1
|
Ma Z, Chawla S, Lan X, Zhou E, Mulet-Sierra A, Kunze M, Sommerfeldt M, Adesida AB. Functional heterogeneity of meniscal fibrochondrocytes and microtissue models is dependent on modality of fibrochondrocyte isolation. Cell Prolif 2025; 58:e13735. [PMID: 39377189 DOI: 10.1111/cpr.13735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/13/2024] [Accepted: 08/05/2024] [Indexed: 10/09/2024] Open
Abstract
Collagenase digestion (d) and cellular outgrowth (og) are the current modalities of meniscus fibrochondrocytes (MFC) isolation for bioengineering and mechanobiology-related studies. However, the impact of these modalities on study outcomes is unknown. Here, we show that og- and d-isolated MFC have distinct proliferative capacities, transcriptomic profiles via RNA sequencing (RNAseq), extracellular matrix (ECM)-forming, and migratory capacities. Our data indicate that microtissue pellet models developed from og-isolated MFC display a contractile phenotype with higher expressions of alpha-smooth muscle actin (ACTA2) and transgelin (TAGLN) and are mechanically stiffer than their counterparts from d-MFC. Moreover, we introduce a novel method of MFC isolation designated digestion-after-outgrowth (dog). The transcriptomic profile of dog-MFC is distinct from d- and og-MFC, including a higher expression of mechanosensing caveolae-associated caveolin-1 (CAV1). Additionally, dog-MFC were superior chondrogenically and generated larger-size microtissue pellet models containing a higher frequency of smaller collagen fibre diameters. Thus, we demonstrate that the modalities of MFC isolation influence the downstream outcomes of bioengineering and mechanobiology-related studies.
Collapse
Affiliation(s)
- Zhiyao Ma
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Shikha Chawla
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Xiaoyi Lan
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Eva Zhou
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Aillette Mulet-Sierra
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Melanie Kunze
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Mark Sommerfeldt
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Adetola B Adesida
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Department of Biomedical Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Stenz L, Carré JL, Luthi F, Vuistiner P, Burrus C, Paoloni-Giacobino A, Léger B. Genome-Wide Epigenomic Analyses in Patients With Nociceptive and Neuropathic Chronic Pain Subtypes Reveals Alterations in Methylation of Genes Involved in the Neuro-Musculoskeletal System. THE JOURNAL OF PAIN 2022; 23:326-336. [PMID: 34547430 DOI: 10.1016/j.jpain.2021.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/25/2021] [Accepted: 09/11/2021] [Indexed: 02/06/2023]
Abstract
Nociceptive pain involves the activation of nociceptors without damage to the nervous system, whereas neuropathic pain is related to an alteration in the central or peripheral nervous system. Chronic pain itself and the transition from acute to chronic pain may be epigenetically controlled. In this cross-sectional study, a genome-wide DNA methylation analysis was performed using the blood DNA reduced representation bisulfite sequencing (RRBS) technique. Three prospective cohorts including 20 healthy controls (CTL), 18 patients with chronic nociceptive pain (NOCI), and 19 patients with chronic neuropathic pain (NEURO) were compared at both the single CpG and differentially methylated region (DMR) levels. Genes with DMRs were seen in the NOCI and NEURO groups belonged to the neuro-musculoskeletal system and differed between NOCI and NEURO patients. Our results demonstrate that the epigenetic disturbances accompanying nociceptive pain are very different from those accompanying neuropathic pain. In the former, among others, the epigenetic disturbance observed would affect the function of the opioid analgesic system, whereas in the latter it would affect that of the GABAergic reward system. This study presents biological findings that help to characterize NOCI- and NEURO-affected pathways and opens the possibility of developing epigenetic diagnostic assays. PERSPECTIVE: Our results help to explain the various biological pathways modifications underlying the different clinical manifestations of nociceptive and neuropathic pains. Furthermore, the new targets identified in our study might help to discover more specific treatments for nociceptive or neuropathic pains.
Collapse
Affiliation(s)
- Ludwig Stenz
- Department of Genetic Medicine and Development, Geneva University, Medicine Faculty, Geneva, Switzerland
| | - Joane Le Carré
- Institute for Research in Rehabilitation, Clinique romande de réadaptation, Sion, Switzerland; Department of Medical Research, Clinique romande de réadaptation, Sion, Switzerland
| | - François Luthi
- Institute for Research in Rehabilitation, Clinique romande de réadaptation, Sion, Switzerland; Department of Musculoskeletal Rehabilitation, Clinique romande de réadaptation, Sion, Switzerland; Department of Physical Medicine and Rehabilitation, Orthopaedic Hospital, Lausanne University Hospital, Lausanne, Switzerland
| | - Philippe Vuistiner
- Institute for Research in Rehabilitation, Clinique romande de réadaptation, Sion, Switzerland; Department of Medical Research, Clinique romande de réadaptation, Sion, Switzerland
| | - Cyrille Burrus
- Institute for Research in Rehabilitation, Clinique romande de réadaptation, Sion, Switzerland; Department of Musculoskeletal Rehabilitation, Clinique romande de réadaptation, Sion, Switzerland
| | - Ariane Paoloni-Giacobino
- Department of Genetic Medicine and Development, Geneva University, Medicine Faculty, Geneva, Switzerland
| | - Bertrand Léger
- Institute for Research in Rehabilitation, Clinique romande de réadaptation, Sion, Switzerland; Department of Medical Research, Clinique romande de réadaptation, Sion, Switzerland.
| |
Collapse
|
3
|
Drummond HA. What Evolutionary Evidence Implies About the Identity of the Mechanoelectrical Couplers in Vascular Smooth Muscle Cells. Physiology (Bethesda) 2021; 36:292-306. [PMID: 34431420 DOI: 10.1152/physiol.00008.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Loss of pressure-induced vasoconstriction increases susceptibility to renal and cerebral vascular injury. Favored paradigms underlying initiation of the response include transient receptor potential channels coupled to G protein-coupled receptors or integrins as transducers. Degenerin channels may also mediate the response. This review addresses the 1) evolutionary role of these molecules in mechanosensing, 2) limitations to identifying mechanosensitive molecules, and 3) paradigm shifting molecular model for a VSMC mechanosensor.
Collapse
Affiliation(s)
- Heather A Drummond
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
4
|
Ruan N, Tribble J, Peterson AM, Jiang Q, Wang JQ, Chu XP. Acid-Sensing Ion Channels and Mechanosensation. Int J Mol Sci 2021; 22:ijms22094810. [PMID: 34062742 PMCID: PMC8125064 DOI: 10.3390/ijms22094810] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/16/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are mainly proton-gated cation channels that are activated by pH drops and nonproton ligands. They are part of the degenerin/epithelial sodium channel superfamily due to their sodium permeability. Predominantly expressed in the central nervous system, ASICs are involved in synaptic plasticity, learning/memory, and fear conditioning. These channels have also been implicated in multiple disease conditions, including ischemic brain injury, multiple sclerosis, Alzheimer’s disease, and drug addiction. Recent research has illustrated the involvement of ASICs in mechanosensation. Mechanosensation is a form of signal transduction in which mechanical forces are converted into neuronal signals. Specific mechanosensitive functions have been elucidated in functional ASIC1a, ASIC1b, ASIC2a, and ASIC3. The implications of mechanosensation in ASICs indicate their subsequent involvement in functions such as maintaining blood pressure, modulating the gastrointestinal function, and bladder micturition, and contributing to nociception. The underlying mechanism of ASIC mechanosensation is the tether-gate model, which uses a gating-spring mechanism to activate ASIC responses. Further understanding of the mechanism of ASICs will help in treatments for ASIC-related pathologies. Along with the well-known chemosensitive functions of ASICs, emerging evidence has revealed that mechanosensitive functions of ASICs are important for maintaining homeostasis and contribute to various disease conditions.
Collapse
|
5
|
DEG/ENaC Ion Channels in the Function of the Nervous System: From Worm to Man. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:165-192. [DOI: 10.1007/978-981-16-4254-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Carattino MD, Montalbetti N. Acid-sensing ion channels in sensory signaling. Am J Physiol Renal Physiol 2020; 318:F531-F543. [PMID: 31984789 DOI: 10.1152/ajprenal.00546.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Acid-sensing ion channels (ASICs) are cation-permeable channels that in the periphery are primarily expressed in sensory neurons that innervate tissues and organs. Soon after the cloning of the ASIC subunits, almost 20 yr ago, investigators began to use genetically modified mice to assess the role of these channels in physiological processes. These studies provide critical insights about the participation of ASICs in sensory processes, including mechanotransduction, chemoreception, and nociception. Here, we provide an extensive assessment of these findings and discuss the current gaps in knowledge with regard to the functions of ASICs in the peripheral nervous system.
Collapse
Affiliation(s)
- Marcelo D Carattino
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nicolas Montalbetti
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
7
|
Tsubouchi A, Yano T, Yokoyama TK, Murtin C, Otsuna H, Ito K. Topological and modality-specific representation of somatosensory information in the fly brain. Science 2018; 358:615-623. [PMID: 29097543 DOI: 10.1126/science.aan4428] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 09/25/2017] [Indexed: 12/11/2022]
Abstract
Insects and mammals share similarities of neural organization underlying the perception of odors, taste, vision, sound, and gravity. We observed that insect somatosensation also corresponds to that of mammals. In Drosophila, the projections of all the somatosensory neuron types to the insect's equivalent of the spinal cord segregated into modality-specific layers comparable to those in mammals. Some sensory neurons innervate the ventral brain directly to form modality-specific and topological somatosensory maps. Ascending interneurons with dendrites in matching layers of the nerve cord send axons that converge to respective brain regions. Pathways arising from leg somatosensory neurons encode distinct qualities of leg movement information and play different roles in ground detection. Establishment of the ground pattern and genetic tools for neuronal manipulation should provide the basis for elucidating the mechanisms underlying somatosensation.
Collapse
Affiliation(s)
- Asako Tsubouchi
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Yayoi, Bunkyo-ku, 113-0032 Tokyo, Japan
| | - Tomoko Yano
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Yayoi, Bunkyo-ku, 113-0032 Tokyo, Japan.,Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, 277-0882 Chiba, Japan
| | - Takeshi K Yokoyama
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Yayoi, Bunkyo-ku, 113-0032 Tokyo, Japan
| | - Chloé Murtin
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Yayoi, Bunkyo-ku, 113-0032 Tokyo, Japan.,Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, 277-0882 Chiba, Japan
| | - Hideo Otsuna
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | - Kei Ito
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Yayoi, Bunkyo-ku, 113-0032 Tokyo, Japan. .,Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, 277-0882 Chiba, Japan.,Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA.,Institute of Zoology, University of Cologne, 50674 Cologne, Germany
| |
Collapse
|
8
|
Dissection of neuronal gap junction circuits that regulate social behavior in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2017; 114:E1263-E1272. [PMID: 28143932 DOI: 10.1073/pnas.1621274114] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
A hub-and-spoke circuit of neurons connected by gap junctions controls aggregation behavior and related behavioral responses to oxygen, pheromones, and food in Caenorhabditis elegans The molecular composition of the gap junctions connecting RMG hub neurons with sensory spoke neurons is unknown. We show here that the innexin gene unc-9 is required in RMG hub neurons to drive aggregation and related behaviors, indicating that UNC-9-containing gap junctions mediate RMG signaling. To dissect the circuit in detail, we developed methods to inhibit unc-9-based gap junctions with dominant-negative unc-1 transgenes. unc-1(dn) alters a stomatin-like protein that regulates unc-9 electrical signaling; its disruptive effects can be rescued by a constitutively active UNC-9::GFP protein, demonstrating specificity. Expression of unc-1(dn) in RMG hub neurons, ADL or ASK pheromone-sensing neurons, or URX oxygen-sensing neurons disrupts specific elements of aggregation-related behaviors. In ADL, unc-1(dn) has effects opposite to those of tetanus toxin light chain, separating the roles of ADL electrical and chemical synapses. These results reveal roles of gap junctions in a complex behavior at cellular resolution and provide a tool for similar exploration of other gap junction circuits.
Collapse
|
9
|
Moshourab R, Frenzel H, Lechner S, Haseleu J, Bégay V, Omerbašić D, Lewin GR. Measurement of Vibration Detection Threshold and Tactile Spatial Acuity in Human Subjects. J Vis Exp 2016. [PMID: 27684317 DOI: 10.3791/52966] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Tests that allow the precise determination of psychophysical thresholds for vibration and grating orientation provide valuable information about mechanosensory function that are relevant for clinical diagnosis as well as for basic research. Here, we describe two psychophysical tests designed to determine the vibration detection threshold (automated system) and tactile spatial acuity (handheld device). Both procedures implement a two-interval forced-choice and a transformed-rule up and down experimental paradigm. These tests have been used to obtain mechanosensory profiles for individuals from distinct human cohorts such as twins or people with sensorineural deafness.
Collapse
Affiliation(s)
- Rabih Moshourab
- Department of Anesthesiology and Intensive Care Medicine, Charite Universitätsmedzin, Campus Virchow Klinikum und Campus Charite Mitte; Department of Neuroscience, Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine;
| | - Henning Frenzel
- Department of Neuroscience, Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine
| | | | - Julia Haseleu
- Department of Neuroscience, Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine
| | - Valérie Bégay
- Department of Neuroscience, Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine
| | - Damir Omerbašić
- Department of Neuroscience, Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine
| | - Gary R Lewin
- Department of Neuroscience, Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine
| |
Collapse
|
10
|
A Probabilistic Model for Estimating the Depth and Threshold Temperature of C-fiber Nociceptors. Sci Rep 2015; 5:17670. [PMID: 26638830 PMCID: PMC4671062 DOI: 10.1038/srep17670] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/30/2015] [Indexed: 11/08/2022] Open
Abstract
The subjective experience of thermal pain follows the detection and encoding of noxious stimuli by primary afferent neurons called nociceptors. However, nociceptor morphology has been hard to access and the mechanisms of signal transduction remain unresolved. In order to understand how heat transducers in nociceptors are activated in vivo, it is important to estimate the temperatures that directly activate the skin-embedded nociceptor membrane. Hence, the nociceptor's temperature threshold must be estimated, which in turn will depend on the depth at which transduction happens in the skin. Since the temperature at the receptor cannot be accessed experimentally, such an estimation can currently only be achieved through modeling. However, the current state-of-the-art model to estimate temperature at the receptor suffers from the fact that it cannot account for the natural stochastic variability of neuronal responses. We improve this model using a probabilistic approach which accounts for uncertainties and potential noise in system. Using a data set of 24 C-fibers recorded in vitro, we show that, even without detailed knowledge of the bio-thermal properties of the system, the probabilistic model that we propose here is capable of providing estimates of threshold and depth in cases where the classical method fails.
Collapse
|
11
|
Omerbašić D, Schuhmacher LN, Bernal Sierra YA, Smith ESJ, Lewin GR. ASICs and mammalian mechanoreceptor function. Neuropharmacology 2015; 94:80-6. [DOI: 10.1016/j.neuropharm.2014.12.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/28/2014] [Accepted: 12/04/2014] [Indexed: 02/07/2023]
|
12
|
Sharif-Naeini R. Contribution of mechanosensitive ion channels to somatosensation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:53-71. [PMID: 25744670 DOI: 10.1016/bs.pmbts.2014.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mechanotransduction, the conversion of a mechanical stimulus into an electrical signal, is a central mechanism to several physiological functions in mammals. It relies on the function of mechanosensitive ion channels (MSCs). Although the first single-channel recording from MSCs dates back to 30 years ago, the identity of the genes encoding MSCs has remained largely elusive. Because these channels have an important role in the development of mechanical hypersensitivity, a better understanding of their function may lead to the identification of selective inhibitors and generate novel therapeutic pathways in the treatment of chronic pain. Here, I will describe our current understanding of the role MSCs may play in somatosensation and the potential candidate genes proposed to encode them.
Collapse
Affiliation(s)
- Reza Sharif-Naeini
- Department of Physiology and Cell Information Systems Group, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
13
|
Sensory mechanotransduction at membrane-matrix interfaces. Pflugers Arch 2014; 467:121-32. [PMID: 24981693 PMCID: PMC4281363 DOI: 10.1007/s00424-014-1563-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 06/19/2014] [Accepted: 06/20/2014] [Indexed: 01/23/2023]
Abstract
Sensory cells specialized to detect extremely small mechanical changes are common to the auditory and somatosensory systems. It is widely accepted that mechanosensitive channels form the core of the mechanoelectrical transduction in hair cells as well as the somatic sensory neurons that underlie the sense of touch and mechanical pain. Here, we will review how the activation of such channels can be measured in a meaningful physiological context. In particular, we will discuss the idea that mechanosensitive channels normally occur in transmembrane complexes that are anchored to extracellular matrix components (ECM) both in vitro and in vivo. One component of such complexes in sensory neurons is the integral membrane scaffold protein STOML3 which is a robust physiological regulator of native mechanosensitive currents. In order to better characterize such channels in transmembrane complexes, we developed a new electrophysiological method that enables the quantification of mechanosensitive current amplitude and kinetics when activated by a defined matrix movement in cultured cells. The results of such studies strongly support the idea that ion channels in transmembrane complexes are highly tuned to detect movement of the cell membrane in relation to the ECM.
Collapse
|
14
|
Kuhlmann K, Tschapek A, Wiese H, Eisenacher M, Meyer HE, Hatt HH, Oeljeklaus S, Warscheid B. The membrane proteome of sensory cilia to the depth of olfactory receptors. Mol Cell Proteomics 2014; 13:1828-43. [PMID: 24748648 DOI: 10.1074/mcp.m113.035378] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the nasal cavity, the nonmotile cilium of olfactory sensory neurons (OSNs) constitutes the chemosensory interface between the ambient environment and the brain. The unique sensory organelle facilitates odor detection for which it includes all necessary components of initial and downstream olfactory signal transduction. In addition to its function in olfaction, a more universal role in modulating different signaling pathways is implicated, for example, in neurogenesis, apoptosis, and neural regeneration. To further extend our knowledge about this multifunctional signaling organelle, it is of high importance to establish a most detailed proteome map of the ciliary membrane compartment down to the level of transmembrane receptors. We detached cilia from mouse olfactory epithelia via Ca(2+)/K(+) shock followed by the enrichment of ciliary membrane proteins at alkaline pH, and we identified a total of 4,403 proteins by gel-based and gel-free methods in conjunction with high resolution LC/MS. This study is the first to report the detection of 62 native olfactory receptor proteins and to provide evidence for their heterogeneous expression at the protein level. Quantitative data evaluation revealed four ciliary membrane-associated candidate proteins (the annexins ANXA1, ANXA2, ANXA5, and S100A5) with a suggested function in the regulation of olfactory signal transduction, and their presence in ciliary structures was confirmed by immunohistochemistry. Moreover, we corroborated the ciliary localization of the potassium-dependent Na(+)/Ca(2+) exchanger (NCKX) 4 and the plasma membrane Ca(2+)-ATPase 1 (PMCA1) involved in olfactory signal termination, and we detected for the first time NCKX2 in olfactory cilia. Through comparison with transcriptome data specific for mature, ciliated OSNs, we finally delineated the membrane ciliome of OSNs. The membrane proteome of olfactory cilia established here is the most complete today, thus allowing us to pave new avenues for the study of diverse molecular functions and signaling pathways in and out of olfactory cilia and thus to advance our understanding of the biology of sensory organelles in general.
Collapse
Affiliation(s)
- Katja Kuhlmann
- From the ‡Medizinisches Proteom-Center, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum
| | - Astrid Tschapek
- From the ‡Medizinisches Proteom-Center, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum
| | - Heike Wiese
- the ¶Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg
| | - Martin Eisenacher
- From the ‡Medizinisches Proteom-Center, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum
| | - Helmut E Meyer
- From the ‡Medizinisches Proteom-Center, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, the ‖Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Strasse 6b, 44227 Dortmund, and
| | - Hanns H Hatt
- the **Department of Cell Physiology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Silke Oeljeklaus
- the ¶Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg
| | - Bettina Warscheid
- the ¶Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg,
| |
Collapse
|
15
|
Kozlenkov A, Lapatsina L, Lewin GR, Smith ESJ. Subunit-specific inhibition of acid sensing ion channels by stomatin-like protein 1. J Physiol 2013; 592:557-69. [PMID: 24247984 PMCID: PMC3934701 DOI: 10.1113/jphysiol.2013.258657] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
There are five mammalian stomatin-domain genes, all of which encode peripheral membrane proteins that can modulate ion channel function. Here we examined the ability of stomatin-like protein 1 (STOML1) to modulate the proton-sensitive members of the acid-sensing ion channel (ASIC) family. STOML1 profoundly inhibits ASIC1a, but has no effect on the splice variant ASIC1b. The inactivation time constant of ASIC3 is also accelerated by STOML1. We examined STOML1 null mutant mice with a β-galactosidase-neomycin cassette gene-trap reporter driven from the STOML1 gene locus, which indicated that STOML1 is expressed in at least 50% of dorsal root ganglion (DRG) neurones. Patch clamp recordings from mouse DRG neurones identified a trend for larger proton-gated currents in neurones lacking STOML1, which was due to a contribution of effects upon both transient and sustained currents, at different pH, a finding consistent with an endogenous inhibitory function for STOML1.
Collapse
Affiliation(s)
- Alexey Kozlenkov
- Department of Neuroscience, Growth Factor & Regeneration Group, Max-Delbrueck Center for Molecular Medicine, Robert-Roessle Strasse 10, D-13092 Berlin, Germany. or
| | | | | | | |
Collapse
|
16
|
Moshourab RA, Wetzel C, Martinez-Salgado C, Lewin GR. Stomatin-domain protein interactions with acid-sensing ion channels modulate nociceptor mechanosensitivity. J Physiol 2013; 591:5555-74. [PMID: 23959680 PMCID: PMC3853495 DOI: 10.1113/jphysiol.2013.261180] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Acid-sensing ion channels (ASICs) and their interaction partners of the stomatin family have all been implicated in sensory transduction. Single gene deletion of asic3, asic2, stomatin, or stoml3 all result in deficits in the mechanosensitivity of distinct cutaneous afferents in the mouse. Here, we generated asic3−/−:stomatin−/−, asic3−/−:stoml3−/− and asic2−/−:stomatin−/− double mutant mice to characterize the functional consequences of stomatin–ASIC protein interactions on sensory afferent mechanosensitivity. The absence of ASIC3 led to a clear increase in mechanosensitivity in rapidly adapting mechanoreceptors (RAMs) and a decrease in the mechanosensitivity in both Aδ- and C-fibre nociceptors. The increased mechanosensitivity of RAMs could be accounted for by a loss of adaptation which could be mimicked by local application of APETx2 a toxin that specifically blocks ASIC3. There is a substantial loss of mechanosensitivity in stoml3−/− mice in which ∼35% of the myelinated fibres lack a mechanosensitive receptive field and this phenotype was found to be identical in asic3−/−:stoml3−/− mutant mice. However, Aδ-nociceptors showed much reduced mechanosensitivity in asic3−/−:stoml3−/− mutant mice compared to asic3−/− controls. Interestingly, in asic2−/−:stomatin−/− mutant mice many Aδ-nociceptors completely lost their mechanosensitivity which was not observed in asic2−/− or stomatin−/− mice. Examination of stomatin−/−:stoml3−/− mutant mice indicated that a stomatin/STOML3 interaction is unlikely to account for the greater Aδ-nociceptor deficits in double mutant mice. A key finding from these studies is that the loss of stomatin or STOML3 in asic3−/− or asic2−/− mutant mice markedly exacerbates deficits in the mechanosensitivity of nociceptors without affecting mechanoreceptor function.
Collapse
Affiliation(s)
- Rabih A Moshourab
- G. R. Lewin: Department of Neuroscience, Max-Delbrück Center for Molecular Medicine, Robert-Rössle Str. 10, D-13125, Berlin, Germany.
| | | | | | | |
Collapse
|
17
|
Lapatsina L, Jira JA, Smith ESJ, Poole K, Kozlenkov A, Bilbao D, Lewin GR, Heppenstall PA. Regulation of ASIC channels by a stomatin/STOML3 complex located in a mobile vesicle pool in sensory neurons. Open Biol 2013; 2:120096. [PMID: 22773952 PMCID: PMC3390797 DOI: 10.1098/rsob.120096] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 06/01/2012] [Indexed: 01/21/2023] Open
Abstract
A complex of stomatin-family proteins and acid-sensing (proton-gated) ion channel (ASIC) family members participate in sensory transduction in invertebrates and vertebrates. Here, we have examined the role of the stomatin-family protein stomatin-like protein-3 (STOML3) in this process. We demonstrate that STOML3 interacts with stomatin and ASIC subunits and that this occurs in a highly mobile vesicle pool in dorsal root ganglia (DRG) neurons and Chinese hamster ovary cells. We identify a hydrophobic region in the N-terminus of STOML3 that is required for vesicular localization of STOML3 and regulates physical and functional interaction with ASICs. We further characterize STOML3-containing vesicles in DRG neurons and show that they are Rab11-positive, but not part of the early-endosomal, lysosomal or Rab14-dependent biosynthetic compartment. Moreover, uncoupling of vesicles from microtubules leads to incorporation of STOML3 into the plasma membrane and increased acid-gated currents. Thus, STOML3 defines a vesicle pool in which it associates with molecules that have critical roles in sensory transduction. We suggest that the molecular features of this vesicular pool may be characteristic of a ‘transducosome’ in sensory neurons.
Collapse
Affiliation(s)
- Liudmila Lapatsina
- Department of Neuroscience, Max-Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13092 Berlin-Buch, Germany
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Roudaut Y, Lonigro A, Coste B, Hao J, Delmas P, Crest M. Touch sense: functional organization and molecular determinants of mechanosensitive receptors. Channels (Austin) 2013; 6:234-45. [PMID: 23146937 DOI: 10.4161/chan.22213] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cutaneous mechanoreceptors are localized in the various layers of the skin where they detect a wide range of mechanical stimuli, including light brush, stretch, vibration and noxious pressure. This variety of stimuli is matched by a diverse array of specialized mechanoreceptors that respond to cutaneous deformation in a specific way and relay these stimuli to higher brain structures. Studies across mechanoreceptors and genetically tractable sensory nerve endings are beginning to uncover touch sensation mechanisms. Work in this field has provided researchers with a more thorough understanding of the circuit organization underlying the perception of touch. Novel ion channels have emerged as candidates for transduction molecules and properties of mechanically gated currents improved our understanding of the mechanisms of adaptation to tactile stimuli. This review highlights the progress made in characterizing functional properties of mechanoreceptors in hairy and glabrous skin and ion channels that detect mechanical inputs and shape mechanoreceptor adaptation.
Collapse
Affiliation(s)
- Yann Roudaut
- Aix-Marseille Université, CNRS, Marseille, France
| | | | | | | | | | | |
Collapse
|
19
|
Chen CC, Wong CW. Neurosensory mechanotransduction through acid-sensing ion channels. J Cell Mol Med 2013; 17:337-49. [PMID: 23490035 PMCID: PMC3823015 DOI: 10.1111/jcmm.12025] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 12/28/2012] [Indexed: 02/06/2023] Open
Abstract
Acid-sensing ion channels (ASICs) are voltage-insensitive cation channels responding to extracellular acidification. ASIC proteins have two transmembrane domains and a large extracellular domain. The molecular topology of ASICs is similar to that of the mechanosensory abnormality 4- or 10-proteins expressed in touch receptor neurons and involved in neurosensory mechanotransduction in nematodes. The ASIC proteins are involved in neurosensory mechanotransduction in mammals. The ASIC isoforms are expressed in Merkel cell-neurite complexes, periodontal Ruffini endings and specialized nerve terminals of skin and muscle spindles, so they might participate in mechanosensation. In knockout mouse models, lacking an ASIC isoform produces defects in neurosensory mechanotransduction of tissue such as skin, stomach, colon, aortic arch, venoatrial junction and cochlea. The ASICs are thus implicated in touch, pain, digestive function, baroreception, blood volume control and hearing. However, the role of ASICs in mechanotransduction is still controversial, because we lack evidence that the channels are mechanically sensitive when expressed in heterologous cells. Thus, ASIC channels alone are not sufficient to reconstruct the path of transducing molecules of mechanically activated channels. The mechanotransducers associated with ASICs need further elucidation. In this review, we discuss the expression of ASICs in sensory afferents of mechanoreceptors, findings of knockout studies, technical issues concerning studies of neurosensory mechanotransduction and possible missing links. Also we propose a molecular model and a new approach to disclose the molecular mechanism underlying the neurosensory mechanotransduction.
Collapse
Affiliation(s)
- Chih-Cheng Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | | |
Collapse
|
20
|
Identification, localization, and functional implications of the microdomain-forming stomatin family in the ciliated protozoan Paramecium tetraurelia. EUKARYOTIC CELL 2013; 12:529-44. [PMID: 23376944 DOI: 10.1128/ec.00324-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The SPFH protein superfamily is assumed to occur universally in eukaryotes, but information from protozoa is scarce. In the Paramecium genome, we found only Stomatins, 20 paralogs grouped in 8 families, STO1 to STO8. According to cDNA analysis, all are expressed, and molecular modeling shows the typical SPFH domain structure for all subgroups. For further analysis we used family-specific sequences for fluorescence and immunogold labeling, gene silencing, and functional tests. With all family members tested, we found a patchy localization at/near the cell surface and on vesicles. The Sto1p and Sto4p families are also associated with the contractile vacuole complex. Sto4p also makes puncta on some food vacuoles and is abundant on vesicles recycling from the release site of spent food vacuoles to the site of nascent food vacuole formation. Silencing of the STO1 family reduces mechanosensitivity (ciliary reversal upon touching an obstacle), thus suggesting relevance for positioning of mechanosensitive channels in the plasmalemma. Silencing of STO4 members increases pulsation frequency of the contractile vacuole complex and reduces phagocytotic activity of Paramecium cells. In summary, Sto1p and Sto4p members seem to be involved in positioning specific superficial and intracellular microdomain-based membrane components whose functions may depend on mechanosensation (extracellular stimuli and internal osmotic pressure).
Collapse
|
21
|
Gerhold KA, Pellegrino M, Tsunozaki M, Morita T, Leitch DB, Tsuruda PR, Brem RB, Catania KC, Bautista DM. The star-nosed mole reveals clues to the molecular basis of mammalian touch. PLoS One 2013; 8:e55001. [PMID: 23383028 PMCID: PMC3559429 DOI: 10.1371/journal.pone.0055001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 12/21/2012] [Indexed: 01/10/2023] Open
Abstract
Little is known about the molecular mechanisms underlying mammalian touch transduction. To identify novel candidate transducers, we examined the molecular and cellular basis of touch in one of the most sensitive tactile organs in the animal kingdom, the star of the star-nosed mole. Our findings demonstrate that the trigeminal ganglia innervating the star are enriched in tactile-sensitive neurons, resulting in a higher proportion of light touch fibers and lower proportion of nociceptors compared to the dorsal root ganglia innervating the rest of the body. We exploit this difference using transcriptome analysis of the star-nosed mole sensory ganglia to identify novel candidate mammalian touch and pain transducers. The most enriched candidates are also expressed in mouse somatosesensory ganglia, suggesting they may mediate transduction in diverse species and are not unique to moles. These findings highlight the utility of examining diverse and specialized species to address fundamental questions in mammalian biology.
Collapse
Affiliation(s)
- Kristin A Gerhold
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Albuisson J, Murthy SE, Bandell M, Coste B, Louis-Dit-Picard H, Mathur J, Fénéant-Thibault M, Tertian G, de Jaureguiberry JP, Syfuss PY, Cahalan S, Garçon L, Toutain F, Simon Rohrlich P, Delaunay J, Picard V, Jeunemaitre X, Patapoutian A. Dehydrated hereditary stomatocytosis linked to gain-of-function mutations in mechanically activated PIEZO1 ion channels. Nat Commun 2013; 4:1884. [PMID: 23695678 PMCID: PMC3674779 DOI: 10.1038/ncomms2899] [Citation(s) in RCA: 266] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 04/18/2013] [Indexed: 02/06/2023] Open
Abstract
Dehydrated hereditary stomatocytosis is a genetic condition with defective red blood cell membrane properties that causes an imbalance in intracellular cation concentrations. Recently, two missense mutations in the mechanically activated PIEZO1 (FAM38A) ion channel were associated with dehydrated hereditary stomatocytosis. However, it is not known how these mutations affect PIEZO1 function. Here, by combining linkage analysis and whole-exome sequencing in a large pedigree and Sanger sequencing in two additional kindreds and 11 unrelated dehydrated hereditary stomatocytosis cases, we identify three novel missense mutations and one recurrent duplication in PIEZO1, demonstrating that it is the major gene for dehydrated hereditary stomatocytosis. All the dehydrated hereditary stomatocytosis-associated mutations locate at C-terminal half of PIEZO1. Remarkably, we find that all PIEZO1 mutations give rise to mechanically activated currents that inactivate more slowly than wild-type currents. This gain-of-function PIEZO1 phenotype provides insight that helps to explain the increased permeability of cations in red blood cells of dehydrated hereditary stomatocytosis patients. Our findings also suggest a new role for mechanotransduction in red blood cell biology and pathophysiology.
Collapse
|
23
|
Brand J, Smith ESJ, Schwefel D, Lapatsina L, Poole K, Omerbašić D, Kozlenkov A, Behlke J, Lewin GR, Daumke O. A stomatin dimer modulates the activity of acid-sensing ion channels. EMBO J 2012; 31:3635-46. [PMID: 22850675 PMCID: PMC3433786 DOI: 10.1038/emboj.2012.203] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 07/06/2012] [Indexed: 12/14/2022] Open
Abstract
Stomatins govern membrane trafficking and ion channel activity. The banana-shaped stomatin-domain dimmers oligomerize into a cylindrical structure. A dynamic hydrophobic pocket at the concave side of the dimer mediates repression of acid-sensing ion channel 3 (ASIC3) activity. Stomatin proteins oligomerize at membranes and have been implicated in ion channel regulation and membrane trafficking. To obtain mechanistic insights into their function, we determined three crystal structures of the conserved stomatin domain of mouse stomatin that assembles into a banana-shaped dimer. We show that dimerization is crucial for the repression of acid-sensing ion channel 3 (ASIC3) activity. A hydrophobic pocket at the inside of the concave surface is open in the presence of an internal peptide ligand and closes in the absence of this ligand, and we demonstrate a function of this pocket in the inhibition of ASIC3 activity. In one crystal form, stomatin assembles via two conserved surfaces into a cylindrical oligomer, and these oligomerization surfaces are also essential for the inhibition of ASIC3-mediated currents. The assembly mode of stomatin uncovered in this study might serve as a model to understand oligomerization processes of related membrane-remodelling proteins, such as flotillin and prohibitin.
Collapse
Affiliation(s)
- Janko Brand
- Max-Delbrück Center for Molecular Medicine, Crystallography Department, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Stomatin-domain proteins. Eur J Cell Biol 2012; 91:240-5. [DOI: 10.1016/j.ejcb.2011.01.018] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 01/26/2011] [Accepted: 01/27/2011] [Indexed: 11/18/2022] Open
|
25
|
Del Valle ME, Cobo T, Cobo JL, Vega JA. Mechanosensory neurons, cutaneous mechanoreceptors, and putative mechanoproteins. Microsc Res Tech 2012; 75:1033-43. [PMID: 22461425 DOI: 10.1002/jemt.22028] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 01/31/2012] [Indexed: 01/16/2023]
Abstract
The mammalian skin has developed sensory structures (mechanoreceptors) that are responsible for different modalities of mechanosensitivity like touch, vibration, and pressure sensation. These specialized sensory organs are anatomically and functionally connected to a special subset of sensory neurons called mechanosensory neurons, which electrophysiologically correspond with Aβ fibers. Although mechanosensory neurons and cutaneous mechanoreceptors are rather well known, the biology of the sense of touch still remains poorly understood. Basically, the process of mechanosensitivity requires the conversion of a mechanical stimulus into an electrical signal through the activation of ion channels that gate in response to mechanical stimuli. These ion channels belong primarily to the family of the degenerin/epithelium sodium channels, especially the subfamily acid-sensing ion channels, and to the family of transient receptor potential channels. This review compiles the current knowledge on the occurrence of putative mechanoproteins in mechanosensory neurons and mechanoreceptors, as well as the involvement of these proteins on the biology of touch. Furthermore, we include a section about what the knock-out mice for mechanoproteins are teaching us. Finally, the possibilities for mechanotransduction in mechanoreceptors, and the common involvement of the ion channels, extracellular membrane, and cytoskeleton, are revisited.
Collapse
Affiliation(s)
- M E Del Valle
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo, Spain
| | | | | | | |
Collapse
|
26
|
Nawaratna SSK, McManus DP, Moertel L, Gobert GN, Jones MK. Gene Atlasing of digestive and reproductive tissues in Schistosoma mansoni. PLoS Negl Trop Dis 2011; 5:e1043. [PMID: 21541360 PMCID: PMC3082511 DOI: 10.1371/journal.pntd.0001043] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 03/25/2011] [Indexed: 11/30/2022] Open
Abstract
Background While considerable genomic and transcriptomic data are available for
Schistosoma mansoni, many of its genes lack significant
annotation. A transcriptomic study of individual tissues and organs of
schistosomes could play an important role in functional annotation of the
unknown genes, particularly by providing rapid localisation data and thus
giving insight into the potential roles of these molecules in parasite
development, reproduction and homeostasis, and in the complex host-parasite
interaction. Methodology/Principal Findings Quantification of gene expression in tissues of S. mansoni
was achieved by a combination of laser microdissection microscopy (LMM) and
oligonucleotide microarray analysis. We compared the gene expression profile
of the adult female gastrodermis and male and female reproductive tissues
with whole worm controls. The results revealed a total of 393 genes
(contigs) that were up-regulated two-fold or more in the gastrodermis, 4,450
in the ovary, 384 in the vitelline tissues of female parasites, and 2,171 in
the testes. We have also supplemented these data with the identification of
highly expressed genes in different regions of manually dissected male and
female S. mansoni. Though relatively crude, this dissection
strategy provides low resolution localisation data for critical regions of
the adult parasites that are not amenable to LMM isolation. Conclusions This is the first detailed transcriptomic study of the reproductive tissues
and gastrodermis of S. mansoni. The results obtained will
help direct future research on the functional aspects of these tissues,
expediting the characterisation of currently unannotated gene products of
S. mansoni and the discovery of new drug and vaccine
targets. There is currently only one drug available for treatment of
schistosomiasis mansoni and no vaccine. The searches for
possible new drug and vaccine candidates remain two major areas of current
research in schistosomiasis. There are considerable amounts of data available on
the genomics, transcriptomics and proteomics of Schistosoma
mansoni from which useful candidates for future drug and vaccine
development can be identified. Arranging these data into a biologically relevant
context through the characterisation of gene expression profiles of the
different tissues of this complex metazoan parasite, is an essential step in
identifying molecules with potential therapeutic value. We have used laser
microdissection microscopy and microarray analysis to show that many
tissue-specific genes are up-regulated in the digestive and reproductive tissues
of S. mansoni. This new knowledge provides an avenue to
investigate the molecular components associated with fundamental aspects of
schistosome biology.
Collapse
Affiliation(s)
- Sujeevi S. K. Nawaratna
- Queensland Institute of Medical Research, Herston, Australia
- School of Veterinary Sciences, The University of Queensland, Gatton,
Australia
| | | | - Luke Moertel
- Queensland Institute of Medical Research, Herston, Australia
| | - Geoffrey N. Gobert
- Queensland Institute of Medical Research, Herston, Australia
- School of Veterinary Sciences, The University of Queensland, Gatton,
Australia
| | - Malcolm K. Jones
- Queensland Institute of Medical Research, Herston, Australia
- School of Veterinary Sciences, The University of Queensland, Gatton,
Australia
- * E-mail:
| |
Collapse
|
27
|
Wang R, Lewin GR. The Cav3.2 T-type calcium channel regulates temporal coding in mouse mechanoreceptors. J Physiol 2011; 589:2229-43. [PMID: 21486775 DOI: 10.1113/jphysiol.2010.203463] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In mammals there are three types of low-voltage-activated (LVA) calcium channels,Cav3.1, Cav3.2 and Cav3.3, which all give rise to T-type Ca2+currents. T-type Ca2+currents have long been known to be highly enriched in a sub-population of medium-sized sensory neurones in the dorsal root ganglia (DRG). However, the identity of the T-type-rich sensory neurones has remained controversial and the precise physiological role of the Cav3.2 calcium channel in these sensory neurones has not been directly addressed. Here we show, using Cav3.2−/− mutant mice,that these channels are essential for the normal temporal coding of moving stimuli by specialized skin mechanoreceptors called D-hair receptors.We show that D-hair receptors from Cav3.2−/− fire approximately 50% fewer spikes in response to ramp-and-hold displacement stimuli compared to wild type receptors. The reduced sensitivity of D-hair receptors in Cav3.2−/− mice is chiefly due to an increase in the mechanical threshold and a substantial temporal delay in the onset of high-frequency firing to moving stimuli.We examined the receptive properties of other cutaneous mechano receptors and Aδ- and C-fibre nociceptors in Cav3.2−/− mice, but found no alteration in their mechanosensitivity compared to Cav3.2+/+mice. However, C-fibre nociceptors recorded in Cav3.2−/− mutant mice displayed a small but statistically significant reduction in their spiking rate during noxious heat ramps when compared to C-fibres in control mice. The T-type calcium channel Cav3.2 is thus not only a highly specific marker of D-hair receptors but is also required to maintain their high sensitivity and above all to ensure ultra rapid temporal detection of skin movement.
Collapse
Affiliation(s)
- Rui Wang
- Department of Neuroscience, Max-Delbrück Center for Molecular Medicine, Berlin-Buch D-13092 Germany
| | | |
Collapse
|
28
|
Delmas P, Hao J, Rodat-Despoix L. Molecular mechanisms of mechanotransduction in mammalian sensory neurons. Nat Rev Neurosci 2011; 12:139-53. [PMID: 21304548 DOI: 10.1038/nrn2993] [Citation(s) in RCA: 302] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The somatosensory system mediates fundamental physiological functions, including the senses of touch, pain and proprioception. This variety of functions is matched by a diverse array of mechanosensory neurons that respond to force in a specific fashion. Mechanotransduction begins at the sensory nerve endings, which rapidly transform mechanical forces into electrical signals. Progress has been made in establishing the functional properties of mechanoreceptors, but it has been remarkably difficult to characterize mechanotranducer channels at the molecular level. However, in the past few years, new functional assays have provided insights into the basic properties and molecular identity of mechanotransducer channels in mammalian sensory neurons. The recent identification of novel families of proteins as mechanosensing molecules will undoubtedly accelerate our understanding of mechanotransduction mechanisms in mammalian somatosensation.
Collapse
Affiliation(s)
- Patrick Delmas
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, UMR 6231, Centre National de la Recherche Scientifique, Université de la Méditerranée, CS80011, Boulevard Pierre Dramard, 13344 Marseille Cedex 15, France.
| | | | | |
Collapse
|
29
|
Abstract
All animals use a sophisticated array of receptor proteins to sense their external and internal environments. Major advances have been made in recent years in understanding the molecular and genetic bases for sensory transduction in diverse modalities, indicating that both metabotropic and ionotropic pathways are important in sensory functions. Here, I review the historical background and recent advances in understanding the roles of a relatively newly discovered family of receptors, the degenerin/epithelial sodium channels (DEG/ENaC). These animal-specific cation channels show a remarkable sequence and functional diversity in different species and seem to exert their functions in diverse sensory modalities. Functions for DEG/ENaC channels have been implicated in mechanosensation as well as chemosensory transduction pathways. In spite of overall sequence diversity, all family members share a unique protein topology that includes just two transmembrane domains and an unusually large and highly structured extracellular domain, that seem to be essential for both their mechanical and chemical sensory functions. This review will discuss many of the recent discoveries and controversies associated with sensory function of DEG/ENaC channels in both vertebrate and invertebrate model systems, covering the role of family members in taste, mechanosensation, and pain.
Collapse
|
30
|
Wang Y, Cao D, Chen J, Liu A, Yu Q, Song X, Xiang Z, Lu J. Distribution of stomatin expressing in the central nervous system and its up-regulation in cerebral cortex of rat by hypoxia. J Neurochem 2010; 116:374-84. [PMID: 21091477 DOI: 10.1111/j.1471-4159.2010.07117.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Stomatin is an important membrane raft protein which can combine skeleton protein, some ion channel, and transporter to regulate their functions. However, until now no data on its expression and function in CNS are available. In this study, we examined distribution of stomatin in CNS of rat, and investigated the effects of hypoxia exposure and glucocorticoid on stomatin expression in cerebral cortex of rat. Immunofluorescence staining revealed a broad expression of stomatin protein in many areas of adult rat brain and spinal cord, including the ventral horn of spinal cord, causal magnocellular nucleus of hypothalamus, the V layer of the cerebral cortex, solitary nucleus, 10 and 12 nuclei, and so on. Hypoxia or ischemic hypoxia significantly up-regulated stomatin expression in cerebral cortex, and the up-regulation was independent on adrenocortical steroids since it also occurred in adrenalectomized (ADX) rats. Moreover, treatment of ADX or sham-operated rats with dexamethasone, a synthetic glucocorticoid alone could significantly stimulate expression of stomatin in lung and heart, but not in cerebral cortex. However, dexamethasone could enhance the hypoxia-stimulated expression of stomatin in cerebral cortex of ADX rats. These findings suggested that stomatin might be involved in various physiological functions and cellular events of neurons in CNS under physiological conditions and play a potential protective role under hypoxic conditions.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pathophysiology, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Lumpkin EA, Marshall KL, Nelson AM. The cell biology of touch. J Cell Biol 2010; 191:237-48. [PMID: 20956378 PMCID: PMC2958478 DOI: 10.1083/jcb.201006074] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 09/21/2010] [Indexed: 11/22/2022] Open
Abstract
The sense of touch detects forces that bombard the body's surface. In metazoans, an assortment of morphologically and functionally distinct mechanosensory cell types are tuned to selectively respond to diverse mechanical stimuli, such as vibration, stretch, and pressure. A comparative evolutionary approach across mechanosensory cell types and genetically tractable species is beginning to uncover the cellular logic of touch reception.
Collapse
Affiliation(s)
- Ellen A Lumpkin
- Department of Dermatology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| | | | | |
Collapse
|
32
|
Importance of non-selective cation channel TRPV4 interaction with cytoskeleton and their reciprocal regulations in cultured cells. PLoS One 2010; 5:e11654. [PMID: 20657843 PMCID: PMC2906515 DOI: 10.1371/journal.pone.0011654] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 06/15/2010] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND TRPV4 and the cellular cytoskeleton have each been reported to influence cellular mechanosensitive processes as well as the development of mechanical hyperalgesia. If and how TRPV4 interacts with the microtubule and actin cytoskeleton at a molecular and functional level is not known. METHODOLOGY AND PRINCIPAL FINDINGS We investigated the interaction of TRPV4 with cytoskeletal components biochemically, cell biologically by observing morphological changes of DRG-neurons and DRG-neuron-derived F-11 cells, as well as functionally with calcium imaging. We find that TRPV4 physically interacts with tubulin, actin and neurofilament proteins as well as the nociceptive molecules PKCepsilon and CamKII. The C-terminus of TRPV4 is sufficient for the direct interaction with tubulin and actin, both with their soluble and their polymeric forms. Actin and tubulin compete for binding. The interaction with TRPV4 stabilizes microtubules even under depolymerizing conditions in vitro. Accordingly, in cellular systems TRPV4 colocalizes with actin and microtubules enriched structures at submembranous regions. Both expression and activation of TRPV4 induces striking morphological changes affecting lamellipodial, filopodial, growth cone, and neurite structures in non-neuronal cells, in DRG-neuron derived F11 cells, and also in IB4-positive DRG neurons. The functional interaction of TRPV4 and the cytoskeleton is mutual as Taxol, a microtubule stabilizer, reduces the Ca2+-influx via TRPV4. CONCLUSIONS AND SIGNIFICANCE TRPV4 acts as a regulator for both, the microtubule and the actin. In turn, we describe that microtubule dynamics are an important regulator of TRPV4 activity. TRPV4 forms a supra-molecular complex containing cytoskeletal proteins and regulatory kinases. Thereby it can integrate signaling of various intracellular second messengers and signaling cascades, as well as cytoskeletal dynamics. This study points out the existence of cross-talks between non-selective cation channels and cytoskeleton at multiple levels. These cross talks may help us to understand the molecular basis of the Taxol-induced neuropathic pain development commonly observed in cancer patients.
Collapse
|
33
|
Evidence for a protein tether involved in somatic touch. EMBO J 2010; 29:855-67. [PMID: 20075867 PMCID: PMC2810375 DOI: 10.1038/emboj.2009.398] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 12/02/2009] [Indexed: 11/09/2022] Open
Abstract
The gating of ion channels by mechanical force underlies the sense of touch and pain. The mode of gating of mechanosensitive ion channels in vertebrate touch receptors is unknown. Here we show that the presence of a protein link is necessary for the gating of mechanosensitive currents in all low-threshold mechanoreceptors and some nociceptors of the dorsal root ganglia (DRG). Using TEM, we demonstrate that a protein filament with of length approximately 100 nm is synthesized by sensory neurons and may link mechanosensitive ion channels in sensory neurons to the extracellular matrix. Brief treatment of sensory neurons with non-specific and site-specific endopeptidases destroys the protein tether and abolishes mechanosensitive currents in sensory neurons without affecting electrical excitability. Protease-sensitive tethers are also required for touch-receptor function in vivo. Thus, unlike the majority of nociceptors, cutaneous mechanoreceptors require a distinct protein tether to transduce mechanical stimuli.
Collapse
|
34
|
KOMATSU T, SATO K, OTSUKA Y, ARASHIKI N, TANAKA K, TAMAHARA S, ONO KI, INABA M. Parallel Reductions in Stomatin and Na,K-ATPase through the Exosomal Pathway during Reticulocyte Maturation in Dogs: Stomatin as a Genotypic and Phenotypic Marker of High K+ and Low K+ Red Cells. J Vet Med Sci 2010; 72:893-901. [DOI: 10.1292/jvms.10-0030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Tomohiko KOMATSU
- Laboratory of Molecular Medicine, Graduate School of Veterinary Medicine, Hokkaido University
| | - Kota SATO
- Laboratory of Molecular Medicine, Graduate School of Veterinary Medicine, Hokkaido University
| | - Yayoi OTSUKA
- Laboratory of Molecular Medicine, Graduate School of Veterinary Medicine, Hokkaido University
| | - Nobuto ARASHIKI
- Laboratory of Molecular Medicine, Graduate School of Veterinary Medicine, Hokkaido University
| | - Kohei TANAKA
- Laboratory of Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Satoshi TAMAHARA
- Laboratory of Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Ken-ichiro ONO
- Laboratory of Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Mutsumi INABA
- Laboratory of Molecular Medicine, Graduate School of Veterinary Medicine, Hokkaido University
| |
Collapse
|
35
|
Smith ESJ, Lewin GR. Nociceptors: a phylogenetic view. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2009; 195:1089-106. [PMID: 19830434 PMCID: PMC2780683 DOI: 10.1007/s00359-009-0482-z] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 09/15/2009] [Accepted: 09/20/2009] [Indexed: 02/07/2023]
Abstract
The ability to react to environmental change is crucial for the survival of an organism and an essential prerequisite is the capacity to detect and respond to aversive stimuli. The importance of having an inbuilt "detect and protect" system is illustrated by the fact that most animals have dedicated sensory afferents which respond to noxious stimuli called nociceptors. Should injury occur there is often sensitization, whereby increased nociceptor sensitivity and/or plasticity of nociceptor-related neural circuits acts as a protection mechanism for the afflicted body part. Studying nociception and nociceptors in different model organisms has demonstrated that there are similarities from invertebrates right through to humans. The development of technology to genetically manipulate organisms, especially mice, has led to an understanding of some of the key molecular players in nociceptor function. This review will focus on what is known about nociceptors throughout the Animalia kingdom and what similarities exist across phyla; especially at the molecular level of ion channels.
Collapse
Affiliation(s)
- Ewan St John Smith
- Department of Neuroscience, Max-Delbrück Center for Molecular Medicine, 13125 Berlin-Buch, Germany.
| | | |
Collapse
|
36
|
Tsunozaki M, Bautista DM. Mammalian somatosensory mechanotransduction. Curr Opin Neurobiol 2009; 19:362-9. [PMID: 19683913 PMCID: PMC4044613 DOI: 10.1016/j.conb.2009.07.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 07/10/2009] [Accepted: 07/13/2009] [Indexed: 11/22/2022]
Abstract
In the mammalian somatosensory system, mechanosensitive neurons mediate the senses of touch and pain. Among sensory modalities, mechanosensation has been the most elusive with regard to the identification of transduction molecules. One factor that has hindered the identification of transduction molecules is the diversity of neurons; physiological studies have revealed many subtypes of neurons, specialized to detect a variety of mechanical stimuli. Do different subtypes use the same transduction molecules that are modified by cellular context? Or, are there multiple mechanotransducers that specialize in sensing different mechanical stimuli? This review highlights recent progress in identifying and characterizing candidate molecular force transducers, as well as the development of new tools to characterize touch transduction at the molecular, cellular, and behavioral levels.
Collapse
Affiliation(s)
- Makoto Tsunozaki
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | | |
Collapse
|
37
|
Abstract
Stomatin is an integral membrane protein which is widely expressed in many cell types. It is accepted that stomatin has a unique hairpin-loop topology: it is anchored to the membrane with an N-terminal hydrophobic domain and the N- and C-termini are cytoplasmically localized. Stomatin is a prototype for a family of related proteins, containing among others MEC-2 (mechanosensory protein 2) from Caenorhabditis elegans, SLP (stomatin-like protein)-3 and podocin, all of which interact with ion channels to regulate their activity. Members of the stomatin family partly localize in DRMs (detergent-resistant membrane domains) enriched in cholesterol and sphingolipids. It has been proposed that a highly conserved proline residue in the middle of the hydrophobic domain directly binds cholesterol and that cholesterol binding is necessary for the regulation of ion channels. In the present study we show that a small part of the stomatin pool exists as a single-pass transmembrane protein rather than a hairpin-loop protein. The highly conserved proline residue is crucial for adopting the hairpin-loop topology: substitution of this proline residue by serine transfers the whole stomatin pool to the single-pass transmembrane form, which no longer localizes to DRMs. These results suggest that formation of the hairpin loop is inefficient and that the conserved proline residue is indispensable for formation of the hairpin loop. The single-pass transmembrane form exists also for SLP-3 and it should be considered that it mediates part of the physiological functions of stomatin and related proteins.
Collapse
|
38
|
Abstract
Neurons that sense touch, sound and acceleration respond rapidly to specific mechanical signals. The proteins that transduce these signals and underlie these senses, however, are mostly unknown. Research over the past decade has suggested that members of three families of channel proteins are candidate transduction molecules. Current studies are directed towards characterizing these candidates, determining how they are mechanically gated and discovering new molecules that are involved in mechanical sensing.
Collapse
Affiliation(s)
- Martin Chalfie
- Columbia University, Department of Biological Sciences, 1012 Fairchild Center, M.C. 2446, New York, New York 10027, USA.
| |
Collapse
|
39
|
Primary processes in sensory cells: current advances. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2008; 195:1-19. [PMID: 19011871 DOI: 10.1007/s00359-008-0389-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2008] [Revised: 10/25/2008] [Accepted: 10/25/2008] [Indexed: 12/20/2022]
Abstract
In the course of evolution, the strong and unremitting selective pressure on sensory performance has driven the acuity of sensory organs to its physical limits. As a consequence, the study of primary sensory processes illustrates impressively how far a physiological function can be improved if the survival of a species depends on it. Sensory cells that detect single-photons, single molecules, mechanical motions on a nanometer scale, or incredibly small fluctuations of electromagnetic fields have fascinated physiologists for a long time. It is a great challenge to understand the primary sensory processes on a molecular level. This review points out some important recent developments in the search for primary processes in sensory cells that mediate touch perception, hearing, vision, taste, olfaction, as well as the analysis of light polarization and the orientation in the Earth's magnetic field. The data are screened for common transduction strategies and common transduction molecules, an aspect that may be helpful for researchers in the field.
Collapse
|
40
|
Milenkovic N, Wetzel C, Moshourab R, Lewin GR. Speed and temperature dependences of mechanotransduction in afferent fibers recorded from the mouse saphenous nerve. J Neurophysiol 2008; 100:2771-83. [PMID: 18815344 DOI: 10.1152/jn.90799.2008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Here we have systematically characterized the stimulus response properties of mechanosensitive sensory fibers in the mouse saphenous nerve. We tested mechanoreceptors and nociceptors with defined displacement stimuli of varying amplitude and velocity. For each sensory afferent investigated we measured the mechanical latency, which is the delay between the onset of a ramp displacement and the first evoked spike, corrected for conduction delay. Mechanical latency plotted as a function of stimulus strength was very characteristic for each receptor type and was very short for rapidly adapting mechanoreceptors (<11 ms) but very long in myelinated and unmyelinated nociceptors (49-114 ms). Increasing the stimulus speed decreased mechanical latency in all receptor types with the notable exception of C-fiber nociceptors, in which mean mechanical latency was not reduced less, similar100 ms, even with very fast ramp stimuli (2,945 microm/s). We examined stimulus response functions and mechanical latency at two different temperatures (24 and 32 degrees C) and found that stimulus response properties of almost all mechanoreceptors were not altered in this range. A notable exception to this rule was found for C-fibers in which mechanical latency was substantially increased and stimulus response functions decreased at lower temperatures. We calculated Q(10) values for mechanical latency in C-fibers to be 5.1; in contrast, the Q(10) value for conduction velocity for the same fibers was 1.4. Finally, we examined the effects of short-term inflammation (2-6 h) induced by carrageenan on nociceptor and mechanoreceptor sensitivity. We did not detect robust changes in mechanical latency or stimulus response functions after inflammation that might have reflected mechanical sensitization under the conditions tested.
Collapse
Affiliation(s)
- Nevena Milenkovic
- Department of Neuroscience, Max-Delbrück Center for Molecular Medicine and Charité Universitätsmedizin Berlin-Buch, Robert-Rössle Str. 10, Berlin D-13092, Germany
| | | | | | | |
Collapse
|
41
|
Brown AL, Liao Z, Goodman MB. MEC-2 and MEC-6 in the Caenorhabditis elegans sensory mechanotransduction complex: auxiliary subunits that enable channel activity. J Gen Physiol 2008; 131:605-16. [PMID: 18504316 PMCID: PMC2391253 DOI: 10.1085/jgp.200709910] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 05/05/2008] [Indexed: 01/12/2023] Open
Abstract
The ion channel formed by the homologous proteins MEC-4 and MEC-10 forms the core of a sensory mechanotransduction channel in Caenorhabditis elegans. Although the products of other mec genes are key players in the biophysics of transduction, the mechanism by which they contribute to the properties of the channel is unknown. Here, we investigate the role of two auxiliary channel subunits, MEC-2 (stomatin-like) and MEC-6 (paraoxonase-like), by coexpressing them with constitutively active MEC-4/MEC-10 heteromeric channels in Xenopus oocytes. This work extends prior work demonstrating that MEC-2 and MEC-6 synergistically increase macroscopic current. We use single-channel recordings and biochemistry to show that these auxiliary subunits alter function by increasing the number of channels in an active state rather than by dramatically affecting either single-channel properties or surface expression. We also use two-electrode voltage clamp and outside-out macropatch recording to examine the effects of divalent cations and proteases, known regulators of channel family members. Finally, we examine the role of cholesterol binding in the mechanism of MEC-2 action by measuring whole-cell and single-channel currents in MEC-2 mutants deficient in cholesterol binding. We suggest that MEC-2 and MEC-6 play essential roles in modulating both the local membrane environment of MEC-4/MEC-10 channels and the availability of such channels to be gated by force in vivo.
Collapse
Affiliation(s)
- Austin L Brown
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|