1
|
Lindquist KL, Padula AE, Katzenmeyer NS, Potts HN, Rinker JA, Mulholland PJ. K Ca2 channel positive modulation reduces alcohol drinking in female C57BL/6J mice. Alcohol 2025; 124:97-103. [PMID: 39864678 DOI: 10.1016/j.alcohol.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
Although men have historically exhibited higher levels of alcohol use disorder (AUD) diagnosis, the gap between men and women has been diminishing quickly. Preclinical screening for pharmacological treatments for AUD has typically focused solely on males, ignoring the possibility that males and females may differ mechanistically for the same behavioral phenotype. To ensure the efficacy of treatment targets across the sexes, it is crucial to study the pharmacological effects of AUD treatments in males and females. While positive KCa2 channel modulation can reduce ethanol consumption and seeking behaviors, withdrawal-induced hyperexcitability, and negative affective behaviors in male rodents, the effect of KCa2 channel modulation on female ethanol consumption has not been reported. To determine the efficacy of KCa2 channel positive modulation in female C57BL/6J mice, we assessed the ability of the KCa2 channel positive modulator 1-EBIO to affect locomotor activity, voluntary home cage ethanol intake prior to and following chronic intermittent ethanol (CIE) exposure, and voluntary home cage sucrose drinking. There were no significant changes to distance traveled in an open field apparatus following administration of 1-EBIO in our locomotor assay. In ethanol drinking mice, 1-EBIO significantly reduced ethanol consumption in air controls and CIE exposed mice, without altering water consumption. While administration of 1-EBIO did not affect consumption of sucrose in male mice, 1-EBIO significantly increased sucrose intake in females. Together, these data provide further evidence that KCa2 channel positive modulation is a promising therapeutic target to reduce ethanol drinking in males and females alike.
Collapse
Affiliation(s)
- Kathy L Lindquist
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, 70 President Street, Drug Discovery Building, Charleston, SC 29425, USA
| | - Audrey E Padula
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, 70 President Street, Drug Discovery Building, Charleston, SC 29425, USA
| | - Natalie S Katzenmeyer
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, 70 President Street, Drug Discovery Building, Charleston, SC 29425, USA
| | - Hannah N Potts
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, 70 President Street, Drug Discovery Building, Charleston, SC 29425, USA
| | - Jennifer A Rinker
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, 70 President Street, Drug Discovery Building, Charleston, SC 29425, USA
| | - Patrick J Mulholland
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, 70 President Street, Drug Discovery Building, Charleston, SC 29425, USA.
| |
Collapse
|
2
|
Nimitvilai-Roberts S, Lopez MF, Woodward JJ. Effects of chronic ethanol exposure on dorsal medial striatal neurons receiving convergent inputs from the orbitofrontal cortex and basolateral amygdala. Neuropharmacology 2025; 267:110303. [PMID: 39814131 DOI: 10.1016/j.neuropharm.2025.110303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/06/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
Alcohol use disorder is associated with altered function of cortical-amygdala-striatal circuits such as the orbitofrontal cortex (OFC), basolateral amygdala (BLA) and their connections to the dorsal medial striatum (DMS) shown to be involved in goal-directed actions. Using retrobead tracing, we previously reported enhanced excitability of DMS-projecting OFC neurons in mice following 3-to-7-day withdrawal from chronic intermittent ethanol (CIE) exposure. In the same animals, spiking of DMS-projecting BLA neurons was decreased at 3-days post-withdrawal followed by an increase in firing at 7- and 14-days. In the current study, we used transsynaptic labeling and slice electrophysiology to investigate the effects of CIE exposure on DMS neurons that receive convergent inputs from the OFC and BLA. Mice were infused with anterograde transsynaptic AAVs in the OFC (AAV1-Cre) and BLA (AAV1-Flpo) and a Cre-On/Flp-On-YFP AAV in the DMS followed by 4 weekly cycles of Air or CIE vapor exposure. Current-clamp recordings of YFP + DMSOFC-BLA neurons showed three distinct patterns of firing: regular spiking, regular spiking followed by depolarization block and regular spiking with the appearance of broadened action potentials and plateau potentials at higher current steps (termed FANS). In both male and female mice, withdrawal from CIE exposure significantly increased the excitability of regular spiking neurons as compared to air controls. More subtle effects were observed on FANS neurons with both increases and decreases in firing that were current step and sex-dependent. These findings add to a growing literature demonstrating how neurons within cortical-amygdala-striatal circuits implicated in compulsive/habitual behaviors are impacted by chronic alcohol exposure.
Collapse
Affiliation(s)
| | - Marcelo F Lopez
- Department of Psychiatry and Behavioral Sciences, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - John J Woodward
- Department of Neuroscience, USA; Department of Psychiatry and Behavioral Sciences, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
3
|
Zhang M, Luo Y, Wang J, Sun Y, Xie B, Zhang L, Cong B, Ma C, Wen D. Roles of nucleus accumbens shell small-conductance calcium-activated potassium channels in the conditioned fear freezing. J Psychiatr Res 2023; 163:180-194. [PMID: 37216772 DOI: 10.1016/j.jpsychires.2023.05.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/27/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD), a psychiatric disorder caused by stressful events, is characterized by long-lasting fear memory. The nucleus accumbens shell (NAcS) is a key brain region that regulates fear-associated behavior. Small-conductance calcium-activated potassium channels (SK channels) play a key role in regulating the excitability of NAcS medium spiny neurons (MSNs) but their mechanisms of action in fear freezing are unclear. METHOD We established an animal model of traumatic memory using conditioned fear freezing paradigm, and investigated the alterations in SK channels of NAc MSNs subsequent to fear conditioning in mice. We then utilized an adeno-associated virus (AAV) transfection system to overexpress the SK3 subunit and explore the function of the NAcS MSNs SK3 channel in conditioned fear freezing. RESULTS Fear conditioning activated NAcS MSNs with enhanced excitability and reduced the SK channel-mediated medium after-hyperpolarization (mAHP) amplitude. The expression of NAcS SK3 were also reduced time-dependently. The overexpression of NAcS SK3 impaired conditioned fear consolidation without affecting conditioned fear expression, and blocked fear conditioning-induced alterations in NAcS MSNs excitability and mAHP amplitude. Additionally, the amplitudes of mEPSC, AMPAR/NMDAR ratio, and membrane surface GluA1/A2 expression in NAcS MSNs was increased by fear conditioning and returned to normal levels upon SK3 overexpression, indicating that fear conditioning-induced decrease of SK3 expression caused postsynaptic excitation by facilitating AMPAR transmission to the membrane. CONCLUSION These findings show that the NAcS MSNs SK3 channel plays a critical role in conditioned fear consolidation and that it may influence PTSD pathogenesis, making it a potential therapeutic target against PTSD.
Collapse
Affiliation(s)
- Minglong Zhang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang, 050017, PR China
| | - Yixiao Luo
- Hunan Province People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha, 410081, PR China
| | - Jian Wang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang, 050017, PR China
| | - Yufei Sun
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang, 050017, PR China
| | - Bing Xie
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang, 050017, PR China
| | - Ludi Zhang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang, 050017, PR China
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang, 050017, PR China
| | - Chunling Ma
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang, 050017, PR China.
| | - Di Wen
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang, 050017, PR China.
| |
Collapse
|
4
|
Kiral FR, Cakir B, Tanaka Y, Kim J, Yang WS, Wehbe F, Kang YJ, Zhong M, Sancer G, Lee SH, Xiang Y, Park IH. Generation of ventralized human thalamic organoids with thalamic reticular nucleus. Cell Stem Cell 2023; 30:677-688.e5. [PMID: 37019105 PMCID: PMC10329908 DOI: 10.1016/j.stem.2023.03.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/06/2023] [Accepted: 03/09/2023] [Indexed: 04/07/2023]
Abstract
Human brain organoids provide unique platforms for modeling several aspects of human brain development and pathology. However, current brain organoid systems mostly lack the resolution to recapitulate the development of finer brain structures with subregional identity, including functionally distinct nuclei in the thalamus. Here, we report a method for converting human embryonic stem cells (hESCs) into ventral thalamic organoids (vThOs) with transcriptionally diverse nuclei identities. Notably, single-cell RNA sequencing revealed previously unachieved thalamic patterning with a thalamic reticular nucleus (TRN) signature, a GABAergic nucleus located in the ventral thalamus. Using vThOs, we explored the functions of TRN-specific, disease-associated genes patched domain containing 1 (PTCHD1) and receptor tyrosine-protein kinase (ERBB4) during human thalamic development. Perturbations in PTCHD1 or ERBB4 impaired neuronal functions in vThOs, albeit not affecting the overall thalamic lineage development. Together, vThOs present an experimental model for understanding nuclei-specific development and pathology in the thalamus of the human brain.
Collapse
Affiliation(s)
- Ferdi Ridvan Kiral
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Bilal Cakir
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yoshiaki Tanaka
- Department of Medicine, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC H1T 2M4, Canada
| | - Jonghun Kim
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Woo Sub Yang
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Fabien Wehbe
- Department of Medicine, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC H1T 2M4, Canada
| | - Young-Jin Kang
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Mei Zhong
- Department of Cell Biology, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Gizem Sancer
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sang-Hun Lee
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Yangfei Xiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
5
|
Nimitvilai-Roberts S, Gioia D, Lopez MF, Glaser CM, Woodward JJ. Chronic intermittent ethanol exposure differentially alters the excitability of neurons in the orbitofrontal cortex and basolateral amygdala that project to the dorsal striatum. Neuropharmacology 2023; 228:109463. [PMID: 36792030 PMCID: PMC10006395 DOI: 10.1016/j.neuropharm.2023.109463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023]
Abstract
Alcohol use disorder is associated with altered neuron function including those in orbitofrontal cortex (OFC) and basolateral amygdala (BLA) that send glutamatergic inputs to areas of the dorsal striatum (DS) that mediate goal and habit directed actions. Previous studies reported that chronic intermittent (CIE) exposure to ethanol alters the electrophysiological properties of OFC and BLA neurons, although projection targets for these neurons were not identified. In this study, we used male and female mice and recorded current-evoked spiking of retrobead labeled DS-projecting OFC and BLA neurons in the same animals following air or CIE treatment. DS-projecting OFC neurons were hyperexcitable 3- and 7-days following CIE exposure and spiking returned to control levels after 14 days of withdrawal. In contrast, firing was decreased in DS-projecting BLA neurons at 3-days withdrawal, increased at 7- and 14-days and returned to baseline at 28 days post-CIE. CIE exposure enhanced the amplitude and frequency of spontaneous excitatory postsynaptic currents (sEPSCs) of DS-projecting OFC neurons but had no effect on inhibitory postsynaptic currents (sIPSCs). In DS-projecting BLA neurons, the amplitude and frequency of sIPSCs was enhanced 3 days post-CIE with no change in sEPSCs while at 7-days post-withdrawal, sEPSC amplitude and frequency were increased and sIPSCs had returned to normal. Finally, in CIE-treated mice, acute ethanol no longer inhibited spike firing of DS-projecting OFC and BLA neurons. Overall, these results suggest that CIE-induced changes in the excitability of DS-projecting OFC and BLA neurons could underlie deficits in behavioral control often observed in alcohol-dependent individuals.
Collapse
Affiliation(s)
| | - Dominic Gioia
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Marcelo F Lopez
- Department of Psychiatry and Behavioral Sciences, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Christina M Glaser
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - John J Woodward
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA; Department of Psychiatry and Behavioral Sciences, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
6
|
Chronic Ethanol Exposure Modulates Periaqueductal Gray to Extended Amygdala Dopamine Circuit. J Neurosci 2023; 43:709-721. [PMID: 36526372 PMCID: PMC9899080 DOI: 10.1523/jneurosci.1219-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
The bed nucleus of the stria terminalis (BNST) is a component of the extended amygdala that regulates motivated behavior and affective states and plays an integral role in the development of alcohol-use disorder (AUD). The dorsal subdivision of the BNST (dBNST) receives dense dopaminergic input from the ventrolateral periaqueductal gray (vlPAG)/dorsal raphe (DR). To date, no studies have examined the effects of chronic alcohol on this circuit. Here, we used chronic intermittent ethanol exposure (CIE), a well-established rodent model of AUD, to functionally interrogate the vlPAG/DR-BNST dopamine (DA) circuit during acute withdrawal. We selectively targeted vlPAG/DRDA neurons in tyrosine hydroxylase-expressing transgenic adult male mice. Using ex vivo electrophysiology, we found hyperexcitability of vlPAG/DRDA neurons in CIE-treated mice. Further, using optogenetic approaches to target vlPAG/DRDA terminals in the dBNST, we revealed a CIE-mediated shift in the vlPAG/DR-driven excitatory-inhibitory (E/I) ratio to a hyperexcitable state in dBNST. Additionally, to quantify the effect of CIE on endogenous DA signaling, we coupled optogenetics with fast-scan cyclic voltammetry to measure pathway-specific DA release in dBNST. CIE-treated mice had significantly reduced signal half-life, suggestive of faster clearance of DA signaling. CIE treatment also altered the ratio of vlPAG/DRDA-driven cellular inhibition and excitation of a subset of dBNST neurons. Overall, our findings suggest a dysregulation of vlPAG/DR to BNST dopamine circuit, which may contribute to pathophysiological phenotypes associated with AUD.SIGNIFICANCE STATEMENT The dorsal bed nucleus of the stria terminalis (dBNST) is highly implicated in the pathophysiology of alcohol-use disorder and receives dopaminergic inputs from ventrolateral periaqueductal gray/dorsal raphe regions (vlPAG/DR). The present study highlights the plasticity within the vlPAG/DR to dBNST dopamine (DA) circuit during acute withdrawal from chronic ethanol exposure. More specifically, our data reveal that chronic ethanol strengthens vlPAG/DR-dBNST glutamatergic transmission while altering both DA transmission and dopamine-mediated cellular inhibition of dBNST neurons. The net result is a shift toward a hyperexcitable state in dBNST activity. Together, our findings suggest chronic ethanol may promote withdrawal-related plasticity by dysregulating the vlPAG/DR-dBNST DA circuit.
Collapse
|
7
|
Bosque-Cordero KY, Vazquez-Torres R, Calo-Guadalupe C, Consuegra-Garcia D, Fois GR, Georges F, Jimenez-Rivera CA. I h blockade reduces cocaine-induced firing patterns of putative dopaminergic neurons of the ventral tegmental area in the anesthetized rat. Prog Neuropsychopharmacol Biol Psychiatry 2022; 112:110431. [PMID: 34454991 PMCID: PMC8489561 DOI: 10.1016/j.pnpbp.2021.110431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 01/12/2023]
Abstract
The hyperpolarization-activated cation current (Ih) is a determinant of intrinsic excitability in various cells, including dopaminergic neurons (DA) of the ventral tegmental area (VTA). In contrast to other cellular conductances, Ih is activated by hyperpolarization negative to -55 mV and activating Ih produces a time-dependent depolarizing current. Our laboratory demonstrated that cocaine sensitization, a chronic cocaine behavioral model, significantly reduces Ih amplitude in VTA DA neurons. Despite this reduction in Ih, the spontaneous firing of VTA DA cells after cocaine sensitization remained similar to control groups. Although the role of Ih in controlling VTA DA excitability is still poorly understood, our hypothesis is that Ih reduction could play a role of a homeostatic controller compensating for cocaine-induced change in excitability. Using in vivo single-unit extracellular electrophysiology in isoflurane anesthetized rats, we explored the contribution of Ih on spontaneous firing patterns of VTA DA neurons. A key feature of spontaneous excitability is bursting activity; bursting is defined as trains of two or more spikes occurring within a short interval and followed by a prolonged period of inactivity. Burst activity increases the reliability of information transfer. To elucidate the contribution of Ih to spontaneous firing patterns of VTA DA neurons, we locally infused an Ih blocker (ZD 7288, 8.3 μM) and evaluated its effect. Ih blockade significantly reduced firing rate, bursting frequency, and percent of spikes within a burst. In addition, Ih blockade significantly reduced acute cocaine-induced spontaneous firing rate, bursting frequency, and percent of spikes within a burst. Using whole-cell patch-clamp, we determine the progressive reduction of Ih after acute and chronic cocaine administration (15 mg/k.g intraperitoneally). Our data show a significant reduction (~25%) in Ih amplitude after 24 but not 2 h of acute cocaine administration. These results suggest that a progressive reduction of Ih could serve as a homeostatic regulator of cocaine-induced spontaneous firing patterns related to VTA DA excitability.
Collapse
Affiliation(s)
| | | | | | | | - Giulia R Fois
- University of Bordeaux, Neurodegeneratives Diseases Institute, IMN-UMR-CNRS 5293, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS, Neurodegeneratives Diseases Institute, IMN-UMR-CNRS 5293, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - François Georges
- University of Bordeaux, Neurodegeneratives Diseases Institute, IMN-UMR-CNRS 5293, 146 rue Léo Saignat, 33076 Bordeaux, France; CNRS, Neurodegeneratives Diseases Institute, IMN-UMR-CNRS 5293, 146 rue Léo Saignat, 33076 Bordeaux, France
| | | |
Collapse
|
8
|
Abstract
Addictive drugs are habit-forming. Addiction is a learned behavior; repeated exposure to addictive drugs can stamp in learning. Dopamine-depleted or dopamine-deleted animals have only unlearned reflexes; they lack learned seeking and learned avoidance. Burst-firing of dopamine neurons enables learning-long-term potentiation (LTP)-of search and avoidance responses. It sets the stage for learning that occurs between glutamatergic sensory inputs and GABAergic motor-related outputs of the striatum; this learning establishes the ability to search and avoid. Independent of burst-firing, the rate of single-spiking-or "pacemaker firing"-of dopaminergic neurons mediates motivational arousal. Motivational arousal increases during need states and its level determines the responsiveness of the animal to established predictive stimuli. Addictive drugs, while usually not serving as an external stimulus, have varying abilities to activate the dopamine system; the comparative abilities of different addictive drugs to facilitate LTP is something that might be studied in the future.
Collapse
Affiliation(s)
- Roy A Wise
- Intramural Research Program, National Institute on Drug Abuse, 250 Mason Lord Drive, Baltimore, MD, USA.
- Behavior Genetics Laboratory, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA, 02478, USA.
| | - Chloe J Jordan
- Division of Alcohol, Drugs and Addiction, Department of Psychiatry, Harvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA, 02478, USA
| |
Collapse
|
9
|
Dwivedi D, Bhalla US. Physiology and Therapeutic Potential of SK, H, and M Medium AfterHyperPolarization Ion Channels. Front Mol Neurosci 2021; 14:658435. [PMID: 34149352 PMCID: PMC8209339 DOI: 10.3389/fnmol.2021.658435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022] Open
Abstract
SK, HCN, and M channels are medium afterhyperpolarization (mAHP)-mediating ion channels. The three channels co-express in various brain regions, and their collective action strongly influences cellular excitability. However, significant diversity exists in the expression of channel isoforms in distinct brain regions and various subcellular compartments, which contributes to an equally diverse set of specific neuronal functions. The current review emphasizes the collective behavior of the three classes of mAHP channels and discusses how these channels function together although they play specialized roles. We discuss the biophysical properties of these channels, signaling pathways that influence the activity of the three mAHP channels, various chemical modulators that alter channel activity and their therapeutic potential in treating various neurological anomalies. Additionally, we discuss the role of mAHP channels in the pathophysiology of various neurological diseases and how their modulation can alleviate some of the symptoms.
Collapse
Affiliation(s)
- Deepanjali Dwivedi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, India.,Department of Neurobiology, Harvard Medical School, Boston, MA, United States.,Stanley Center at the Broad, Cambridge, MA, United States
| | - Upinder S Bhalla
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, India
| |
Collapse
|
10
|
Avchalumov Y, Oliver RJ, Trenet W, Heyer Osorno RE, Sibley BD, Purohit DC, Contet C, Roberto M, Woodward JJ, Mandyam CD. Chronic ethanol exposure differentially alters neuronal function in the medial prefrontal cortex and dentate gyrus. Neuropharmacology 2021; 185:108438. [PMID: 33333103 PMCID: PMC7927349 DOI: 10.1016/j.neuropharm.2020.108438] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 12/06/2020] [Accepted: 12/09/2020] [Indexed: 12/28/2022]
Abstract
Alterations in the function of prefrontal cortex (PFC) and hippocampus have been implicated in underlying the relapse to alcohol seeking behaviors in humans and animal models of moderate to severe alcohol use disorders (AUD). Here we used chronic intermittent ethanol vapor exposure (CIE), 21d protracted abstinence following CIE (21d AB), and re-exposure to one vapor session during protracted abstinence (re-exposure) to evaluate the effects of chronic ethanol exposure on basal synaptic function, neuronal excitability and expression of key synaptic proteins that play a role in neuronal excitability in the medial PFC (mPFC) and dentate gyrus (DG). CIE consistently enhanced excitability of layer 2/3 pyramidal neurons in the mPFC and granule cell neurons in the DG. In the DG, this effect persisted during 21d AB. Re-exposure did not enhance excitability, suggesting resistance to vapor-induced effects. Analysis of action potential kinetics revealed that altered afterhyperpolarization, rise time and decay time constants are associated with the altered excitability during CIE, 21d AB and re-exposure. Molecular adaptations that may underlie increases in neuronal excitability under these different conditions were identified. Quantitative polymerase chain reaction of large-conductance potassium (BK) channel subunit mRNA in PFC and DG tissue homogenates did not show altered expression patterns of BK subunits. Western blotting demonstrates enhanced phosphorylation of Ca2⁺/calmodulin-dependent protein kinase II (CaMKII), and reduced phosphorylation of glutamate receptor GluN2A/2B subunits. These results suggest a novel relationship between activity of CaMKII and GluN receptors in the mPFC and DG, and neuronal excitability in these brain regions in the context of moderate to severe AUD.
Collapse
Affiliation(s)
| | | | - Wulfran Trenet
- VA San Diego Healthcare System, San Diego, CA, 92161, USA
| | | | | | | | - Candice Contet
- Departments of Molecular Medicine and Neuroscience, Scripps Research, La Jolla, CA, 92037, USA
| | - Marisa Roberto
- Departments of Molecular Medicine and Neuroscience, Scripps Research, La Jolla, CA, 92037, USA
| | - John J Woodward
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Charleston Alcohol Research Center, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC, USA
| | - Chitra D Mandyam
- VA San Diego Healthcare System, San Diego, CA, 92161, USA; Departments of Molecular Medicine and Neuroscience, Scripps Research, La Jolla, CA, 92037, USA; Department of Anesthesiology, University of California San Diego, San Diego, CA, 92161, USA.
| |
Collapse
|
11
|
Arencibia‐Albite F, Jiménez‐Rivera CA. Computational and theoretical insights into the homeostatic response to the decreased cell size of midbrain dopamine neurons. Physiol Rep 2021; 9:e14709. [PMID: 33484235 PMCID: PMC7824968 DOI: 10.14814/phy2.14709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/16/2020] [Accepted: 12/14/2020] [Indexed: 11/24/2022] Open
Abstract
Midbrain dopamine neurons communicate signals of reward anticipation and attribution of salience. This capacity is distorted in heroin or cocaine abuse or in conditions such as human mania. A shared characteristic among rodent models of these behavioral disorders is that dopamine neurons in these animals acquired a small size and manifest an augmented spontaneous and burst activity. The biophysical mechanism underlying this increased excitation is currently unknown, but is believed to primarily follow from a substantial drop in K+ conductance secondary to morphology reduction. This work uses a dopamine neuron mathematical model to show, surprisingly, that under size diminution a reduction in K+ conductance is an adaptation that attempts to decrease cell excitability. The homeostatic response that preserves the intrinsic activity is the conservation of the ion channel density for each conductance; a result that is analytically demonstrated and challenges the experimentalist tendency to reduce intrinsic excitation to K+ conductance expression level. Another unexpected mechanism that buffers the raise in intrinsic activity is the presence of the ether-a-go-go-related gen K+ channel since its activation is illustrated to increase with size reduction. Computational experiments finally demonstrate that size attenuation results in the paradoxical enhancement of afferent-driven bursting as a reduced temporal summation indexed correlates with improved depolarization. This work illustrates, on the whole, that experimentation in the absence of mathematical models may lead to the erroneous interpretation of the counterintuitive aspects of empirical data.
Collapse
Affiliation(s)
- Francisco Arencibia‐Albite
- Department of PhysiologyUniversity of Puerto RicoSan JuanPuerto Rico
- Department of Natural SciencesUniversity of Sacred HeartSan JuanPuerto Rico
| | | |
Collapse
|
12
|
Alcohol. Alcohol 2021. [DOI: 10.1016/b978-0-12-816793-9.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
Sun J, Liu Y, Baudry M, Bi X. SK2 channel regulation of neuronal excitability, synaptic transmission, and brain rhythmic activity in health and diseases. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118834. [PMID: 32860835 PMCID: PMC7541745 DOI: 10.1016/j.bbamcr.2020.118834] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 11/20/2022]
Abstract
Small conductance calcium-activated potassium channels (SKs) are solely activated by intracellular Ca2+ and their activation leads to potassium efflux, thereby repolarizing/hyperpolarizing membrane potential. Thus, these channels play a critical role in synaptic transmission, and consequently in information transmission along the neuronal circuits expressing them. SKs are widely but not homogeneously distributed in the central nervous system (CNS). Activation of SKs requires submicromolar cytoplasmic Ca2+ concentrations, which are reached following either Ca2+ release from intracellular Ca2+ stores or influx through Ca2+ permeable membrane channels. Both Ca2+ sensitivity and synaptic levels of SKs are regulated by protein kinases and phosphatases, and degradation pathways. SKs in turn control the activity of multiple Ca2+ channels. They are therefore critically involved in coordinating diverse Ca2+ signaling pathways and controlling Ca2+ signal amplitude and duration. This review highlights recent advances in our understanding of the regulation of SK2 channels and of their roles in normal brain functions, including synaptic plasticity, learning and memory, and rhythmic activities. It will also discuss how alterations in their expression and regulation might contribute to various brain disorders such as Angelman Syndrome, Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Jiandong Sun
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, United States of America; Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States of America
| | - Yan Liu
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, United States of America; Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States of America
| | - Michel Baudry
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, United States of America; Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States of America
| | - Xiaoning Bi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, United States of America; Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States of America.
| |
Collapse
|
14
|
Padula AE, Rinker JA, Lopez MF, Mulligan MK, Williams RW, Becker HC, Mulholland PJ. Bioinformatics identification and pharmacological validation of Kcnn3/K Ca2 channels as a mediator of negative affective behaviors and excessive alcohol drinking in mice. Transl Psychiatry 2020; 10:414. [PMID: 33247097 PMCID: PMC7699620 DOI: 10.1038/s41398-020-01099-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/16/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Mood disorders are often comorbid with alcohol use disorder (AUD) and play a considerable role in the development and maintenance of alcohol dependence and relapse. Because of this high comorbidity, it is necessary to determine shared and unique genetic factors driving heavy drinking and negative affective behaviors. In order to identify novel pharmacogenetic targets, a bioinformatics analysis was used to quantify the expression of amygdala K+ channel genes that covary with anxiety-related phenotypes in the well-phenotyped and fully sequenced family of BXD strains. We used a model of stress-induced escalation of drinking in alcohol-dependent mice to measure negative affective behaviors during abstinence. A pharmacological approach was used to validate the key bioinformatics findings in alcohol-dependent, stressed mice. Amygdalar expression of Kcnn3 correlated significantly with 40 anxiety-associated phenotypes. Further examination of Kcnn3 expression revealed a strong eigentrait for anxiety-like behaviors and negative correlations with binge-like and voluntary alcohol drinking. Mice treated with chronic intermittent alcohol exposure and repeated swim stress consumed more alcohol in their home cages and showed hypophagia on the novelty-suppressed feeding test during abstinence. Pharmacologically targeting Kcnn gene products with the KCa2 (SK) channel-positive modulator 1-EBIO decreased drinking and reduced feeding latency in alcohol-dependent, stressed mice. Collectively, these validation studies provide central nervous system links into the covariance of stress, negative affective behaviors, and AUD in the BXD strains. Further, the bioinformatics discovery tool is effective in identifying promising targets (i.e., KCa2 channels) for treating alcohol dependence exacerbated by comorbid mood disorders.
Collapse
Affiliation(s)
- Audrey E Padula
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Jennifer A Rinker
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Marcelo F Lopez
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Megan K Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, 38163, USA
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, 38163, USA
| | - Howard C Becker
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Patrick J Mulholland
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA.
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
15
|
Yang L, Chen M, Ma Q, Sheng H, Cui D, Shao D, Lai B, Zheng P. Morphine selectively disinhibits glutamatergic input from mPFC onto dopamine neurons of VTA, inducing reward. Neuropharmacology 2020; 176:108217. [PMID: 32679049 DOI: 10.1016/j.neuropharm.2020.108217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/03/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022]
Abstract
Ventral tegmental area (VTA) dopamine (DA) neurons presynaptic glutamate release plays a very important role in the mechanism of morphine. Previously, a study from our lab found that morphine disinhibited glutamatergic input onto the VTA-DA neurons, which was an important mechanism for the morphine-induced increase in the VTA-DA neuron firing and related behaviors (Chen et al., 2015). However, what source of glutamatergic inputs is disinhibited by morphine remains to be elucidated. Using optogenetic strategy combined with whole-cell patch-clamp, qRT-PCR, immunofluorescence and chemical genetic approach combined with behavioral methods, our results show that: 1) morphine promotes glutamate release from glutamatergic terminals of medial prefrontal cortex (mPFC) neurons projecting to VTA-DA neurons but does not on those from glutamatergic terminals of the lateral hypothalamus (LH) neurons projecting to VTA-DA neurons; 2) different response of glutamatergic neurons projecting to VTA-DA neurons from the mPFC or the LH to morphine is related to the expression of GABAB receptors at terminals of these neurons; 3) inhibition of projection neurons from the mPFC to the VTA significantly reduces morphine-induced locomotor activity increase and conditioned place preference but inhibition of projection neurons from the LH to the VTA does not. These results suggest that morphine selectively promotes glutamate release of the glutamatergic input from mPFC onto VTA-DA neurons by removing the inhibition of the GABAB receptors in this glutamatergic input from mPFC.
Collapse
Affiliation(s)
- Li Yang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ming Chen
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qianqian Ma
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Huan Sheng
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Dongyang Cui
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Da Shao
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Bin Lai
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ping Zheng
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
16
|
Tschumi CW, Daszkowski AW, Sharpe AL, Trzeciak M, Beckstead MJ. A history of ethanol drinking increases locomotor stimulation and blunts enhancement of dendritic dopamine transmission by methamphetamine. Addict Biol 2020; 25:e12763. [PMID: 31062485 DOI: 10.1111/adb.12763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/15/2019] [Accepted: 03/22/2019] [Indexed: 12/19/2022]
Abstract
Ethanol and psychostimulant use disorders exhibit comorbidity in humans and cross-sensitization in animal models, but the neurobiological underpinnings of this are not well understood. Ethanol acutely increases dopamine neuron excitability, and psychostimulants such as cocaine or methamphetamine increase extracellular dopamine through inhibition of uptake through the dopamine transporter (DAT) and/or vesicular monoamine transporter 2 (VMAT2). Psychostimulants also depress dopamine neuron activity by enhancing dendritic dopamine neurotransmission. Here, we show that mice with a previous history of ethanol drinking are more sensitive to the locomotor-stimulating effects of a high dose (5 mg/kg), but not lower doses (1 and 3 mg/kg) of methamphetamine or any tested dose of cocaine (3, 10, and 18 mg/kg), compared with water-drinking controls. We next investigated the impact of a history of ethanol drinking, in a separate group of mice, on methamphetamine- or cocaine-induced enhancement of dendritic dopamine transmission using whole-cell voltage clamp electrophysiology in mouse brain slices. Methamphetamine, applied at a concentration (10 μM) that affects both DAT and VMAT2, enhanced D2 receptor-mediated inhibitory postsynaptic currents (D2-IPSCs) in both groups, but this effect was blunted in mice with a history of ethanol drinking. As methamphetamine action at VMAT2 disrupts dopamine neurotransmission, these results may suggest enhanced action of methamphetamine at VMAT2. Furthermore, there were no differences in low-dose methamphetamine or cocaine-induced enhancement of D2-IPSCs, suggesting intact DAT function. Disruption of methamphetamine-induced enhancement of dendritic dopamine transmission would result in decreased inhibition of dopamine neurons, ultimately increasing downstream release and the behavioral effects of methamphetamine.
Collapse
Affiliation(s)
- Christopher W. Tschumi
- Aging and Metabolism Research Program Oklahoma Medical Research Foundation Oklahoma City Oklahoma USA
- Department of Cellular and Integrative Physiology University of Texas Health Science Center at San Antonio San Antonio Texas USA
| | - Anna W. Daszkowski
- Department of Cellular and Integrative Physiology University of Texas Health Science Center at San Antonio San Antonio Texas USA
| | - Amanda L. Sharpe
- Department of Pharmaceutical Sciences University of Oklahoma Health Sciences Center Oklahoma City Oklahoma USA
| | - Marta Trzeciak
- Aging and Metabolism Research Program Oklahoma Medical Research Foundation Oklahoma City Oklahoma USA
| | - Michael J. Beckstead
- Aging and Metabolism Research Program Oklahoma Medical Research Foundation Oklahoma City Oklahoma USA
- Department of Cellular and Integrative Physiology University of Texas Health Science Center at San Antonio San Antonio Texas USA
| |
Collapse
|
17
|
Namba H, Nawa H. Post-pubertal Difference in Nigral Dopaminergic Cells Firing in the Schizophrenia Model Prepared by Perinatal Challenges of a Cytokine, EGF. Neuroscience 2020; 441:22-32. [PMID: 32531471 DOI: 10.1016/j.neuroscience.2020.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/21/2022]
Abstract
Schizophrenia in humans typically develops during and after adolescence; however, the biological underpinning for the specificity of this onset time window remains to be determined. In the present study, we investigated this knowledge gap using our own animal model for schizophrenia. Rodents and monkeys challenged with a cytokine, epidermal growth factor (EGF), as neonates are known to exhibit various behavioral and cognitive abnormalities at the post-pubertal stage. We used the EGF-challenged mice as an animal model for schizophrenia to evaluate the electrophysiological impact of this modeling on nigral dopamine neurons before and after puberty. In vivo single unit recording revealed that the burst firing of putative dopamine neurons in substantia nigra pars compacta was significantly higher in the post-pubertal stage of the EGF model than in that of control mice; in contrast, this difference was not observed in the pre-pubertal stage. The increase in burst firing was accompanied by a decline in Ca2+-activated K+ (ISK) currents, which influence the firing pattern of dopamine neurons. In vivo local application of the SK channel blocker apamin (80 μM) to the substantia nigra was less effective at increasing burst firing in the EGF model than in control mice, suggesting the pathologic role of the ISK decrease in this model. Thus, these results suggest that the aberrant post-pubertal hyperactivity of midbrain dopaminergic neurons is associated with the temporal specificity of the behavioral deficit of this model, and support the hypothesis that this dopaminergic aberration could be implicated in the adolescent onset of schizophrenia.
Collapse
Affiliation(s)
- Hisaaki Namba
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan.
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan.
| |
Collapse
|
18
|
O'Herron P, Summers PM, Shih AY, Kara P, Woodward JJ. In vivo two-photon imaging of neuronal and brain vascular responses in mice chronically exposed to ethanol. Alcohol 2020; 85:41-47. [PMID: 31857103 PMCID: PMC7237312 DOI: 10.1016/j.alcohol.2019.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022]
Abstract
The effects of ethanol on brain function have been extensively studied using a variety of in vitro and in vivo techniques. For example, electrophysiological studies using brain slices from rodents and non-human primates have demonstrated that acute and chronic exposure to ethanol alters the intrinsic excitability and synaptic signaling of neurons within cortical and sub-cortical areas of the brain. In humans, neuroimaging studies reveal alterations in measures of brain activation and connectivity in subjects with alcohol use disorder. While complementary, these methods are inherently limited due to issues related to either disruption of normal sensory input (in vitro slice studies) or resolution (whole brain imaging). In the present study, we used 2-photon laser scanning microscopy in intact animals to assess the impact of chronic ethanol exposure on sensory-evoked neuronal and vascular responses. Adult male C57BL/6J mice were exposed to four weekly cycles of chronic intermittent ethanol (CIE) exposure, while control mice were exposed to air. After withdrawal (≥72 h), a cranial window was placed over the primary visual cortex (V1), and sensory-evoked responses were monitored using the calcium indicator OGB-1. CIE exposure produced small but significant changes in response amplitude (decrease) and orientation selectivity of V1 neurons (increase). While arteriole diameter did not differ between control and CIE mice under baseline conditions, sensory-evoked dilation was enhanced in vessels from CIE-exposed mice as compared to controls. This was accompanied by a reduced latency in response to stimulation. In separate experiments, pial arteriole diameter was measured in the barrel cortex of control and CIE-exposed mice. Baseline diameter of barrel cortex arterioles was similar between control and CIE-exposed mice, but unlike vessels in V1, sensory-evoked dilation of barrel cortex arterioles was similar between the two groups. Together, the results of these studies suggest that chronic exposure to alcohol induces changes in neurovascular coupling that are region-dependent.
Collapse
Affiliation(s)
- Phillip O'Herron
- Department of Physiology, Augusta University, Augusta, GA, United States.
| | - Phillip M Summers
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Andy Y Shih
- Seattle Children's Research Institute, Dept. of Pediatrics, University of Washington, Seattle, WA, United States.
| | - Prakash Kara
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States.
| | - John J Woodward
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
19
|
Nucleus accumbens shell small conductance potassium channels underlie adolescent ethanol exposure-induced anxiety. Neuropsychopharmacology 2019; 44:1886-1895. [PMID: 31096263 PMCID: PMC6784903 DOI: 10.1038/s41386-019-0415-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 04/14/2019] [Accepted: 05/07/2019] [Indexed: 12/24/2022]
Abstract
Alcohol use typically begins in adolescence, increasing the likelihood of adult mental disorders such as anxiety. However, the cellular mechanisms underlying the consequences of adolescent alcohol exposure as well as the behavioral consequences remain poorly understood. We examined the effects of adolescent or adult chronic intermittent ethanol (CIE) exposure on intrinsic excitability of striatal medium-sized spiny neurons (MSNs) and anxiety levels. Rats underwent one of the following procedures: (1) light-dark transition (LDT) and open-field (OF) tests to evaluate anxiety levels and general locomotion; (2) whole-cell patch clamp recordings and biocytin labeling to assess excitability of striatal MSNs, as well as morphological properties; and (3) western blot immunostaining to determine small conductance (SK) calcium-activated potassium channel protein levels. Three weeks, but not 2 days, after CIE treatment, adolescent CIE-treated rats showed shorter crossover latency from the light to dark side in the LDT test and higher MSN excitability in the nucleus accumbens shell (NAcS). Furthermore, the amplitude of the medium afterhyperpolarization (mAHP), mediated by SK channels, and SK3 protein levels in the NAcS decreased concomitantly. Finally, increased anxiety levels, increased excitability, and decreased amplitude of mAHP of NAcS MSNs were reversed by SK channel activator 1-EBIO and mimicked by the SK channel blocker apamin. Thus, adolescent ethanol exposure increases adult anxiety-like behavior by downregulating SK channel function and protein expression, which leads to an increase of intrinsic excitability in NAcS MSNs. SK channels in the NAcS may serve as a target to treat adolescent alcohol binge exposure-induced mental disorders, such as anxiety in adulthood.
Collapse
|
20
|
Morel C, Montgomery S, Han MH. Nicotine and alcohol: the role of midbrain dopaminergic neurons in drug reinforcement. Eur J Neurosci 2019; 50:2180-2200. [PMID: 30251377 PMCID: PMC6431587 DOI: 10.1111/ejn.14160] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/31/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022]
Abstract
Nicotine and alcohol addiction are leading causes of preventable death worldwide and continue to constitute a huge socio-economic burden. Both nicotine and alcohol perturb the brain's mesocorticolimbic system. Dopamine (DA) neurons projecting from the ventral tegmental area (VTA) to multiple downstream structures, including the nucleus accumbens, prefrontal cortex, and amygdala, are highly involved in the maintenance of healthy brain function. VTA DA neurons play a crucial role in associative learning and reinforcement. Nicotine and alcohol usurp these functions, promoting reinforcement of drug taking behaviors. In this review, we will first describe how nicotine and alcohol individually affect VTA DA neurons by examining how drug exposure alters the heterogeneous VTA microcircuit and network-wide projections. We will also examine how coadministration or previous exposure to nicotine or alcohol may augment the reinforcing effects of the other. Additionally, this review briefly summarizes the role of VTA DA neurons in nicotine, alcohol, and their synergistic effects in reinforcement and also addresses the remaining questions related to the circuit-function specificity of the dopaminergic system in mediating nicotine/alcohol reinforcement and comorbidity.
Collapse
Affiliation(s)
- Carole Morel
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah Montgomery
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ming-Hu Han
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
21
|
Destreel G, Seutin V, Engel D. Subsaturation of the N-methyl-D-aspartate receptor glycine site allows the regulation of bursting activity in juvenile rat nigral dopamine neurons. Eur J Neurosci 2019; 50:3454-3471. [PMID: 31206829 DOI: 10.1111/ejn.14491] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/23/2019] [Accepted: 06/10/2019] [Indexed: 01/09/2023]
Abstract
The activation of N-methyl-D-aspartate receptors (NMDARs) in substantia nigra pars compacta (SNc) dopamine (DA) cells is central to generate the bursting activity, a phasic signal linked to DA-related behaviours via the change in postsynaptic DA release. NMDARs are recruited during excitatory synaptic transmission by glutamate release, but the glycine site level of occupancy of these receptors during basal action potential-dependent activity is not known for SNc DA neurons. We explored NMDAR-dependent signals during exogenous applications of co-agonists in midbrain slices from juvenile rats. We found that both glycine and D-serine strengthened the NMDAR-dependent component of excitatory postsynaptic currents (EPSCs) in a concentration-dependent manner. EPSCs were also increased by endogenous glycine via the blockade of the glycine transport. The glycine site of NMDARs contributing to synaptic transmission is therefore subsaturated. The behaviourally relevant burst firing was more sensitive to exogenous D-serine and endogenous glycine than to exogenous glycine. The mechanisms regulating the availability of the co-agonists exert consequently a critical influence on the excitability of DA neurons via NMDARs. The modulation of the phasic firing in DA neurons by ambient NMDAR co-agonists may be important for nigral information processing and downstream motor-related behaviour.
Collapse
Affiliation(s)
- Geoffrey Destreel
- GIGA-Neurosciences, Neurophysiology Group, University of Liege, Liege, Belgium
| | - Vincent Seutin
- GIGA-Neurosciences, Neurophysiology Group, University of Liege, Liege, Belgium
| | - Dominique Engel
- GIGA-Neurosciences, Neurophysiology Group, University of Liege, Liege, Belgium
| |
Collapse
|
22
|
Miki R, Honda I, Hamasaki R, Kawahara R, Soeda F, Shirasaki T, Misumi S, Takahama K. Effects of tipepidine on MK-801-induced cognitive impairment in mice. Brain Res 2019; 1710:230-236. [DOI: 10.1016/j.brainres.2018.12.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 01/18/2023]
|
23
|
Ch'ng SS, Fu J, Brown RM, Smith CM, Hossain MA, McDougall SJ, Lawrence AJ. Characterization of the relaxin family peptide receptor 3 system in the mouse bed nucleus of the stria terminalis. J Comp Neurol 2019; 527:2615-2633. [PMID: 30947365 DOI: 10.1002/cne.24695] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 03/19/2019] [Accepted: 03/27/2019] [Indexed: 01/17/2023]
Abstract
The bed nucleus of the stria terminalis (BNST) is a critical node involved in stress and reward-related behaviors. Relaxin family peptide receptor 3 (RXFP3) signaling in the BNST has been implicated in stress-induced alcohol seeking behavior. However, the neurochemical phenotype and connectivity of BNST RXFP3-expressing (RXFP3+) cells have yet to be elucidated. We interrogated the molecular signature and electrophysiological properties of BNST RXFP3+ neurons using a RXFP3-Cre reporter mouse line. BNST RXFP3+ cells are circumscribed to the dorsal BNST (dBNST) and are neurochemically heterogeneous, comprising a mix of inhibitory and excitatory neurons. Immunohistochemistry revealed that ~48% of BNST RXFP3+ neurons are GABAergic, and a quarter of these co-express the calcium-binding protein, calbindin. A subset of BNST RXFP3+ cells (~41%) co-express CaMKIIα, suggesting this subpopulation of BNST RXFP3+ neurons are excitatory. Corroborating this, RNAscope® revealed that ~35% of BNST RXFP3+ cells express vVGluT2 mRNA, indicating a subpopulation of RXFP3+ neurons are glutamatergic. RXFP3+ neurons show direct hyperpolarization to bath application of a selective RXFP3 agonist, RXFP3-A2, while around 50% of cells were depolarised by exogenous corticotrophin releasing factor. In behaviorally naive mice the majority of RXFP3+ neurons were Type II cells exhibiting Ih and T type calcium mediated currents. However, chronic swim stress caused persistent plasticity, decreasing the proportion of neurons that express these channels. These studies are the first to characterize the BNST RXFP3 system in mouse and lay the foundation for future functional studies appraising the role of the murine BNST RXFP3 system in more complex behaviors.
Collapse
Affiliation(s)
- Sarah S Ch'ng
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Jingjing Fu
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Robyn M Brown
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Craig M Smith
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | | | - Stuart J McDougall
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| |
Collapse
|
24
|
Qu L, Wang Y, Ge SN, Li N, Fu J, Zhang Y, Wang X, Jing JP, Li Y, Wang Q, Gao GD, He SM, Wang XL. Altered Activity of SK Channel Underpins Morphine Withdrawal Relevant Psychiatric Deficiency in Infralimbic to Accumbens Shell Pathway. Front Psychiatry 2019; 10:240. [PMID: 31031665 PMCID: PMC6470400 DOI: 10.3389/fpsyt.2019.00240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/29/2019] [Indexed: 12/17/2022] Open
Abstract
Drug addiction can be viewed as a chronic psychiatric disorder that is related to dysfunction of neural circuits, including reward deficits, stress surfeits, craving changes, and compromised executive function. The nucleus accumbens (NAc) plays a crucial role in regulating craving and relapse, while the medial prefrontal cortex (mPFC) represents a higher cortex projecting into the NAc that is active in the management of executive function. In this study, we investigated the role of the small conductance calcium-activated potassium channels (SK channels) in NAc and mPFC after morphine withdrawal. Action potential (AP) firing of neurons in the NAc shell was enhanced via the downregulations of the SK channels after morphine withdrawal. Furthermore, the expression of SK2 and SK3 subunits in the NAc was significantly reduced after 3 weeks of morphine withdrawal, but was not altered in the dorsal striatum. In mPFC, the SK channel subunits were differentially expressed. To be specific, the expression of SK3 was upregulated, while the expression of SK2 was unchanged. Furthermore, the AP firing in layer 5 pyramidal neurons of the infralimbic (IL) cortex was decreased via the upregulations of the SK channel-related tail current after 3 weeks of morphine withdrawal. These results suggest that the SK channel plays a specific role in reward circuits following morphine exposure and a period of drug withdrawal, making it a potential target for the prevention of relapse.
Collapse
Affiliation(s)
- Liang Qu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yuan Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Shun-Nan Ge
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Nan Li
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jian Fu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yue Zhang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xin Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jiang-Peng Jing
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yang Li
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Qiang Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Guo-Dong Gao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Shi-Ming He
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xue-Lian Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
25
|
Ch'ng S, Fu J, Brown RM, McDougall SJ, Lawrence AJ. The intersection of stress and reward: BNST modulation of aversive and appetitive states. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:108-125. [PMID: 29330137 DOI: 10.1016/j.pnpbp.2018.01.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/27/2017] [Accepted: 01/08/2018] [Indexed: 12/13/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) is widely acknowledged as a brain structure that regulates stress and anxiety states, as well as aversive and appetitive behaviours. The diverse roles of the BNST are afforded by its highly modular organisation, neurochemical heterogeneity, and complex intrinsic and extrinsic circuitry. There has been growing interest in the BNST in relation to psychopathologies such as anxiety and addiction. Although research on the human BNST is still in its infancy, there have been extensive preclinical studies examining the molecular signature and hodology of the BNST and their involvement in stress and reward seeking behaviour. This review examines the neurochemical phenotype and connectivity of the BNST, as well as electrophysiological correlates of plasticity in the BNST mediated by stress and/or drugs of abuse.
Collapse
Affiliation(s)
- Sarah Ch'ng
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Jingjing Fu
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Robyn M Brown
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Stuart J McDougall
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia.
| |
Collapse
|
26
|
Zhou M, Lin K, Si Y, Ru Q, Chen L, Xiao H, Li C. Downregulation of HCN1 channels in hippocampus and prefrontal cortex in methamphetamine re-exposed mice with enhanced working memory. Physiol Res 2018; 68:107-117. [PMID: 30433806 DOI: 10.33549/physiolres.933873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The hyperpolarization-activated cyclic-nucleotide-gated non-selective cation (HCN) channels play a potential role in the neurological basis underlying drug addiction. However, little is known about the role of HCN channels in methamphetamine (METH) abuse. In the present study, we examined the changes in working memory functions of METH re-exposed mice through Morris water maze test, and investigated the protein expression of HCN1 channels and potential mechanisms underlying the modulation of HCN channels by Western blotting analysis. Mice were injected with METH (1 mg/kg, i.p.) once per day for 6 consecutive days. After 5 days without METH, mice were re-exposed to METH at the same concentration. We found that METH re-exposure caused an enhancement of working memory, and a decrease in the HCN1 channels protein expression in both hippocampus and prefrontal cortex. The phosphorylated extracellular regulated protein kinase 1/2 (p-ERK1/2), an important regulator of HCN channels, was also obviously reduced in hippocampus and prefrontal cortex of mice with METH re-exposure. Meanwhile, acute METH exposure did not affect the working memory function and the protein expressions of HCN1 channels and p-ERK1/2. Overall, our data firstly showed the aberrant protein expression of HCN1 channels in METH re-exposed mice with enhanced working memory, which was probably related to the down-regulation of p-ERK1/2 protein expression.
Collapse
Affiliation(s)
- M Zhou
- Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, China.
| | | | | | | | | | | | | |
Collapse
|
27
|
You C, Vandegrift B, Brodie MS. Ethanol actions on the ventral tegmental area: novel potential targets on reward pathway neurons. Psychopharmacology (Berl) 2018; 235:1711-1726. [PMID: 29549390 PMCID: PMC5949141 DOI: 10.1007/s00213-018-4875-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/06/2018] [Indexed: 12/14/2022]
Abstract
The ventral tegmental area (VTA) evaluates salience of environmental stimuli and provides dopaminergic innervation to many brain areas affected by acute and chronic ethanol exposure. While primarily associated with rewarding and reinforcing stimuli, recent evidence indicates a role for the VTA in aversion as well. Ethanol actions in the VTA may trigger neuroadaptation resulting in reduction of the aversive responses to alcohol and a relative increase in the rewarding responses. In searching for effective pharmacotherapies for the treatment of alcohol abuse and alcoholism, recognition of this imbalance may reveal novel strategies. In addition to conventional receptor/ion channel pharmacotherapies, epigenetic factors that control neuroadaptation to chronic ethanol treatment can be targeted as an avenue for development of therapeutic approaches to restore the balance. Furthermore, when exploring therapies to address reward/aversion imbalance in the action of alcohol in the VTA, sex differences have to be taken into account to ensure effective treatment for both men and women. These principles apply to a VTA-centric approach to therapies, but should hold true when thinking about the overall approach in the development of neuroactive drugs to treat alcohol use disorders. Although the functions of the VTA itself are complex, it is a useful model system to evaluate the reward/aversion imbalance that occurs with ethanol exposure and could be used to provide new leads in the efforts to develop novel drugs to treat alcoholism.
Collapse
Affiliation(s)
- Chang You
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott Ave, Room E-202, M/C 901, Chicago, IL, 60612, USA
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Bertha Vandegrift
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott Ave, Room E-202, M/C 901, Chicago, IL, 60612, USA
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Mark S Brodie
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott Ave, Room E-202, M/C 901, Chicago, IL, 60612, USA.
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
28
|
Cannady R, Rinker JA, Nimitvilai S, Woodward JJ, Mulholland PJ. Chronic Alcohol, Intrinsic Excitability, and Potassium Channels: Neuroadaptations and Drinking Behavior. Handb Exp Pharmacol 2018; 248:311-343. [PMID: 29374839 DOI: 10.1007/164_2017_90] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neural mechanisms underlying alcohol use disorder remain elusive, and this lack of understanding has slowed the development of efficacious treatment strategies for reducing relapse rates and prolonging abstinence. While synaptic adaptations produced by chronic alcohol exposure have been extensively characterized in a variety of brain regions, changes in intrinsic excitability of critical projection neurons are understudied. Accumulating evidence suggests that prolonged alcohol drinking and alcohol dependence produce plasticity of intrinsic excitability as measured by changes in evoked action potential firing and after-hyperpolarization amplitude. In this chapter, we describe functional changes in cell firing of projection neurons after long-term alcohol exposure that occur across species and in multiple brain regions. Adaptations in calcium-activated (KCa2), voltage-dependent (KV7), and G protein-coupled inwardly rectifying (Kir3 or GIRK) potassium channels that regulate the evoked firing and after-hyperpolarization parallel functional changes in intrinsic excitability induced by chronic alcohol. Moreover, there are strong genetic links between alcohol-related behaviors and genes encoding KCa2, KV7, and GIRK channels, and pharmacologically targeting these channels reduces alcohol consumption and alcohol-related behaviors. Together, these studies demonstrate that chronic alcohol drinking produces adaptations in KCa2, KV7, and GIRK channels leading to impaired regulation of the after-hyperpolarization and aberrant cell firing. Correcting the deficit in the after-hyperpolarization with positive modulators of KCa2 and KV7 channels and altering the GIRK channel binding pocket to block the access of alcohol represent a potentially highly effective pharmacological approach that can restore changes in intrinsic excitability and reduce alcohol consumption in affected individuals.
Collapse
Affiliation(s)
- Reginald Cannady
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Charleston Alcohol Research Center, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC, USA
| | - Jennifer A Rinker
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Charleston Alcohol Research Center, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC, USA
| | - Sudarat Nimitvilai
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Charleston Alcohol Research Center, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC, USA
| | - John J Woodward
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Charleston Alcohol Research Center, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC, USA
| | - Patrick J Mulholland
- Departments of Neuroscience and Psychiatry and Behavioral Sciences, Charleston Alcohol Research Center, Addiction Sciences Division, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
29
|
Abstract
Major depressive disorder (MDD) is a chronic and potentially life threatening illness that carries a staggering global burden. Characterized by depressed mood, MDD is often difficult to diagnose and treat owing to heterogeneity of syndrome and complex etiology. Contemporary antidepressant treatments are based on improved monoamine-based formulations from serendipitous discoveries made > 60 years ago. Novel antidepressant treatments are necessary, as roughly half of patients using available antidepressants do not see long-term remission of depressive symptoms. Current development of treatment options focuses on generating efficacious antidepressants, identifying depression-related neural substrates, and better understanding the pathophysiological mechanisms of depression. Recent insight into the brain's mesocorticolimbic circuitry from animal models of depression underscores the importance of ionic mechanisms in neuronal homeostasis and dysregulation, and substantial evidence highlights a potential role for ion channels in mediating depression-related excitability changes. In particular, hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are essential regulators of neuronal excitability. In this review, we describe seminal research on HCN channels in the prefrontal cortex and hippocampus in stress and depression-related behaviors, and highlight substantial evidence within the ventral tegmental area supporting the development of novel therapeutics targeting HCN channels in MDD. We argue that methods targeting the activity of reward-related brain areas have significant potential as superior treatments for depression.
Collapse
Affiliation(s)
- Stacy M Ku
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ming-Hu Han
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
30
|
Shah A, Zuo W, Kang S, Li J, Fu R, Zhang H, Bekker A, Ye JH. The lateral habenula and alcohol: Role of glutamate and M-type potassium channels. Pharmacol Biochem Behav 2017. [PMID: 28624587 DOI: 10.1016/j.pbb.2017.06.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Alcohol use disorder (AUD) or alcoholism is a chronic relapsing disorder. Our knowledge of alcoholism hinges on our understanding of its effects on the brain. This review will center on the effects of alcohol in the lateral habenula (LHb), an epithalamic structure that connects the forebrain with the midbrain and encodes aversive signaling. Like many addictive drugs, alcohol has both rewarding and aversive properties. While alcohol's euphoric property is believed to be important for the initiation of drinking, increasing evidence suggests that alcohol's negative affect plays a critical role in excessive drinking and alcohol dependence. During withdrawal and abstinence, alcoholics often experience anxiety and depressions, both of which have been implicated in relapse drinking. This review focuses on the recent accumulation of knowledge about the effects of acute and chronic alcohol exposure on the activity of and synaptic transmissions on LHb neurons, as well as the effects of manipulation of LHb function on alcohol consumption and related behaviors. Recent evidence highlights a critical role for the LHb in AUD and related psychiatric ailments. Multidisciplinary work in animals collectively suggests that LHb function and activity, including M-type potassium channels and glutamatergic transmission are altered by acute and repeated chronic alcohol exposure. We will also discuss how functional, pharmacological, and chemogenetic manipulation of the LHb affects ethanol drinking and psychiatric disorders occurring in animals withdrawn from chronic alcohol exposure. Conceivable mechanisms behind these effects and their potential as targets for therapies will also be discussed.
Collapse
Affiliation(s)
- Avi Shah
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Wanhong Zuo
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Seungwoo Kang
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Jing Li
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Rao Fu
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Haifeng Zhang
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Alex Bekker
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA.
| |
Collapse
|
31
|
Arencibia-Albite F, Vázquez-Torres R, Jiménez-Rivera CA. Cocaine sensitization increases subthreshold activity in dopamine neurons from the ventral tegmental area. J Neurophysiol 2016; 117:612-623. [PMID: 27832596 DOI: 10.1152/jn.00465.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/07/2016] [Indexed: 11/22/2022] Open
Abstract
The progressive escalation of psychomotor responses that results from repeated cocaine administration is termed sensitization. This phenomenon alters the intrinsic properties of dopamine (DA) neurons from the ventral tegmental area (VTA), leading to enhanced dopaminergic transmission in the mesocorticolimbic network. The mechanisms underlying this augmented excitation are nonetheless poorly understood. DA neurons display the hyperpolarization-activated, nonselective cation current, dubbed Ih We recently demonstrated that Ih and membrane capacitance are substantially reduced in VTA DA cells from cocaine-sensitized rats. The present study shows that 7 days of cocaine withdrawal did not normalize Ih and capacitance. In cells from cocaine-sensitized animals, the amplitude of excitatory synaptic potentials, at -70 mV, was ∼39% larger in contrast to controls. Raise and decay phases of the synaptic signal were faster under cocaine, a result associated with a reduced membrane time constant. Synaptic summation was paradoxically elevated by cocaine exposure, as it consisted of a significantly reduced summation indexed but a considerably increased depolarization. These effects are at least a consequence of the reduced capacitance. Ih attenuation is unlikely to explain such observations, since at -70 mV, no statistical differences exist in Ih or input resistance. The neuronal shrinkage associated with a diminished capacitance may help to understand two fundamental elements of drug addiction: incentive sensitization and negative emotional states. A reduced cell size may lead to substantial enhancement of cue-triggered bursting, which underlies drug craving and reward anticipation, whereas it could also result in DA depletion, as smaller neurons might express low levels of tyrosine hydroxylase. NEW & NOTEWORTHY This work uses a new approach that directly extracts important biophysical parameters from alpha function-evoked synaptic potentials. Two of these parameters are the cell membrane capacitance (Cm) and rate at any time point of the synaptic waveform. The use of such methodology shows that cocaine sensitization reduces Cm and increases the speed of synaptic signaling. Paradoxically, although synaptic potentials show a faster decay under cocaine their temporal summation is substantially elevated.
Collapse
Affiliation(s)
- Francisco Arencibia-Albite
- Department of Physiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico; and.,Departamento de Ciencias Naturales, Universidad del Sagrado Corazón, San Juan, Puerto Rico
| | - Rafael Vázquez-Torres
- Department of Physiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico; and
| | - Carlos A Jiménez-Rivera
- Department of Physiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico; and
| |
Collapse
|
32
|
McGuier NS, Griffin WC, Gass JT, Padula AE, Chesler EJ, Mulholland PJ. Kv7 channels in the nucleus accumbens are altered by chronic drinking and are targets for reducing alcohol consumption. Addict Biol 2016; 21:1097-1112. [PMID: 26104325 DOI: 10.1111/adb.12279] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Alcohol use disorders (AUDs) are a major public health issue and produce enormous societal and economic burdens. Current Food and Drug Administration (FDA)-approved pharmacotherapies for treating AUDs suffer from deleterious side effects and are only effective in a subset of individuals. It is therefore essential to find improved medications for the management of AUDs. Emerging evidence suggests that anticonvulsants are a promising class of drugs for treating individuals with AUDs. In these studies, we used integrative functional genomics to demonstrate that genes that encode Kv7 channels (i.e. Kcnq2/3) are related to alcohol (ethanol) consumption, preference and acceptance in rodents. We then tested the ability of the FDA-approved anticonvulsant retigabine, a Kv7 channel opener, to reduce voluntary ethanol consumption of Wistar rats in a two-bottle choice intermittent alcohol access paradigm. Systemic administration and microinjections of retigabine into the nucleus accumbens significantly reduced alcohol drinking, and retigabine was more effective at reducing intake in high- versus low-drinking populations of Wistar rats. Prolonged voluntary drinking increased the sensitivity to the proconvulsant effects of pharmacological blockade of Kv7 channels and altered surface trafficking and SUMOylation patterns of Kv7.2 channels in the nucleus accumbens. These data implicate Kcnq2/3 in the regulation of ethanol drinking and demonstrate that long-term drinking produces neuroadaptations in Kv7 channels. In addition, these results have identified retigabine as a potential pharmacotherapy for treating AUDs and Kv7 channels as a novel therapeutic target for reducing heavy drinking.
Collapse
Affiliation(s)
- Natalie S. McGuier
- Department of Neuroscience; Medical University of South Carolina; Charleston SC USA
| | - William C. Griffin
- Department of Psychiatry and Behavioral Sciences; Medical University of South Carolina; Charleston SC USA
| | - Justin T. Gass
- Department of Neuroscience; Medical University of South Carolina; Charleston SC USA
| | - Audrey E. Padula
- Department of Neuroscience; Medical University of South Carolina; Charleston SC USA
| | | | - Patrick J. Mulholland
- Department of Neuroscience; Medical University of South Carolina; Charleston SC USA
- Department of Psychiatry and Behavioral Sciences; Medical University of South Carolina; Charleston SC USA
| |
Collapse
|
33
|
Ding ZM, Ingraham CM, Rodd ZA, McBride WJ. Alcohol drinking increases the dopamine-stimulating effects of ethanol and reduces D2 auto-receptor and group II metabotropic glutamate receptor function within the posterior ventral tegmental area of alcohol preferring (P) rats. Neuropharmacology 2016; 109:41-48. [PMID: 27260326 PMCID: PMC4970907 DOI: 10.1016/j.neuropharm.2016.05.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/29/2016] [Accepted: 05/30/2016] [Indexed: 11/30/2022]
Abstract
Repeated local administration of ethanol (EtOH) sensitized the posterior ventral tegmental area (pVTA) to the local dopamine (DA)-stimulating effects of EtOH. Chronic alcohol drinking increased nucleus accumbens (NAC) DA transmission and pVTA glutamate transmission in alcohol-preferring (P) rats. The objectives of the present study were to determine the effects of chronic alcohol drinking by P rats on the (a) sensitivity and response of the pVTA DA neurons to the DA-stimulating actions of EtOH, and (b) negative feedback control of DA (via D2 auto-receptors) and glutamate (via group II mGlu auto-receptors) release in the pVTA. EtOH (50 or 150 mg%) or the D2/3 receptor antagonist sulpiride (100 or 200 μM) was microinjected into the pVTA while DA was sampled with microdialysis in the NAC shell (NACsh). The mGluR2/3 antagonist LY341495 (1 or 10 μM) was perfused through the pVTA via reverse microdialysis and local extracellular glutamate and DA levels were measured. EtOH produced a more robust increase of NACsh DA in the 'EtOH' than 'Water' groups (e.g., 150 mg% EtOH: to ∼ 210 vs 150% of baseline). In contrast, sulpiride increased DA release in the NACsh more in the 'Water' than 'EtOH' groups (e.g., 200 μM sulpiride: to ∼ 190-240 vs 150-160% of baseline). LY341495 (at 10 μM) increased extracellular glutamate and DA levels in the 'Water' (to ∼ 150-180% and 180-230% of baseline, respectively) but not the 'EtOH' groups. These results indicate that alcohol drinking enhanced the DA-stimulating effects of EtOH, and attenuated the functional activities of D2 auto-receptors and group II mGluRs within the pVTA.
Collapse
Affiliation(s)
- Zheng-Ming Ding
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Cynthia M Ingraham
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Zachary A Rodd
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - William J McBride
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
34
|
Diversity of Dopaminergic Neural Circuits in Response to Drug Exposure. Neuropsychopharmacology 2016; 41:2424-46. [PMID: 26934955 PMCID: PMC4987841 DOI: 10.1038/npp.2016.32] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 02/05/2016] [Accepted: 02/22/2016] [Indexed: 01/09/2023]
Abstract
Addictive substances are known to increase dopaminergic signaling in the mesocorticolimbic system. The origin of this dopamine (DA) signaling originates in the ventral tegmental area (VTA), which sends afferents to various targets, including the nucleus accumbens, the medial prefrontal cortex, and the basolateral amygdala. VTA DA neurons mediate stimuli saliency and goal-directed behaviors. These neurons undergo robust drug-induced intrinsic and extrinsic synaptic mechanisms following acute and chronic drug exposure, which are part of brain-wide adaptations that ultimately lead to the transition into a drug-dependent state. Interestingly, recent investigations of the differential subpopulations of VTA DA neurons have revealed projection-specific functional roles in mediating reward, aversion, and stress. It is now critical to view drug-induced neuroadaptations from a circuit-level perspective to gain insight into how differential dopaminergic adaptations and signaling to targets of the mesocorticolimbic system mediates drug reward. This review hopes to describe the projection-specific intrinsic characteristics of these subpopulations, the differential afferent inputs onto these VTA DA neuron subpopulations, and consolidate findings of drug-induced plasticity of VTA DA neurons and highlight the importance of future projection-based studies of this system.
Collapse
|
35
|
Canavier CC, Evans RC, Oster AM, Pissadaki EK, Drion G, Kuznetsov AS, Gutkin BS. Implications of cellular models of dopamine neurons for disease. J Neurophysiol 2016; 116:2815-2830. [PMID: 27582295 DOI: 10.1152/jn.00530.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/24/2016] [Indexed: 12/21/2022] Open
Abstract
This review addresses the present state of single-cell models of the firing pattern of midbrain dopamine neurons and the insights that can be gained from these models into the underlying mechanisms for diseases such as Parkinson's, addiction, and schizophrenia. We will explain the analytical technique of separation of time scales and show how it can produce insights into mechanisms using simplified single-compartment models. We also use morphologically realistic multicompartmental models to address spatially heterogeneous aspects of neural signaling and neural metabolism. Separation of time scale analyses are applied to pacemaking, bursting, and depolarization block in dopamine neurons. Differences in subpopulations with respect to metabolic load are addressed using multicompartmental models.
Collapse
Affiliation(s)
- Carmen C Canavier
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana;
| | - Rebekah C Evans
- Cellular Neurophysiology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Andrew M Oster
- Department of Mathematics, Eastern Washington University, Cheney, Washington
| | - Eleftheria K Pissadaki
- IBM T.J. Watson Research Center, Yorktown Heights, New York.,Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
| | - Guillaume Drion
- Department of Electrical Engineering and Computer Science, University of Liege, Liege, Belgium
| | - Alexey S Kuznetsov
- Department of Mathematical Sciences and Center for Mathematical Biosciences, Indiana University, Purdue University Indianapolis, Indianapolis, Indiana
| | - Boris S Gutkin
- Group for Neural Theory, LNC INSERM U960, Département d'Études Cognitives, École Normale Supérieure PSL Research University, Paris, France.,Center for Cognition and Decision Making, NRU Higher School of Economics, Moscow, Russia; and
| |
Collapse
|
36
|
Nimitvilai S, Lopez MF, Mulholland PJ, Woodward JJ. Chronic Intermittent Ethanol Exposure Enhances the Excitability and Synaptic Plasticity of Lateral Orbitofrontal Cortex Neurons and Induces a Tolerance to the Acute Inhibitory Actions of Ethanol. Neuropsychopharmacology 2016; 41:1112-27. [PMID: 26286839 PMCID: PMC4748436 DOI: 10.1038/npp.2015.250] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 08/14/2015] [Accepted: 08/15/2015] [Indexed: 02/07/2023]
Abstract
Alcoholism is associated with changes in brain reward and control systems, including the prefrontal cortex. In prefrontal areas, the orbitofrontal cortex (OFC) has been suggested to have an important role in the development of alcohol-abuse disorders and studies from this laboratory demonstrate that OFC-mediated behaviors are impaired in alcohol-dependent animals. However, it is not known whether chronic alcohol (ethanol) exposure alters the fundamental properties of OFC neurons. In this study, mice were exposed to repeated cycles of chronic intermittent ethanol (CIE) exposure to induce dependence and whole-cell patch-clamp electrophysiology was used to examine the effects of CIE treatment on lateral OFC (lOFC) neuron excitability, synaptic transmission, and plasticity. Repeated cycles of CIE exposure and withdrawal enhanced current-evoked action potential (AP) spiking and this was accompanied by a reduction in the after-hyperpolarization and a decrease in the functional activity of SK channels. CIE mice also showed an increase in the AMPA/NMDA ratio, and this was associated with an increase in GluA1/GluA2 AMPA receptor expression and a decrease in GluN2B NMDA receptor subunits. Following CIE treatment, lOFC neurons displayed a persistent long-term potentiation of glutamatergic synaptic transmission following a spike-timing-dependent protocol. Lastly, CIE treatment diminished the inhibitory effect of acute ethanol on AP spiking of lOFC neurons and reduced expression of the GlyT1 transporter. Taken together, these results suggest that chronic exposure to ethanol leads to enhanced intrinsic excitability and glutamatergic synaptic signaling of lOFC neurons. These alterations may contribute to the impairment of OFC-dependent behaviors in alcohol-dependent individuals.
Collapse
Affiliation(s)
- Sudarat Nimitvilai
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Marcelo F Lopez
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Patrick J Mulholland
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - John J Woodward
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
- Addiction Sciences Division, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
37
|
Burnett EJ, Chandler LJ, Trantham-Davidson H. Glutamatergic plasticity and alcohol dependence-induced alterations in reward, affect and cognition. Prog Neuropsychopharmacol Biol Psychiatry 2016; 65:309-20. [PMID: 26341050 PMCID: PMC4679411 DOI: 10.1016/j.pnpbp.2015.08.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 07/29/2015] [Accepted: 08/27/2015] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Alcohol dependence is characterized by a reduction in reward threshold, development of a negative affective state, and significant cognitive impairments. Dependence-induced glutamatergic neuroadaptations in the neurocircuitry mediating reward, affect and cognitive function are thought to underlie the neural mechanism for these alterations. These changes serve to promote increased craving for alcohol and facilitate the development of maladaptive behaviors that promote relapse to alcohol drinking during periods of abstinence. OBJECTIVE To review the extant literature on the effects of chronic alcohol exposure on glutamatergic neurotransmission and its impact on reward, affect and cognition. RESULTS Evidence from a diverse set of studies demonstrates significant enhancement of glutamatergic activity following chronic alcohol exposure. In particular, up-regulation of GluN2B-containing NMDA receptor expression and function is a commonly observed phenomenon that likely reflects activity-dependent adaptive homeostatic plasticity. However, this observation as well as other glutamatergic neuroadaptations are often circuit and cell-type specific. DISCUSSION Dependence-induced alterations in glutamate signaling contribute to many of the symptoms experienced in addicted individuals and can persist well into abstinence. This suggests that they play an important role in the development of behaviors that increase the probability for relapse. As our understanding of the complexity of the neurocircuitry involved in the addictive process has advanced, it has become increasingly clear that investigations of cell-type and circuit-specific effects are required to gain a more comprehensive understanding of the glutamatergic adaptations and their functional consequences in alcohol addiction. CONCLUSION While pharmacological treatments for alcohol dependence and relapse targeting the glutamatergic system have shown great promise in preclinical models, more research is needed to uncover novel, possibly circuit-specific, therapeutic targets that exhibit improved efficacy and reduced side effects.
Collapse
Affiliation(s)
- Elizabeth J Burnett
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425.
| | | | | |
Collapse
|
38
|
Marballi K, Genabai NK, Blednov YA, Harris RA, Ponomarev I. Alcohol consumption induces global gene expression changes in VTA dopaminergic neurons. GENES BRAIN AND BEHAVIOR 2015; 15:318-26. [PMID: 26482798 DOI: 10.1111/gbb.12266] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/28/2015] [Accepted: 10/16/2015] [Indexed: 12/22/2022]
Abstract
Alcoholism is associated with dysregulation in the neural circuitry that mediates motivated and goal-directed behaviors. The dopaminergic (DA) connection between the ventral tegmental area (VTA) and the nucleus accumbens is viewed as a critical component of the neurocircuitry mediating alcohol's rewarding and behavioral effects. We sought to determine the effects of binge alcohol drinking on global gene expression in VTA DA neurons. Alcohol-preferring C57BL/6J × FVB/NJ F1 hybrid female mice were exposed to a modified drinking in the dark (DID) procedure for 3 weeks, while control animals had access to water only. Global gene expression of laser-captured tyrosine hydroxylase (TH)-positive VTA DA neurons was measured using microarrays. A total of 644 transcripts were differentially expressed between the drinking and nondrinking mice, and 930 transcripts correlated with alcohol intake during the last 2 days of drinking in the alcohol group. Bioinformatics analysis of alcohol-responsive genes identified molecular pathways and networks perturbed in DA neurons by alcohol consumption, which included neuroimmune and epigenetic functions, alcohol metabolism and brain disorders. The majority of genes with high and specific expression in DA neurons were downregulated by or negatively correlated with alcohol consumption, suggesting a decreased activity of DA neurons in high drinking animals. These changes in the DA transcriptome provide a foundation for alcohol-induced neuroadaptations that may play a crucial role in the transition to addiction.
Collapse
Affiliation(s)
- K Marballi
- Waggoner Center for Alcohol and Addiction Research and The College of Pharmacy, The University of Texas at Austin, Austin
| | - N K Genabai
- Waggoner Center for Alcohol and Addiction Research and The College of Pharmacy, The University of Texas at Austin, Austin.,Center of Emphasis in Neurosciences, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Y A Blednov
- Waggoner Center for Alcohol and Addiction Research and The College of Pharmacy, The University of Texas at Austin, Austin
| | - R A Harris
- Waggoner Center for Alcohol and Addiction Research and The College of Pharmacy, The University of Texas at Austin, Austin
| | - I Ponomarev
- Waggoner Center for Alcohol and Addiction Research and The College of Pharmacy, The University of Texas at Austin, Austin
| |
Collapse
|
39
|
Darcq E, Warnault V, Phamluong K, Besserer GM, Liu F, Ron D. MicroRNA-30a-5p in the prefrontal cortex controls the transition from moderate to excessive alcohol consumption. Mol Psychiatry 2015; 20:1219-31. [PMID: 25330738 PMCID: PMC4437888 DOI: 10.1038/mp.2014.120] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 08/11/2014] [Accepted: 08/25/2014] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) induce messenger RNA (mRNA) degradation and repress mRNA translation. Several miRNAs control the expression of the brain-derived neurotrophic factor (BDNF) in the prefrontal cortex (PFC). The BDNF signaling pathway is activated by moderate intake of alcohol to prevent escalation to excessive drinking. Here, we present data to suggest that the transition from moderate to uncontrolled alcohol intake occurs, in part, upon a breakdown of this endogenous protective pathway via a miRNA-dependent mechanism. Specifically, a mouse paradigm that mimics binge alcohol drinking in humans produced a robust reduction in BDNF mRNA levels in the medial PFC (mPFC), which was associated with increased expression of several miRNAs including miR-30a-5p. We show that miR-30a-5p binds the 3' untranslated region of BDNF, and that overexpression of miR-30a-5p in the mPFC decreased BDNF expression. Importantly, overexpression of miR-30a-5p in the mPFC produced an escalation of alcohol intake and a preference over water. Conversely, inhibition of miR-30a-5p in the mPFC using a Locked Nucleic Acid sequence that targets miR-30a-5p restored BDNF levels and decreased excessive alcohol intake. Together, our results indicate that miR-30a-5p plays a key role in the transition from moderate to excessive alcohol intake.
Collapse
|
40
|
Chen M, Zhao Y, Yang H, Luan W, Song J, Cui D, Dong Y, Lai B, Ma L, Zheng P. Morphine disinhibits glutamatergic input to VTA dopamine neurons and promotes dopamine neuron excitation. eLife 2015. [PMID: 26208338 PMCID: PMC4538365 DOI: 10.7554/elife.09275] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
One reported mechanism for morphine activation of dopamine (DA) neurons of the ventral tegmental area (VTA) is the disinhibition model of VTA-DA neurons. Morphine inhibits GABA inhibitory neurons, which shifts the balance between inhibitory and excitatory input to VTA-DA neurons in favor of excitation and then leads to VTA-DA neuron excitation. However, it is not known whether morphine has an additional strengthening effect on excitatory input. Our results suggest that glutamatergic input to VTA-DA neurons is inhibited by GABAergic interneurons via GABAB receptors and that morphine promotes presynaptic glutamate release by removing this inhibition. We also studied the contribution of the morphine-induced disinhibitory effect on the presynaptic glutamate release to the overall excitatory effect of morphine on VTA-DA neurons and related behavior. Our results suggest that the disinhibitory action of morphine on presynaptic glutamate release might be the main mechanism for morphine-induced increase in VTA-DA neuron firing and related behaviors. DOI:http://dx.doi.org/10.7554/eLife.09275.001 Morphine is one of the most commonly used drugs for the treatment of severe pain. It is derived from opium, which is extracted from poppies, and binds to the same receptors in the brain as the body's own naturally produced painkillers. As well as providing pain relief, morphine can act directly on the brain's reward system to trigger a state of euphoria, and can therefore be highly addictive. One of the key components of the brain's reward circuit that morphine affects is called the ventral tegmental area (VTA). The activity of the VTA is regulated by the combined efforts of two groups of cells: excitatory glutamatergic neurons that increase VTA activity and inhibitory interneuronsthat reduce the activity of the VTA. Morphine inhibits the interneurons, thereby allowing the glutamatergic neurons to activate the VTA. But does morphine also strengthen this excitatory input directly? By examining the effects of morphine on individual VTA neurons, Chen et al. show that the drug does indeed enhance the activity of the glutamatergic neurons. However, it does so indirectly by inhibiting another group of interneurons that would otherwise silence the glutamatergic neurons. This effect of morphine is dependent on the drug acting on a specific receptor type on the interneurons. Chen et al. show that injecting a drug that blocks these receptors straight into the VTA of rats prevents morphine from increasing the animals' activity levels. It also prevents the animals from developing a preference for being in locations where they have previously received morphine. This suggests that morphine could primarily exert its pleasurable effects by preventing the glutamatergic neurons from being inhibited, and thus allowing them to activate the VTA neurons. DOI:http://dx.doi.org/10.7554/eLife.09275.002
Collapse
Affiliation(s)
- Ming Chen
- State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan Univeristy, Shanghai, China
| | - Yanfang Zhao
- State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan Univeristy, Shanghai, China
| | - Hualan Yang
- State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan Univeristy, Shanghai, China
| | - Wenjie Luan
- State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan Univeristy, Shanghai, China
| | - Jiaojiao Song
- State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan Univeristy, Shanghai, China
| | - Dongyang Cui
- State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan Univeristy, Shanghai, China
| | - Yi Dong
- State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan Univeristy, Shanghai, China
| | - Bin Lai
- State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan Univeristy, Shanghai, China
| | - Lan Ma
- State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan Univeristy, Shanghai, China
| | - Ping Zheng
- State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan Univeristy, Shanghai, China
| |
Collapse
|
41
|
KCNN Genes that Encode Small-Conductance Ca2+-Activated K+ Channels Influence Alcohol and Drug Addiction. Neuropsychopharmacology 2015; 40:1928-39. [PMID: 25662840 PMCID: PMC4839516 DOI: 10.1038/npp.2015.42] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 01/17/2015] [Accepted: 01/26/2015] [Indexed: 02/02/2023]
Abstract
Small-conductance Ca(2+)-activated K(+) (KCa2) channels control neuronal excitability and synaptic plasticity, and have been implicated in substance abuse. However, it is unknown if genes that encode KCa2 channels (KCNN1-3) influence alcohol and drug addiction. In the present study, an integrative functional genomics approach shows that genetic datasets for alcohol, nicotine, and illicit drugs contain the family of KCNN genes. Alcohol preference and dependence QTLs contain KCNN2 and KCNN3, and Kcnn3 transcript levels in the nucleus accumbens (NAc) of genetically diverse BXD strains of mice predicted voluntary alcohol consumption. Transcript levels of Kcnn3 in the NAc negatively correlated with alcohol intake levels in BXD strains, and alcohol dependence enhanced the strength of this association. Microinjections of the KCa2 channel inhibitor apamin into the NAc increased alcohol intake in control C57BL/6J mice, while spontaneous seizures developed in alcohol-dependent mice following apamin injection. Consistent with this finding, alcohol dependence enhanced the intrinsic excitability of medium spiny neurons in the NAc core and reduced the function and protein expression of KCa2 channels in the NAc. Altogether, these data implicate the family of KCNN genes in alcohol, nicotine, and drug addiction, and identify KCNN3 as a mediator of voluntary and excessive alcohol consumption. KCa2.3 channels represent a promising novel target in the pharmacogenetic treatment of alcohol and drug addiction.
Collapse
|
42
|
Hu W, Morris B, Carrasco A, Kroener S. Effects of acamprosate on attentional set-shifting and cellular function in the prefrontal cortex of chronic alcohol-exposed mice. Alcohol Clin Exp Res 2015; 39:953-61. [PMID: 25903298 PMCID: PMC10782929 DOI: 10.1111/acer.12722] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/05/2015] [Indexed: 12/01/2022]
Abstract
BACKGROUND The medial prefrontal cortex (mPFC) inhibits impulsive and compulsive behaviors that characterize drug abuse and dependence. Acamprosate is the leading medication approved for the maintenance of abstinence, shown to reduce craving and relapse in animal models and human alcoholics. Whether acamprosate can modulate executive functions that are impaired by chronic ethanol (EtOH) exposure is unknown. Here we explored the effects of acamprosate on an attentional set-shifting task and tested whether these behavioral effects are correlated with modulation of glutamatergic synaptic transmission and intrinsic excitability of mPFC neurons. METHODS We induced alcohol dependence in mice via chronic intermittent EtOH (CIE) exposure in vapor chambers and measured changes in alcohol consumption in a limited access 2-bottle choice paradigm. Impairments of executive function were assessed in an attentional set-shifting task. Acamprosate was applied subchronically for 2 days during withdrawal before the final behavioral test. Alcohol-induced changes in cellular function of layer 5/6 pyramidal neurons, and the potential modulation of these changes by acamprosate, were measured using patch clamp recordings in brain slices. RESULTS Chronic EtOH exposure impaired cognitive flexibility in the attentional set-shifting task. Acamprosate improved overall performance and reduced perseveration. Recordings of mPFC neurons showed that chronic EtOH exposure increased use-dependent presynaptic transmitter release and enhanced postsynaptic N-methyl-D-aspartate receptor function. Moreover, CIE treatment lowered input resistance, and decreased the threshold and the after hyperpolarization of action potentials, suggesting chronic EtOH exposure also impacted membrane excitability of mPFC neurons. However, acamprosate treatment did not reverse these EtOH-induced changes cellular function. CONCLUSIONS Acamprosate improved attentional control of EtOH exposed animals, but did not alter the concurrent changes in synaptic transmission or membrane excitability of mPFC neurons, indicating that these changes are not the pharmacological targets of acamprosate in the recovery of mPFC functions affected by chronic EtOH exposure.
Collapse
Affiliation(s)
- Wei Hu
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas
| | - Brett Morris
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas
| | - Angelique Carrasco
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas
| | - Sven Kroener
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas
| |
Collapse
|
43
|
Rau AR, Ariwodola OJ, Weiner JL. Postsynaptic adenosine A2A receptors modulate intrinsic excitability of pyramidal cells in the rat basolateral amygdala. Int J Neuropsychopharmacol 2015; 18:pyv017. [PMID: 25716780 PMCID: PMC4438553 DOI: 10.1093/ijnp/pyv017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The basolateral amygdala plays a critical role in the etiology of anxiety disorders and addiction. Pyramidal neurons, the primary output cells of this region, display increased firing following exposure to stressors, and it is thought that this increase in excitability contributes to stress responsivity and the expression of anxiety-like behaviors. However, much remains unknown about the underlying mechanisms that regulate the intrinsic excitability of basolateral amygdala pyramidal neurons. METHODS Ex vivo gramicidin perforated patch recordings were conducted in current clamp mode where hyper- and depolarizing current steps were applied to basolateral amygdala pyramidal neurons to assess the effects of adenosine A(2A) receptor modulation on intrinsic excitability. RESULTS Activation of adenosine A(2A) receptors with the selective A(2A) receptor agonist CGS-21680 significantly increased the firing rate of basolateral amygdala pyramidal neurons in rat amygdala brain slices, likely via inhibition of the slow afterhyperpolarization potential. Both of these A(2A) receptor-mediated effects were blocked by preapplication of a selective A(2A) receptor antagonist (ZM-241385) or by intra-pipette infusion of a protein kinase A inhibitor, suggesting a postsynaptic locus of A(2A) receptors on basolateral amygdala pyramidal neurons. Interestingly, bath application of the A(2A) receptor antagonist alone significantly attenuated basolateral amygdala pyramidal cell firing, consistent with a role for tonic adenosine in the regulation of the intrinsic excitability of these neurons. CONCLUSIONS Collectively, these data suggest that adenosine, via activation of A(2A) receptors, may directly facilitate basolateral amygdala pyramidal cell output, providing a possible balance for the recently described inhibitory effects of adenosine A1 receptor activation on glutamatergic excitation of basolateral amygdala pyramidal cells.
Collapse
Affiliation(s)
- Andrew R Rau
- Department of Physiology and Pharmacology, School of Medicine (Mr Rau, Mr Ariwodola, and Dr Weiner), Neuroscience Graduate Program, Graduate School of Arts and Sciences (Mr Rau), Wake Forest University, Winston-Salem, North Carolina
| | - Olusegun J Ariwodola
- Department of Physiology and Pharmacology, School of Medicine (Mr Rau, Mr Ariwodola, and Dr Weiner), Neuroscience Graduate Program, Graduate School of Arts and Sciences (Mr Rau), Wake Forest University, Winston-Salem, North Carolina
| | - Jeff L Weiner
- Department of Physiology and Pharmacology, School of Medicine (Mr Rau, Mr Ariwodola, and Dr Weiner), Neuroscience Graduate Program, Graduate School of Arts and Sciences (Mr Rau), Wake Forest University, Winston-Salem, North Carolina.
| |
Collapse
|
44
|
Yu N, Canavier CC. A Mathematical Model of a Midbrain Dopamine Neuron Identifies Two Slow Variables Likely Responsible for Bursts Evoked by SK Channel Antagonists and Terminated by Depolarization Block. JOURNAL OF MATHEMATICAL NEUROSCIENCE 2015; 5:5. [PMID: 25852980 PMCID: PMC4385104 DOI: 10.1186/s13408-015-0017-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 02/03/2015] [Indexed: 06/04/2023]
Abstract
Midbrain dopamine neurons exhibit a novel type of bursting that we call "inverted square wave bursting" when exposed to Ca(2+)-activated small conductance (SK) K(+) channel blockers in vitro. This type of bursting has three phases: hyperpolarized silence, spiking, and depolarization block. We find that two slow variables are required for this type of bursting, and we show that the three-dimensional bifurcation diagram for inverted square wave bursting is a folded surface with upper (depolarized) and lower (hyperpolarized) branches. The activation of the L-type Ca(2+) channel largely supports the separation between these branches. Spiking is initiated at a saddle node on an invariant circle bifurcation at the folded edge of the lower branch and the trajectory spirals around the unstable fixed points on the upper branch. Spiking is terminated at a supercritical Hopf bifurcation, but the trajectory remains on the upper branch until it hits a saddle node on the upper folded edge and drops to the lower branch. The two slow variables contribute as follows. A second, slow component of sodium channel inactivation is largely responsible for the initiation and termination of spiking. The slow activation of the ether-a-go-go-related (ERG) K(+) current is largely responsible for termination of the depolarized plateau. The mechanisms and slow processes identified herein may contribute to bursting as well as entry into and recovery from the depolarization block to different degrees in different subpopulations of dopamine neurons in vivo.
Collapse
Affiliation(s)
- Na Yu
- />Department of Cell Biology and Anatomy, Louisiana State University School of Medicine, New Orleans, LA 70112 USA
- />Department of Mathematics and Computer Science, Lawrence Technological University, 21000 West 10 Mile Road, Southfield, MI 48075 USA
| | - Carmen C. Canavier
- />Department of Cell Biology and Anatomy, Louisiana State University School of Medicine, New Orleans, LA 70112 USA
| |
Collapse
|
45
|
Zhou M, Luo P, Lu Y, Li CJ, Wang DS, Lu Q, Xu XL, He Z, Guo LJ. Imbalance of HCN1 and HCN2 expression in hippocampal CA1 area impairs spatial learning and memory in rats with chronic morphine exposure. Prog Neuropsychopharmacol Biol Psychiatry 2015; 56:207-14. [PMID: 25301101 DOI: 10.1016/j.pnpbp.2014.09.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/13/2014] [Accepted: 09/29/2014] [Indexed: 12/12/2022]
Abstract
The hyperpolarization-activated cyclic-nucleotide-gated non-selective cation (HCN) channels play a vital role in the neurological basis underlying nervous system diseases. However, the role of HCN channels in drug addiction is not fully understood. In the present study, we investigated the expression of HCN1 and HCN2 subunits in hippocampal CA1 and the potential molecular mechanisms underlying the modulation of HCN channels in rats with chronic morphine exposure with approaches of electrophysiology, water maze, and Western blotting. We found that chronic morphine exposure (5 mg/kg, sc, for 7 days) caused an inhibition of long-term potentiation (LTP) and impairment of spatial learning and memory, which is associated with a decrease in HCN1, and an increase in HCN2 on cell membrane of hippocampal CA1 area. Additional experiments showed that the imbalance of cell membrane HCN1 and HCN2 expression under chronic morphine exposure was related to an increase in expression of TPR containing Rab8b interacting protein (TRIP8b) (1a-4) and TRIP8b (1b-2), and phosphorylation of protein kinase A (PKA) and adaptor protein 2 μ2 (AP2 μ2). Our results demonstrate the novel information that drug addiction-induced impairment of learning and memory is involved in the imbalance of HCN1 and HCN2 subunits, which is mediated by activation of TRIP8b (1a-4), TRIP8b (1b-2), PKA and AP2 μ2.
Collapse
Affiliation(s)
- Mei Zhou
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pan Luo
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yun Lu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chang-jun Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dian-shi Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qing Lu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xu-lin Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhi He
- Department of Neuropsychopharmacology, Medical School of China Three Gorges University, Yichang, 443002, China.
| | - Lian-jun Guo
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
46
|
Cui M, Qin G, Yu K, Bowers MS, Zhang M. Targeting the Small- and Intermediate-Conductance Ca-Activated Potassium Channels: The Drug-Binding Pocket at the Channel/Calmodulin Interface. Neurosignals 2014; 22:65-78. [PMID: 25300231 DOI: 10.1159/000367896] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/26/2014] [Indexed: 11/19/2022] Open
Abstract
The small- and intermediate-conductance Ca(2+)-activated potassium (SK/IK) channels play important roles in the regulation of excitable cells in both the central nervous and cardiovascular systems. Evidence from animal models has implicated SK/IK channels in neurological conditions such as ataxia and alcohol use disorders. Further, genome-wide association studies have suggested that cardiovascular abnormalities such as arrhythmias and hypertension are associated with single nucleotide polymorphisms that occur within the genes encoding the SK/IK channels. The Ca(2+) sensitivity of the SK/IK channels stems from a constitutively bound Ca(2+)-binding protein: calmodulin. Small-molecule positive modulators of SK/IK channels have been developed over the past decade, and recent structural studies have revealed that the binding pocket of these positive modulators is located at the interface between the channel and calmodulin. SK/IK channel positive modulators can potentiate channel activity by enhancing the coupling between Ca(2+) sensing via calmodulin and mechanical opening of the channel. Here, we review binding pocket studies that have provided structural insight into the mechanism of action for SK/IK channel positive modulators. These studies lay the foundation for structure-based drug discovery efforts that can identify novel SK/IK channel positive modulators.
Collapse
Affiliation(s)
- Meng Cui
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Va., USA
| | | | | | | | | |
Collapse
|
47
|
Excitatory drive onto dopaminergic neurons in the rostral linear nucleus is enhanced by norepinephrine in an α1 adrenergic receptor-dependent manner. Neuropharmacology 2014; 86:116-24. [PMID: 25018040 DOI: 10.1016/j.neuropharm.2014.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 06/09/2014] [Accepted: 07/01/2014] [Indexed: 12/19/2022]
Abstract
Dopaminergic innervation of the extended amygdala regulates anxiety-like behavior and stress responsivity. A portion of this dopamine input arises from dopamine neurons located in the ventral lateral periaqueductal gray (vlPAG) and rostral (RLi) and caudal linear nuclei of the raphe (CLi). These neurons receive substantial norepinephrine input, which may prime them for involvement in stress responses. Using a mouse line that expresses eGFP under control of the tyrosine hydroxylase promoter, we explored the physiology and responsiveness to norepinephrine of these neurons. We find that RLi dopamine neurons differ from VTA dopamine neurons with respect to membrane resistance, capacitance and the hyperpolarization-activated current, Ih. Further, we found that norepinephrine increased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) on RLi dopamine neurons. This effect was mediated through the α1 adrenergic receptor (AR), as the actions of norepinephrine were mimicked by the α1-AR agonist methoxamine and blocked by the α1-AR antagonist prazosin. This action of norepinephrine on sEPSCs was transient, as it did not persist in the presence of prazosin. Methoxamine also increased the frequency of miniature EPSCs, indicating that the α1-AR action on glutamatergic transmission likely has a presynaptic mechanism. There was also a modest decrease in sEPSC frequency with the application of the α2-AR agonist UK-14,304. These studies illustrate a potential mechanism through which norepinephrine could recruit the activity of this population of dopaminergic neurons.
Collapse
|
48
|
Glutathione and redox signaling in substance abuse. Biomed Pharmacother 2014; 68:799-807. [PMID: 25027386 DOI: 10.1016/j.biopha.2014.06.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 06/12/2014] [Indexed: 01/04/2023] Open
Abstract
Throughout the last couple decades, the cause and consequences of substance abuse has expanded to identify the underlying neurobiological signaling mechanisms associated with addictive behavior. Chronic use of drugs, such as cocaine, methamphetamine and alcohol leads to the formation of oxidative or nitrosative stress (ROS/RNS) and changes in glutathione and redox homeostasis. Of importance, redox-sensitive post-translational modifications on cysteine residues, such as S-glutathionylation and S-nitrosylation could impact on the structure and function of addiction related signaling proteins. In this commentary, we evaluate the role of glutathione and redox signaling in cocaine-, methamphetamine- and alcohol addiction and conclude by discussing the possibility of targeting redox pathways for the therapeutic intervention of these substance abuse disorders.
Collapse
|
49
|
Ferris MJ, Milenkovic M, Liu S, Mielnik CA, Beerepoot P, John CE, España RA, Sotnikova TD, Gainetdinov RR, Borgland SL, Jones SR, Ramsey AJ. Sustained N-methyl-d-aspartate receptor hypofunction remodels the dopamine system and impairs phasic signaling. Eur J Neurosci 2014; 40:2255-63. [PMID: 24754704 DOI: 10.1111/ejn.12594] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/23/2014] [Accepted: 03/21/2014] [Indexed: 12/13/2022]
Abstract
Chronic N-methyl-d-aspartate receptor (NMDAR) hypofunction has been proposed as a contributing factor to symptoms of schizophrenia. However, it is unclear how sustained NMDAR hypofunction throughout development affects other neurotransmitter systems that have been implicated in the disease. Dopamine neuron biochemistry and activity were examined to determine whether sustained NMDAR hypofunction causes a state of hyperdopaminergia. We report that a global, genetic reduction in NMDARs led to a remodeling of dopamine neurons, substantially affecting two key regulators of dopamine homeostasis, i.e., tyrosine hydroxylase and the dopamine transporter. In NR1 knockdown mice, dopamine synthesis and release were attenuated, and dopamine clearance was increased. Although these changes would have the effect of reducing dopamine transmission, we demonstrated that a state of hyperdopaminergia existed in these mice because dopamine D2 autoreceptors were desensitized. In support of this conclusion, NR1 knockdown dopamine neurons have higher tonic firing rates. Although the tonic firing rates are higher, phasic signaling is impaired, and dopamine overflow cannot be achieved with exogenous high-frequency stimulation that models phasic firing. Through the examination of several parameters of dopamine neurotransmission, we provide evidence that chronic NMDAR hypofunction leads to a state of elevated synaptic dopamine. Compensatory mechanisms to attenuate hyperdopaminergia also impact the ability to generate dopamine surges through phasic firing.
Collapse
Affiliation(s)
- Mark J Ferris
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Fakira AK, Portugal GS, Carusillo B, Melyan Z, Morón JA. Increased small conductance calcium-activated potassium type 2 channel-mediated negative feedback on N-methyl-D-aspartate receptors impairs synaptic plasticity following context-dependent sensitization to morphine. Biol Psychiatry 2014; 75:105-14. [PMID: 23735878 PMCID: PMC3992971 DOI: 10.1016/j.biopsych.2013.04.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 04/17/2013] [Accepted: 04/29/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND Hippocampal long-term potentiation (LTP) is impaired following repeated morphine administration paired with a novel context. This procedure produces locomotor sensitization that can be abolished by blocking calcium (Ca(2+))-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) in the hippocampus. However, the mechanisms underlying LTP impairment remain unclear. Here, we investigate the role of N-methyl-D-aspartate receptors (NMDARs), AMPARs, and small conductance Ca(2+)-activated potassium type 2 (SK2) channels in LTP induction after context-dependent sensitization to morphine. METHODS Mice were treated with saline or escalating doses of morphine (5, 8, 10, and 15 mg/kg) every 12 hours in a locomotor activity chamber and a challenge dose of 5 mg/kg morphine was given 1 week later. After the challenge, the hippocampi were removed to assay phosphatase 2A (PP2A) activity, NMDAR, and SK2 channel synaptic expression or to perform electrophysiological recordings. RESULTS Impaired hippocampal LTP, which accompanied morphine-induced context-dependent sensitization, could not be restored by blocking Ca(2+)-permeable AMPARs. Context-dependent sensitization to morphine altered hippocampal NMDAR subunit composition and enhanced the SK2 channel-mediated negative feedback on NMDAR. Increased PP2A activity observed following context-dependent sensitization suggests that the potentiated SK2 channel effect on NMDAR was mediated by increased SK2 sensitivity to Ca(2+). Finally, inhibition of SK2 channel or PP2A activity restored LTP. CONCLUSIONS Our studies demonstrate that the SK2 channel-NMDAR feedback loop plays a role in opiate-induced impairment of hippocampal plasticity and that the positive modulation of SK2 channels occurs via increases in PP2A activity. This provides further evidence that small conductance Ca(2+)-activated potassium channels play a role in drug-induced plasticity.
Collapse
Affiliation(s)
- Amanda K Fakira
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University Medical Center, New York, New York
| | - George S Portugal
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University Medical Center, New York, New York
| | - Brianna Carusillo
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University Medical Center, New York, New York
| | - Zare Melyan
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University Medical Center, New York, New York
| | - Jose A Morón
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University Medical Center, New York, New York.
| |
Collapse
|