1
|
Leitch B. Molecular Mechanisms Underlying the Generation of Absence Seizures: Identification of Potential Targets for Therapeutic Intervention. Int J Mol Sci 2024; 25:9821. [PMID: 39337309 PMCID: PMC11432152 DOI: 10.3390/ijms25189821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Understanding the molecular mechanisms underlying the generation of absence seizures is crucial for developing effective, patient-specific treatments for childhood absence epilepsy (CAE). Currently, one-third of patients remain refractive to the antiseizure medications (ASMs), previously called antiepileptic drugs (AEDs), available to treat CAE. Additionally, these ASMs often produce serious side effects and can even exacerbate symptoms in some patients. Determining the precise cellular and molecular mechanisms directly responsible for causing this type of epilepsy has proven challenging as they appear to be complex and multifactorial in patients with different genetic backgrounds. Aberrant neuronal activity in CAE may be caused by several mechanisms that are not fully understood. Thus, dissecting the causal factors that could be targeted in the development of precision medicines without side effects remains a high priority and the ultimate goal in this field of epilepsy research. The aim of this review is to highlight our current understanding of potential causative mechanisms for absence seizure generation, based on the latest research using cutting-edge technologies. This information will be important for identifying potential targets for future therapeutic intervention.
Collapse
Affiliation(s)
- Beulah Leitch
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
2
|
Kazmierska-Grebowska P, Jankowski MM, MacIver MB. Missing Puzzle Pieces in Dementia Research: HCN Channels and Theta Oscillations. Aging Dis 2024; 15:22-42. [PMID: 37450922 PMCID: PMC10796085 DOI: 10.14336/ad.2023.0607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/07/2023] [Indexed: 07/18/2023] Open
Abstract
Increasing evidence indicates a role of hyperpolarization activated cation (HCN) channels in controlling the resting membrane potential, pacemaker activity, memory formation, sleep, and arousal. Their disfunction may be associated with the development of epilepsy and age-related memory decline. Neuronal hyperexcitability involved in epileptogenesis and EEG desynchronization occur in the course of dementia in human Alzheimer's Disease (AD) and animal models, nevertheless the underlying ionic and cellular mechanisms of these effects are not well understood. Some suggest that theta rhythms involved in memory formation could be used as a marker of memory disturbances in the course of neurogenerative diseases, including AD. This review focusses on the interplay between hyperpolarization HCN channels, theta oscillations, memory formation and their role(s) in dementias, including AD. While individually, each of these factors have been linked to each other with strong supportive evidence, we hope here to expand this linkage to a more inclusive picture. Thus, HCN channels could provide a molecular target for developing new therapeutic agents for preventing and/or treating dementia.
Collapse
Affiliation(s)
| | - Maciej M. Jankowski
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
- BioTechMed Center, Multimedia Systems Department, Faculty of Electronics, Telecommunications, and Informatics, Gdansk University of Technology, Gdansk, Poland.Telecommunications and Informatics, Gdansk University of Technology, Gdansk, Poland.
| | - M. Bruce MacIver
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of of Medicine, Stanford University, CA, USA.
| |
Collapse
|
3
|
Wang S, He X, Bao N, Chen M, Ding X, Zhang M, Zhao L, Wang S, Jiang G. Potentials of miR-9-5p in promoting epileptic seizure and improving survival of glioma patients. ACTA EPILEPTOLOGICA 2022. [DOI: 10.1186/s42494-022-00097-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract
Background
Epilepsy affects over 70 million people worldwide; however, the underlying mechanisms remain unclear. MicroRNAs (miRNAs) have essential functions in epilepsy. miRNA-9, a brain-specific/enriched miRNA, plays a role in various nervous system diseases and tumors, but whether miRNA-9 is involved in epilepsy and glioma-associated epilepsy remains unknown. Therefore, we aimed to explore the potential role of miR-9-5p in seizures and its effect on the survival of glioma patients, in order to provide new targets for the treatment of epilepsy and glioma.
Methods
The YM500v2 database was used to validate the expression of hsa-miR-9-5p in tissues. Moreover, qRT-PCR was performed to investigate the expression of miR-9-5p in temporal lobe epilepsy patients and rats with lithium-pilocarpine-induced seizures. Recombinant adeno-associated virus containing miR-9-5p was constructed to overexpress miR-9-5p in vivo. The effects of miR-9-5p on the behavior and electroencephalographic activities of the lithium-pilocarpine rat model of epilepsy were tested. Bioinformatics analysis was used to predict the targets of miR-9-5p and explore its potential role in epilepsy and glioma-associated epilepsy.
Results
The expression of miR-9-5p increased at 6 h and 7 days after lithium-pilocarpine-induced seizures in rats. Overexpression of miR-9-5p significantly shortened the latency of seizures and increased seizure intensity at 10 min and 20 min after administration of pilocarpine (P < 0.05). Predicted targets of miR-9-5p were abundant and enriched in the brain, and affected various pathways related to epilepsy and tumor. Survival analysis revealed that overexpression of miR-9-5p significantly improved the survival of patients from with low-grade gliomas and glioblastomas. The involvement of miR-9-5p in the glioma-associated epileptic seizures and the improvement of glioma survival may be related to multiple pathways, including the Rho GTPases and hub genes included SH3PXD2B, ARF6, and ANK2.
Conclusions
miR-9-5p may play a key role in promoting epileptic seizures and improving glioma survival, probably through multiple pathways, including GTPases of the Rho family and hub genes including SH3PXD2B, ARF6 and ANK2. Understanding the roles of miR-9-5p in epilepsy and glioma and the underlying mechanisms may provide a theoretical basis for the diagnosis and treatment of patients with epilepsy and glioma.
Collapse
|
4
|
Kessi M, Peng J, Duan H, He H, Chen B, Xiong J, Wang Y, Yang L, Wang G, Kiprotich K, Bamgbade OA, He F, Yin F. The Contribution of HCN Channelopathies in Different Epileptic Syndromes, Mechanisms, Modulators, and Potential Treatment Targets: A Systematic Review. Front Mol Neurosci 2022; 15:807202. [PMID: 35663267 PMCID: PMC9161305 DOI: 10.3389/fnmol.2022.807202] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/06/2022] [Indexed: 12/04/2022] Open
Abstract
Background Hyperpolarization-activated cyclic nucleotide-gated (HCN) current reduces dendritic summation, suppresses dendritic calcium spikes, and enables inhibitory GABA-mediated postsynaptic potentials, thereby suppressing epilepsy. However, it is unclear whether increased HCN current can produce epilepsy. We hypothesized that gain-of-function (GOF) and loss-of-function (LOF) variants of HCN channel genes may cause epilepsy. Objectives This systematic review aims to summarize the role of HCN channelopathies in epilepsy, update genetic findings in patients, create genotype–phenotype correlations, and discuss animal models, GOF and LOF mechanisms, and potential treatment targets. Methods The review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement, for all years until August 2021. Results We identified pathogenic variants of HCN1 (n = 24), HCN2 (n = 8), HCN3 (n = 2), and HCN4 (n = 6) that were associated with epilepsy in 74 cases (43 HCN1, 20 HCN2, 2 HCN3, and 9 HCN4). Epilepsy was associated with GOF and LOF variants, and the mechanisms were indeterminate. Less than half of the cases became seizure-free and some developed drug-resistant epilepsy. Of the 74 cases, 12 (16.2%) died, comprising HCN1 (n = 4), HCN2 (n = 2), HCN3 (n = 2), and HCN4 (n = 4). Of the deceased cases, 10 (83%) had a sudden unexpected death in epilepsy (SUDEP) and 2 (16.7%) due to cardiopulmonary failure. SUDEP affected more adults (n = 10) than children (n = 2). HCN1 variants p.M234R, p.C329S, p.V414M, p.M153I, and p.M305L, as well as HCN2 variants p.S632W and delPPP (p.719–721), were associated with different phenotypes. HCN1 p.L157V and HCN4 p.R550C were associated with genetic generalized epilepsy. There are several HCN animal models, pharmacological targets, and modulators, but precise drugs have not been developed. Currently, there are no HCN channel openers. Conclusion We recommend clinicians to include HCN genes in epilepsy gene panels. Researchers should explore the possible underlying mechanisms for GOF and LOF variants by identifying the specific neuronal subtypes and neuroanatomical locations of each identified pathogenic variant. Researchers should identify specific HCN channel openers and blockers with high binding affinity. Such information will give clarity to the involvement of HCN channelopathies in epilepsy and provide the opportunity to develop targeted treatments.
Collapse
Affiliation(s)
- Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- Department of Pediatrics, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Haolin Duan
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Hailan He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Juan Xiong
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Ying Wang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Guoli Wang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Karlmax Kiprotich
- Department of Epidemiology and Medical Statistics, School of Public Health, Moi University, Eldoret, Kenya
| | - Olumuyiwa A. Bamgbade
- Department of Anesthesiology and Pharmacology, University of British Columbia, Vancouver, BC, Canada
| | - Fang He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- *Correspondence: Fei Yin
| |
Collapse
|
5
|
Zhang H, Chen Y, Xie Y, Chai Y. Closed-loop controller based on reference signal tracking for absence seizures. Sci Rep 2022; 12:6730. [PMID: 35468988 PMCID: PMC9038751 DOI: 10.1038/s41598-022-10803-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/12/2022] [Indexed: 11/30/2022] Open
Abstract
Absent epilepsy is a kind of refractory epilepsy, which is characterized by 2–4 Hz spike and wave discharges (SWDs) in electroencephalogram. Open-loop deep brain stimulation (DBS) targeting the thalamic reticular nucleus (TRN) is an effective method to treat absent epilepsy by eliminating SWDs in the brain. Compared with open-loop DBS, closed-loop DBS has been recognized by researchers for its advantages of significantly inhibiting seizures and having fewer side effects. Since traditional trial-and-error methods for adjusting closed-loop controller parameters are too dependent on the experience of doctors, in this paper we designed two proportional integral (PI) controllers based on the basal ganglia-cortical-thalamic model, whose PI parameters are calculated from the stability of the system. The two PI controllers can automatically adjust the frequency and amplitude of DBS respectively according to the change of the firing rate detected by substantia nigra pars reticulata (SNr). The parameters of the PI controller are calculated based on the Routh-Hurwitz stability criterion of a linear system which transformed by the original system using controlled auto-regressive (CAR) model and recursive least squares (RLS) method. Numerical simulation results show that both PI controllers significantly destroy the SWDs of the cerebral cortex and restore it to the other two normal discharge modes according to the different target firing rate, which supplies a promising brain stimulation strategy.
Collapse
Affiliation(s)
- Hudong Zhang
- School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 201306, China
| | - Yuting Chen
- School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 201306, China
| | - Yan Xie
- School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 201306, China
| | - Yuan Chai
- School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 201306, China.
| |
Collapse
|
6
|
Hu B, Wang Z, Xu M, Zhu L, Wang D. The inhibition mechanism of epilepsy disease in a computational model. Technol Health Care 2022; 30:155-162. [PMID: 35124593 PMCID: PMC9028747 DOI: 10.3233/thc-228015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The mechanism of prevention and treatment of epilepsy is a hot issue in theoretical research. OBJECTIVE In this paper, we studied the control mechanism of the generalized spike-and-wave discharges (GSWD) by different types of external electrical stimulation acting on the subthalamic nucleus (STN) in a computational model. METHODS Firstly, we analyzed the pathological mechanism of seizures, which were induced by different parameters in the thalamocortical (TC) circuit. Then, a voltage V was exerted in the STN. At last, we used the sine wave and square wave current stimulation in the STN. RESULTS We found that seizures can be inhibited by tuning stimulus intensity into suitable range, and the direction of adjustment depended on the size of the parameter. We observed that the seizure can also be inhibited by tuning different parameters in current. CONCLUSIONS Different inhibition mechanisms can be explained in this model, which may provide theoretical evidences for selecting the optimal treatment scheme in the clinical.
Collapse
Affiliation(s)
- Bing Hu
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Zhizhi Wang
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Minbo Xu
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Luyao Zhu
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Dingjiang Wang
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Yang J, Feng G, Chen M, Wang S, Tang F, Zhou J, Bao N, Yu J, Jiang G. Glucosamine promotes seizure activity via activation of the PI3K/Akt pathway in epileptic rats. Epilepsy Res 2021; 175:106679. [PMID: 34166966 DOI: 10.1016/j.eplepsyres.2021.106679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 04/28/2021] [Accepted: 05/27/2021] [Indexed: 11/25/2022]
Abstract
CONTEXT Glucosamine is an amino monosaccharide with a small molecular weight and has a protective effect against various neurological diseases including multiple sclerosis and encephalomyelitis. Interestingly, low-dose glucosamine has exhibited anti-epilepsy activity. Recent studies have shown that the activation of the protein kinase B (Akt) signaling pathway may promote epilepsy. Glucosamine can increase the level of Akt phosphorylation in the brain tissue, which may aggravate epilepsy. Hence, we speculate that a higher dose of glucosamine may aggravate epilepsy via AKT signaling. OBJECTIVE To investigate the effect of glucosamine on the behavior and electrophysiology of epileptic rats through PI3K/Akt pathway. METHODS Glucose (2.0 g/kg) and glucosamine (0, 0.5, 1.0, and 2.0 g/kg) were added to 2 mL of drinking water, respectively. An acute seizure rat model of lithium-pilocarpine and PTZ-kindling were constructed to observe the effects of different doses of glucosamine on epileptic behavior and hippocampal electrical activity. Meanwhile, the changes in Akt were detected by western blot. RESULTS Epileptic seizures were induced by a single dose of pilocarpine or PTZ and 2.0 g/kg of glucosamine significantly prolonged the duration and severity of epileptic seizures, enhanced hippocampal electrical activity energy density, and increased phosphorylated AKT levels. A glucosamine dose of 2.0 g/kg also significantly increased the total onset energy density. Furthermore, 2.0 g/kg glucosamine facilitated the development of the chronic PTZ-kindling process. CONCLUSIONS Glucosamine may exacerbate acute and chronic epileptic seizures via activation of the PI3K/Akt pathway in rats with experimental epilepsy.
Collapse
Affiliation(s)
- Jin Yang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong, 637000, China; Institute of Neurological Diseases, North Sichuan Medical College, 234 Fujiang Road, Nanchong, Sichuan, China
| | - Guibo Feng
- Department of General Medicine, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China
| | - Mingyue Chen
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong, 637000, China; Institute of Neurological Diseases, North Sichuan Medical College, 234 Fujiang Road, Nanchong, Sichuan, China
| | - Shenglin Wang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong, 637000, China; Institute of Neurological Diseases, North Sichuan Medical College, 234 Fujiang Road, Nanchong, Sichuan, China
| | - Feng Tang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong, 637000, China; Institute of Neurological Diseases, North Sichuan Medical College, 234 Fujiang Road, Nanchong, Sichuan, China
| | - Jing Zhou
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong, 637000, China; Institute of Neurological Diseases, North Sichuan Medical College, 234 Fujiang Road, Nanchong, Sichuan, China
| | - Nana Bao
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong, 637000, China; Institute of Neurological Diseases, North Sichuan Medical College, 234 Fujiang Road, Nanchong, Sichuan, China
| | - Juming Yu
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong, 637000, China; Institute of Neurological Diseases, North Sichuan Medical College, 234 Fujiang Road, Nanchong, Sichuan, China
| | - Guohui Jiang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong, 637000, China; Institute of Neurological Diseases, North Sichuan Medical College, 234 Fujiang Road, Nanchong, Sichuan, China.
| |
Collapse
|
8
|
Regulation and control roles of the basal ganglia in the development of absence epileptiform activities. Cogn Neurodyn 2019; 14:137-154. [PMID: 32015772 DOI: 10.1007/s11571-019-09559-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 09/02/2019] [Accepted: 09/30/2019] [Indexed: 10/25/2022] Open
Abstract
Absence epileptiform activities are traditionally considered to be primarily induced by abnormal interactions between the cortical and thalamic neurons, which form the thalamocortical circuit in the brain. The basal ganglia, as an organizational unit in the brain, has close input and output relationships with the thalamocortical circuit. Although several studies report that the basal ganglia may participate in controlling and regulating absence epileptiform activities, to date, there have been no studies regarding whether the basal ganglia directly cause absence epileptiform activities. In this paper, we built a basal ganglia-corticothalamic network model to determine the role of basal ganglia in this disease. We determined that absence epileptiform activities might be directly induced by abnormal coupling strengths on certain pivotal pathways in the basal ganglia. These epileptiform activities can be well controlled by the coupling strengths of three major pathways that project from the thalamocortical network to the basal ganglia. The results implied that the substantia nigra pars compacta (SNc) can be considered to be the effective treatment target area for inhibiting epileptiform activities, which supports the observations of previous studies. Particularly, as a major contribution of this paper, we determined that the final presentation position of the epileptic slow spike waves is not limited to the cerebral cortex; these waves may additionally appear in the thalamus, striatal medium spiny neurons, striatal fast spiking interneuron, the SNc, subthalamic nucleus, substantia nigra pars reticulata and globus pallidus pars externa. In addition, consistent with several previous studies, the delay in the network was observed to be a critical factor for inducing transitions between different types of absence epileptiform activities. Our new model not only explains the onset and control mechanism but also provides a unified framework to study similar problems in neuron systems.
Collapse
|
9
|
Miyamoto H, Tatsukawa T, Shimohata A, Yamagata T, Suzuki T, Amano K, Mazaki E, Raveau M, Ogiwara I, Oba-Asaka A, Hensch TK, Itohara S, Sakimura K, Kobayashi K, Kobayashi K, Yamakawa K. Impaired cortico-striatal excitatory transmission triggers epilepsy. Nat Commun 2019; 10:1917. [PMID: 31015467 PMCID: PMC6478892 DOI: 10.1038/s41467-019-09954-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 04/10/2019] [Indexed: 11/10/2022] Open
Abstract
STXBP1 and SCN2A gene mutations are observed in patients with epilepsies, although the circuit basis remains elusive. Here, we show that mice with haplodeficiency for these genes exhibit absence seizures with spike-and-wave discharges (SWDs) initiated by reduced cortical excitatory transmission into the striatum. Mice deficient for Stxbp1 or Scn2a in cortico-striatal but not cortico-thalamic neurons reproduce SWDs. In Stxbp1 haplodeficient mice, there is a reduction in excitatory transmission from the neocortex to striatal fast-spiking interneurons (FSIs). FSI activity transiently decreases at SWD onset, and pharmacological potentiation of AMPA receptors in the striatum but not in the thalamus suppresses SWDs. Furthermore, in wild-type mice, pharmacological inhibition of cortico-striatal FSI excitatory transmission triggers absence and convulsive seizures in a dose-dependent manner. These findings suggest that impaired cortico-striatal excitatory transmission is a plausible mechanism that triggers epilepsy in Stxbp1 and Scn2a haplodeficient mice. Spike and wave discharge (SWD) activity is seen during absence seizures and is thought to be thalamocortical in origin. Here, the authors show that SWDs are initiated through the impaired corticostriatal excitatory transmissions onto striatal fast spiking interneurons.
Collapse
Affiliation(s)
- Hiroyuki Miyamoto
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan.,PRESTO, Japan Science and Technology Agency, Saitama, 332-0012, Japan.,International Research Center for Neurointelligence (IRCN), The University of Tokyo Institutes for Advanced Study, Tokyo, 113-0033, Japan
| | - Tetsuya Tatsukawa
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Atsushi Shimohata
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Tetsushi Yamagata
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Toshimitsu Suzuki
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Kenji Amano
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Emi Mazaki
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Matthieu Raveau
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Ikuo Ogiwara
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan.,Department of Physiology, Nippon Medical School, Tokyo, 113-8602, Japan
| | - Atsuko Oba-Asaka
- International Research Center for Neurointelligence (IRCN), The University of Tokyo Institutes for Advanced Study, Tokyo, 113-0033, Japan.,Laboratory for Behavioral Genetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Takao K Hensch
- International Research Center for Neurointelligence (IRCN), The University of Tokyo Institutes for Advanced Study, Tokyo, 113-0033, Japan
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan.,FIRST, Japan Science and Technology Agency, Saitama, 332-0012, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan.,Graduate University for Advanced Studies (SOKENDAI), Hayama, 240-0193, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
| | - Kazuhiro Yamakawa
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
10
|
Insights on the Role of Thalamocortical HCN Channels in Absence Epilepsy. J Neurosci 2019; 39:578-580. [PMID: 30674612 DOI: 10.1523/jneurosci.2063-18.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 11/21/2022] Open
|
11
|
Chen Y, Hou Y, Ge R, Han J, Xu J, Chen J, Wang H. Protective effect of roscovitine against rotenone-induced parkinsonism. Restor Neurol Neurosci 2018; 36:629-638. [PMID: 30056439 DOI: 10.3233/rnn-180817] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Protective effect of roscovitine and deregulation of the p-RB/E2F1 have not been well studied in PD models generated by repeated oral administration of rotenone. OBJECTIVE These experiments evaluated the effects of repeated oral gavage of rotenone on the activation of p-RB/E2F1 and the effects of roscovitine on the regulation of dopaminergic neuronal injury and the behavior of PD in mice. METHODS Using 2.5% carboxymethylcellulose and 1.25% chloroform as a vehicle solution, rotenone (30 mg/kg) was administered via oral gavage once daily for 30 days in C57 mice. Behavioral profiles (pole test and traction test) were assessed in these PD models, and oxidative stress levels were evaluated in the midbrain. The immunoreactivities of TH, α-synuclein (α-syn), p-RB, E2F1 and cleaved caspase-3 in the substantia nigra were examined with a laser confocal microscope. Pharmacological inhibition of cyclin-dependent kinase with roscovitine was achieved by intraperitoneal (IP) injection at a dose of 50 mg/kg daily. RESULTS All rotenone-administered C57 mice showed the typical behavioral features of PD: stiffness, bradykinesia, or hypokinesia. Behavioral testing with the pole test and traction test indicated that the rotenone group, but not the vehicle group, was affected. Spectrophotometric analysis demonstrated that glutathione (GSH) and superoxide dismutase (SOD) activity was decreased, and the generation of malondialdehyde (MDA) was elevated in the midbrain of the rotenone-treated group. After oral administration of rotenone, a loss of nigral tyrosine hydroxylase (TH)-positive neurons was observed. The immune response of α-syn was enhanced in the cytoplasm of dopaminergic neurons from the rotenone-induced neurotoxicity. Rb phosphorylation at serine 780, which affected Rb binding to E2F, was induced after rotenone treatment. The activation of E2F1, which is involved in the regulation of the cell cycle, was also induced from chronic exposure to rotenone. Moreover, administration of the cell cycle inhibitor roscovitine protected against rotenone-induced nigral dopaminergic neuronal injury and inhibited cleaved caspase-3 activation. Roscovitine also markedly ameliorated the behavior of PD mice. CONCLUSIONS Mouse models of Parkinson's disease were established by oral rotenone administration and reproduced some of the features of dopaminergic neuronal degeneration. Roscovitine protects against rotenone-induced parkinsonism.
Collapse
Affiliation(s)
- Yan Chen
- Department of Gastroenterology, Affiliated Hospital of Binzhou Medical University, Shandong Province, China
| | - Yiwei Hou
- Department of Neurology, Affiliated Hospital of Binzhou Medical University, Shandong Province, China
| | - Ruli Ge
- Department of Neurology, Affiliated Hospital of Binzhou Medical University, Shandong Province, China
| | - Jianmei Han
- Department of Neurology, Yangxin County People's Hospital, Shandong Province, China
| | - Jing Xu
- Department of Neurology, Affiliated Hospital of Binzhou Medical University, Shandong Province, China
| | - Jinbo Chen
- Department of Neurology, Affiliated Hospital of Binzhou Medical University, Shandong Province, China
| | - Hongcai Wang
- Department of Neurology, Affiliated Hospital of Binzhou Medical University, Shandong Province, China
| |
Collapse
|
12
|
Stoy WA, Kolb I, Holst GL, Liew Y, Pala A, Yang B, Boyden ES, Stanley GB, Forest CR. Robotic navigation to subcortical neural tissue for intracellular electrophysiology in vivo. J Neurophysiol 2017; 118:1141-1150. [PMID: 28592685 DOI: 10.1152/jn.00117.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/25/2017] [Accepted: 05/25/2017] [Indexed: 02/07/2023] Open
Abstract
In vivo studies of neurophysiology using the whole cell patch-clamp technique enable exquisite access to both intracellular dynamics and cytosol of cells in the living brain but are underrepresented in deep subcortical nuclei because of fouling of the sensitive electrode tip. We have developed an autonomous method to navigate electrodes around obstacles such as blood vessels after identifying them as a source of contamination during regional pipette localization (RPL) in vivo. In mice, robotic navigation prevented fouling of the electrode tip, increasing RPL success probability 3 mm below the pial surface to 82% (n = 72/88) over traditional, linear localization (25%, n = 24/95), and resulted in high-quality thalamic whole cell recordings with average access resistance (32.0 MΩ) and resting membrane potential (-62.9 mV) similar to cortical recordings in isoflurane-anesthetized mice. Whole cell yield improved from 1% (n = 1/95) to 10% (n = 9/88) when robotic navigation was used during RPL. This method opens the door to whole cell studies in deep subcortical nuclei, including multimodal cell typing and studies of long-range circuits.NEW & NOTEWORTHY This work represents an automated method for accessing subcortical neural tissue for intracellular electrophysiology in vivo. We have implemented a novel algorithm to detect obstructions during regional pipette localization and move around them while minimizing lateral displacement within brain tissue. This approach leverages computer control of pressure, manipulator position, and impedance measurements to create a closed-loop platform for pipette navigation in vivo. This technique enables whole cell patching studies to be performed throughout the living brain.
Collapse
Affiliation(s)
- W A Stoy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - I Kolb
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - G L Holst
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Y Liew
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - A Pala
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - B Yang
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - E S Boyden
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts; and.,McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - G B Stanley
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - C R Forest
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia; .,George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
13
|
Chronic metformin treatment facilitates seizure termination. Biochem Biophys Res Commun 2017; 484:450-455. [PMID: 28137587 DOI: 10.1016/j.bbrc.2017.01.157] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 01/27/2017] [Indexed: 01/08/2023]
Abstract
The AMP-activated protein kinase (AMPK) is a key energy sensor. Its activator metformin could suppress epileptogenesis in the pentylenetetrazol (PTZ) kindling model. However, the effect of metformin on the acute and chronic seizures has not been studied. We first detected the expression of AMPK in the brain tissue of human and mice with chronic seizures, as well as in mice with acute seizures. Second, using behavioral assay and local filed potentials (LFPs) recording, we investigated the effect of chronic metformin treatment on seizures in a acute seizure model and a chronic seizure model. Our results showed that AMPK was expressed in neurons in the epileptic brain. The expression level was decreased in the brain tissue that experienced chronic and acute seizures. In PTZ-induced acute seizures model, behavioral assay showed that chronic metformin treatment decreased the mortality, and LFPs recording showed that chronic metformin treatment shortened the duration of generalized tonic-clonic seizures and prolonged the duration of postictal depression. Moreover, in kainic acid-induced chronic seizures model, LFPs recording showed that chronic metformin treatment shortened the duration of epileptic activity. Our study suggests that chronic metformin treatment could facilitate seizure termination.
Collapse
|
14
|
Arakaki T, Mahon S, Charpier S, Leblois A, Hansel D. The Role of Striatal Feedforward Inhibition in the Maintenance of Absence Seizures. J Neurosci 2016; 36:9618-32. [PMID: 27629713 PMCID: PMC6601939 DOI: 10.1523/jneurosci.0208-16.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 07/24/2016] [Accepted: 07/25/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Absence seizures are characterized by brief interruptions of conscious experience accompanied by oscillations of activity synchronized across many brain areas. Although the dynamics of the thalamocortical circuits are traditionally thought to underlie absence seizures, converging experimental evidence supports the key involvement of the basal ganglia (BG). In this theoretical work, we argue that the BG are essential for the maintenance of absence seizures. To this end, we combine analytical calculations with numerical simulations to investigate a computational model of the BG-thalamo-cortical network. We demonstrate that abnormally strong striatal feedforward inhibition can promote synchronous oscillatory activity that persists in the network over several tens of seconds as observed during seizures. We show that these maintained oscillations result from an interplay between the negative feedback through the cortico-subthalamo-nigral pathway and the striatal feedforward inhibition. The negative feedback promotes epileptic oscillations whereas the striatal feedforward inhibition suppresses the positive feedback provided by the cortico-striato-nigral pathway. Our theory is consistent with experimental evidence regarding the influence of BG on seizures (e.g., with the fact that a pharmacological blockade of the subthalamo-nigral pathway suppresses seizures). It also accounts for the observed strong suppression of the striatal output during seizures. Our theory predicts that well-timed transient excitatory inputs to the cortex advance the termination of absence seizures. In contrast with the thalamocortical theory, it also predicts that reducing the synaptic transmission along the cortico-subthalamo-nigral pathway while keeping constant the average firing rate of substantia nigra pars reticulata reduces the incidence of seizures. SIGNIFICANCE STATEMENT Absence seizures are characterized by brief interruptions of consciousness accompanied by abnormal brain oscillations persisting tens of seconds. Thalamocortical circuits are traditionally thought to underlie absence seizures. However, recent experiments have highlighted the key role of the basal ganglia (BG). This work argues for a novel theory according to which the BG drive the oscillatory patterns of activity occurring during the seizures. It demonstrates that abnormally strong striatal feedforward inhibition promotes synchronous oscillatory activity in the BG-thalamo-cortical network and relate this property to the observed strong suppression of the striatal output during seizures. The theory is compatible with virtually all known experimental results, and it predicts that well-timed transient excitatory inputs to the cortex advance the termination of absence seizures.
Collapse
Affiliation(s)
- Takafumi Arakaki
- Center of Neurophysics, Physiology and Pathology, UMR 8119 CNRS, Paris Descartes University, 75270 Paris, France
| | - Séverine Mahon
- Sorbonne Universités, Université Paris 06, UPMC, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, Hôpital Pitié-Salpêtrière, F-75013 Paris, France, and
| | - Stéphane Charpier
- Sorbonne Universités, Université Paris 06, UPMC, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, Hôpital Pitié-Salpêtrière, F-75013 Paris, France, and UPMC Université Paris 06, F-75005 Paris, France
| | - Arthur Leblois
- Center of Neurophysics, Physiology and Pathology, UMR 8119 CNRS, Paris Descartes University, 75270 Paris, France
| | - David Hansel
- Center of Neurophysics, Physiology and Pathology, UMR 8119 CNRS, Paris Descartes University, 75270 Paris, France,
| |
Collapse
|
15
|
Decreased HCN2 expression in STN contributes to abnormal high-voltage spindles in the cortex and globus pallidus of freely moving rats. Brain Res 2015; 1618:17-28. [DOI: 10.1016/j.brainres.2015.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 05/06/2015] [Accepted: 05/08/2015] [Indexed: 12/23/2022]
|
16
|
Inhibitory synaptic transmission from the substantia nigra pars reticulata to the ventral medial thalamus in mice. Neurosci Res 2015; 97:26-35. [PMID: 25887794 DOI: 10.1016/j.neures.2015.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 03/17/2015] [Accepted: 03/30/2015] [Indexed: 11/20/2022]
Abstract
The cortico-basal ganglia-thalamic loop circuit is involved in variety of motor, association and limbic functions. The basal ganglia receive neural information from various areas of the cerebral cortex and transfer them back to the frontal and motor cortex via the ventral medial (VM), and the anterior-ventral lateral thalamic complex. The projection from the basal ganglia to the thalamus is GABAergic, and, therefore, the output from the basal ganglia cannot directly evoke excitation in the thalamic nuclei. The mechanism underlying the information transfer via the inhibitory projection remains unclear. To address this issue, we recorded electrophysiological properties of nigro-thalamic synapses from the VM neuron. We developed a nigro-thalamic slice preparation, in which the projection from the substantia nigra pars reticulata (SNr) to VM nucleus is stored, to enable the selective activation of the projection from the SNr. We characterized synaptic properties and membrane properties of the VM neuron, and developed a VM neuron model to simulate the impacts of SNr inputs on VM neuron activity. Neural simulation suggested that the inhibitory projection from SNr can control neural activity in two ways: a disinhibition from the spontaneous nigral inhibition and a β-band synchronization evoked by combination of excitation and inhibition of SNr activity.
Collapse
|
17
|
Sada N, Lee S, Katsu T, Otsuki T, Inoue T. Epilepsy treatment. Targeting LDH enzymes with a stiripentol analog to treat epilepsy. Science 2015; 347:1362-7. [PMID: 25792327 DOI: 10.1126/science.aaa1299] [Citation(s) in RCA: 283] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neuronal excitation is regulated by energy metabolism, and drug-resistant epilepsy can be suppressed by special diets. Here, we report that seizures and epileptiform activity are reduced by inhibition of the metabolic pathway via lactate dehydrogenase (LDH), a component of the astrocyte-neuron lactate shuttle. Inhibition of the enzyme LDH hyperpolarized neurons, which was reversed by the downstream metabolite pyruvate. LDH inhibition also suppressed seizures in vivo in a mouse model of epilepsy. We further found that stiripentol, a clinically used antiepileptic drug, is an LDH inhibitor. By modifying its chemical structure, we identified a previously unknown LDH inhibitor, which potently suppressed seizures in vivo. We conclude that LDH inhibitors are a promising new group of antiepileptic drugs.
Collapse
Affiliation(s)
- Nagisa Sada
- Department of Biophysical Chemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Suni Lee
- Department of Hygiene, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Takashi Katsu
- Department of Biophysical Chemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Takemi Otsuki
- Department of Hygiene, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Tsuyoshi Inoue
- Department of Biophysical Chemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.
| |
Collapse
|
18
|
Hu B, Guo D, Wang Q. Control of absence seizures induced by the pathways connected to SRN in corticothalamic system. Cogn Neurodyn 2014; 9:279-89. [PMID: 25972977 DOI: 10.1007/s11571-014-9321-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 10/09/2014] [Accepted: 11/16/2014] [Indexed: 10/24/2022] Open
Abstract
The cerebral cortex, thalamus and basal ganglia together form an important network in the brain, which is closely related to several nerve diseases, such as parkinson disease, epilepsy seizure and so on. Absence seizure can be characterized by 2-4 Hz oscillatory activity, and it can be induced by abnormal interactions between the cerebral cortex and thalamus. Many experimental results have also shown that basal ganglia are a key neural structure, which closely links the corticothalamic system in the brain. Presently, we use a corticothalamic-basal ganglia model to study which pathways in corticothalamic system can induce absence seizures and how these oscillatory activities can be controlled by projections from the substantia nigra pars reticulata (SNr) to the thalamic reticular nucleus (TRN) or the specific relay nuclei (SRN) of the thalamus. By tuning the projection strength of the pathway "Excitatory pyramidal cortex-SRN", "SRN-Excitatory pyramidal cortex" and "SRN-TRN" respectively, different firing states including absence seizures can appear. This indicates that absence seizures can be induced by tuning the connection strength of the considered pathway. In addition, typical absence epilepsy seizure state "spike-and-slow wave discharges" can be controlled by adjusting the activation level of the SNr as the pathways SNr-SRN and SNr-TRN open independently or together. Our results emphasize the importance of basal ganglia in controlling absence seizures in the corticothalamic system, and can provide a potential idea for the clinical treatment.
Collapse
Affiliation(s)
- Bing Hu
- Department of Dynamics and Control, Beihang University, Beijing, 100191 China
| | - Daqing Guo
- Key Laboratory for Neuro Information of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054 China
| | - Qingyun Wang
- Department of Dynamics and Control, Beihang University, Beijing, 100191 China
| |
Collapse
|
19
|
Deng WS, Jiang YX, Han XH, Xue Y, Wang H, Sun P, Chen L. HCN Channels Modulate the Activity of the Subthalamic Nucleus In Vivo. J Mol Neurosci 2014; 55:260-268. [DOI: 10.1007/s12031-014-0316-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 04/24/2014] [Indexed: 01/17/2023]
|
20
|
Chen M, Guo D, Wang T, Jing W, Xia Y, Xu P, Luo C, Valdes-Sosa PA, Yao D. Bidirectional control of absence seizures by the basal ganglia: a computational evidence. PLoS Comput Biol 2014; 10:e1003495. [PMID: 24626189 PMCID: PMC3952815 DOI: 10.1371/journal.pcbi.1003495] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 01/09/2014] [Indexed: 01/03/2023] Open
Abstract
Absence epilepsy is believed to be associated with the abnormal interactions between the cerebral cortex and thalamus. Besides the direct coupling, anatomical evidence indicates that the cerebral cortex and thalamus also communicate indirectly through an important intermediate bridge–basal ganglia. It has been thus postulated that the basal ganglia might play key roles in the modulation of absence seizures, but the relevant biophysical mechanisms are still not completely established. Using a biophysically based model, we demonstrate here that the typical absence seizure activities can be controlled and modulated by the direct GABAergic projections from the substantia nigra pars reticulata (SNr) to either the thalamic reticular nucleus (TRN) or the specific relay nuclei (SRN) of thalamus, through different biophysical mechanisms. Under certain conditions, these two types of seizure control are observed to coexist in the same network. More importantly, due to the competition between the inhibitory SNr-TRN and SNr-SRN pathways, we find that both decreasing and increasing the activation of SNr neurons from the normal level may considerably suppress the generation of spike-and-slow wave discharges in the coexistence region. Overall, these results highlight the bidirectional functional roles of basal ganglia in controlling and modulating absence seizures, and might provide novel insights into the therapeutic treatments of this brain disorder. Epilepsy is a general term for conditions with recurring seizures. Absence seizures are one of several kinds of seizures, which are characterized by typical 2–4 Hz spike-and-slow wave discharges (SWDs). There is accumulating evidence that absence seizures are due to abnormal interactions between cerebral cortex and thalamus, and the basal ganglia may take part in controlling such brain disease via the indirect basal ganglia-thalamic pathway relaying at superior colliculus. Actually, the basal ganglia not only send indirect signals to thalamus, but also communicate with several key nuclei of thalamus through multiple direct GABAergic projections. Nevertheless, whether and how these direct pathways regulate absence seizure activities are still remain unknown. By computational modelling, we predicted that two direct inhibitory basal ganglia-thalamic pathways emitting from the substantia nigra pars reticulata may also participate in the control of absence seizures. Furthermore, we showed that these two types of seizure control can coexist in the same network, and depending on the instant network state, both lowing and increasing the activation of SNr neurons may inhibit the SWDs due to the existence of competition. Our findings emphasize the bidirectional modulation effects of basal ganglia on absence seizures, and might have physiological implications on the treatment of absence epilepsy.
Collapse
Affiliation(s)
- Mingming Chen
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Daqing Guo
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
- * E-mail: (DG); (DY)
| | - Tiebin Wang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Wei Jing
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Yang Xia
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Peng Xu
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Cheng Luo
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Pedro A. Valdes-Sosa
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
- Cuban Neuroscience Center, Cubanacan, Playa, Cuba
| | - Dezhong Yao
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
- * E-mail: (DG); (DY)
| |
Collapse
|
21
|
Campbell JN, Gandhi A, Singh B, Churn SB. Traumatic Brain Injury Causes a Tacrolimus-Sensitive Increase in Non-Convulsive Seizures in a Rat Model of Post-Traumatic Epilepsy. INTERNATIONAL JOURNAL OF NEUROLOGY & BRAIN DISORDERS 2014; 1:1-11. [PMID: 25580467 PMCID: PMC4287390 DOI: 10.15436/2377-1348.14.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Epilepsy is a significant but potentially preventable complication of traumatic brain injury (TBI). Previous research in animal models of acquired epilepsy has implicated the calcium-sensitive phosphatase, calcineurin. In addition, our lab recently found that calcineurin activity in the rat hippocampus increases acutely after lateral TBI. Here we use a calcineurin inhibitor test whether an acute increase in calcineurin activity is necessary for the development of late post-traumatic seizures. Adult rats were administered the calcineurin inhibitor Tacrolimus (5mg/kg; i.p.) 1 hour after lateral fluid percussion TBI and then monitored by video-electrocorticography (video-ECoG) for spontaneous seizure activity 5 weeks or 33 weeks later. At 5 weeks post-TBI, we observed epileptiform activity on the video-ECoG of brain injured rats but no seizures. By 33 weeks post-TBI though, nearly all injured rats exhibited spontaneous seizures, including convulsive seizures which were infrequent but lasted minutes (18% of injured rats), and non-convulsive seizures which were frequent but lasted tens of seconds (94% of injured rats). We also identified non-convulsive seizures in a smaller subset of control and sham TBI rats (56%), reminiscent of idiopathic seizures described in other rats strains. Non-convulsive seizures in the brain injured rats, however, were four-times more frequent and two-times longer lasting than in their uninjured littermates. Interestingly, rats administered Tacrolimus acutely after TBI showed significantly fewer non-convulsive seizures than untreated rats, but a similar degree of cortical atrophy. The data thus indicate that administration of Tacrolimus acutely after TBI suppressed non-convulsive seizures months later.
Collapse
Affiliation(s)
- John N. Campbell
- Anatomy and Neurobiology, Virginia Common Wealth University, Richmond, VA
- Neurology, Virginia Commonwealth University, Richmond, VA
| | - Anandh Gandhi
- Neurology, Virginia Commonwealth University, Richmond, VA
| | | | - Severn B. Churn
- Anatomy and Neurobiology, Virginia Common Wealth University, Richmond, VA
- Neurology, Virginia Commonwealth University, Richmond, VA
- Physiology and Biophysics, Virginia Common Wealth University, Richmond, VA
- Pharmacology and Toxicology, Virginia Common Wealth University, Richmond, VA
| |
Collapse
|
22
|
He C, Chen F, Li B, Hu Z. Neurophysiology of HCN channels: From cellular functions to multiple regulations. Prog Neurobiol 2014; 112:1-23. [DOI: 10.1016/j.pneurobio.2013.10.001] [Citation(s) in RCA: 230] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 10/01/2013] [Accepted: 10/07/2013] [Indexed: 12/18/2022]
|
23
|
The Role of HCN Channels on Membrane Excitability in the Nervous System. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:619747. [PMID: 22934165 PMCID: PMC3425855 DOI: 10.1155/2012/619747] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 06/19/2012] [Indexed: 01/07/2023]
Abstract
Hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels were first reported in heart cells and are recently known to be involved in a variety of neural functions in healthy and diseased brains. HCN channels generate inward currents when the membrane potential is hyperpolarized. Voltage dependence of HCN channels is regulated by intracellular signaling cascades, which contain cyclic AMP, PIP(2), and TRIP8b. In addition, voltage-gated potassium channels have a strong influence on HCN channel activity. Because of these funny features, HCN channel currents, previously called funny currents, can have a wide range of functions that are determined by a delicate balance of modulatory factors. These multifaceted features also make it difficult to predict and elucidate the functional role of HCN channels in actual neurons. In this paper, we focus on the impacts of HCN channels on neural activity. The functions of HCN channels reported previously will be summarized, and their mechanisms will be explained by using numerical simulation of simplified model neurons.
Collapse
|
24
|
Marin-Valencia I, Good LB, Ma Q, Duarte J, Bottiglieri T, Sinton CM, Heilig CW, Pascual JM. Glut1 deficiency (G1D): epilepsy and metabolic dysfunction in a mouse model of the most common human phenotype. Neurobiol Dis 2012; 48:92-101. [PMID: 22683290 DOI: 10.1016/j.nbd.2012.04.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 03/20/2012] [Accepted: 04/15/2012] [Indexed: 10/28/2022] Open
Abstract
Brain glucose supplies most of the carbon required for acetyl-coenzyme A (acetyl-CoA) generation (an important step for myelin synthesis) and for neurotransmitter production via further metabolism of acetyl-CoA in the tricarboxylic acid (TCA) cycle. However, it is not known whether reduced brain glucose transporter type I (GLUT-1) activity, the hallmark of the GLUT-1 deficiency (G1D) syndrome, leads to acetyl-CoA, TCA or neurotransmitter depletion. This question is relevant because, in its most common form in man, G1D is associated with cerebral hypomyelination (manifested as microcephaly) and epilepsy, suggestive of acetyl-CoA depletion and neurotransmitter dysfunction, respectively. Yet, brain metabolism in G1D remains underexplored both theoretically and experimentally, partly because computational models of limited brain glucose transport are subordinate to metabolic assumptions and partly because current hemizygous G1D mouse models manifest a mild phenotype not easily amenable to investigation. In contrast, adult antisense G1D mice replicate the human phenotype of spontaneous epilepsy associated with robust thalamocortical electrical oscillations. Additionally, and in consonance with human metabolic imaging observations, thalamus and cerebral cortex display the lowest GLUT-1 expression and glucose uptake in the mutant mouse. This depletion of brain glucose is associated with diminished plasma fatty acids and elevated ketone body levels, and with decreased brain acetyl-CoA and fatty acid contents, consistent with brain ketone body consumption and with stimulation of brain beta-oxidation and/or diminished cerebral lipid synthesis. In contrast with other epilepsies, astrocyte glutamine synthetase expression, cerebral TCA cycle intermediates, amino acid and amine neurotransmitter contents are also intact in G1D. The data suggest that the TCA cycle is preserved in G1D because reduced glycolysis and acetyl-CoA formation can be balanced by enhanced ketone body utilization. These results are incompatible with global cerebral energy failure or with neurotransmitter depletion as responsible for epilepsy in G1D and point to an unknown mechanism by which glycolysis critically regulates cortical excitability.
Collapse
Affiliation(s)
- Isaac Marin-Valencia
- Rare Brain Disorders Clinic and Laboratory, Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, USA
| | | | | | | | | | | | | | | |
Collapse
|