2024] [Accepted: 04/11/2024] [Indexed: 05/02/2024] Open
Abstract
How the activities of large neural populations are integrated in the brain to ensure accurate perception and behavior remains a central problem in systems neuroscience. Here, we investigated population coding of naturalistic self-motion by neurons within early vestibular pathways in rhesus macaques (Macacca mulatta). While vestibular neurons displayed similar dynamic tuning to self-motion, inspection of their spike trains revealed significant heterogeneity. Further analysis revealed that, during natural but not artificial stimulation, heterogeneity resulted primarily from variability across neurons as opposed to trial-to-trial variability. Interestingly, vestibular neurons displayed different correlation structures during naturalistic and artificial self-motion. Specifically, while correlations due to the stimulus (i.e., signal correlations) did not differ, correlations between the trial-to-trial variabilities of neural responses (i.e., noise correlations) were instead significantly positive during naturalistic but not artificial stimulation. Using computational modeling, we show that positive noise correlations during naturalistic stimulation benefits information transmission by heterogeneous vestibular neural populations. Taken together, our results provide evidence that neurons within early vestibular pathways are adapted to the statistics of natural self-motion stimuli at the population level. We suggest that similar adaptations will be found in other systems and species.
Collapse
Affiliation(s)
- Mohammad Mohammadi
- Department of Biological and Biomedical Engineering, McGill University, Montreal, Canada
| | - Jerome Carriot
- Department of Physiology, McGill University, Montreal, Canada
| | | | - Kathleen E. Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | | |
Collapse
|
5
|
Smith LJ, Wilkinson D, Bodani M, Surenthiran SS. Cognition in vestibular disorders: state of the field, challenges, and priorities for the future. Front Neurol 2024; 15:1159174. [PMID: 38304077 PMCID: PMC10830645 DOI: 10.3389/fneur.2024.1159174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
Vestibular disorders are prevalent and debilitating conditions of the inner ear and brain which affect balance, coordination, and the integration of multisensory inputs. A growing body of research has linked vestibular disorders to cognitive problems, most notably attention, visuospatial perception, spatial memory, and executive function. However, the mechanistic bases of these cognitive sequelae remain poorly defined, and there is a gap between our theoretical understanding of vestibular cognitive dysfunction, and how best to identify and manage this within clinical practice. This article takes stock of these shortcomings and provides recommendations and priorities for healthcare professionals who assess and treat vestibular disorders, and for researchers developing cognitive models and rehabilitation interventions. We highlight the importance of multidisciplinary collaboration for developing and evaluating clinically relevant theoretical models of vestibular cognition, to advance research and treatment.
Collapse
Affiliation(s)
- Laura J. Smith
- Centre for Preventative Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
- School of Psychology, Keynes College, University of Kent, Kent, United Kingdom
| | - David Wilkinson
- School of Psychology, Keynes College, University of Kent, Kent, United Kingdom
| | - Mayur Bodani
- School of Psychology, Keynes College, University of Kent, Kent, United Kingdom
| | | |
Collapse
|
6
|
Moore AIG, Golding JF, Alenova A, Castro P, Bronstein AM. Sense of direction in vestibular disorders. J Vestib Res 2024; 34:113-123. [PMID: 38489201 DOI: 10.3233/ves-230082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
BACKGROUND Our sense of direction (SOD) ability relies on the sensory integration of both visual information and self-motion cues from the proprioceptive and vestibular systems. Here, we assess how dysfunction of the vestibular system impacts perceived SOD in varying vestibular disorders, and secondly, we explore the effects of dizziness, migraine and psychological symptoms on SOD ability in patient and control groups. METHODS 87 patients with vestibular disorder and 69 control subjects were assessed with validated symptom and SOD questionnaires (Santa Barbara Sense of Direction scale and the Object Perspective test). RESULTS While patients with vestibular disorders performed significantly worse than controls at the group level, only central and functional disorders (vestibular migraine and persistent postural perceptual dizziness), not peripheral disorders (benign-paroxysmal positional vertigo, bilateral vestibular failure and Meniere's disease) showed significant differences compared to controls on the level of individual vestibular groups. Additionally, orientational abilities associated strongly with spatial anxiety and showed clear separation from general dizziness and psychological factors in both patient and control groups. CONCLUSIONS SOD appears to be less affected by peripheral vestibular dysfunction than by functional and/or central diagnoses, indicating that higher level disruptions to central vestibular processing networks may impact SOD more than reductions in sensory peripheral inputs. Additionally, spatial anxiety is highly associated with orientational abilities in both patients and control subjects.
Collapse
Affiliation(s)
- Alexander I G Moore
- Department of Brain Sciences, Neuro-otology Unit, Imperial College London, London, UK
| | - John F Golding
- Department of Brain Sciences, Neuro-otology Unit, Imperial College London, London, UK
- Department of Psychology, University of Westminster, London, UK
| | - Anastasia Alenova
- Department of Brain Sciences, Neuro-otology Unit, Imperial College London, London, UK
| | - Patricia Castro
- Department of Brain Sciences, Neuro-otology Unit, Imperial College London, London, UK
- Escuela de Fonoaudiologia, Facultad de Medicina Clinica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Adolfo M Bronstein
- Department of Brain Sciences, Neuro-otology Unit, Imperial College London, London, UK
| |
Collapse
|
7
|
Liu B, Shan J, Gu Y. Temporal and spatial properties of vestibular signals for perception of self-motion. Front Neurol 2023; 14:1266513. [PMID: 37780704 PMCID: PMC10534010 DOI: 10.3389/fneur.2023.1266513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
It is well recognized that the vestibular system is involved in numerous important cognitive functions, including self-motion perception, spatial orientation, locomotion, and vector-based navigation, in addition to basic reflexes, such as oculomotor or body postural control. Consistent with this rationale, vestibular signals exist broadly in the brain, including several regions of the cerebral cortex, potentially allowing tight coordination with other sensory systems to improve the accuracy and precision of perception or action during self-motion. Recent neurophysiological studies in animal models based on single-cell resolution indicate that vestibular signals exhibit complex spatiotemporal dynamics, producing challenges in identifying their exact functions and how they are integrated with other modality signals. For example, vestibular and optic flow could provide congruent and incongruent signals regarding spatial tuning functions, reference frames, and temporal dynamics. Comprehensive studies, including behavioral tasks, neural recording across sensory and sensory-motor association areas, and causal link manipulations, have provided some insights into the neural mechanisms underlying multisensory self-motion perception.
Collapse
Affiliation(s)
- Bingyu Liu
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, International Center for Primate Brain Research, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiayu Shan
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, International Center for Primate Brain Research, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong Gu
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, International Center for Primate Brain Research, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
O'Toole R, Watson D. Manual cervical therapy and vestibular migraine: A case series. HEALTH OPEN RESEARCH 2023; 5:12. [PMID: 38708034 PMCID: PMC11065132 DOI: 10.12688/healthopenres.13319.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/17/2023] [Indexed: 05/07/2024]
Abstract
Background Vestibular migraine (VM) is a relatively new diagnostic entity with incomplete knowledge regarding pathophysiological mechanisms and therapeutic guidelines. By reporting the effect of manual cervical therapy (MCT) on people with VM, we suggest a possible role for upper cervical afferents in VM treatment and/or pathogenesis. The objective was to describe the change in clinical presentation and self-reported symptoms of VM corresponding to MCT and followed up to six months. Methods A nonrandomised *ABA design was utilised to consecutively and prospectively evaluate selected patients with diagnosed VM. Symptom characteristics (frequency and intensity) were recorded along with standardised patient-reported outcomes (PROs) to document the response to MCT. Results Three patients were recruited who met the diagnostic criteria for VM. All three patients demonstrated improvement in both migraine attack and interictal symptom frequency. These improvements mirrored changes in PROs and were sustained over a six-month follow-up period. Conclusions The improvement that coincided with the intervention including MCT was rapid, observable and sustained. This suggests that the upper cervical spine could be a therapeutic target in VM and may have implications for future research into the pathogenesis of VM.
Collapse
Affiliation(s)
- Roger O'Toole
- Melbourne Headache Centre, Melbourne, Victoria, 3000, Australia
| | - Dean Watson
- Allied Health and Human Performance, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
9
|
Fabbri R, Spennato D, Conte G, Konstantoulaki A, Lazzarini C, Saracino E, Nicchia GP, Frigeri A, Zamboni R, Spray DC, Benfenati V. The emerging science of Glioception: Contribution of glia in sensing, transduction, circuit integration of interoception. Pharmacol Ther 2023; 245:108403. [PMID: 37024060 DOI: 10.1016/j.pharmthera.2023.108403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
Interoception is the process by which the nervous system regulates internal functions to achieve homeostasis. The role of neurons in interoception has received considerable recent attention, but glial cells also contribute. Glial cells can sense and transduce signals including osmotic, chemical, and mechanical status of extracellular milieu. Their ability to dynamically communicate "listening" and "talking" to neurons is necessary to monitor and regulate homeostasis and information integration in the nervous system. This review introduces the concept of "Glioception" and focuses on the process by which glial cells sense, interpret and integrate information about the inner state of the organism. Glial cells are ideally positioned to act as sensors and integrators of diverse interoceptive signals and can trigger regulatory responses via modulation of the activity of neuronal networks, both in physiological and pathological conditions. We believe that understanding and manipulating glioceptive processes and underlying molecular mechanisms provide a key path to develop new therapies for the prevention and alleviation of devastating interoceptive dysfunctions, among which pain is emphasized here with more focused details.
Collapse
Affiliation(s)
- Roberta Fabbri
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy; Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, viale del Risorgimento 2, 40136 Bologna, Italy.
| | - Diletta Spennato
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy; Department of Bioscience, Biotechnologies and Biopharmaceutics, Centre of Excellence in Comparative Genomics, University of Bari "Aldo Moro", Bari, BA, Italy
| | - Giorgia Conte
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Aikaterini Konstantoulaki
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy; Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi, 2, 40126 Bologna, BO, Italy
| | - Chiara Lazzarini
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Emanuela Saracino
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Grazia Paola Nicchia
- School of Medicine, Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, BA, Italy; Department of Bioscience, Biotechnologies and Biopharmaceutics, Centre of Excellence in Comparative Genomics, University of Bari "Aldo Moro", Bari, BA, Italy
| | - Antonio Frigeri
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Bioscience, Biotechnologies and Biopharmaceutics, Centre of Excellence in Comparative Genomics, University of Bari "Aldo Moro", Bari, BA, Italy
| | - Roberto Zamboni
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - David C Spray
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Valentina Benfenati
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy.
| |
Collapse
|
10
|
Cullen KE, Chacron MJ. Neural substrates of perception in the vestibular thalamus during natural self-motion: A review. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 4:100073. [PMID: 36926598 PMCID: PMC10011815 DOI: 10.1016/j.crneur.2023.100073] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/01/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
Accumulating evidence across multiple sensory modalities suggests that the thalamus does not simply relay information from the periphery to the cortex. Here we review recent findings showing that vestibular neurons within the ventral posteriolateral area of the thalamus perform nonlinear transformations on their afferent input that determine our subjective awareness of motion. Specifically, these neurons provide a substrate for previous psychophysical observations that perceptual discrimination thresholds are much better than predictions from Weber's law. This is because neural discrimination thresholds, which are determined from both variability and sensitivity, initially increase but then saturate with increasing stimulus amplitude, thereby matching the previously observed dependency of perceptual self-motion discrimination thresholds. Moreover, neural response dynamics give rise to unambiguous and optimized encoding of natural but not artificial stimuli. Finally, vestibular thalamic neurons selectively encode passively applied motion when occurring concurrently with voluntary (i.e., active) movements. Taken together, these results show that the vestibular thalamus plays an essential role towards generating motion perception as well as shaping our vestibular sense of agency that is not simply inherited from afferent input.
Collapse
Affiliation(s)
- Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, USA.,Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, USA.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA.,Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, USA
| | | |
Collapse
|
11
|
Candia-Rivera D. Brain-heart interactions in the neurobiology of consciousness. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100050. [PMID: 36685762 PMCID: PMC9846460 DOI: 10.1016/j.crneur.2022.100050] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 01/25/2023] Open
Abstract
Recent experimental evidence on patients with disorders of consciousness revealed that observing brain-heart interactions helps to detect residual consciousness, even in patients with absence of behavioral signs of consciousness. Those findings support hypotheses suggesting that visceral activity is involved in the neurobiology of consciousness, and sum to the existing evidence in healthy participants in which the neural responses to heartbeats reveal perceptual and self-consciousness. More evidence obtained through mathematical modeling of physiological dynamics revealed that emotion processing is prompted by an initial modulation from ascending vagal inputs to the brain, followed by sustained bidirectional brain-heart interactions. Those findings support long-lasting hypotheses on the causal role of bodily activity in emotions, feelings, and potentially consciousness. In this paper, the theoretical landscape on the potential role of heartbeats in cognition and consciousness is reviewed, as well as the experimental evidence supporting these hypotheses. I advocate for methodological developments on the estimation of brain-heart interactions to uncover the role of cardiac inputs in the origin, levels, and contents of consciousness. The ongoing evidence depicts interactions further than the cortical responses evoked by each heartbeat, suggesting the potential presence of non-linear, complex, and bidirectional communication between brain and heartbeat dynamics. Further developments on methodologies to analyze brain-heart interactions may contribute to a better understanding of the physiological dynamics involved in homeostatic-allostatic control, cognitive functions, and consciousness.
Collapse
Affiliation(s)
- Diego Candia-Rivera
- Bioengineering and Robotics Research Center E. Piaggio and the Department of Information Engineering, School of Engineering, University of Pisa, Pisa, Italy
| |
Collapse
|
12
|
Tekgün E, Erdeniz B. Contributions of Body-Orientation to Mental Ball Dropping Task During Out-of-Body Experiences. Front Integr Neurosci 2022; 15:781935. [PMID: 35058754 PMCID: PMC8764241 DOI: 10.3389/fnint.2021.781935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/18/2021] [Indexed: 11/25/2022] Open
Abstract
Out-of-body experiences (OBEs) provide fascinating insights into our understanding of bodily self-consciousness and the workings of the brain. Studies that examined individuals with brain lesions reported that OBEs are generally characterized by participants experiencing themselves outside their physical body (i.e., disembodied feeling) (Blanke and Arzy, 2005). Based on such a characterization, it has been shown that it is possible to create virtual OBEs in immersive virtual environments (Ehrsson, 2007; Ionta et al., 2011b; Bourdin et al., 2017). However, the extent to which body-orientation influences virtual OBEs is not well-understood. Thus, in the present study, 30 participants (within group design) experienced a full-body ownership illusion (synchronous visuo-tactile stimulation only) induced with a gender-matched full-body virtual avatar seen from the first-person perspective (1PP). At the beginning of the experiment, participants performed a mental ball dropping (MBD) task, seen from the location of their virtual avatar, to provide a baseline measurement. After this, a full-body ownership illusion (embodiment phase) was induced in all participants. This was followed by the virtual OBE illusion phase of the experiment (disembodiment phase) in which the first-person viewpoint was switched to a third-person perspective (3PP), and participants' disembodied viewpoint was gradually raised to 14 m above the virtual avatar, from which altitude they repeated the MBD task. During the experiment, this procedure was conducted twice, and the participants were allocated first to the supine or the standing body position at random. Results of the MBD task showed that the participants experienced increased MBD durations during the supine condition compared to the standing condition. Furthermore, although the findings from the subjective reports confirmed the previous findings of virtual OBEs, no significant difference between the two postures was found for body ownership. Taken together, the findings of the current study make further contributions to our understanding of both the vestibular system and time perception during OBEs.
Collapse
|
13
|
Jang SH, Bae CH, Kim JW, Kwon HG. Relationship between Dizziness and the Core Vestibular Projection Injury in Patients with Mild Traumatic Brain Injury. Diagnostics (Basel) 2021; 11:diagnostics11112070. [PMID: 34829416 PMCID: PMC8618454 DOI: 10.3390/diagnostics11112070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 12/18/2022] Open
Abstract
Some studies have reported that a core vestibular projection (CVP) injury is associated with dizziness following a brain injury using diffusion tensor tractography (DTT). On the other hand, there has been no DTT study on dizziness caused by a CVP injury in patients with mild traumatic brain injury (TBI). In this study, DTT was used to examine the relationship between dizziness and CVP injury in patients with mild TBI. Forty-three patients with mild TBI and twenty-nine normal subjects were recruited. The patients were classified into two groups based on the dizziness score: group A, patients with a dizziness score less than 2 on the sub-item score for dizziness in the Rivermead Post-concussion Symptoms Questionnaire; group B, patients with a dizziness score above 2. The tract volume (TV) in group B was significantly lower than group A and the control group (p < 0.05). By contrast, the TV in group A was similar to the control group (p > 0.05). Regarding the correlation, the dizziness score of all patients showed a strong negative correlation with the TV of the CVP (r = −0.711, p < 0.05). DTT revealed the CVP injury in patients with dizziness after mild TBI. In addition, the severity of dizziness of these patients was closely related to the injury severity of the CVP.
Collapse
Affiliation(s)
- Sung-Ho Jang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu 42415, Korea;
| | - Chang-Hoon Bae
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Yeungnam University, Daegu 42415, Korea;
| | - Jae-Woon Kim
- Department of Radiology, College of Medicine, Yeungnam University, Daegu 42415, Korea;
| | - Hyeok-Gyu Kwon
- Department of Physical Therapy, College of Health Science, Eulji University, Sungnam-si 13135, Korea
- Correspondence: ; Tel.: +82-31-740-7127; Fax: +82-31-740-7367
| |
Collapse
|
14
|
Nakul E, Bartolomei F, Lopez C. Vestibular-Evoked Cerebral Potentials. Front Neurol 2021; 12:674100. [PMID: 34621231 PMCID: PMC8490637 DOI: 10.3389/fneur.2021.674100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 08/20/2021] [Indexed: 11/30/2022] Open
Abstract
The human vestibular cortex has mostly been approached using functional magnetic resonance imaging and positron emission tomography combined with artificial stimulation of the vestibular receptors or nerve. Few studies have used electroencephalography and benefited from its high temporal resolution to describe the spatiotemporal dynamics of vestibular information processing from the first milliseconds following vestibular stimulation. Evoked potentials (EPs) are largely used to describe neural processing of other sensory signals, but they remain poorly developed and standardized in vestibular neuroscience and neuro-otology. Yet, vestibular EPs of brainstem, cerebellar, and cortical origin have been reported as early as the 1960s. This review article summarizes and compares results from studies that have used a large range of vestibular stimulation, including natural vestibular stimulation on rotating chairs and motion platforms, as well as artificial vestibular stimulation (e.g., sounds, impulsive acceleration stimulation, galvanic stimulation). These studies identified vestibular EPs with short latency (<20 ms), middle latency (from 20 to 50 ms), and late latency (>50 ms). Analysis of the generators (source analysis) of these responses offers new insights into the neuroimaging of the vestibular system. Generators were consistently found in the parieto-insular and temporo-parietal junction-the core of the vestibular cortex-as well as in the prefrontal and frontal areas, superior parietal, and temporal areas. We discuss the relevance of vestibular EPs for basic research and clinical neuroscience and highlight their limitations.
Collapse
Affiliation(s)
- Estelle Nakul
- Centre National de la Recherche Scientifique (CNRS), Laboratoire de Neurosciences Cognitives (LNC), FR3C, Aix Marseille Univ, Marseille, France
| | - Fabrice Bartolomei
- Institut de Neurosciences des Systèmes, Inserm, Aix Marseille Univ, Marseille, France
- Service de Neurophysiologie Clinique, Hôpital Timone, Aix Marseille Univ, Marseille, France
| | - Christophe Lopez
- Centre National de la Recherche Scientifique (CNRS), Laboratoire de Neurosciences Cognitives (LNC), FR3C, Aix Marseille Univ, Marseille, France
| |
Collapse
|
15
|
Hu H, Fang Z, Qian Z, Yao L, Tao L, Qin B. Stress Assessment of Vestibular Endurance Training for Civil Aviation Flight Students Based on EEG. Front Hum Neurosci 2021; 15:582636. [PMID: 34489658 PMCID: PMC8417248 DOI: 10.3389/fnhum.2021.582636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 07/05/2021] [Indexed: 11/23/2022] Open
Abstract
Objective: The main goal of this study is to clarify the electroencephalogram (EEG) characteristics of the stress response caused by vestibular endurance training under real conditions. Methods: Ten pilot trainees received a series of acute anti-vertigo training stimulations on the rotary ladder while recording electroencephalographic data (64 electrodes). Afterward, the anti-vertigo ability of the subject was tested for the best performance after 1 month of training and verified whether it is related to the EEG signals we collected before. Results: (1) The absolute power of α waves in the C3 and C4 regions is the same as the difference between 1 min before and 2 min after stimulation, and their activity is enhanced by stimulation. Otherwise, the activation of the C3 region after 5 min of stimulation is still significantly changed. (2) Through Spearman's correlation analysis, we found that the α waves in the C3 and C4 the greater the power change, the better the performance of the subject in the proficient stage. Conclusion: C3 and C4 areas are specific brain regions of the stress response of anti-vertigo endurance training, and the absolute power of the α wave can be used as a parameter for identifying the degree of motion sickness (MS). The absolute power changes of α waves in the C3 and C4 areas are positively correlated with their anti-vertigo potential. Significance: Increasing the absolute power of α wave in the C3 and C4 is a manifestation of MS stress adaptability.
Collapse
Affiliation(s)
- Haixu Hu
- Sports Training College of Nanjing Sport Institute, Nanjing, China.,Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Zhou Fang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Zhiyu Qian
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Liuye Yao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Ling Tao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Bing Qin
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| |
Collapse
|
16
|
Black RD, Bell RP, Riska KM, Spankovich C, Peters RW, Lascola CD, Whitlow CT. The Acute Effects of Time-Varying Caloric Vestibular Stimulation as Assessed With fMRI. Front Syst Neurosci 2021; 15:648928. [PMID: 34434093 PMCID: PMC8381736 DOI: 10.3389/fnsys.2021.648928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
We describe preliminary results from the application of time-varying caloric vestibular stimulation (tvCVS) to volunteers during a continuous blood oxygen level dependent (BOLD) functional MRI (fMRI) acquisition, recording baseline, during-tvCVS and post-tvCVS epochs. The modifications necessary to enable the use of this novel device in a 3-Tesla magnetic field are discussed. Independent component analysis (ICA) was used as a model-free method to highlight spatially and temporally coherent brain networks. The ICA results are consistent with tvCVS induction being mediated principally by thermoconvection in the vestibular labyrinth and not by direct thermal effects. The activation of hub networks identified by ICA is consistent with the concept of sensory neuromodulation, which posits that a modulatory signal introduced to a sensory organ is able to traverse the regions innervated (directly and indirectly) by that organ, while being transformed so as to be “matched” to regional neuronal dynamics. The data suggest that regional neurovascular coupling and a systemic cerebral blood flow component account for the BOLD contrast observed. The ability to modulate cerebral hemodynamics is of significant interest. The implications of these initial findings for the use of tvCVS therapeutically are discussed.
Collapse
Affiliation(s)
| | - Ryan P Bell
- Department of Psychiatry & Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Kristal M Riska
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Christopher Spankovich
- Department of Otolaryngology & Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS, United States
| | | | - Christopher D Lascola
- Department of Radiology and Neurobiology, Duke University School of Medicine, Durham, NC, United States
| | - Christopher T Whitlow
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
17
|
Chen WG, Schloesser D, Arensdorf AM, Simmons JM, Cui C, Valentino R, Gnadt JW, Nielsen L, Hillaire-Clarke CS, Spruance V, Horowitz TS, Vallejo YF, Langevin HM. The Emerging Science of Interoception: Sensing, Integrating, Interpreting, and Regulating Signals within the Self. Trends Neurosci 2021; 44:3-16. [PMID: 33378655 DOI: 10.1016/j.tins.2020.10.007] [Citation(s) in RCA: 334] [Impact Index Per Article: 83.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/21/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023]
Abstract
Interoception refers to the representation of the internal states of an organism, and includes the processes by which it senses, interprets, integrates, and regulates signals from within itself. This review presents a unified research framework and attempts to offer definitions for key terms to describe the processes involved in interoception. We elaborate on these definitions through illustrative research findings, and provide brief overviews of central aspects of interoception, including the anatomy and function of neural and non-neural pathways, diseases and disorders, manipulations and interventions, and predictive modeling. We conclude with discussions about major research gaps and challenges.
Collapse
Affiliation(s)
- Wen G Chen
- National Center for Complementary and Integrative Health (NCCIH), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| | - Dana Schloesser
- Office of Behavioral and Social Sciences Research (OBSSR), NIH, Bethesda, MD 20892, USA
| | - Angela M Arensdorf
- National Center for Complementary and Integrative Health (NCCIH), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Janine M Simmons
- National Institute of Mental Health (NIMH), NIH, Bethesda, MD 20892, USA
| | - Changhai Cui
- National Institute on Alcohol Abuse and Alcoholism (NIAAA), NIH, Bethesda, MD 20892, USA
| | - Rita Valentino
- National Institute on Drug Abuse (NIDA), NIH, Bethesda, MD 20892, USA
| | - James W Gnadt
- National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD 20892, USA
| | - Lisbeth Nielsen
- National Institute on Aging (NIA), NIH, Bethesda, MD 20892, USA
| | | | - Victoria Spruance
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD 20892, USA
| | - Todd S Horowitz
- National Cancer Institute (NCI), NIH, Bethesda, MD 20892, USA
| | - Yolanda F Vallejo
- National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD 20892, USA
| | - Helene M Langevin
- National Center for Complementary and Integrative Health (NCCIH), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
18
|
Giarrocco F, Averbeck B. Organization of Parieto-Prefrontal and Temporo-Prefrontal Networks in the Macaque. J Neurophysiol 2021; 126:1289-1309. [PMID: 34379536 DOI: 10.1152/jn.00092.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The connectivity among architectonically defined areas of the frontal, parietal, and temporal cortex of the macaque has been extensively mapped through tract tracing methods. To investigate the statistical organization underlying this connectivity, and identify its underlying architecture, we performed a hierarchical cluster analysis on 69 cortical areas based on their anatomically defined inputs. We identified 10 frontal, 4 parietal, and 5 temporal hierarchically related sets of areas (clusters), defined by unique sets of inputs and typically composed of anatomically contiguous areas. Across cortex, clusters that share functional properties were linked by dominant information processing circuits in a topographically organized manner that reflects the organization of the main fiber bundles in the cortex. This led to a dorsal-ventral subdivision of the frontal cortex, where dorsal and ventral clusters showed privileged connectivity with parietal and temporal areas, respectively. Ventrally, temporo-frontal circuits encode information to discriminate objects in the environment, their value, emotional properties, and functions such as memory and spatial navigation. Dorsal parieto-frontal circuits encode information for selecting, generating, and monitoring appropriate actions based on visual-spatial and somatosensory information. This organization may reflect evolutionary antecedents, in which the vertebrate pallium, which is the ancestral cortex, was defined by a ventral and lateral olfactory region and a medial hippocampal region.
Collapse
Affiliation(s)
- Franco Giarrocco
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States
| | - Bruno Averbeck
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
19
|
Neuroimaging studies in persistent postural-perceptual dizziness and related disease: a systematic review. J Neurol 2021; 269:1225-1235. [PMID: 34019178 DOI: 10.1007/s00415-021-10558-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Persistent Postural-Perceptual Dizziness (PPPD) is one of the most common types of chronic dizziness. The pathogenesis remains unclear. OBJECTIVE This study aimed to systematically review neuroimaging literature for investigating the central mechanism of PPPD and related disorders. METHODS PubMed, EMBASE, Medline, Cochrane, and Web of Science were searched by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The articles analyzing structural and functional neuroimaging features of PPPD and related disorders were selected according to eligibility criteria. RESULTS Fifteen articles, including 4 structural, 10 functional, and 1 multimodal imaging, were eligible for inclusion in this review. The whiter matter alterations in PPPD are not entirely consistent. The changes of grey matter mainly in multisensory vestibular cortices, visual cortex, cerebellum, as well as anxiety-related network. Consistent with structural imaging, functional imaging conducted during the specific tasks or in the resting state has both found abnormal functional activation and connectivity in the vestibular cortex, especially in the parieto-insular vestibular cortex (PIVC), visual cortex, cerebellum, and anxiety-related network in PPPD and related disorder. CONCLUSIONS The current review provides up-to-date knowledge and summarizes the possible central mechanism for PPPD and related disorders, and it is helpful to understanding the mechanism of PPPD.
Collapse
|
20
|
Schmitter CV, Steinsträter O, Kircher T, van Kemenade BM, Straube B. Commonalities and differences in predictive neural processing of discrete vs continuous action feedback. Neuroimage 2021; 229:117745. [PMID: 33454410 DOI: 10.1016/j.neuroimage.2021.117745] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/04/2021] [Accepted: 01/09/2021] [Indexed: 11/16/2022] Open
Abstract
Sensory action consequences are highly predictable and thus engage less neural resources compared to externally generated sensory events. While this has frequently been observed to lead to attenuated perceptual sensitivity and suppression of activity in sensory cortices, some studies conversely reported enhanced perceptual sensitivity for action consequences. These divergent findings might be explained by the type of action feedback, i.e., discrete outcomes vs. continuous feedback. Therefore, in the present study we investigated the impact of discrete and continuous action feedback on perceptual and neural processing during action feedback monitoring. During fMRI data acquisition, participants detected temporal delays (0-417 ms) between actively or passively generated wrist movements and visual feedback that was either continuously provided during the movement or that appeared as a discrete outcome. Both feedback types resulted in (1) a neural suppression effect (active<passive) in a largely shared network including bilateral visual and somatosensory cortices, cerebellum and temporoparietal areas. Yet, compared to discrete outcomes, (2) processing continuous feedback led to stronger suppression in right superior temporal gyrus (STG), Heschl´s gyrus, and insula suggesting specific suppression of features linked to continuous feedback. Furthermore, (3) BOLD suppression in visual cortex for discrete outcomes was specifically related to perceptual enhancement. Together, these findings indicate that neural representations of discrete and continuous action feedback are similarly suppressed but might depend on different predictive mechanisms, where reduced activation in visual cortex reflects facilitation specifically for discrete outcomes, and predictive processing in STG, Heschl´s gyrus, and insula is particularly relevant for continuous feedback.
Collapse
Affiliation(s)
- Christina V Schmitter
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Hans-Meerwein-Strasse 6, 35032 Marburg, Germany.
| | - Olaf Steinsträter
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Hans-Meerwein-Strasse 6, 35032 Marburg, Germany; Core Facility Brain Imaging, University of Marburg, Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany.
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Hans-Meerwein-Strasse 6, 35032 Marburg, Germany.
| | - Bianca M van Kemenade
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Hans-Meerwein-Strasse 6, 35032 Marburg, Germany.
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Hans-Meerwein-Strasse 6, 35032 Marburg, Germany.
| |
Collapse
|
21
|
Lefranc B, Martin-Krumm C, Aufauvre-Poupon C, Berthail B, Trousselard M. Mindfulness, Interoception, and Olfaction: A Network Approach. Brain Sci 2020; 10:brainsci10120921. [PMID: 33260427 PMCID: PMC7760383 DOI: 10.3390/brainsci10120921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/02/2022] Open
Abstract
The fine-tuned interplay between the brain and the body underlies the adaptive ability to respond appropriately in the changing environment. Mindfulness Disposition (MD) has been associated with efficient emotional functioning because of a better ability to feel engaged by information from the body and to notice subtle changes. This interoceptive ability is considered to shape the ability to respond to external stimuli, especially olfaction. However, few studies have evaluated the relationships between interoception and exteroception according to MD. We conducted an exploratory study among 76 healthy subjects for first investigating whether MD is associated with better exteroception and second for describing the causal interactions network between mindfulness, interoception, emotion, and subjective and objective olfaction assessments. Results found that a high level of MD defined by clustering exhibited best scores in positive emotions, interoception, and extra sensors’ acuity. The causal network approach showed that the interactions between the interoception subscales differed according to the MD profiles. Moreover, interoception awareness is strongly connected with both the MD and the hedonic value of odors. Then, differences according to MD might provide arguments for a more mindful attention style toward interoceptive cues in relation to available exteroceptive information. This interaction might underlie positive health.
Collapse
Affiliation(s)
- Barbara Lefranc
- APEMAC/EPSAM, EA 4360, Ile du Saulcy, BP 30309, CEDEX 1, 57006 Metz, France; (C.M.-K.); (M.T.)
- French Armed Forces Biomedical Research Institute, BP73, CEDEX, 91223 Brétigny-sur-Orge, France
- Correspondence:
| | - Charles Martin-Krumm
- APEMAC/EPSAM, EA 4360, Ile du Saulcy, BP 30309, CEDEX 1, 57006 Metz, France; (C.M.-K.); (M.T.)
- French Armed Forces Biomedical Research Institute, BP73, CEDEX, 91223 Brétigny-sur-Orge, France
- Ecole de Psychologues Praticiens, Institut Catholique de Paris (Catholic Institute of Paris), VCR/ICP EA 7403-23, rue du Montparnasse, 75006 Paris, France
| | | | - Benoit Berthail
- French Military Health Service Academy, 1 Place Alphonse Laveran, CEDEX 05, 75230 Paris, France;
| | - Marion Trousselard
- APEMAC/EPSAM, EA 4360, Ile du Saulcy, BP 30309, CEDEX 1, 57006 Metz, France; (C.M.-K.); (M.T.)
- French Armed Forces Biomedical Research Institute, BP73, CEDEX, 91223 Brétigny-sur-Orge, France
- Ecole de Psychologues Praticiens, Institut Catholique de Paris (Catholic Institute of Paris), VCR/ICP EA 7403-23, rue du Montparnasse, 75006 Paris, France
- French Military Health Service Academy, 1 Place Alphonse Laveran, CEDEX 05, 75230 Paris, France;
- Réseau ABC des Psychotraumas, 34000 Montpellier, France
| |
Collapse
|
22
|
Indovina I, Bosco G, Riccelli R, Maffei V, Lacquaniti F, Passamonti L, Toschi N. Structural connectome and connectivity lateralization of the multimodal vestibular cortical network. Neuroimage 2020; 222:117247. [PMID: 32798675 PMCID: PMC7779422 DOI: 10.1016/j.neuroimage.2020.117247] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/28/2020] [Accepted: 08/05/2020] [Indexed: 01/05/2023] Open
Abstract
Unlike other sensory systems, the structural connectivity patterns of the human vestibular cortex remain a matter of debate. Based on their functional properties and hypothesized centrality within the vestibular network, the ‘core’ cortical regions of this network are thought to be areas in the posterior peri-sylvian cortex, in particular the retro-insula (previously named the posterior insular cortex-PIC), and the subregion OP2 of the parietal operculum. To study the vestibular network, structural connectivity matrices from n=974 healthy individuals drawn from the public Human Connectome Project (HCP) repository were estimated using multi-shell diffusion-weighted data followed by probabilistic tractography and spherical-deconvolution informed filtering of tractograms in combination with subject-specific grey-matter parcellations. Weighted graph-theoretical measures, modularity, and ‘hubness’ of the multimodal vestibular network were then estimated, and a structural lateralization index was defined in order to assess the difference in fiber density of homonym regions in the right and left hemisphere. Differences in connectivity patterns between OP2 and PIC were also estimated. We found that the bilateral intraparietal sulcus, PIC, and to a lesser degree OP2, are key ‘hub’ regions within the multimodal vestibular network. PIC and OP2 structural connectivity patterns were lateralized to the left hemisphere, while structural connectivity patterns of the posterior peri-sylvian supramarginal and superior temporal gyri were lateralized to the right hemisphere. These lateralization patterns were independent of handedness. We also found that the structural connectivity pattern of PIC is consistent with a key role of PIC in visuo-vestibular processing and that the structural connectivity pattern of OP2 is consistent with integration of mainly vestibular somato-sensory and motor information. These results suggest an analogy between PIC and the simian visual posterior sylvian (VPS) area and OP2 and the simian parieto-insular vestibular cortex (PIVC). Overall, these findings may provide novel insights to the current models of vestibular function, as well as to the understanding of the complexity and lateralized signs of vestibular syndromes.
Collapse
Affiliation(s)
- Iole Indovina
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, via Ardeatina 354, 00179 Rome, Italy.
| | - Gianfranco Bosco
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, via Ardeatina 354, 00179 Rome, Italy; Department of Systems Medicine and Centre of Space BioMedicine, University of Rome Tor Vergata, 00173 Rome, Italy
| | - Roberta Riccelli
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, via Ardeatina 354, 00179 Rome, Italy
| | - Vincenzo Maffei
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, via Ardeatina 354, 00179 Rome, Italy
| | - Francesco Lacquaniti
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, via Ardeatina 354, 00179 Rome, Italy; Department of Systems Medicine and Centre of Space BioMedicine, University of Rome Tor Vergata, 00173 Rome, Italy
| | - Luca Passamonti
- Department of Clinical Neurosciences, University of Cambridge, UK; Institute of Bioimaging & Molecular Physiology, National Research Council, Milano, Italy; IRCCS San Camillo Hospital, Venice, Italy.
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", 00133 Rome, Italy; Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Boston, MA, USA
| |
Collapse
|
23
|
Kwon HG, Chang CH, Jang SH. Diagnosis of Dizziness Due to a Core Vestibular Projection Injury in a Patient with Intracerebral Hemorrhage. Diagnostics (Basel) 2020; 10:diagnostics10040220. [PMID: 32326449 PMCID: PMC7235721 DOI: 10.3390/diagnostics10040220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 11/18/2022] Open
Abstract
Herein, we present a patient diagnosed with dizziness due to a core vestibular projection injury following intracerebral hemorrhage (ICH). A 51-year-old female patient underwent conservative management for a spontaneous ICH in the left hemisphere (mainly affecting the basal ganglia and insular cortex). When she visited the rehabilitation department of the university hospital at two years after the ICH onset, she advised of the presence of moderate dizziness (mainly, light-headedness) that started after ICH onset. She mentioned that her dizziness had decreased slightly over time. No abnormality was observed in the vestibular system of either ear on physical examination by an otorhinolaryngologist. However, diffusion tensor tractography results showed that the core vestibular projection in the left hemisphere was discontinued at the basal ganglia level compared with the patient’s right core vestibular projection and that of a normal subject. Therefore, it appears that the dizziness in this patient can be ascribed to a left core vestibular projection injury.
Collapse
Affiliation(s)
- Hyeok Gyu Kwon
- Department of Physical Therapy, College of Health Science, Eulji University, Sungnam 13135, Korea;
| | - Chul Hoon Chang
- Department of Neurosurgery, College of Medicine Yeungnam University, Daegu 42415, Korea;
| | - Sung Ho Jang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu 42415, Korea
- Correspondence: ; Tel.: +82-53-620-4098; Fax: +82-53-625-3508
| |
Collapse
|
24
|
Dale A, Cullen KE. The Ventral Posterior Lateral Thalamus Preferentially Encodes Externally Applied Versus Active Movement: Implications for Self-Motion Perception. Cereb Cortex 2020; 29:305-318. [PMID: 29190334 DOI: 10.1093/cercor/bhx325] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 11/07/2017] [Indexed: 11/15/2022] Open
Abstract
Successful interaction with our environment requires that voluntary behaviors be precisely coordinated with our perception of self-motion. The vestibular sensors in the inner ear detect self-motion and in turn send projections via the vestibular nuclei to multiple cortical areas through 2 principal thalamocortical pathways, 1 anterior and 1 posterior. While the anterior pathway has been extensively studied, the role of the posterior pathway is not well understood. Accordingly, here we recorded responses from individual neurons in the ventral posterior lateral thalamus of macaque monkeys during externally applied (passive) and actively generated self-motion. The sensory responses of neurons that robustly encoded passive rotations and translations were canceled during comparable voluntary movement (~80% reduction). Moreover, when both passive and active self-motion were experienced simultaneously, neurons selectively encoded the detailed time course of the passive component. To examine the mechanism underlying the selective elimination of vestibular sensitivity to active motion, we experimentally controlled correspondence between intended and actual head movement. We found that suppression only occurred if the actual sensory consequences of motion matched the motor-based expectation. Together, our findings demonstrate that the posterior thalamocortical vestibular pathway selectively encodes unexpected motion, thereby providing a neural correlate for ensuring perceptual stability during active versus externally generated motion.
Collapse
Affiliation(s)
- Alexis Dale
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Kathleen E Cullen
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
25
|
Altered Cortical Gyrification in Adults Who Were Born Very Preterm and Its Associations With Cognition and Mental Health. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:640-650. [PMID: 32198001 DOI: 10.1016/j.bpsc.2020.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 01/16/2023]
Abstract
BACKGROUND The last trimester of pregnancy is a critical period for the establishment of cortical gyrification, and altered folding patterns have been reported following very preterm birth (< 33 weeks of gestation) in childhood and adolescence. However, research is scant on the persistence of such alterations in adulthood and their associations with cognitive and psychiatric outcomes. METHODS We studied 79 very preterm and 81 age-matched full-term control adults. T1-weighted magnetic resonance images were used to measure a local gyrification index (LGI), indicating the degree of folding across multiple vertices of the reconstructed cortical surface. Group and group-by-sex LGI differences were assessed by means of per-vertex adjustment for cortical thickness and overall intracranial volume. Within-group correlations were also computed between LGI and functional outcomes, including general intelligence (IQ) and psychopathology. RESULTS Very preterm adults had significantly reduced LGI in extensive cortical regions encompassing the frontal, anterior temporal, and occipitoparietal lobes. Alterations in lateral fronto-temporal-parietal and medial occipitoparietal regions were present in both men and women, although men showed more extensive alterations. In both very preterm and control adults, higher LGI was associated with higher IQ and lower psychopathology scores, with the spatial distribution of these associations substantially differing between the two groups. CONCLUSIONS Very preterm adults' brains are characterized by significant and widespread local hypogyria, and these alterations might be implicated in cognitive and psychiatric outcomes. Gyrification reflects an early developmental process and provides a fingerprint for very preterm birth.
Collapse
|
26
|
Cortical circuits for integration of self-motion and visual-motion signals. Curr Opin Neurobiol 2019; 60:122-128. [PMID: 31869592 DOI: 10.1016/j.conb.2019.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/19/2022]
Abstract
The cerebral cortex contains cells which respond to movement of the head, and these cells are thought to be involved in the perception of self-motion. In particular, studies in the primary visual cortex of mice show that both running speed and passive whole-body rotation modulates neuronal activity, and modern genetically targeted viral tracing approaches have begun to identify previously unknown circuits that underlie these responses. Here we review recent experimental findings and provide a road map for future work in mice to elucidate the functional architecture and emergent properties of a cortical network potentially involved in the generation of egocentric-based visual representations for navigation.
Collapse
|
27
|
Hagiwara K, Perchet C, Frot M, Bastuji H, Garcia-Larrea L. Cortical modulation of nociception by galvanic vestibular stimulation: A potential clinical tool? Brain Stimul 2019; 13:60-68. [PMID: 31636023 DOI: 10.1016/j.brs.2019.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 09/27/2019] [Accepted: 10/09/2019] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE Vestibular afferents converge with nociceptive ones within the posterior insula, and can therefore modulate nociception. Consistent with this hypothesis, caloric vestibular stimulation (CVS) has been shown to reduce experimental and clinical pain. Since CVS can induce undesirable effects in a proportion of patients, here we explored an alternative means to activate non-invasively the vestibular pathways using innocuous bi-mastoid galvanic stimulation (GVS), and assessed its effects on experimental pain. METHODS Sixteen healthy volunteers participated in this study. Experimental pain was induced by noxious laser-heat stimuli to the left hand while recording pain ratings and related brain potentials (LEPs). We evaluated changes of these indices during left- or right-anodal GVS (cathode on contralateral mastoid), and contrasted them with those during sham GVS, optokinetic vestibular stimulation (OKS) using virtual reality, and attentional distraction to ascertain the vestibular-specific analgesic effects of GVS. RESULTS GVS elicited brief sensations of head/trunk deviation, inoffensive to all participants. Both active GVS conditions showed analgesic effects, greater for the right anodal stimulation. OKS was helpful to attain significant LEP reductions during the left-anodal stimulation. Neither sham-GVS nor the distraction task were able to modulate significantly pain ratings or LEPs. CONCLUSIONS GVS appeared as a well-tolerated and powerful procedure for the relief of experimental pain, probably through physiological interaction within insular nociceptive networks. Either isolated or in combination with other types of vestibular activation (e.g., optokinetic stimuli), GVS deserves being tested in clinical settings.
Collapse
Affiliation(s)
- Koichi Hagiwara
- Central Integration of Pain (NeuroPain), Lab-Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, Bron, F-69677, France.
| | - Caroline Perchet
- Central Integration of Pain (NeuroPain), Lab-Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, Bron, F-69677, France
| | - Maud Frot
- Central Integration of Pain (NeuroPain), Lab-Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, Bron, F-69677, France
| | - Hélène Bastuji
- Central Integration of Pain (NeuroPain), Lab-Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, Bron, F-69677, France; Service de Neurologie Fonctionnelle et D'Épileptologie et Centre Du Sommeil, Hospices Civils de Lyon, Bron, F-69677, France
| | - Luis Garcia-Larrea
- Central Integration of Pain (NeuroPain), Lab-Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, Bron, F-69677, France; Centre D'évaluation et de Traitement de La Douleur, Hôpital Neurologique, Lyon, F-69000, France
| |
Collapse
|
28
|
Devantier L, Hansen AK, Mølby-Henriksen JJ, Christensen CB, Pedersen M, Hansen KV, Magnusson M, Ovesen T, Borghammer P. Positron emission tomography visualized stimulation of the vestibular organ is localized in Heschl's gyrus. Hum Brain Mapp 2019; 41:185-193. [PMID: 31520516 PMCID: PMC7268041 DOI: 10.1002/hbm.24798] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/12/2019] [Accepted: 09/04/2019] [Indexed: 11/10/2022] Open
Abstract
The existence of a human primary vestibular cortex is still debated. Current knowledge mainly derives from functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) acquisitions during artificial vestibular stimulation. This may be problematic as artificial vestibular stimulation entails coactivation of other sensory receptors. The use of fMRI is challenging as the strong magnetic field and loud noise during MRI may both stimulate the vestibular organ. This study aimed to characterize the cortical activity during natural stimulation of the human vestibular organ. Two fluorodeoxyglucose (FDG)-PET scans were obtained after natural vestibular stimulation in a self-propelled chair. Two types of stimuli were applied: (a) rotation (horizontal semicircular canal) and (b) linear sideways movement (utriculus). A comparable baseline FDG-PET scan was obtained after sitting motion-less in the chair. In both stimulation paradigms, significantly increased FDG uptake was measured bilaterally in the medial part of Heschl's gyrus, with some overlap into the posterior insula. This is the first neuroimaging study to visualize cortical processing of natural vestibular stimuli. FDG uptake was demonstrated in the medial-most part of Heschl's gyrus, normally associated with the primary auditory cortex. This anatomical localization seems plausible, considering that the labyrinth contains both the vestibular organ and the cochlea.
Collapse
Affiliation(s)
- Louise Devantier
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Oto-Rhino-Laryngology, Regional Hospital West Jutland, Holstebro, Denmark
| | - Allan K Hansen
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | | | | | | | - Kim V Hansen
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Måns Magnusson
- Department of Oto-Rhino-Laryngology, Lund University Hospital, Lund, Sweden
| | - Therese Ovesen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Oto-Rhino-Laryngology, Regional Hospital West Jutland, Holstebro, Denmark
| | - Per Borghammer
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
29
|
Rogers-Carter MM, Christianson JP. An insular view of the social decision-making network. Neurosci Biobehav Rev 2019; 103:119-132. [PMID: 31194999 PMCID: PMC6699879 DOI: 10.1016/j.neubiorev.2019.06.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/24/2019] [Accepted: 06/08/2019] [Indexed: 12/11/2022]
Abstract
Social animals must detect, evaluate and respond to the emotional states of other individuals in their group. A constellation of gestures, vocalizations, and chemosignals enable animals to convey affect and arousal to others in nuanced, multisensory ways. Observers integrate social information with environmental and internal factors to select behavioral responses to others via a process call social decision-making. The Social Decision Making Network (SDMN) is a system of brain structures and neurochemicals that are conserved across species (mammals, reptiles, amphibians, birds) that are the proximal mediators of most social behaviors. However, how sensory information reaches the SDMN to shape behavioral responses during a social encounter is not well known. Here we review the empirical data that demonstrate the necessity of sensory systems in detecting social stimuli, as well as the anatomical connectivity of sensory systems with each node of the SDMN. We conclude that the insular cortex is positioned to link integrated social sensory cues to this network to produce flexible and appropriate behavioral responses to socioemotional cues.
Collapse
Affiliation(s)
- Morgan M Rogers-Carter
- Department of Psychology, McGuinn Rm 300, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA.
| | - John P Christianson
- Department of Psychology, McGuinn Rm 300, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA.
| |
Collapse
|
30
|
Cullen KE. Vestibular processing during natural self-motion: implications for perception and action. Nat Rev Neurosci 2019; 20:346-363. [PMID: 30914780 PMCID: PMC6611162 DOI: 10.1038/s41583-019-0153-1] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
How the brain computes accurate estimates of our self-motion relative to the world and our orientation relative to gravity in order to ensure accurate perception and motor control is a fundamental neuroscientific question. Recent experiments have revealed that the vestibular system encodes this information during everyday activities using pathway-specific neural representations. Furthermore, new findings have established that vestibular signals are selectively combined with extravestibular information at the earliest stages of central vestibular processing in a manner that depends on the current behavioural goal. These findings have important implications for our understanding of the brain mechanisms that ensure accurate perception and behaviour during everyday activities and for our understanding of disorders of vestibular processing.
Collapse
Affiliation(s)
- Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
31
|
Abstract
Long perceived as a primitive and poorly differentiated brain structure, the primate insular cortex recently emerged as a highly evolved, organized and richly connected cortical hub interfacing bodily states with sensorimotor, environmental, and limbic activities. This insular interface likely substantiates emotional embodiment and has the potential to have a key role in the interoceptive shaping of cognitive processes, including perceptual awareness. In this review, we present a novel working model of the insular cortex, based on an accumulation of neuroanatomical and functional evidence obtained essentially in the macaque monkey. This model proposes that interoceptive afferents that represent the ongoing physiological status of all the organs of the body are first being received in the granular dorsal fundus of the insula or “primary interoceptive cortex,” then processed through a series of dysgranular poly-modal “insular stripes,” and finally integrated in anterior agranular areas that serve as an additional sensory platform for visceral functions and as an output stage for efferent autonomic regulation. One of the agranular areas hosts the specialized von Economo and Fork neurons, which could provide a decisive evolutionary advantage for the role of the anterior insula in the autonomic and emotional binding inherent to subjective awareness.
Collapse
Affiliation(s)
- Henry C Evrard
- Functional and Comparative Neuroanatomy Laboratory, Werner Reichardt Center for Integrative Neuroscience, Tübingen, Germany.,Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
32
|
Kuatsjah E, Khoshnam M, Menon C. Investigation on the effect of noisy galvanic vestibular stimulation on fine motor skills during a visuomotor task in healthy participants. PLoS One 2019; 14:e0216214. [PMID: 31048906 PMCID: PMC6497271 DOI: 10.1371/journal.pone.0216214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/16/2019] [Indexed: 11/24/2022] Open
Abstract
Noisy galvanic vestibular stimulation (nGVS) has been shown to improve dynamic walking stability, affect postural responses, enhance balance in healthy subjects, and influence motor performance in individuals with Parkinson’s disease. Although the studies to fully characterize the effect of nGVS are still ongoing, stochastic resonance theory which states that the addition of noisy signal may enhance a weak sensory input signals transmission in a non-linear system may provide a possible explanation for the observed positive effects of nGVS. This study explores the effect of nGVS on fine tracking behavior in healthy subjects. Ten healthy participants performed a computer-based visuomotor task by controlling an object with a joystick to follow an amplitude-modulated signal path while simultaneously receiving a sham or pink noise nGVS. The stimulation was generated to have a zero-mean, linearly detrended 1/f-type power spectrum, Gaussian distribution within 0.1–10 Hz range, and a standard deviation (SD) set to 90% based on each participant’s cutaneous threshold value. Results show that simultaneous nGVS delivery statistically improved the tracking performance with a decreased root-mean-squared error of 5.71±6.20% (mean±SD), a decreased time delay of 11.88±9.66% (mean±SD), and an increased signal-to-noise ratio of 2.93% (median, interquartile range (IQR) 3.31%). This study showed evidence that nGVS may be beneficial in improving sensorimotor performance during a fine motor tracking task requiring fine wrist movement in healthy subjects. Further research with a more comprehensive subset of tasks is required to fully characterize the effects of nGVS on fine motor skills.
Collapse
Affiliation(s)
- Eunice Kuatsjah
- Menrva Research Group, Schools of Mechatronic Systems Engineering and Engineering Science, Simon Fraser University, Metro Vancouver, British Columbia, Canada
| | - Mahta Khoshnam
- Menrva Research Group, Schools of Mechatronic Systems Engineering and Engineering Science, Simon Fraser University, Metro Vancouver, British Columbia, Canada
| | - Carlo Menon
- Menrva Research Group, Schools of Mechatronic Systems Engineering and Engineering Science, Simon Fraser University, Metro Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
33
|
Frank SM, Greenlee MW. The parieto-insular vestibular cortex in humans: more than a single area? J Neurophysiol 2018; 120:1438-1450. [DOI: 10.1152/jn.00907.2017] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Here, we review the structure and function of a core region in the vestibular cortex of humans that is located in the midposterior Sylvian fissure and referred to as the parieto-insular vestibular cortex (PIVC). Previous studies have investigated PIVC by using vestibular or visual motion stimuli and have observed activations that were distributed across multiple anatomical structures, including the temporo-parietal junction, retroinsula, parietal operculum, and posterior insula. However, it has remained unclear whether all of these anatomical areas correspond to PIVC and whether PIVC responds to both vestibular and visual stimuli. Recent results suggest that the region that has been referred to as PIVC in previous studies consists of multiple areas with different anatomical correlates and different functional specializations. Specifically, a vestibular but not visual area is located in the parietal operculum, close to the posterior insula, and likely corresponds to the nonhuman primate PIVC, while a visual-vestibular area is located in the retroinsular cortex and is referred to, for historical reasons, as the posterior insular cortex area (PIC). In this article, we review the anatomy, connectivity, and function of PIVC and PIC and propose that the core of the human vestibular cortex consists of at least two separate areas, which we refer to together as PIVC+. We also review the organization in the nonhuman primate brain and show that there are parallels to the proposed organization in humans.
Collapse
Affiliation(s)
- Sebastian M. Frank
- Institute for Experimental Psychology, University of Regensburg, Regensburg, Germany
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, Rhode Island
| | - Mark W. Greenlee
- Institute for Experimental Psychology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
34
|
Lee JO, Lee ES, Kim JS, Lee YB, Jeong Y, Choi BS, Kim JH, Staab JP. Altered brain function in persistent postural perceptual dizziness: A study on resting state functional connectivity. Hum Brain Mapp 2018; 39:3340-3353. [PMID: 29656497 DOI: 10.1002/hbm.24080] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 03/29/2018] [Accepted: 04/03/2018] [Indexed: 11/09/2022] Open
Abstract
This study used resting state functional magnetic resonance imaging (rsfMRI) to investigate whole brain networks in patients with persistent postural perceptual dizziness (PPPD). We compared rsfMRI data from 38 patients with PPPD and 38 healthy controls using whole brain and region of interest analyses. We examined correlations among connectivity and clinical variables and tested the ability of a machine learning algorithm to classify subjects using rsfMRI results. Patients with PPPD showed: (a) increased connectivity of subcallosal cortex with left superior lateral occipital cortex and left middle frontal gyrus, (b) decreased connectivity of left hippocampus with bilateral central opercular cortices, left posterior opercular cortex, right insular cortex and cerebellum, and (c) decreased connectivity between right nucleus accumbens and anterior left temporal fusiform cortex. After controlling for anxiety and depression as covariates, patients with PPPD still showed decreased connectivity between left hippocampus and right inferior frontal gyrus, bilateral temporal lobes, bilateral insular cortices, bilateral central opercular cortex, left parietal opercular cortex, bilateral occipital lobes and cerebellum (bilateral lobules VI and V, and left I-IV). Dizziness handicap, anxiety, and depression correlated with connectivity in clinically meaningful brain regions. The machine learning algorithm correctly classified patients and controls with a sensitivity of 78.4%, specificity of 76.9%, and area under the curve = 0.88 using 11 connectivity parameters. Patients with PPPD showed reduced connectivity among the areas involved in multisensory vestibular processing and spatial cognition, but increased connectivity in networks linking visual and emotional processing. Connectivity patterns may become an imaging biomarker of PPPD.
Collapse
Affiliation(s)
- Jin-Ok Lee
- Department of Neurology, Seoul National University of College of Medicine, Seoul National University Bundang Hospital, Republic of Korea
| | - Eek-Sung Lee
- Department of Neurology, Soonchunhyang University Bucheon Hospital, Republic of Korea
| | - Ji-Soo Kim
- Department of Neurology, Seoul National University of College of Medicine, Seoul National University Bundang Hospital, Republic of Korea
| | - Young-Beom Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Republic of Korea.,KI for Health Science and Technology, Korea Advanced Institute of Science and Technology, Republic of Korea
| | - Yong Jeong
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Republic of Korea.,KI for Health Science and Technology, Korea Advanced Institute of Science and Technology, Republic of Korea
| | - Byung Se Choi
- Department of Radiology, Seoul National University Bundang Hospital, Republic of Korea
| | - Jae-Hyoung Kim
- Department of Radiology, Seoul National University Bundang Hospital, Republic of Korea
| | - Jeffrey P Staab
- Departments of Psychiatry and Psychology and Otorhinolaryngology - Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
35
|
Yeo SS, Jang SH, Kwon JW. Central vestibular disorder due to ischemic injury on the parieto-insular vestibular cortex in patients with middle cerebral artery territory infarction: Observational study. Medicine (Baltimore) 2017; 96:e9349. [PMID: 29390518 PMCID: PMC5758220 DOI: 10.1097/md.0000000000009349] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Central vestibular disorder is common after middle cerebral artery (MCA) territory infarction. The MCA supplies blood to the parieto-insular vestibular cortex (PIVC), a core region of central vestibular symptoms. We report on patients that sustained injuries of the core vestibular pathway to the PIVC with central vestibular disorder following MCA territory infarction, demonstrated on diffusion tensor imaging (DTI). Nineteen patients with MCA territory infarction and 12 control subjects were recruited. To reconstruct the core vestibular pathway to the PIVC, we defined seed region of interest (ROI) as vestibular nuclei of pons and target ROI as the PIVC. Fractional anisotropy (FA), mean diffusivity, and tract volume were measured. In the affected hemisphere, FA value of the core vestibular pathway to the PIVC revealed significant difference between all patient groups and the control group (P < .05). In contrast, patients with symptoms of ataxia only revealed significant decrement of tract volume compared with the control group (P < .05). Additionally, subgroup B revealed significant decrement of tract volume compared with that of subgroup A and the control group (P < .05). In the unaffected hemisphere, there was no significant difference in all DTI parameters between all patient groups and the control group (P < .05). Injury to the core vestibular pathway to the PIVC was demonstrated in patients that revealed typical central vestibular disorder following MCA territory infarction. Analysis of the core vestibular pathway to the PIVC using DTI would be beneficial in clinical evaluation and management of patients with MCA territory infarction.
Collapse
Affiliation(s)
- Sang Seok Yeo
- Department of Physical Therapy, College of Health Sciences, Dankook University, Republic of Korea
| | - Sung Ho Jang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, South Korea
| | - Jung Won Kwon
- Assistant professor, Department of Physical Therapy, College of Health Sciences, Dankook University, Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam, Republic of Korea
| |
Collapse
|
36
|
|
37
|
Becker-Bense S, Buchholz HG, Baier B, Schreckenberger M, Bartenstein P, Zwergal A, Brandt T, Dieterich M. Functional Plasticity after Unilateral Vestibular Midbrain Infarction in Human Positron Emission Tomography. PLoS One 2016; 11:e0165935. [PMID: 27824897 PMCID: PMC5100888 DOI: 10.1371/journal.pone.0165935] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 10/20/2016] [Indexed: 11/18/2022] Open
Abstract
The aim of the study was to uncover mechanisms of central compensation of vestibular function at brainstem, cerebellar, and cortical levels in patients with acute unilateral midbrain infarctions presenting with an acute vestibular tone imbalance. Eight out of 17 patients with unilateral midbrain infarctions were selected on the basis of signs of a vestibular tone imbalance, e.g., graviceptive (tilts of perceived verticality) and oculomotor dysfunction (skew deviation, ocular torsion) in F18-fluordeoxyglucose (FDG)-PET at two time points: A) in the acute stage, and B) after recovery 6 months later. Lesion-behavior mapping analyses with MRI verified the exact structural lesion sites. Group subtraction analyses and comparisons with healthy controls were performed with Statistic Parametric Mapping for the PET data. A comparison of PET A of acute-stage patients with that of healthy controls showed increases in glucose metabolism in the cerebellum, motion-sensitive visual cortex areas, and inferior temporal lobe, but none in vestibular cortex areas. At the supratentorial level bilateral signal decreases dominated in the thalamus, frontal eye fields, and anterior cingulum. These decreases persisted after clinical recovery in contrast to the increases. The transient activations can be attributed to ocular motor and postural recovery (cerebellum) and sensory substitution of vestibular function for motion perception (visual cortex). The persisting deactivation in the thalamic nuclei and frontal eye fields allows alternative functional interpretations of the thalamic nuclei: either a disconnection of ascending sensory input occurs or there is a functional mismatch between expected and actual vestibular activity. Our data support the view that both thalami operate separately for each hemisphere but receive vestibular input from ipsilateral and contralateral midbrain integration centers. Normally they have gatekeeper functions for multisensory input to the cortex and automatic motor output to subserve balance and locomotion, as well as sensorimotor integration.
Collapse
Affiliation(s)
- Sandra Becker-Bense
- Department of Neurology, University of Munich, Munich, Germany
- German Center for Vertigo and Balance Disorders-IFB, University of Munich, Munich, Germany
| | - Hans-Georg Buchholz
- Department of Nuclear Medicine, Johannes Gutenberg-University, Mainz, Germany
| | - Bernhard Baier
- Department of Neurology, Johannes Gutenberg-University, Mainz, Germany
| | | | - Peter Bartenstein
- German Center for Vertigo and Balance Disorders-IFB, University of Munich, Munich, Germany
- Department of Nuclear Medicine, University of Munich, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), University of Munich, Munich, Germany
| | - Andreas Zwergal
- Department of Neurology, University of Munich, Munich, Germany
- German Center for Vertigo and Balance Disorders-IFB, University of Munich, Munich, Germany
| | - Thomas Brandt
- German Center for Vertigo and Balance Disorders-IFB, University of Munich, Munich, Germany
- Institute for Clinical Neuroscience, University of Munich, Munich, Germany
| | - Marianne Dieterich
- Department of Neurology, University of Munich, Munich, Germany
- German Center for Vertigo and Balance Disorders-IFB, University of Munich, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), University of Munich, Munich, Germany
| |
Collapse
|
38
|
Cross-Modal Attention Effects in the Vestibular Cortex during Attentive Tracking of Moving Objects. J Neurosci 2016; 36:12720-12728. [PMID: 27821579 DOI: 10.1523/jneurosci.2480-16.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/26/2016] [Accepted: 10/29/2016] [Indexed: 01/13/2023] Open
Abstract
The midposterior fundus of the Sylvian fissure in the human brain is central to the cortical processing of vestibular cues. At least two vestibular areas are located at this site: the parietoinsular vestibular cortex (PIVC) and the posterior insular cortex (PIC). It is now well established that activity in sensory systems is subject to cross-modal attention effects. Attending to a stimulus in one sensory modality enhances activity in the corresponding cortical sensory system, but simultaneously suppresses activity in other sensory systems. Here, we wanted to probe whether such cross-modal attention effects also target the vestibular system. To this end, we used a visual multiple-object tracking task. By parametrically varying the number of tracked targets, we could measure the effect of attentional load on the PIVC and the PIC while holding the perceptual load constant. Participants performed the tracking task during functional magnetic resonance imaging. Results show that, compared with passive viewing of object motion, activity during object tracking was suppressed in the PIVC and enhanced in the PIC. Greater attentional load, induced by increasing the number of tracked targets, was associated with a corresponding increase in the suppression of activity in the PIVC. Activity in the anterior part of the PIC decreased with increasing load, whereas load effects were absent in the posterior PIC. Results of a control experiment show that attention-induced suppression in the PIVC is stronger than any suppression evoked by the visual stimulus per se. Overall, our results suggest that attention has a cross-modal modulatory effect on the vestibular cortex during visual object tracking. SIGNIFICANCE STATEMENT In this study we investigate cross-modal attention effects in the human vestibular cortex. We applied the visual multiple-object tracking task because it is known to evoke attentional load effects on neural activity in visual motion-processing and attention-processing areas. Here we demonstrate a load-dependent effect of attention on the activation in the vestibular cortex, despite constant visual motion stimulation. We find that activity in the parietoinsular vestibular cortex is more strongly suppressed the greater the attentional load on the visual tracking task. These findings suggest cross-modal attentional modulation in the vestibular cortex.
Collapse
|
39
|
Evidence for a Causal Contribution of Macaque Vestibular, But Not Intraparietal, Cortex to Heading Perception. J Neurosci 2016; 36:3789-98. [PMID: 27030763 DOI: 10.1523/jneurosci.2485-15.2016] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 01/31/2016] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Multisensory convergence of visual and vestibular signals has been observed within a network of cortical areas involved in representing heading. Vestibular-dominant heading tuning has been found in the macaque parietoinsular vestibular cortex (PIVC) and the adjacent visual posterior sylvian (VPS) area, whereas relatively balanced visual/vestibular tuning was encountered in the ventral intraparietal (VIP) area and visual-dominant tuning was found in the dorsal medial superior temporal (MSTd) area. Although the respective functional roles of these areas remain unclear, perceptual deficits in heading discrimination following reversible chemical inactivation of area MSTd area suggested that areas with vestibular-dominant heading tuning also contribute to behavior. To explore the roles of other areas in heading perception, muscimol injections were used to reversibly inactivate either the PIVC or the VIP area bilaterally in macaques. Inactivation of the anterior PIVC increased psychophysical thresholds when heading judgments were based on either optic flow or vestibular cues, although effects were stronger for vestibular stimuli. All behavioral deficits recovered within 36 h. Visual deficits were larger following inactivation of the posterior portion of the PIVC, likely because these injections encroached upon the VPS area, which contains neurons with optic flow tuning (unlike the PIVC). In contrast, VIP inactivation led to no behavioral deficits, despite the fact that VIP neurons show much stronger choice-related activity than MSTd neurons. These results suggest that the VIP area either provides a parallel and partially redundant pathway for this task, or does not participate in heading discrimination. In contrast, the PIVC/VPS area, along with the MSTd area, make causal contributions to heading perception based on either vestibular or visual signals. SIGNIFICANCE STATEMENT Multisensory vestibular and visual signals are found in multiple cortical areas, but their causal contribution to self-motion perception has been previously tested only in the dorsal medial superior temporal (MSTd) area. In these experiments, we show that inactivation of the parietoinsular vestibular cortex (PIVC) also results in causal deficits during heading discrimination for both visual and vestibular cues. In contrast, ventral intraparietal (VIP) area inactivation led to no behavioral deficits, despite the fact that VIP neurons show much stronger choice-related activity than MSTd or PIVC neurons. These results demonstrate that choice-related activity does not always imply a causal role in sensory perception.
Collapse
|
40
|
Straka H, Zwergal A, Cullen KE. Vestibular animal models: contributions to understanding physiology and disease. J Neurol 2016; 263 Suppl 1:S10-23. [PMID: 27083880 PMCID: PMC4833800 DOI: 10.1007/s00415-015-7909-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/11/2015] [Accepted: 09/12/2015] [Indexed: 12/20/2022]
Abstract
Our knowledge of the vestibular sensory system, its functional significance for gaze and posture stabilization, and its capability to ensure accurate spatial orientation perception and spatial navigation has greatly benefitted from experimental approaches using a variety of vertebrate species. This review summarizes the attempts to establish the roles of semicircular canal and otolith endorgans in these functions followed by an overview of the most relevant fields of vestibular research including major findings that have advanced our understanding of how this system exerts its influence on reflexive and cognitive challenges encountered during daily life. In particular, we highlight the contributions of different animal models and the advantage of using a comparative research approach. Cross-species comparisons have established that the morpho-physiological properties underlying vestibular signal processing are evolutionarily inherent, thereby disclosing general principles. Based on the documented success of this approach, we suggest that future research employing a balanced spectrum of standard animal models such as fish/frog, mouse and primate will optimize our progress in understanding vestibular processing in health and disease. Moreover, we propose that this should be further supplemented by research employing more “exotic” species that offer unique experimental access and/or have specific vestibular adaptations due to unusual locomotor capabilities or lifestyles. Taken together this strategy will expedite our understanding of the basic principles underlying vestibular computations to reveal relevant translational aspects. Accordingly, studies employing animal models are indispensible and even mandatory for the development of new treatments, medication and technical aids (implants) for patients with vestibular pathologies.
Collapse
Affiliation(s)
- Hans Straka
- Department Biology II, Ludwig-Maximilians-University Munich, Grosshaderner Str. 2, 82152, Planegg, Germany. .,German Center for Vertigo and Balance Disorders, DSGZ, Ludwig-Maximilians-University of Munich, Munich, Germany.
| | - Andreas Zwergal
- German Center for Vertigo and Balance Disorders, DSGZ, Ludwig-Maximilians-University of Munich, Munich, Germany.,Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Kathleen E Cullen
- Department of Physiology, McGill University, Montreal, QC, H3A 0G4, Canada
| |
Collapse
|
41
|
Frank SM, Wirth AM, Greenlee MW. Visual-vestibular processing in the human Sylvian fissure. J Neurophysiol 2016; 116:263-71. [PMID: 27075535 DOI: 10.1152/jn.00009.2016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/10/2016] [Indexed: 11/22/2022] Open
Abstract
Unlike other sensory systems, the cortical organization of the human vestibular system is not well established. A central role is assumed for the region of the posterior Sylvian fissure, close to the posterior insula. At this site, activation during vestibular stimulation has been observed in previous imaging studies and labeled as the parieto-insular vestibular cortex area (PIVC). However, vestibular responses are found in other parts of the Sylvian fissure as well, including a region that is referred to as the posterior insular cortex (PIC). The anatomical and functional relationship between PIC and PIVC is still poorly understood, because both areas have never been compared in the same participants. Therefore, to better understand the apparently more complex organization of vestibular cortex in the Sylvian fissure, we employed caloric and visual object motion stimuli during functional magnetic resonance imaging and compared location and function of PIVC and PIC in the same participants. Both regions responded to caloric vestibular stimulation, but only the activation pattern in right PIVC reliably represented the direction of the caloric stimulus. Conversely, activity in PIVC was suppressed during stimulation with visual object motion, whereas PIC showed activation. Area PIC is located at a more posterior site in the Sylvian fissure than PIVC. Our results suggest that PIVC and PIC should be considered separate areas in the vestibular Sylvian network, both in terms of location and function.
Collapse
Affiliation(s)
- Sebastian M Frank
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire
| | - Anna Maria Wirth
- Institute of Experimental Psychology, University of Regensburg, Regensburg, Germany; and
| | - Mark W Greenlee
- Institute of Experimental Psychology, University of Regensburg, Regensburg, Germany; and
| |
Collapse
|
42
|
Qian HY, Wang XC, Wang ZY, Wang ZM, Liu PN, Wang ZC. Changes in the Vision-related Resting-state Network in Pituitary Adenoma Patients After Vision Improvement. Chin Med J (Engl) 2016; 128:1171-6. [PMID: 25947399 PMCID: PMC4831543 DOI: 10.4103/0366-6999.156106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background: The aim of this research was to investigate the changes in the vision-related resting-state network (V-RSN) in pituitary adenoma (PA) patients after vision improvement, which was induced by operative treatment. Methods: Ten PA patients with an improved visual acuity or/and visual field after transsphenoidal pituitary tumor resection were recruited and underwent a complete neuro-ophthalmologic evaluation, as well as an magnetic resonance imaging (MRI) protocol, including structural and resting-state functional MRI sequences before and after the operation. The regional homogeneity (ReHo) of the V-RSN was evaluated. Two sample t-test was performed to identify the significant differences in the V-RSN in the PA patients before and after transsphenoidal pituitary tumor resection. Results: Compared with the preoperation counterparts, the PA patients with improved vision after the operation exhibited reduced ReHo in the bilateral thalamus, globus pallidus, caudate nucleus, putamen nucleus, supplementary motor area, and left hippocampal formation, and increased ReHo in the bilateral cuneus gyrus, calcarine gyrus, right lingual gyrus, and fusiform gyrus. Conclusions: PA patients with improved vision exhibit increased neural activity within the visual cortex, but decreased neural activity in subareas of the multisensory and multimodal systems beyond the vision cortex.
Collapse
Affiliation(s)
| | | | | | | | - Pi-Nan Liu
- Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University; Beijing Neurosurgery Institute, Capital Medical University, Beijing 100050, China
| | | |
Collapse
|
43
|
|
44
|
Gale S, Prsa M, Schurger A, Gay A, Paillard A, Herbelin B, Guyot JP, Lopez C, Blanke O. Oscillatory neural responses evoked by natural vestibular stimuli in humans. J Neurophysiol 2015; 115:1228-42. [PMID: 26683063 DOI: 10.1152/jn.00153.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 12/12/2015] [Indexed: 11/22/2022] Open
Abstract
While there have been numerous studies of the vestibular system in mammals, less is known about the brain mechanisms of vestibular processing in humans. In particular, of the studies that have been carried out in humans over the last 30 years, none has investigated how vestibular stimulation (VS) affects cortical oscillations. Here we recorded high-density electroencephalography (EEG) in healthy human subjects and a group of bilateral vestibular loss patients (BVPs) undergoing transient and constant-velocity passive whole body yaw rotations, focusing our analyses on the modulation of cortical oscillations in response to natural VS. The present approach overcame significant technical challenges associated with combining natural VS with human electrophysiology and reveals that both transient and constant-velocity VS are associated with a prominent suppression of alpha power (8-13 Hz). Alpha band suppression was localized over bilateral temporo-parietal scalp regions, and these alpha modulations were significantly smaller in BVPs. We propose that suppression of oscillations in the alpha band over temporo-parietal scalp regions reflects cortical vestibular processing, potentially comparable with alpha and mu oscillations in the visual and sensorimotor systems, respectively, opening the door to the investigation of human cortical processing under various experimental conditions during natural VS.
Collapse
Affiliation(s)
- Steven Gale
- Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Laboratory of Cognitive Neuroscience, Brain-Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mario Prsa
- Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Laboratory of Cognitive Neuroscience, Brain-Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Aaron Schurger
- Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Laboratory of Cognitive Neuroscience, Brain-Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Annietta Gay
- Department of Otorhinolaryngology, University Hospital Geneva, Geneva, Switzerland
| | - Aurore Paillard
- Laboratory of Cognitive Neuroscience, Brain-Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Bruno Herbelin
- Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Laboratory of Cognitive Neuroscience, Brain-Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jean-Philippe Guyot
- Department of Otorhinolaryngology, University Hospital Geneva, Geneva, Switzerland
| | - Christophe Lopez
- Aix Marseille Université, CNRS, NIA UMR 7260, Marseille, France; and
| | - Olaf Blanke
- Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Laboratory of Cognitive Neuroscience, Brain-Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Department of Neurology, University Hospital Geneva, Geneva, Switzerland
| |
Collapse
|
45
|
Indovina I, Riccelli R, Chiarella G, Petrolo C, Augimeri A, Giofrè L, Lacquaniti F, Staab JP, Passamonti L. Role of the Insula and Vestibular System in Patients with Chronic Subjective Dizziness: An fMRI Study Using Sound-Evoked Vestibular Stimulation. Front Behav Neurosci 2015; 9:334. [PMID: 26696853 PMCID: PMC4673311 DOI: 10.3389/fnbeh.2015.00334] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/19/2015] [Indexed: 11/16/2022] Open
Abstract
Chronic subjective dizziness (CSD) is a common vestibular disorder characterized by persistent non-vertiginous dizziness, unsteadiness, and heightened sensitivity to motion stimuli that may last for months to years after events that cause acute vestibular symptoms or disrupt balance. CSD is not associated with abnormalities of basic vestibular or oculomotor reflexes. Rather, it is thought to arise from persistent use of high-threat postural control strategies and greater reliance on visual cues for spatial orientation (i.e., visual dependence), long after triggering events resolve. Anxiety-related personality traits confer vulnerability to CSD. Anomalous interactions between the central vestibular system and neural structures related to anxiety may sustain it. Vestibular- and anxiety-related processes overlap in the brain, particularly in the insula and hippocampus. Alterations in activity and connectivity in these brain regions in response to vestibular stimuli may be the neural basis of CSD. We examined this hypothesis by comparing brain activity from 18 patients with CSD and 18 healthy controls measured by functional magnetic resonance imaging during loud short tone bursts, which are auditory stimuli that evoke robust vestibular responses. Relative to controls, patients with CSD showed reduced activations to sound-evoked vestibular stimulation in the parieto-insular vestibular cortex (PIVC) including the posterior insula, and in the anterior insula, inferior frontal gyrus, hippocampus, and anterior cingulate cortex. Patients with CSD also showed altered connectivity between the anterior insula and PIVC, anterior insula and middle occipital cortex, hippocampus and PIVC, and anterior cingulate cortex and PIVC. We conclude that reduced activation in PIVC, hippocampus, anterior insula, inferior frontal gyrus, and anterior cingulate cortex, as well as connectivity changes among these regions, may be linked to long-term vestibular symptoms in patients with CSD. Furthermore, altered connectivity between the anterior insula and middle occipital cortex may underlie the greater reliance on visual cues for spatial orientation in CSD patients relative to controls.
Collapse
Affiliation(s)
- Iole Indovina
- Centre of Space BioMedicine, University of Rome Tor VergataRome, Italy
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia FoundationRome, Italy
- *Correspondence: Iole Indovina
| | - Roberta Riccelli
- Department of Medical and Surgical Sciences, University “Magna Graecia,”Catanzaro, Italy
| | - Giuseppe Chiarella
- Department of Experimental and Clinical Medicine, University “Magna Graecia,”Catanzaro, Italy
| | - Claudio Petrolo
- Department of Experimental and Clinical Medicine, University “Magna Graecia,”Catanzaro, Italy
| | - Antonio Augimeri
- Department of Medical and Surgical Sciences, University “Magna Graecia,”Catanzaro, Italy
| | - Laura Giofrè
- Department of Medical and Surgical Sciences, University “Magna Graecia,”Catanzaro, Italy
| | - Francesco Lacquaniti
- Centre of Space BioMedicine, University of Rome Tor VergataRome, Italy
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia FoundationRome, Italy
- Department of Systems Medicine, University of Rome Tor VergataRome, Italy
| | - Jeffrey P. Staab
- Department of Psychiatry and Psychology, Mayo ClinicRochester, MN, USA
| | - Luca Passamonti
- Institute of Bioimaging and Molecular Physiology, National Research CouncilCatanzaro, Italy
- Department of Clinical Neurosciences, University of CambridgeCambridge, UK
- Luca Passamonti
| |
Collapse
|
46
|
Paschke K, Kagan I, Wüstenberg T, Bähr M, Wilke M. Trunk rotation affects temporal order judgments with direct saccades: Influence of handedness. Neuropsychologia 2015; 79:123-37. [PMID: 26518506 DOI: 10.1016/j.neuropsychologia.2015.10.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/21/2015] [Accepted: 10/25/2015] [Indexed: 10/22/2022]
Abstract
Manipulation of the trunk midline has been shown to improve visuospatial performance in patients with unilateral visual neglect. The goal of the present study was to disentangle motor and perceptual components of egocentric midline manipulations and to investigate the contribution of individual hand preference. Two versions of visual temporal order judgment (TOJ) tasks were tested in healthy right- and left-handed subjects while trunk rotation was varied. In the congruent version, subjects were required to execute a saccade to the first of two horizontal stimuli presented with different stimulus onset asynchronies (SOA). In the incongruent version, subjects were required to perform a vertical saccade to a pre-learned color target, thereby dissociating motor response from the perceptual stimulus location. The main findings of this study are a trunk rotation and response direction specific impact on temporal judgments in form of a prior entry bias for right hemifield stimuli during rightward trunk rotation, but only in the congruent task. This trunk rotation-induced spatial bias was most pronounced in left-handed participants but had the same sign in the right-handed group. Results suggest that egocentric midline shifts in healthy subjects induce a spatially-specific motor, but not a perceptual, bias and underline the importance of taking individual differences in functional laterality such as handedness and mode of perceptual report into account when evaluating effects of trunk rotation in either healthy subjects or neurological patients.
Collapse
Affiliation(s)
- Kerstin Paschke
- Department of Cognitive Neurology, University Medicine Goettingen, Robert-Koch-Str. 40, 37075 Goettingen, Germany; Department of Neurology, University Medicine Goettingen, Robert-Koch-Str. 40, 37075 Goettingen, Germany; Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany; Department of Child and Adolescent Psychiatry, University Medicine Goettingen, von-Siebold-Str. 5, 37075 Goettingen, Germany
| | - Igor Kagan
- Department of Cognitive Neurology, University Medicine Goettingen, Robert-Koch-Str. 40, 37075 Goettingen, Germany; German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Goettingen, Germany
| | - Torsten Wüstenberg
- Department of Psychiatry and Psychotherapy, Charité-University Medicine Berlin, Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Mathias Bähr
- Department of Neurology, University Medicine Goettingen, Robert-Koch-Str. 40, 37075 Goettingen, Germany; DFG Center for Nanoscale Microscopy & Molecular Physiology of the Brain (CNMPB), Germany
| | - Melanie Wilke
- Department of Cognitive Neurology, University Medicine Goettingen, Robert-Koch-Str. 40, 37075 Goettingen, Germany; German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Goettingen, Germany; DFG Center for Nanoscale Microscopy & Molecular Physiology of the Brain (CNMPB), Germany.
| |
Collapse
|
47
|
Pettorossi VE, Schieppati M. Neck proprioception shapes body orientation and perception of motion. Front Hum Neurosci 2014; 8:895. [PMID: 25414660 PMCID: PMC4220123 DOI: 10.3389/fnhum.2014.00895] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 10/20/2014] [Indexed: 12/30/2022] Open
Abstract
This review article deals with some effects of neck muscle proprioception on human balance, gait trajectory, subjective straight-ahead (SSA), and self-motion perception. These effects are easily observed during neck muscle vibration, a strong stimulus for the spindle primary afferent fibers. We first remind the early findings on human balance, gait trajectory, SSA, induced by limb, and neck muscle vibration. Then, more recent findings on self-motion perception of vestibular origin are described. The use of a vestibular asymmetric yaw-rotation stimulus for emphasizing the proprioceptive modulation of motion perception from the neck is mentioned. In addition, an attempt has been made to conjointly discuss the effects of unilateral neck proprioception on motion perception, SSA, and walking trajectory. Neck vibration also induces persistent aftereffects on the SSA and on self-motion perception of vestibular origin. These perceptive effects depend on intensity, duration, side of the conditioning vibratory stimulation, and on muscle status. These effects can be maintained for hours when prolonged high-frequency vibration is superimposed on muscle contraction. Overall, this brief outline emphasizes the contribution of neck muscle inflow to the construction and fine-tuning of perception of body orientation and motion. Furthermore, it indicates that tonic neck-proprioceptive input may induce persistent influences on the subject's mental representation of space. These plastic changes might adapt motion sensitiveness to lasting or permanent head positional or motor changes.
Collapse
Affiliation(s)
| | - Marco Schieppati
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
- Centro Studi Attività Motorie (CSAM), Fondazione Salvatore Maugeri (IRCSS), Scientific Institute of Pavia, Pavia, Italy
| |
Collapse
|