1
|
Samanta D, Aungaroon G, Albert GW, Karakas C, Joshi CN, Singh RK, Oluigbo C, Perry MS, Naik S, Reeders PC, Jain P, Abel TJ, Pati S, Shaikhouni A, Haneef Z. Advancing thalamic neuromodulation in epilepsy: Bridging adult data to pediatric care. Epilepsy Res 2024; 205:107407. [PMID: 38996686 DOI: 10.1016/j.eplepsyres.2024.107407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Thalamic neuromodulation has emerged as a treatment option for drug-resistant epilepsy (DRE) with widespread and/or undefined epileptogenic networks. While deep brain stimulation (DBS) and responsive neurostimulation (RNS) depth electrodes offer means for electrical stimulation of the thalamus in adult patients with DRE, the application of thalamic neuromodulation in pediatric epilepsy remains limited. To address this gap, the Neuromodulation Expert Collaborative was established within the Pediatric Epilepsy Research Consortium (PERC) Epilepsy Surgery Special Interest Group. In this expert review, existing evidence and recommendations for thalamic neuromodulation modalities using DBS and RNS are summarized, with a focus on the anterior (ANT), centromedian(CMN), and pulvinar nuclei of the thalamus. To-date, only DBS of the ANT is FDA approved for treatment of DRE in adult patients based on the results of the pivotal SANTE (Stimulation of the Anterior Nucleus of Thalamus for Epilepsy) study. Evidence for other thalamic neurmodulation indications and targets is less abundant. Despite the lack of evidence, positive responses to thalamic stimulation in adults with DRE have led to its off-label use in pediatric patients. Although caution is warranted due to differences between pediatric and adult epilepsy, the efficacy and safety of pediatric neuromodulation appear comparable to that in adults. Indeed, CMN stimulation is increasingly accepted for generalized and diffuse onset epilepsies, with recent completion of one randomized trial. There is also growing interest in using pulvinar stimulation for temporal plus and posterior quadrant epilepsies with one ongoing clinical trial in Europe. The future of thalamic neuromodulation holds promise for revolutionizing the treatment landscape of childhood epilepsy. Ongoing research, technological advancements, and collaborative efforts are poised to refine and improve thalamic neuromodulation strategies, ultimately enhancing the quality of life for children with DRE.
Collapse
Affiliation(s)
- Debopam Samanta
- Division of Child Neurology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Gewalin Aungaroon
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Gregory W Albert
- Department of Neurosurgery, University of Arkansas for Medical Sciences, USA
| | - Cemal Karakas
- Division of Pediatric Neurology, Department of Neurology, Norton Children's Hospital, University of Louisville, Louisville, KY 40202, USA
| | - Charuta N Joshi
- Division of Pediatric Neurology, Childrens Medical Center Dallas, UTSW, USA
| | - Rani K Singh
- Department of Pediatrics, Atrium Health-Levine Children's; Wake Forest University School of Medicine, USA
| | - Chima Oluigbo
- Department of Neurosurgery, Children's National Hospital, Washington, DC, USA
| | - M Scott Perry
- Jane and John Justin Institute for Mind Health, Cook Children's Medical Center, Ft Worth, TX, USA
| | - Sunil Naik
- Department of Pediatrics and Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Puck C Reeders
- Brain Institute, Nicklaus Children's Hospital, Miami, FL, USA
| | - Puneet Jain
- Epilepsy Program, Division of Neurology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Taylor J Abel
- Department of Neurological Surgery, University of Pittsburgh School of Medicine and Department of Bioengineering, University of Pittsburgh
| | - Sandipan Pati
- The University of Texas Health Science Center at Houston, USA
| | - Ammar Shaikhouni
- Department of Pediatric Neurosurgery, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Zulfi Haneef
- Neurology Care Line, VA Medical Center, Houston, TX 77030, USA; Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
2
|
Shibata T, Tsuchiya H, Akiyama M, Akiyama T, Kobayashi K. Modulation index predicts the effect of ethosuximide on developmental and epileptic encephalopathy with spike-and-wave activation in sleep. Epilepsy Res 2024; 202:107359. [PMID: 38582072 DOI: 10.1016/j.eplepsyres.2024.107359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
PURPOSE In developmental and epileptic encephalopathy with spike-and-wave activation in sleep (DEE-SWAS), the thalamocortical network is suggested to play an important role in the pathophysiology of the progression from focal epilepsy to DEE-SWAS. Ethosuximide (ESM) exerts effects by blocking T-type calcium channels in thalamic neurons. With the thalamocortical network in mind, we studied the prediction of ESM effectiveness in DEE-SWAS treatment using phase-amplitude coupling (PAC) analysis. METHODS We retrospectively enrolled children with DEE-SWAS who had an electroencephalogram (EEG) recorded between January 2009 and September 2022 and were prescribed ESM at Okayama University Hospital. Only patients whose EEG showed continuous spike-and-wave during sleep were included. We extracted 5-min non-rapid eye movement sleep stage N2 segments from EEG recorded before starting ESM. We calculated the modulation index (MI) as the measure of PAC in pair combination comprising one of two fast oscillation types (gamma, 40-80 Hz; ripples, 80-150 Hz) and one of five slow-wave bands (delta, 0.5-1, 1-2, 2-3, and 3-4 Hz; theta, 4-8 Hz), and compared it between ESM responders and non-responders. RESULTS We identified 20 children with a diagnosis of DEE-SWAS who took ESM. Fifteen were ESM responders. Regarding gamma oscillations, significant differences were seen only in MI with 0.5-1 Hz slow waves in the frontal pole and occipital regions. Regarding ripples, ESM responders had significantly higher MI in coupling with all slow waves in the frontal pole region, 0.5-1, 3-4, and 4-8 Hz slow waves in the frontal region, 3-4 Hz slow waves in the parietal region, 0.5-1, 2-3, 3-4, and 4-8 Hz slow waves in the occipital region, and 3-4 Hz slow waves in the anterior-temporal region. SIGNIFICANCE High MI in a wider area of the brain may represent the epileptic network mediated by the thalamus in DEE-SWAS and may be a predictor of ESM effectiveness.
Collapse
Affiliation(s)
- Takashi Shibata
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan.
| | - Hiroki Tsuchiya
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan
| | - Mari Akiyama
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan
| | - Tomoyuki Akiyama
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan
| | - Katsuhiro Kobayashi
- Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital, Okayama, Japan
| |
Collapse
|
3
|
Venkatesh P, Wolfe C, Lega B, Illustrations by Corbyn Beach Corbyn.Beach@UTSouthwestern.edu. Neuromodulation of the anterior thalamus: Current approaches and opportunities for the future. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100109. [PMID: 38020810 PMCID: PMC10663132 DOI: 10.1016/j.crneur.2023.100109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 12/01/2023] Open
Abstract
The role of thalamocortical circuits in memory has driven a recent burst of scholarship, especially in animal models. Investigating this circuitry in humans is more challenging. And yet, the development of new recording and stimulation technologies deployed for clinical indications has created novel opportunities for data collection to elucidate the cognitive roles of thalamic structures. These technologies include stereoelectroencephalography (SEEG), deep brain stimulation (DBS), and responsive neurostimulation (RNS), all of which have been applied to memory-related thalamic regions, specifically for seizure localization and treatment. This review seeks to summarize the existing applications of neuromodulation of the anterior thalamic nuclei (ANT) and highlight several devices and their capabilities that can allow cognitive researchers to design experiments to assay its functionality. Our goal is to introduce to investigators, who may not be familiar with these clinical devices, the capabilities, and limitations of these tools for understanding the neurophysiology of the ANT as it pertains to memory and other behaviors. We also briefly cover the targeting of other thalamic regions including the centromedian (CM) nucleus, dorsomedial (DM) nucleus, and pulvinar, with associated potential avenues of experimentation.
Collapse
Affiliation(s)
- Pooja Venkatesh
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Cody Wolfe
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Bradley Lega
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | | |
Collapse
|
4
|
Krishna V, Mindel J, Sammartino F, Block C, Dwivedi AK, Van Gompel JJ, Fountain N, Fisher R. A phase 1 open-label trial evaluating focused ultrasound unilateral anterior thalamotomy for focal onset epilepsy. Epilepsia 2023; 64:831-842. [PMID: 36745000 DOI: 10.1111/epi.17535] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 01/16/2023] [Accepted: 02/03/2023] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Focused ultrasound ablation (FUSA) is an emerging treatment for neurological and psychiatric diseases. We describe the initial experience from a pilot, open-label, single-center clinical trial of unilateral anterior nucleus of the thalamus (ANT) FUSA in patients with treatment-refractory epilepsy. METHODS Two adult subjects with treatment-refractory, focal onset epilepsy were recruited. The subjects received ANT FUSA using the Exablate Neuro (Insightec) system. We determined the safety and feasibility (primary outcomes), and changes in seizure frequency (secondary outcome) at 3, 6, and 12 months. Safety was assessed by the absence of side effects, that is, new onset neurological deficits or performance deterioration on neuropsychological testing. Feasibility was defined as the ability to create a lesion within the anterior nucleus. The monthly seizure frequency was compared between baseline and postthalamotomy. RESULTS The patients tolerated the procedure well, without neurological deficits or serious adverse events. One patient experienced a decline in verbal fluency, attention/working memory, and immediate verbal memory. Seizure frequency reduced significantly in both patients; one patient was seizure-free at 12 months, and in the second patient, the frequency reduced from 90-100 seizures per month to 3-6 seizures per month. SIGNIFICANCE This is the first known clinical trial to assess the safety, feasibility, and preliminary efficacy of ANT FUSA in adult patients with treatment-refractory focal onset epilepsy.
Collapse
Affiliation(s)
- Vibhor Krishna
- Department of Neurosurgery, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jesse Mindel
- Department of Neurology, Ohio State University, Columbus, Ohio, USA
| | - Francesco Sammartino
- Department of Physical Medicine and Rehabilitation, Ohio State University, Columbus, Ohio, USA
| | - Cady Block
- Department of Neurology, Emory University, Atlanta, Georgia, USA
| | - Alok Kumar Dwivedi
- Division of Biostatistics and Epidemiology, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Jamie J Van Gompel
- Department of Neurosurgery and Otorhinolaryngology, Mayo Clinic, Rochester, Minnesota, USA
| | - Nathan Fountain
- Department of Neurology, University of Virginia, Charlottesville, Virginia, USA
| | - Robert Fisher
- Department of Neurology, Stanford University, Stanford, California, USA
| |
Collapse
|
5
|
Warsi NM, Yan H, Wong SM, Yau I, Breitbart S, Go C, Gorodetsky C, Fasano A, Kalia SK, Rutka JT, Vaughan K, Ibrahim GM. Vagus Nerve Stimulation Modulates Phase-Amplitude Coupling in Thalamic Local Field Potentials. Neuromodulation 2022; 26:601-606. [PMID: 35840521 DOI: 10.1016/j.neurom.2022.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/26/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The antiseizure effects of vagus nerve stimulation (VNS) are thought to be mediated by the modulation of afferent thalamocortical circuitry. Cross-frequency phase-amplitude coupling (PAC) is a mechanism of hierarchical network coordination across multiple spatiotemporal scales. In this study, we leverage local field potential (LFP) recordings from the centromedian (CM) (n = 3) and anterior (ATN) (n = 2) nuclei in five patients with tandem thalamic deep brain stimulation and VNS to study neurophysiological changes in the thalamus in response to VNS. MATERIALS AND METHODS Bipolar LFP data were recorded from contact pairs spanning target nuclei in VNS "on" and "off" states. RESULTS Active VNS was associated with increased PAC between theta, alpha, and beta phase and gamma amplitude in CM (q < 0.05). Within the ATN, PAC changes also were observed, although these were less robust. In both nuclei, active VNS also modulated interhemispheric bithalamic functional connectivity. CONCLUSIONS We report that VNS is associated with enhanced PAC and coordinated interhemispheric interactions within and between thalamic nuclei, respectively. These findings advance understanding of putative neurophysiological effects of acute VNS and contextualize previous animal and human studies showing distributed cortical synchronization after VNS.
Collapse
Affiliation(s)
- Nebras M Warsi
- Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Han Yan
- Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada; Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Simeon M Wong
- Department of Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ivanna Yau
- Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sara Breitbart
- Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Cristina Go
- Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada; Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Suneil K Kalia
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - James T Rutka
- Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kerry Vaughan
- Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - George M Ibrahim
- Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Warsi NM, Yan H, Suresh H, Wong SM, Arski ON, Gorodetsky C, Zhang K, Gouveia FV, Ibrahim GM. The anterior and centromedian thalamus: anatomy, function, and dysfunction in epilepsy. Epilepsy Res 2022; 182:106913. [DOI: 10.1016/j.eplepsyres.2022.106913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/07/2022] [Accepted: 03/21/2022] [Indexed: 01/21/2023]
|
7
|
Tenney JR, Williamson BJ, Kadis DS. Cross-Frequency Coupling in Childhood Absence Epilepsy. Brain Connect 2021; 12:489-496. [PMID: 34405685 DOI: 10.1089/brain.2021.0119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objective: Absence seizures are the prototypic primarily generalized seizures, but there is incomplete understanding regarding their generation and maintenance. A core network for absence seizures has been defined, including focal cortical and thalamic regions that have frequency-dependent interactions. The purpose of this study was to investigate within-frequency coupling and cross-frequency coupling (CFC) during human absence seizures, to identify key regions (hubs) within the absence network that contribute to propagation and maintenance. Methods: Thirteen children with new-onset and untreated childhood absence epilepsy had over 60 typical absence seizures during both electroencephalography-functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) recordings. The spatial map of the ictal network was defined using fMRI and used as prior information for MEG connectivity. A multilayer network approach was used to investigate within-frequency coupling and CFC for canonical frequency bands. A rigorous null-modeling approach was used to determine connections outside the noise floor. Results: Strong coupling between beta and gamma frequencies, within the left frontal cortex, and between the left frontal and right parietal regions was observed. There was also strong connectivity between left frontal and right parietal nodes within the gamma band. Multilayer versatility analysis identified a cluster of network hubs in the left frontal region. Interpretation: Cortical regions commonly identified as being critical for absence seizure generation (frontal cortex, precuneus) have strong CFC and within-frequency coupling between beta and gamma bands. As nonpharmacologic treatments, such as neuromodulation, become available for generalized epilepsies, detailed mechanistic understanding of how "diffuse" seizures are generated and maintained will be necessary to provide optimal outcomes.
Collapse
Affiliation(s)
- Jeffrey R Tenney
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Brady J Williamson
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Darren S Kadis
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Li Z, Bai X, Hu R, Li X. Measuring Phase-Amplitude Coupling Based on the Jensen-Shannon Divergence and Correlation Matrix. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1375-1385. [PMID: 34236967 DOI: 10.1109/tnsre.2021.3095510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Phase-amplitude coupling (PAC) measures the relationship between the phase of low-frequency oscillations (LFO) and the amplitude of high-frequency oscillations (HFO). It plays an important functional role in neural information processing and cognition. Thus, we propose a novel method based on the Jensen-Shannon (JS) divergence and correlation matrix. The method takes the amplitude distributions of the HFO located in the corresponding phase bins of the LFO as multichannel inputs to construct a correlation matrix, where the elements are calculated based on the JS divergence between pairs of amplitude distributions. Then, the omega complexity extracted from the correlation matrix is used to estimate the PAC strength. The simulation results demonstrate that the proposed method can effectively reflect the PAC strength and slightly vary with the data length. Moreover, it outperforms five frequently used algorithms in the performance against additive white Gaussian noise and spike noise and the ability of detecting PAC in wide frequency ranges. To validate our proposed method with real data, it was applied to analyze the local field potential recorded from the dorsomedial striatum in a male Sprague-Dawley rat. It can replicate previous results obtained with other PAC metrics. In conclusion, these results suggest that our proposed method is a powerful tool for measuring the PAC between neural oscillations.
Collapse
|
9
|
Sweeney-Reed CM, Buentjen L, Voges J, Schmitt FC, Zaehle T, Kam JWY, Kaufmann J, Heinze HJ, Hinrichs H, Knight RT, Rugg MD. The role of the anterior nuclei of the thalamus in human memory processing. Neurosci Biobehav Rev 2021; 126:146-158. [PMID: 33737103 DOI: 10.1016/j.neubiorev.2021.02.046] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 12/13/2022]
Abstract
Extensive neuroanatomical connectivity between the anterior thalamic nuclei (ATN) and hippocampus and neocortex renders them well-placed for a role in memory processing, and animal, lesion, and neuroimaging studies support such a notion. The deep location and small size of the ATN have precluded their real-time electrophysiological investigation during human memory processing. However, ATN electrophysiological recordings from patients receiving electrodes implanted for deep brain stimulation for pharmacoresistant focal epilepsy have enabled high temporal resolution study of ATN activity. Theta frequency synchronization of ATN and neocortical oscillations during successful memory encoding, enhanced phase alignment, and coupling between ATN local gamma frequency activity and frontal neocortical and ATN theta oscillations provide evidence of an active role for the ATN in memory encoding, potentially integrating information from widespread neocortical sources. Greater coupling of a broader gamma frequency range with theta oscillations at rest than during memory encoding provides additional support for the hypothesis that the ATN play a role in selecting local, task-relevant high frequency activity associated with particular features of a memory trace.
Collapse
Affiliation(s)
- Catherine M Sweeney-Reed
- Neurocybernetics and Rehabilitation, Dept. of Neurology, Otto-von-Guericke University Magdeburg, Leipziger Straße 44, 39120, Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany.
| | - Lars Buentjen
- Dept. of Stereotactic Neurosurgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Jürgen Voges
- Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany; Dept. of Stereotactic Neurosurgery, Otto-von-Guericke University, Magdeburg, Germany
| | | | - Tino Zaehle
- Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany; Dept. of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Julia W Y Kam
- Department of Psychology, University of Calgary, Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Canada; Helen Wills Neuroscience Institute, University of California - Berkeley, Berkeley, CA, USA
| | - Jörn Kaufmann
- Dept. of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Hans-Jochen Heinze
- Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany; Dept. of Neurology, Otto-von-Guericke University, Magdeburg, Germany; Dept. of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Hermann Hinrichs
- Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany; Dept. of Neurology, Otto-von-Guericke University, Magdeburg, Germany; Dept. of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California - Berkeley, Berkeley, CA, USA; Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| | - Michael D Rugg
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas, Dallas, TX, USA
| |
Collapse
|