1
|
Cieśla K, Wolak T, Amedi A. Resting-state functional connectivity changes following audio-tactile speech training. Front Neurosci 2025; 19:1482828. [PMID: 40364857 PMCID: PMC12069311 DOI: 10.3389/fnins.2025.1482828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 04/04/2025] [Indexed: 05/15/2025] Open
Abstract
Understanding speech in background noise is a challenging task, especially when the signal is also distorted. In a series of previous studies, we have shown that comprehension can improve if, simultaneously with auditory speech, the person receives speech-extracted low-frequency signals on their fingertips. The effect increases after short audio-tactile speech training. In this study, we used resting-state functional magnetic resonance imaging (rsfMRI) to measure spontaneous low-frequency oscillations in the brain while at rest to assess training-induced changes in functional connectivity. We observed enhanced functional connectivity (FC) within a right-hemisphere cluster corresponding to the middle temporal motion area (MT), the extrastriate body area (EBA), and the lateral occipital cortex (LOC), which, before the training, was found to be more connected to the bilateral dorsal anterior insula. Furthermore, early visual areas demonstrated a switch from increased connectivity with the auditory cortex before training to increased connectivity with a sensory/multisensory association parietal hub, contralateral to the palm receiving vibrotactile inputs, after training. In addition, the right sensorimotor cortex, including finger representations, was more connected internally after the training. The results altogether can be interpreted within two main complementary frameworks. The first, speech-specific, factor relates to the pre-existing brain connectivity for audio-visual speech processing, including early visual, motion, and body regions involved in lip-reading and gesture analysis under difficult acoustic conditions, upon which the new audio-tactile speech network might be built. The other framework refers to spatial/body awareness and audio-tactile integration, both of which are necessary for performing the task, including in the revealed parietal and insular regions. It is possible that an extended training period is necessary to directly strengthen functional connections between the auditory and the sensorimotor brain regions for the utterly novel multisensory task. The results contribute to a better understanding of the largely unknown neuronal mechanisms underlying tactile speech benefits for speech comprehension and may be relevant for rehabilitation in the hearing-impaired population.
Collapse
Affiliation(s)
- Katarzyna Cieśla
- The Baruch Ivcher Institute for Brain, Cognition, and Technology, The Baruch Ivcher School of Psychology, Reichman University, Herzliya, Israel
- The Ruth and Meir Rosenthal Brain Imaging Center, Reichman University, Herzliya, Israel
- World Hearing Centre, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Tomasz Wolak
- World Hearing Centre, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Amir Amedi
- The Baruch Ivcher Institute for Brain, Cognition, and Technology, The Baruch Ivcher School of Psychology, Reichman University, Herzliya, Israel
- The Ruth and Meir Rosenthal Brain Imaging Center, Reichman University, Herzliya, Israel
| |
Collapse
|
2
|
Snir A, Cieśla K, Vekslar R, Amedi A. Highly compromised auditory spatial perception in aided congenitally hearing-impaired and rapid improvement with tactile technology. iScience 2024; 27:110808. [PMID: 39290844 PMCID: PMC11407022 DOI: 10.1016/j.isci.2024.110808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/11/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Spatial understanding is a multisensory construct while hearing is the only natural sense enabling the simultaneous perception of the entire 3D space. To test whether such spatial understanding is dependent on auditory experience, we study congenitally hearing-impaired users of assistive devices. We apply an in-house technology, which, inspired by the auditory system, performs intensity-weighting to represent external spatial positions and motion on the fingertips. We see highly impaired auditory spatial capabilities for tracking moving sources, which based on the "critical periods" theory emphasizes the role of nature in sensory development. Meanwhile, for tactile and audio-tactile spatial motion perception, the hearing-impaired show performance similar to typically hearing individuals. The immediate availability of 360° external space representation through touch, despite the lack of such experience during the lifetime, points to the significant role of nurture in spatial perception development, and to its amodal character. The findings show promise toward advancing multisensory solutions for rehabilitation.
Collapse
Affiliation(s)
- Adi Snir
- The Baruch Ivcher Institute for Brain, Cognition, and Technology, The Baruch Ivcher School of Psychology, Reichman University, HaUniversita 8 Herzliya 461010, Israel
| | - Katarzyna Cieśla
- The Baruch Ivcher Institute for Brain, Cognition, and Technology, The Baruch Ivcher School of Psychology, Reichman University, HaUniversita 8 Herzliya 461010, Israel
- World Hearing Centre, Institute of Physiology and Pathology of Hearing, Mokra 17, 05-830 Kajetany, Nadarzyn, Poland
| | - Rotem Vekslar
- The Baruch Ivcher Institute for Brain, Cognition, and Technology, The Baruch Ivcher School of Psychology, Reichman University, HaUniversita 8 Herzliya 461010, Israel
| | - Amir Amedi
- The Baruch Ivcher Institute for Brain, Cognition, and Technology, The Baruch Ivcher School of Psychology, Reichman University, HaUniversita 8 Herzliya 461010, Israel
| |
Collapse
|
3
|
Snir A, Cieśla K, Ozdemir G, Vekslar R, Amedi A. Localizing 3D motion through the fingertips: Following in the footsteps of elephants. iScience 2024; 27:109820. [PMID: 38799571 PMCID: PMC11126990 DOI: 10.1016/j.isci.2024.109820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/07/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Each sense serves a different specific function in spatial perception, and they all form a joint multisensory spatial representation. For instance, hearing enables localization in the entire 3D external space, while touch traditionally only allows localization of objects on the body (i.e., within the peripersonal space alone). We use an in-house touch-motion algorithm (TMA) to evaluate individuals' capability to understand externalized 3D information through touch, a skill that was not acquired during an individual's development or in evolution. Four experiments demonstrate quick learning and high accuracy in localization of motion using vibrotactile inputs on fingertips and successful audio-tactile integration in background noise. Subjective responses in some participants imply spatial experiences through visualization and perception of tactile "moving" sources beyond reach. We discuss our findings with respect to developing new skills in an adult brain, including combining a newly acquired "sense" with an existing one and computation-based brain organization.
Collapse
Affiliation(s)
- Adi Snir
- The Baruch Ivcher Institute for Brain, Cognition, and Technology, The Baruch Ivcher School of Psychology, Reichman University, HaUniversita 8, Herzliya 461010, Israel
| | - Katarzyna Cieśla
- The Baruch Ivcher Institute for Brain, Cognition, and Technology, The Baruch Ivcher School of Psychology, Reichman University, HaUniversita 8, Herzliya 461010, Israel
- World Hearing Centre, Institute of Physiology and Pathology of Hearing, Mokra 17, 05-830 Kajetany, Nadarzyn, Poland
| | - Gizem Ozdemir
- The Baruch Ivcher Institute for Brain, Cognition, and Technology, The Baruch Ivcher School of Psychology, Reichman University, HaUniversita 8, Herzliya 461010, Israel
| | - Rotem Vekslar
- The Baruch Ivcher Institute for Brain, Cognition, and Technology, The Baruch Ivcher School of Psychology, Reichman University, HaUniversita 8, Herzliya 461010, Israel
| | - Amir Amedi
- The Baruch Ivcher Institute for Brain, Cognition, and Technology, The Baruch Ivcher School of Psychology, Reichman University, HaUniversita 8, Herzliya 461010, Israel
| |
Collapse
|
4
|
Liu YF, Rapp B, Bedny M. Reading Braille by Touch Recruits Posterior Parietal Cortex. J Cogn Neurosci 2023; 35:1593-1616. [PMID: 37584592 PMCID: PMC10877400 DOI: 10.1162/jocn_a_02041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Blind readers use a tactile reading system consisting of raised dot arrays: braille/⠃⠗⠇. How do human brains implement reading by touch? The current study looked for signatures of reading-specific orthographic processes in braille, separate from low-level somatosensory responses and semantic processes. Of specific interest were responses in posterior parietal cortices (PPCs), because of their role in high-level tactile perception. Congenitally blind, proficient braille readers read real words and pseudowords by touch while undergoing fMRI. We leveraged the system of contractions in English braille, where one braille cell can represent multiple English print letters (e.g., "ing" ⠬, "one" ⠐⠕), making it possible to separate physical and orthographic word length. All words in the study consisted of four braille cells, but their corresponding Roman letter spellings varied from four to seven letters (e.g., "con-c-er-t" ⠒⠉⠻⠞. contracted: four cells; uncontracted: seven letters). We found that the bilateral supramarginal gyrus in the PPC increased its activity as the uncontracted word length increased. By contrast, in the hand region of primary somatosensory cortex (S1), activity increased as a function of a low-level somatosensory feature: dot-number per word. The PPC also showed greater response to pseudowords than real words and distinguished between real and pseudowords in multivariate-pattern analysis. Parieto-occipital, early visual and ventral occipito-temporal, as well as prefrontal cortices also showed sensitivity to the real-versus-pseudoword distinction. We conclude that PPC is involved in orthographic processing for braille, that is, braille character and word recognition, possibly because of braille's tactile modality.
Collapse
Affiliation(s)
- Yun-Fei Liu
- Department of Psychological and Brain Sciences, Johns Hopkins University
| | - Brenda Rapp
- Department of Cognitive Science, Johns Hopkins University
| | - Marina Bedny
- Department of Psychological and Brain Sciences, Johns Hopkins University
| |
Collapse
|
5
|
Hwang SH, Park D, Paeng S, Lee SW, Lee SH, Kim HF. Pneumatic tactile stimulus delivery system for studying brain responses evoked by active finger touch with fMRI. J Neurosci Methods 2023; 397:109938. [PMID: 37544383 DOI: 10.1016/j.jneumeth.2023.109938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Primates use their hands to actively touch objects and collect information. To study tactile information processing, it is important for participants to experience tactile stimuli through active touch while monitoring brain activities. NEW METHOD Here, we developed a pneumatic tactile stimulus delivery system (pTDS) that delivers various tactile stimuli on a programmed schedule and allows voluntary finger touches during MRI scanning. The pTDS uses a pneumatic actuator to move tactile stimuli and place them in a finger hole. A photosensor detects the time when an index finger touches a tactile stimulus, enabling the analysis of the touch-elicited brain responses. RESULTS We examined brain responses while the participants actively touched braille objects presented by the pTDS. BOLD responses during tactile perception were significantly stronger in a finger touch area of the contralateral somatosensory cortex compared with that of visual perception. CONCLUSION The pTDS enables MR studies of brain mechanisms for tactile processes through natural finger touch.
Collapse
Affiliation(s)
- Seong-Hwan Hwang
- School of Biological Sciences, College of Natural Sciences, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Doyoung Park
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Institute of Psychological Sciences, Institute of Social Sciences, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Somang Paeng
- School of Biological Sciences, College of Natural Sciences, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Sang Wan Lee
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Department of Brain and Cognitive Sciences, College of Life Science and Bioengineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sue-Hyun Lee
- Department of Psychology, College of Social Sciences, Seoul National University (SNU), Seoul 08826, Republic of Korea.
| | - Hyoung F Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University (SNU), Seoul 08826, Republic of Korea.
| |
Collapse
|
6
|
Tian M, Saccone EJ, Kim JS, Kanjlia S, Bedny M. Sensory modality and spoken language shape reading network in blind readers of Braille. Cereb Cortex 2023; 33:2426-2440. [PMID: 35671478 PMCID: PMC10016046 DOI: 10.1093/cercor/bhac216] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 01/24/2023] Open
Abstract
The neural basis of reading is highly consistent across many languages and scripts. Are there alternative neural routes to reading? How does the sensory modality of symbols (tactile vs. visual) influence their neural representations? We examined these questions by comparing reading of visual print (sighted group, n = 19) and tactile Braille (congenitally blind group, n = 19). Blind and sighted readers were presented with written (words, consonant strings, non-letter shapes) and spoken stimuli (words, backward speech) that varied in word-likeness. Consistent with prior work, the ventral occipitotemporal cortex (vOTC) was active during Braille and visual reading. A posterior/anterior vOTC word-form gradient was observed only in sighted readers with more anterior regions preferring larger orthographic units (words). No such gradient was observed in blind readers. Consistent with connectivity predictions, in blind compared to sighted readers, posterior parietal cortices were recruited to a greater degree and contained word-preferring patches. Lateralization of Braille in blind readers was predicted by laterality of spoken language and reading hand. The effect of spoken language increased along a cortical hierarchy, whereas effect of reading hand waned. These results suggested that the neural basis of reading is influenced by symbol modality and spoken language and support connectivity-based views of cortical function.
Collapse
Affiliation(s)
- Mengyu Tian
- Corresponding author: Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, United States.
| | - Elizabeth J Saccone
- Department of Psychological and Brain Sciences, Johns Hopkins University , 3400 N Charles Street, Baltimore, MD 21218, United States
| | - Judy S Kim
- Department of Psychological and Brain Sciences, Johns Hopkins University , 3400 N Charles Street, Baltimore, MD 21218, United States
- Department of Psychology, Yale University, 2 Hillhouse Ave., New Haven, CT 06511, United States
| | - Shipra Kanjlia
- Department of Psychological and Brain Sciences, Johns Hopkins University , 3400 N Charles Street, Baltimore, MD 21218, United States
- Department of Psychology, Carnegie Mellon University, 5000 Forbes Avenue Pittsburgh, PA 15213, United States
| | - Marina Bedny
- Department of Psychological and Brain Sciences, Johns Hopkins University , 3400 N Charles Street, Baltimore, MD 21218, United States
| |
Collapse
|
7
|
Onishi H, Nagasaka K, Yokota H, Kojima S, Ohno K, Sakurai N, Kodama N, Sato D, Otsuru N. Association between somatosensory sensitivity and regional gray matter volume in healthy young volunteers: a voxel-based morphometry study. Cereb Cortex 2023; 33:2001-2010. [PMID: 35580840 PMCID: PMC9977372 DOI: 10.1093/cercor/bhac188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Two-point discrimination (2PD) test reflects somatosensory spatial discrimination ability, but evidence on the relationship between 2PD and cortical gray matter (GM) volume is limited. This study aimed to analyze the relationship between cortical GM volume and 2PD threshold in young healthy individuals and to clarify the characteristics of brain structure reflecting the individual differences in somatosensory function. 2PD was measured in 42 healthy (20 females) volunteers aged 20-32 years using a custom-made test system that can be controlled by a personal computer. The 2PD of the right index finger measured with this device has been confirmed to show good reproducibility. T1-weighted images were acquired using a 3-T magnetic resonance imaging scanner for voxel-based morphometry analysis. The mean 2PD threshold was 2.58 ± 0.54 mm. Whole-brain multiple regression analysis of the relationship between 2PD and GM volume showed that a lower 2PD threshold (i.e. better somatosensory function) significantly correlated with decreased GM volume from the middle temporal gyrus to the inferior parietal lobule (IPL) in the contralateral hemisphere. In conclusion, a lower GM volume in the middle temporal gyrus and IPL correlates with better somatosensory function. Thus, cortical GM volume may be a biomarker of somatosensory function.
Collapse
Affiliation(s)
- Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Kazuaki Nagasaka
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Hirotake Yokota
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Ken Ohno
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan.,Department of Radiological Technology, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Noriko Sakurai
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan.,Department of Radiological Technology, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Naoki Kodama
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan.,Department of Radiological Technology, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Daisuke Sato
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan.,Department of Health and Sports, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan
| |
Collapse
|
8
|
Nataletti S, Leo F, Dideriksen J, Brayda L, Dosen S. Combined spatial and frequency encoding for electrotactile feedback of myoelectric signals. Exp Brain Res 2022; 240:2285-2298. [PMID: 35879359 PMCID: PMC9458587 DOI: 10.1007/s00221-022-06409-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 06/28/2022] [Indexed: 11/30/2022]
Abstract
Electrotactile stimulation has been commonly used in human–machine interfaces to provide feedback to the user, thereby closing the control loop and improving performance. The encoding approach, which defines the mapping of the feedback information into stimulation profiles, is a critical component of an electrotactile interface. Ideally, the encoding will provide a high-fidelity representation of the feedback variable while being easy to perceive and interpret by the subject. In the present study, we performed a closed-loop experiment wherein discrete and continuous coding schemes are combined to exploit the benefits of both techniques. Subjects performed a muscle activation-matching task relying solely on electrotactile feedback representing the generated myoelectric signal (EMG). In particular, we investigated the performance of two different coding schemes (spatial and spatial combined with frequency) at two feedback resolutions (low: 3 and high: 5 intervals). In both schemes, the stimulation electrodes were placed circumferentially around the upper arm. The magnitude of the normalized EMG was divided into intervals, and each electrode was associated with one interval. When the generated EMG entered one of the intervals, the associated electrode started stimulating. In the combined encoding, the additional frequency modulation of the active electrode also indicated the momentary magnitude of the signal within the interval. The results showed that combined coding decreased the undershooting rate, variability and absolute deviation when the resolution was low but not when the resolution was high, where it actually worsened the performance. This demonstrates that combined coding can improve the effectiveness of EMG feedback, but that this effect is limited by the intrinsic variability of myoelectric control. Our findings, therefore, provide important insights as well as elucidate limitations of the information encoding methods when using electrotactile stimulation to convey a feedback signal characterized by high variability (EMG biofeedback).
Collapse
Affiliation(s)
- Sara Nataletti
- Cognitive Architecture for Collaborative Technologies Unit, Istituto Italiano di Tecnologia (IIT), Genoa, Italy. .,Department of Informatics, Bioengineering Robotics, and System Engineering, University of Genoa, Genoa, Italy.
| | - Fabrizio Leo
- Cognitive Architecture for Collaborative Technologies Unit, Istituto Italiano di Tecnologia (IIT), Genoa, Italy
| | - Jakob Dideriksen
- Department of Health Science and Technology, Aalborg University, Ålborg, Denmark
| | - Luca Brayda
- Acoesis S.R.L., Genoa, Italy.,Robotics, Brain and Cognitive Science Unit, Istituto Italiano di Tecnologia (IIT), Genoa, Italy
| | - Strahinja Dosen
- Department of Health Science and Technology, Aalborg University, Ålborg, Denmark.
| |
Collapse
|
9
|
Bell T, Khaira A, Stokoe M, Webb M, Noel M, Amoozegar F, Harris AD. Age-related differences in resting state functional connectivity in pediatric migraine. J Headache Pain 2021; 22:65. [PMID: 34229614 PMCID: PMC8259418 DOI: 10.1186/s10194-021-01274-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Migraine affects roughly 10% of youth aged 5-15 years, however the underlying mechanisms of migraine in youth are poorly understood. Multiple structural and functional alterations have been shown in the brains of adult migraine sufferers. This study aims to investigate the effects of migraine on resting-state functional connectivity during the period of transition from childhood to adolescence, a critical period of brain development and the time when rates of pediatric chronic pain spikes. METHODS Using independent component analysis, we compared resting state network spatial maps and power spectra between youth with migraine aged 7-15 and age-matched controls. Statistical comparisons were conducted using a MANCOVA analysis. RESULTS We show (1) group by age interaction effects on connectivity in the visual and salience networks, group by sex interaction effects on connectivity in the default mode network and group by pubertal status interaction effects on connectivity in visual and frontal parietal networks, and (2) relationships between connectivity in the visual networks and the migraine cycle, and age by cycle interaction effects on connectivity in the visual, default mode and sensorimotor networks. CONCLUSIONS We demonstrate that brain alterations begin early in youth with migraine and are modulated by development. This highlights the need for further study into the neural mechanisms of migraine in youth specifically, to aid in the development of more effective treatments.
Collapse
Affiliation(s)
- Tiffany Bell
- Department of Radiology, University of Calgary, Calgary, AB, Canada. .,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada. .,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.
| | - Akashroop Khaira
- Department of Radiology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Mehak Stokoe
- Department of Radiology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Megan Webb
- Department of Radiology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Melanie Noel
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Department of Psychology, University of Calgary, Calgary, AB, Canada
| | - Farnaz Amoozegar
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Ashley D Harris
- Department of Radiology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
10
|
Garrone B, Durando L, Prenderville J, Sokolowska E, Milanese C, Di Giorgio FP, Callaghan C, Bianchi M. Paracetamol (acetaminophen) rescues cognitive decline, neuroinflammation and cytoskeletal alterations in a model of post-operative cognitive decline (POCD) in middle-aged rats. Sci Rep 2021; 11:10139. [PMID: 33980934 PMCID: PMC8115335 DOI: 10.1038/s41598-021-89629-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/22/2021] [Indexed: 11/09/2022] Open
Abstract
Post-operative cognitive dysfunction (POCD) is a debilitating clinical phenomenon in elderly patients. Management of pain in elderly is complicated because analgesic opiates elicit major side effects. In contrast, paracetamol (acetaminophen) has shown analgesic efficacy, no impact on cognition, and its side effects are well tolerated. We investigated the efficacy of paracetamol, compared to the opioid analgesic buprenorphine, in a model of POCD by investigating cognitive decline, allodynia, peripheral and hippocampal cytokines levels, and hippocampal microtubule dynamics as a key modulator of synaptic plasticity. A POCD model was developed in middle-aged (MA) rats by inducing a tibia fracture via orthopaedic surgery. Control MA rats did not undergo any surgery and only received isoflurane anaesthesia. We demonstrated that cognitive decline and increased allodynia following surgery was prevented in paracetamol-treated animals, but not in animals which were exposed to anesthesia alone or underwent the surgery and received buprenorphine. Behavioral alterations were associated with different peripheral cytokine changes between buprenorphine and paracetamol treated animals. Buprenorphine showed no central effects, while paracetamol showed modulatory effects on hippocampal cytokines and markers of microtubule dynamics which were suggestive of neuroprotection. Our data provide the first experimental evidence corroborating the use of paracetamol as first-choice analgesic in POCD.
Collapse
Affiliation(s)
- B Garrone
- Angelini Pharma S.p.A., Viale Amelia, 70, 00181, Rome, Italy
| | - L Durando
- Angelini Pharma S.p.A., Viale Amelia, 70, 00181, Rome, Italy
| | - J Prenderville
- Transpharmation Ireland Ltd., Trinity College Dublin-Institute of Neuroscience (TCIN), Lloyd Institute, Trinity College, Dublin 2, Ireland
| | - E Sokolowska
- Transpharmation Ireland Ltd., Trinity College Dublin-Institute of Neuroscience (TCIN), Lloyd Institute, Trinity College, Dublin 2, Ireland
| | - C Milanese
- Angelini Pharma S.p.A., Viale Amelia, 70, 00181, Rome, Italy
| | - F P Di Giorgio
- Angelini Pharma S.p.A., Viale Amelia, 70, 00181, Rome, Italy
| | - C Callaghan
- Ulysses Neuroscience Ltd, Room 3.57B, Trinity College Dublin-Institute of Neuroscience (TCIN), Lloyd Institute, Trinity College, Dublin 2, Ireland
| | - M Bianchi
- Ulysses Neuroscience Ltd, Room 3.57B, Trinity College Dublin-Institute of Neuroscience (TCIN), Lloyd Institute, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
11
|
Vuong QC, Shaaban AM, Black C, Smith J, Nassar M, Abozied A, Degenaar P, Al-Atabany W. Detection of Simulated Tactile Gratings by Electro-Static Friction Show a Dependency on Bar Width for Blind and Sighted Observers, and Preliminary Neural Correlates in Sighted Observers. Front Neurosci 2020; 14:548030. [PMID: 33177973 PMCID: PMC7591789 DOI: 10.3389/fnins.2020.548030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/22/2020] [Indexed: 11/13/2022] Open
Abstract
The three-dimensional micro-structure of physical surfaces produces frictional forces that provide sensory cues about properties of felt surfaces such as roughness. This tactile information activates somatosensory cortices, and frontal and temporal brain regions. Recent advances in haptic-feedback technologies allow the simulation of surface micro-structures via electro-static friction to produce touch sensations on otherwise flat screens. These sensations may benefit those with visual impairment or blindness. The primary aim of the current study was to test blind and sighted participants' perceptual sensitivity to simulated tactile gratings. A secondary aim was to explore which brain regions were involved in simulated touch to further understand the somatosensory brain network for touch. We used a haptic-feedback touchscreen which simulated tactile gratings using digitally manipulated electro-static friction. In Experiment 1, we compared blind and sighted participants' ability to detect the gratings by touch alone as a function of their spatial frequency (bar width) and intensity. Both blind and sighted participants showed high sensitivity to detect simulated tactile gratings, and their tactile sensitivity functions showed both linear and quadratic dependency on spatial frequency. In Experiment 2, using functional magnetic resonance imaging, we conducted a preliminary investigation to explore whether brain activation to physical vibrations correlated with blindfolded (but sighted) participants' performance with simulated tactile gratings outside the scanner. At the neural level, blindfolded (but sighted) participants' detection performance correlated with brain activation in bi-lateral supplementary motor cortex, left frontal cortex and right occipital cortex. Taken together with previous studies, these results suggest that there are similar perceptual and neural mechanisms for real and simulated touch sensations.
Collapse
Affiliation(s)
- Quoc C Vuong
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Aya M Shaaban
- Biomedical Engineering Department, Faculty of Engineering, Helwan University, Helwan, Egypt
| | - Carla Black
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jess Smith
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mahmoud Nassar
- Newcastle Eye Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom.,Faculty of Medicine, Minia University Hospital, Al Minia, Egypt
| | - Ahmed Abozied
- Electronics and Communications Department, Faculty of Engineering, Cairo University, Giza, Egypt
| | - Patrick Degenaar
- School of Engineering, Newcastle University, Merz Court, Newcastle upon Tyne, United Kingdom
| | - Walid Al-Atabany
- Biomedical Engineering Department, Faculty of Engineering, Helwan University, Helwan, Egypt
| |
Collapse
|
12
|
Intact tactile detection yet biased tactile localization in a hand-centered frame of reference: Evidence from a dissociation. Neuropsychologia 2020; 147:107585. [PMID: 32841632 DOI: 10.1016/j.neuropsychologia.2020.107585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 04/20/2020] [Accepted: 08/10/2020] [Indexed: 11/21/2022]
Abstract
We examined the performance of an individual with subcortical damage, but an intact somatosensory thalamocortical pathway, to examine the functional architecture of tactile detection and tactile localization processes. Consistent with the intact somatosensory thalamocortical pathway, tactile detection on the contralesional hand was well within the normal range. Despite intact detection, the individual demonstrated substantial localization biases. Across all localization experiments, he consistently localized tactile stimuli to the left side in space relative to the long axis of his hand. This was observed when the contralesional hand was palm up, palm down, rotated 90° relative to the trunk, and when making verbal responses. Furthermore, control experiments demonstrated that this response pattern was unlikely a motor response error. These findings indicate that tactile localization on the body is influenced by proprioceptive information specifically in a hand-centered frame of reference. Furthermore, this also provides evidence that aspects of tactile localization are mediated by pathways outside of the primary somatosensory thalamocortical pathway.
Collapse
|
13
|
Jiang X, Wang Y, Li X, Wang L, Zhou YD, Wang H. A Simple and Compact MR-Compatible Electromagnetic Vibrotactile Stimulator. Front Neurosci 2020; 13:1403. [PMID: 32009884 PMCID: PMC6978794 DOI: 10.3389/fnins.2019.01403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/12/2019] [Indexed: 12/26/2022] Open
Abstract
We have developed a low-cost electromagnetic vibrotactile stimulator that uses the magnetic field of an MR scanner as a permanent magnet to power a vibrating motor. A simple variable current power supply is controlled by software using a USB data acquisition controller. In our study, the function of our novel stimulator was verified in a vibration frequency discrimination working memory task, in which various ranges of frequencies and amplitudes are delivered in MRI scanner. Furthermore, our functional MRI study revealed activations of the primary and secondary somatosensory cortices during the perception of tactile stimulation. Therefore, the new designed electromagnetic vibrotactile stimulator is capable of generating various frequencies of tactile stimuli and represents a powerful and useful tool for studying somatosensory functions with functional MRI.
Collapse
Affiliation(s)
- Xinjian Jiang
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), School of Psychology and Cognitive Science, Institute of Cognitive Neuroscience, East China Normal University, Shanghai, China
| | - Yueqian Wang
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), School of Psychology and Cognitive Science, Institute of Cognitive Neuroscience, East China Normal University, Shanghai, China
| | - Xiaojin Li
- Department of Electronic Engineering, School of Information Science and Technology, East China Normal University, Shanghai, China
| | - Liping Wang
- Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Yong-Di Zhou
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), School of Psychology and Cognitive Science, Institute of Cognitive Neuroscience, East China Normal University, Shanghai, China
| | - Huimin Wang
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), School of Psychology and Cognitive Science, Institute of Cognitive Neuroscience, East China Normal University, Shanghai, China
| |
Collapse
|
14
|
Fioravanti C, Kajal SD, Carboni M, Mazzetti C, Ziemann U, Braun C. Inhibition in the somatosensory system: An integrative neuropharmacological and neuroimaging approach. Neuroimage 2019; 202:116139. [PMID: 31476429 DOI: 10.1016/j.neuroimage.2019.116139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 08/02/2019] [Accepted: 08/27/2019] [Indexed: 01/23/2023] Open
Abstract
The presented study investigates the functional role of GABA in somatosensory processing, using a combined neuropharmacological-neuroimaging approach. Three different GABA agonists (GABAA: alprazolam, ethanol; GABAB: baclofen) were investigated in a double blind cross-over design in 16 male participants, accomplishing a tactile perception task. Somatosensory evoked magnetic fields modulated by GABAR-agonists and placebo were recorded using whole-head magnetoencephalography. Peak latencies and amplitudes of primary (SI) and secondary (SII) somatosensory cortex source activities confirmed the previously reported role of GABA as a modulator of somatosensory processing. Significant inhibitory effects on the latency of SII and on the amplitude of SI and SII were found exclusively for alprazolam, a positive allosteric modulator at GABAA receptors. The GABAB agonist baclofen did not have any modulatory effect. Moreover, we investigated whether the observed effects of alprazolam on the level of SII were explainable by the mere propagation of activity from SI to SII modulated by GABAA receptors, independently from any further GABAA-mediated inhibition in SII. By estimating the transfer function between SI and SII activation under placebo conditions, we were able to predict SII activity for the administration of GABA receptors agonists under the assumption that GABA exclusively acts at the level of SI. By comparing measured and predicted data, we propose a model in which the initial activation of SI is modulated through GABAA receptors and subsequently propagated to SII, without any significant further inhibition. In addition, initial GABAA effects in SI appear to be strongly potentiated with time, selectively in SI but not in SII.
Collapse
Affiliation(s)
- C Fioravanti
- Institute of Medical Psychology and Behavioral Neurobiology, Medical Faculty, University of Tübingen, Silcherstraße 5, 72074, Tübingen, Germany; MEG Center, University of Tübingen, Otfried-Müller-Straße 47, 72076, Tübingen, Germany.
| | - S D Kajal
- MEG Center, University of Tübingen, Otfried-Müller-Straße 47, 72076, Tübingen, Germany; Graduate School of Neural and Behavioral Sciences, International Max Planck Research School, Österbergstraße 3, 72074, Tübingen, Germany
| | - M Carboni
- EEG and Epilepsy Unit, University Hospital of Geneva, Rue Gabrielle-Perret-Gentil 4, 1205, Genève, Switzerland; Functional Brain Mapping Lab, Department of Fundamental Neurosciences, University of Geneva, Chemin des Mines 9, 1202, Genève, Switzerland
| | - C Mazzetti
- Department of Cognitive Neuroimaging, Donders Institute, Radboud University, Kapittelweg 29, 6525EN, Nijmegen, Netherlands
| | - U Ziemann
- Department of Neurology & Stroke, and Hertie-Institute for Clinical Brain Research, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - C Braun
- MEG Center, University of Tübingen, Otfried-Müller-Straße 47, 72076, Tübingen, Germany; CIMeC, Center for Mind/Brain Sciences Cognitive Neuroscience, University of Trento, Corso Bettini 31, 38068, Rovereto, Italy
| |
Collapse
|
15
|
Seri FAS, Abd Hamid AI, Abdullah JM, Idris Z, Omar H. Brain responses to frequency changes due to vibratory stimulation of human fingertips: An fMRI study. JOURNAL OF PHYSICS: CONFERENCE SERIES 2019; 1248:012029. [DOI: 10.1088/1742-6596/1248/1/012029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
Vibratory (e.g., piezoelectric) devices can stimulate cortical responses from the somatosensory area during functional magnetic resonance imaging. Twelve healthy, right-handed subjects (7 males and 5 females) were scanned with a 3.0 T magnetic resonance imaging scanner and stimulated at 30-240 Hz using a piezoelectric vibrator attached to the subjects’ index fingers. The functional images were analysed to determine the brain activation region by performing random effects analyses at the group level. One-way analysis of variance was used to measure changes in frequency on brain activity. The activated regions were identified with WFU PickAtlas software, and the images were thresholded at Puncorrected < 0.001 for multiple comparisons. The average effect of frequency revealed significant activations in the right insula and right middle frontal gyrus; the corresponding region in the somatosensory area may act as a top-down control signal to improve sensory targets. Results revealed significant differences between frequencies; 90 Hz > 120 Hz activated right inferior parietal gyrus, 120 Hz > 150 Hz activated right cerebellum, and 60 Hz > 90 Hz activated right supramarginal gyrus and bilateral inferior frontal gyrus pars triangularis. Findings indicated the role of secondary somatosensory areas and the cerebellum in performing higher-order functions and discriminating various frequencies during vibratory stimulation. Increasing the patient sample size and testing higher frequencies in future experiments will contribute to furthering brain mapping of somatosensory areas.
Collapse
|
16
|
Ludwig S, Herding J, Blankenburg F. Oscillatory EEG signatures of postponed somatosensory decisions. Hum Brain Mapp 2018; 39:3611-3624. [PMID: 29717524 PMCID: PMC6866617 DOI: 10.1002/hbm.24198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 04/11/2018] [Accepted: 04/18/2018] [Indexed: 11/06/2022] Open
Abstract
In recent electroencephalography (EEG) studies, the vibrotactile frequency comparison task has been used to study oscillatory signatures of perceptual decision making in humans, revealing a choice-selective modulation of premotor upper beta band power shortly before decisions were reported. Importantly, these studies focused on decisions that were (1) indicated immediately after stimulus presentation, and (2) for which a direct motor mapping was provided. Here, we investigated whether the putative beta band choice signal also extends to postponed decisions, and how such a decision signal might be influenced by a response mapping that is dissociated from a specific motor command. We recorded EEG data in two separate experiments, both employing the vibrotactile frequency comparison task with delayed decision reports. In the first experiment, delayed choices were associated with a fixed motor mapping, whereas in the second experiment, choices were mapped onto a color code concealing a specific motor response until the end of the delay phase. In between stimulus presentations, as well as after the second stimulus, prefrontal beta band power indexed stimulus information held in working memory. Beta band power also encoded choices during the response delay, notably, in different cortical areas depending on the provided response mapping. In particular, when decisions were associated with a specific motor mapping, choices were represented in premotor cortices, whereas the color mapping resulted in a choice-selective modulation of beta band power in parietal cortices. Together, our findings imply that how a choice is expressed (i.e., the decision consequence) determines where in the cortical sensorimotor hierarchy an according decision signal is processed.
Collapse
Affiliation(s)
- Simon Ludwig
- Neurocomputation and Neuroimaging UnitFreie Universität BerlinBerlinGermany
| | - Jan Herding
- Neurocomputation and Neuroimaging UnitFreie Universität BerlinBerlinGermany
- Bernstein Center for Computational NeuroscienceBerlin, Germany
| | - Felix Blankenburg
- Neurocomputation and Neuroimaging UnitFreie Universität BerlinBerlinGermany
- Bernstein Center for Computational NeuroscienceBerlin, Germany
| |
Collapse
|
17
|
Structural changes in brain morphology induced by brief periods of repetitive sensory stimulation. Neuroimage 2018; 165:148-157. [DOI: 10.1016/j.neuroimage.2017.10.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 09/25/2017] [Accepted: 10/08/2017] [Indexed: 01/29/2023] Open
|
18
|
González-Garrido AA, Ruiz-Stovel VD, Gómez-Velázquez FR, Vélez-Pérez H, Romo-Vázquez R, Salido-Ruiz RA, Espinoza-Valdez A, Campos LR. Vibrotactile Discrimination Training Affects Brain Connectivity in Profoundly Deaf Individuals. Front Hum Neurosci 2017; 11:28. [PMID: 28220063 PMCID: PMC5292439 DOI: 10.3389/fnhum.2017.00028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 01/13/2017] [Indexed: 11/20/2022] Open
Abstract
Early auditory deprivation has serious neurodevelopmental and cognitive repercussions largely derived from impoverished and delayed language acquisition. These conditions may be associated with early changes in brain connectivity. Vibrotactile stimulation is a sensory substitution method that allows perception and discrimination of sound, and even speech. To clarify the efficacy of this approach, a vibrotactile oddball task with 700 and 900 Hz pure-tones as stimuli [counterbalanced as target (T: 20% of the total) and non-target (NT: 80%)] with simultaneous EEG recording was performed by 14 profoundly deaf and 14 normal-hearing (NH) subjects, before and after a short training period (five 1-h sessions; in 2.5–3 weeks). A small device worn on the right index finger delivered sound-wave stimuli. The training included discrimination of pure tone frequency and duration, and more complex natural sounds. A significant P300 amplitude increase and behavioral improvement was observed in both deaf and normal subjects, with no between group differences. However, a P3 with larger scalp distribution over parietal cortical areas and lateralized to the right was observed in the profoundly deaf. A graph theory analysis showed that brief training significantly increased fronto-central brain connectivity in deaf subjects, but not in NH subjects. Together, ERP tools and graph methods depicted the different functional brain dynamic in deaf and NH individuals, underlying the temporary engagement of the cognitive resources demanded by the task. Our findings showed that the index-fingertip somatosensory mechanoreceptors can discriminate sounds. Further studies are necessary to clarify brain connectivity dynamics associated with the performance of vibrotactile language-related discrimination tasks and the effect of lengthier training programs.
Collapse
Affiliation(s)
- Andrés A González-Garrido
- Instituto de Neurociencias, Universidad de GuadalajaraGuadalajara, Mexico; Organismo Público Descentralizado Hospital Civil de GuadalajaraGuadalajara, Mexico
| | | | | | - Hugo Vélez-Pérez
- Departamento de Ciencias Computacionales, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara Guadalajara, Mexico
| | - Rebeca Romo-Vázquez
- Departamento de Ciencias Computacionales, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara Guadalajara, Mexico
| | - Ricardo A Salido-Ruiz
- Departamento de Ciencias Computacionales, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara Guadalajara, Mexico
| | - Aurora Espinoza-Valdez
- Departamento de Ciencias Computacionales, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara Guadalajara, Mexico
| | - Luis R Campos
- Facultad de Informática, Ciencias de la Comunicación y Técnicas Especiales, Universidad de Morón Buenos Aires, Argentina
| |
Collapse
|
19
|
Amemiya T, Beck B, Walsh V, Gomi H, Haggard P. Visual area V5/hMT+ contributes to perception of tactile motion direction: a TMS study. Sci Rep 2017; 7:40937. [PMID: 28106123 PMCID: PMC5247673 DOI: 10.1038/srep40937] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 12/14/2016] [Indexed: 12/18/2022] Open
Abstract
Human imaging studies have reported activations associated with tactile motion perception in visual motion area V5/hMT+, primary somatosensory cortex (SI) and posterior parietal cortex (PPC; Brodmann areas 7/40). However, such studies cannot establish whether these areas are causally involved in tactile motion perception. We delivered double-pulse transcranial magnetic stimulation (TMS) while moving a single tactile point across the fingertip, and used signal detection theory to quantify perceptual sensitivity to motion direction. TMS over both SI and V5/hMT+, but not the PPC site, significantly reduced tactile direction discrimination. Our results show that V5/hMT+ plays a causal role in tactile direction processing, and strengthen the case for V5/hMT+ serving multimodal motion perception. Further, our findings are consistent with a serial model of cortical tactile processing, in which higher-order perceptual processing depends upon information received from SI. By contrast, our results do not provide clear evidence that the PPC site we targeted (Brodmann areas 7/40) contributes to tactile direction perception.
Collapse
Affiliation(s)
- Tomohiro Amemiya
- Institute of Cognitive Neuroscience, University College London, Alexandra House, 17 Queen Square London, WC1N 3AZ, United Kingdom.,NTT Communication Science Laboratories, NTT Corporation, 3-1 Wakamiya, Morinosato, Atsugi-shi, Kanagawa, 243-0198, Japan
| | - Brianna Beck
- Institute of Cognitive Neuroscience, University College London, Alexandra House, 17 Queen Square London, WC1N 3AZ, United Kingdom
| | - Vincent Walsh
- Institute of Cognitive Neuroscience, University College London, Alexandra House, 17 Queen Square London, WC1N 3AZ, United Kingdom
| | - Hiroaki Gomi
- NTT Communication Science Laboratories, NTT Corporation, 3-1 Wakamiya, Morinosato, Atsugi-shi, Kanagawa, 243-0198, Japan
| | - Patrick Haggard
- Institute of Cognitive Neuroscience, University College London, Alexandra House, 17 Queen Square London, WC1N 3AZ, United Kingdom
| |
Collapse
|
20
|
Decoding pressure stimulation locations on the fingers from human neural activation patterns. Neuroreport 2016; 27:1232-6. [PMID: 27631540 DOI: 10.1097/wnr.0000000000000683] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this functional MRI study, we investigated how the human brain activity represents tactile location information evoked by pressure stimulation on fingers. Using the searchlight multivoxel pattern analysis, we looked for local activity patterns that could be decoded into one of four stimulated finger locations. The supramarginal gyrus (SMG) and the thalamus were found to contain distinct multivoxel patterns corresponding to individual stimulated locations. In contrast, the univariate general linear model analysis contrasting stimulation against resting phases for each finger identified activations mainly in the primary somatosensory cortex (S1), but not in SMG or in thalamus. Our results indicate that S1 might be involved in the detection of the presence of pressure stimuli, whereas the SMG and the thalamus might play a role in identifying which finger is stimulated. This finding may provide additional evidence for hierarchical information processing in the human somatosensory areas.
Collapse
|
21
|
Somatotopic Map and Inter- and Intra-Digit Distance in Brodmann Area 2 by Pressure Stimulation. Sci Rep 2016; 6:30243. [PMID: 27452859 PMCID: PMC4958956 DOI: 10.1038/srep30243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 07/01/2016] [Indexed: 11/09/2022] Open
Abstract
The somatotopic representation of the tactile stimulation on the finger in the brain is an essential part of understanding the human somatosensory system as well as rehabilitation and other clinical therapies. Many studies have used vibrotactile stimulations and reported finger somatotopic representations in the Brodmann area 3 (BA 3). On the contrary, few studies investigated finger somatotopic representation using pressure stimulations. Therefore, the present study aimed to find a comprehensive somatotopic representation (somatotopic map and inter- and intra-digit distance) within BA 2 of humans that could describe tactile stimulations on different joints across the fingers by applying pressure stimulation to three joints-the first (p1), second (p2), and third (p3) joints-of four fingers (index, middle, ring, and little finger). Significant differences were observed in the inter-digit distance between the first joints (p1) of the index and little fingers, and between the third joints (p3) of the index and little fingers. In addition, a significant difference was observed in the intra-digit distance between p1 and p3 of the little finger. This study suggests that a somatotopic map and inter- and intra-digit distance could be found in BA 2 in response to pressure stimulation on finger joints.
Collapse
|
22
|
Yau JM, Kim SS, Thakur PH, Bensmaia SJ. Feeling form: the neural basis of haptic shape perception. J Neurophysiol 2016; 115:631-42. [PMID: 26581869 PMCID: PMC4752307 DOI: 10.1152/jn.00598.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/23/2015] [Indexed: 11/22/2022] Open
Abstract
The tactile perception of the shape of objects critically guides our ability to interact with them. In this review, we describe how shape information is processed as it ascends the somatosensory neuraxis of primates. At the somatosensory periphery, spatial form is represented in the spatial patterns of activation evoked across populations of mechanoreceptive afferents. In the cerebral cortex, neurons respond selectively to particular spatial features, like orientation and curvature. While feature selectivity of neurons in the earlier processing stages can be understood in terms of linear receptive field models, higher order somatosensory neurons exhibit nonlinear response properties that result in tuning for more complex geometrical features. In fact, tactile shape processing bears remarkable analogies to its visual counterpart and the two may rely on shared neural circuitry. Furthermore, one of the unique aspects of primate somatosensation is that it contains a deformable sensory sheet. Because the relative positions of cutaneous mechanoreceptors depend on the conformation of the hand, the haptic perception of three-dimensional objects requires the integration of cutaneous and proprioceptive signals, an integration that is observed throughout somatosensory cortex.
Collapse
Affiliation(s)
- Jeffrey M Yau
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas;
| | - Sung Soo Kim
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia
| | | | - Sliman J Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
| |
Collapse
|
23
|
Chung YG, Han SW, Kim HS, Chung SC, Park JY, Wallraven C, Kim SP. Adaptation of cortical activity to sustained pressure stimulation on the fingertip. BMC Neurosci 2015; 16:71. [PMID: 26514637 PMCID: PMC4625848 DOI: 10.1186/s12868-015-0207-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 10/02/2015] [Indexed: 11/24/2022] Open
Abstract
Background Tactile adaptation is a phenomenon of the sensory system that results in temporal desensitization after an exposure to sustained or repetitive tactile stimuli. Previous studies reported psychophysical and physiological adaptation where perceived intensity and mechanoreceptive afferent signals exponentially decreased during tactile adaptation. Along with these studies, we hypothesized that somatosensory cortical activity in the human brain also exponentially decreased during tactile adaptation. The present neuroimaging study specifically investigated temporal changes in the human cortical responses to sustained pressure stimuli mediated by slow-adapting type I afferents. Methods We applied pressure stimulation for up to 15 s to the right index fingertip in 21 healthy participants and acquired functional magnetic resonance imaging (fMRI) data using a 3T MRI system. We analyzed cortical responses in terms of the degrees of cortical activation and inter-regional connectivity during sustained pressure stimulation. Results Our results revealed that the degrees of activation in the contralateral primary and secondary somatosensory cortices exponentially decreased over time and that intra- and inter-hemispheric inter-regional functional connectivity over the regions associated with tactile perception also linearly decreased or increased over time, during pressure stimulation. Conclusion These results indicate that cortical activity dynamically adapts to sustained pressure stimulation mediated by SA-I afferents, involving changes in the degrees of activation on the cortical regions for tactile perception as well as in inter-regional functional connectivity among them. We speculate that these adaptive cortical activity may represent an efficient cortical processing of tactile information.
Collapse
Affiliation(s)
- Yoon Gi Chung
- Department of Brain and Cognitive Engineering, Korea University, Anam-5ga, Seongbuk-gu, Seoul, 136-713, Republic of Korea.
| | - Sang Woo Han
- Department of Brain and Cognitive Engineering, Korea University, Anam-5ga, Seongbuk-gu, Seoul, 136-713, Republic of Korea.
| | - Hyung-Sik Kim
- Department of Biomedical Engineering, BK21+ Research Institute of Biomedical Engineering, College of Biomedical & Health Science, Konkuk University, Chungju, 380-701, Republic of Korea.
| | - Soon-Cheol Chung
- Department of Biomedical Engineering, BK21+ Research Institute of Biomedical Engineering, College of Biomedical & Health Science, Konkuk University, Chungju, 380-701, Republic of Korea.
| | - Jang-Yeon Park
- Center for Neuroscience Imaging Research, Institute of Basic Science (IBS), Sungkyunkwan University, Suwon, 440-746, Republic of Korea. .,Department of Global Biomedical Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea.
| | - Christian Wallraven
- Department of Brain and Cognitive Engineering, Korea University, Anam-5ga, Seongbuk-gu, Seoul, 136-713, Republic of Korea.
| | - Sung-Phil Kim
- Department of Human and Systems Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan, 689-798, Republic of Korea.
| |
Collapse
|
24
|
Ortiz Alonso T, Santos JM, Ortiz Terán L, Borrego Hernández M, Poch Broto J, de Erausquin GA. Differences in Early Stages of Tactile ERP Temporal Sequence (P100) in Cortical Organization during Passive Tactile Stimulation in Children with Blindness and Controls. PLoS One 2015. [PMID: 26225827 PMCID: PMC4520520 DOI: 10.1371/journal.pone.0124527] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Compared to their seeing counterparts, people with blindness have a greater tactile capacity. Differences in the physiology of object recognition between people with blindness and seeing people have been well documented, but not when tactile stimuli require semantic processing. We used a passive vibrotactile device to focus on the differences in spatial brain processing evaluated with event related potentials (ERP) in children with blindness (n = 12) vs. normally seeing children (n = 12), when learning a simple spatial task (lines with different orientations) or a task involving recognition of letters, to describe the early stages of its temporal sequence (from 80 to 220 msec) and to search for evidence of multi-modal cortical organization. We analysed the P100 of the ERP. Children with blindness showed earlier latencies for cognitive (perceptual) event related potentials, shorter reaction times, and (paradoxically) worse ability to identify the spatial direction of the stimulus. On the other hand, they are equally proficient in recognizing stimuli with semantic content (letters). The last observation is consistent with the role of P100 on somatosensory-based recognition of complex forms. The cortical differences between seeing control and blind groups, during spatial tactile discrimination, are associated with activation in visual pathway (occipital) and task-related association (temporal and frontal) areas. The present results show that early processing of tactile stimulation conveying cross modal information differs in children with blindness or with normal vision.
Collapse
Affiliation(s)
- Tomás Ortiz Alonso
- Department of Psychiatry, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Juan Matías Santos
- Department of Psychology, Universidad de Atacama, Copiapó, Chile and Fundación J Robert Cade/CONICET, Córdoba, Argentina
| | - Laura Ortiz Terán
- Athinoula A Martinos Center, Department of Radiology, Massachusetts General Hospital, Harvard University, Boston, Massachusetts, United States of America
| | | | - Joaquín Poch Broto
- Department of Ear, Nose and Throat (ENT), Hospital Clínico Universitario San Carlos, Universidad Complutense, Madrid, Spain
| | - Gabriel Alejandro de Erausquin
- Center for Neuromodulation and Roskamp Laboratory of Brain Development, Modulation and Repair, Departments of Psychiatry, Neurology and Neurosurgery, University of South Florida, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
25
|
Tamè L, Pavani F, Braun C, Salemme R, Farnè A, Reilly KT. Somatotopy and temporal dynamics of sensorimotor interactions: evidence from double afferent inhibition. Eur J Neurosci 2015; 41:1459-65. [DOI: 10.1111/ejn.12890] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 03/06/2015] [Accepted: 03/06/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Luigi Tamè
- Department of Psychological Sciences; Birkbeck; University of London; Malet Street London; WC1E 7HX London UK
- INSERM U1028; CNRS UMR5292; ImpAct Team; Lyon Neuroscience Research Centre; Lyon France
- Center for Mind/Brain Sciences; University of Trento; Rovereto Italy
| | - Francesco Pavani
- Center for Mind/Brain Sciences; University of Trento; Rovereto Italy
- Department of Psychology and Cognitive Sciences; University of Trento; Rovereto Italy
| | - Christoph Braun
- Center for Mind/Brain Sciences; University of Trento; Rovereto Italy
- Department of Psychology and Cognitive Sciences; University of Trento; Rovereto Italy
- MEG-Zentrum; University Tübingen; Tübingen Germany
| | - Romeo Salemme
- INSERM U1028; CNRS UMR5292; ImpAct Team; Lyon Neuroscience Research Centre; Lyon France
- University Claude Bernard Lyon I; Lyon France
| | - Alessandro Farnè
- INSERM U1028; CNRS UMR5292; ImpAct Team; Lyon Neuroscience Research Centre; Lyon France
- University Claude Bernard Lyon I; Lyon France
| | - Karen T. Reilly
- INSERM U1028; CNRS UMR5292; ImpAct Team; Lyon Neuroscience Research Centre; Lyon France
- University Claude Bernard Lyon I; Lyon France
| |
Collapse
|
26
|
Göschl F, Friese U, Daume J, König P, Engel AK. Oscillatory signatures of crossmodal congruence effects: An EEG investigation employing a visuotactile pattern matching paradigm. Neuroimage 2015; 116:177-86. [PMID: 25846580 DOI: 10.1016/j.neuroimage.2015.03.067] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/06/2015] [Accepted: 03/27/2015] [Indexed: 11/16/2022] Open
Abstract
Coherent percepts emerge from the accurate combination of inputs from the different sensory systems. There is an ongoing debate about the neurophysiological mechanisms of crossmodal interactions in the brain, and it has been proposed that transient synchronization of neurons might be of central importance. Oscillatory activity in lower frequency ranges (<30Hz) has been implicated in mediating long-range communication as typically studied in multisensory research. In the current study, we recorded high-density electroencephalograms while human participants were engaged in a visuotactile pattern matching paradigm and analyzed oscillatory power in the theta- (4-7Hz), alpha- (8-13Hz) and beta-bands (13-30Hz). Employing the same physical stimuli, separate tasks of the experiment either required the detection of predefined targets in visual and tactile modalities or the explicit evaluation of crossmodal stimulus congruence. Analysis of the behavioral data showed benefits for congruent visuotactile stimulus combinations. Differences in oscillatory dynamics related to crossmodal congruence within the two tasks were observed in the beta-band for crossmodal target detection, as well as in the theta-band for congruence evaluation. Contrasting ongoing activity preceding visuotactile stimulation between the two tasks revealed differences in the alpha- and beta-bands. Source reconstruction of between-task differences showed prominent involvement of premotor cortex, supplementary motor area, somatosensory association cortex and the supramarginal gyrus. These areas not only exhibited more involvement in the pre-stimulus interval for target detection compared to congruence evaluation, but were also crucially involved in post-stimulus differences related to crossmodal stimulus congruence within the detection task. These results add to the increasing evidence that low frequency oscillations are functionally relevant for integration in distributed brain networks, as demonstrated for crossmodal interactions in visuotactile pattern matching in the current study.
Collapse
Affiliation(s)
- Florian Göschl
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| | - Uwe Friese
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Jonathan Daume
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Peter König
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; Institute of Cognitive Science, University of Osnabrück, Albrechtstr. 28, 49069 Osnabrück, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| |
Collapse
|
27
|
Kim J, Müller KR, Chung YG, Chung SC, Park JY, Bülthoff HH, Kim SP. Distributed functions of detection and discrimination of vibrotactile stimuli in the hierarchical human somatosensory system. Front Hum Neurosci 2015; 8:1070. [PMID: 25653609 PMCID: PMC4301016 DOI: 10.3389/fnhum.2014.01070] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/23/2014] [Indexed: 11/13/2022] Open
Abstract
According to the hierarchical view of human somatosensory network, somatic sensory information is relayed from the thalamus to primary somatosensory cortex (S1), and then distributed to adjacent cortical regions to perform further perceptual and cognitive functions. Although a number of neuroimaging studies have examined neuronal activity correlated with tactile stimuli, comparatively less attention has been devoted toward understanding how vibrotactile stimulus information is processed in the hierarchical somatosensory cortical network. To explore the hierarchical perspective of tactile information processing, we studied two cases: (a) discrimination between the locations of finger stimulation; and (b) detection of stimulation against no stimulation on individual fingers, using both standard general linear model (GLM) and searchlight multi-voxel pattern analysis (MVPA) techniques. These two cases were studied on the same data set resulting from a passive vibrotactile stimulation experiment. Our results showed that vibrotactile stimulus locations on fingers could be discriminated from measurements of human functional magnetic resonance imaging (fMRI). In particular, it was in case (a) we observed activity in contralateral posterior parietal cortex (PPC) and supramarginal gyrus (SMG) but not in S1, while in case; (b) we found significant cortical activations in S1 but not in PPC and SMG. These discrepant observations suggest the functional specialization with regard to vibrotactile stimulus locations, especially, the hierarchical information processing in the human somatosensory cortical areas. Our findings moreover support the general understanding that S1 is the main sensory receptive area for the sense of touch, and adjacent cortical regions (i.e., PPC and SMG) are in charge of a higher level of processing and may thus contribute most for the successful classification between stimulated finger locations.
Collapse
Affiliation(s)
- Junsuk Kim
- Department of Brain and Cognitive Engineering, Korea UniversitySeoul, South Korea
| | - Klaus-Robert Müller
- Department of Brain and Cognitive Engineering, Korea UniversitySeoul, South Korea
- Machine Learning Group, Berlin Institute of TechnologyBerlin, Germany
| | - Yoon Gi Chung
- Department of Global Biomedical Engineering, IBS Center for Neuroscience Imaging Research, Sungkyunkwan UniversitySuwon, South Korea
| | - Soon-Cheol Chung
- School of Biomedical Engineering, Konkuk UniversityChungju, South Korea
| | - Jang-Yeon Park
- Department of Global Biomedical Engineering, IBS Center for Neuroscience Imaging Research, Sungkyunkwan UniversitySuwon, South Korea
| | - Heinrich H. Bülthoff
- Department of Brain and Cognitive Engineering, Korea UniversitySeoul, South Korea
- Department of Human Perception, Cognition and Action, Max Planck Institute for Biological CyberneticsTübingen, Germany
| | - Sung-Phil Kim
- Department of Human and Systems Engineering, Ulsan National Institute of Science and TechnologyUlsan, South Korea
| |
Collapse
|
28
|
Tamè L, Pavani F, Papadelis C, Farnè A, Braun C. Early integration of bilateral touch in the primary somatosensory cortex. Hum Brain Mapp 2014; 36:1506-23. [PMID: 25514844 DOI: 10.1002/hbm.22719] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 11/30/2014] [Accepted: 12/01/2014] [Indexed: 11/06/2022] Open
Abstract
Animal, as well as behavioural and neuroimaging studies in humans have documented integration of bilateral tactile information at the level of primary somatosensory cortex (SI). However, it is still debated whether integration in SI occurs early or late during tactile processing, and whether it is somatotopically organized. To address both the spatial and temporal aspects of bilateral tactile processing we used magnetoencephalography in a tactile repetition-suppression paradigm. We examined somatosensory evoked-responses produced by probe stimuli preceded by an adaptor, as a function of the relative position of adaptor and probe (probe always at the left index finger; adaptor at the index or middle finger of the left or right hand) and as a function of the delay between adaptor and probe (0, 25, or 125 ms). Percentage of response-amplitude suppression was computed by comparing paired (adaptor + probe) with single stimulations of adaptor and probe. Results show that response suppression varies differentially in SI and SII as a function of both spatial and temporal features of the stimuli. Remarkably, repetition suppression of SI activity emerged early in time, regardless of whether the adaptor stimulus was presented on the same and the opposite body side with respect to the probe. These novel findings support the notion of an early and somatotopically organized inter-hemispheric integration of tactile information in SI.
Collapse
Affiliation(s)
- Luigi Tamè
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | | | | | | | | |
Collapse
|
29
|
Yang J, Yu Y, Kunita A, Huang Q, Wu J, Sawamoto N, Fukuyama H. Tactile priming modulates the activation of the fronto-parietal circuit during tactile angle match and non-match processing: an fMRI study. Front Hum Neurosci 2014; 8:926. [PMID: 25566010 PMCID: PMC4266023 DOI: 10.3389/fnhum.2014.00926] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 10/30/2014] [Indexed: 11/25/2022] Open
Abstract
The repetition of a stimulus task reduces the neural activity within certain cortical regions responsible for working memory (WM) processing. Although previous evidence has shown that repeated vibrotactile stimuli reduce the activation in the ventrolateral prefrontal cortex, whether the repeated tactile spatial stimuli triggered the priming effect correlated with the same cortical region remains unclear. Therefore, we used event-related functional magnetic resonance imaging (fMRI) and a delayed match-to-sample task to investigate the contributions of the priming effect to tactile spatial WM processing. Fourteen healthy volunteers were asked to encode three tactile angle stimuli during the encoding phase and one tactile angle stimulus during the recognition phase. Then, they answered whether the last angle stimulus was presented during the encoding phase. As expected, both the Match and Non-Match tasks activated a similar cerebral network. The critical new finding was decreased brain activity in the left inferior frontal gyrus (IFG), the right posterior parietal cortex (PPC) and bilateral medial frontal gyri (mFG) for the match task compared to the Non-Match task. Therefore, we suggest that the tactile priming engaged repetition suppression mechanisms during tactile angle matching, and this process decreased the activation of the fronto-parietal circuit, including IFG, mFG and PPC.
Collapse
Affiliation(s)
- Jiajia Yang
- Biomedical Engineering Laboratory, Graduate School of Natural Science and Technology, Okayama University Okayama, Japan
| | - Yinghua Yu
- Biomedical Engineering Laboratory, Graduate School of Natural Science and Technology, Okayama University Okayama, Japan
| | - Akinori Kunita
- Biomedical Engineering Laboratory, Graduate School of Natural Science and Technology, Okayama University Okayama, Japan
| | - Qiang Huang
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology Beijing, China ; Key Laboratory of Biomimetic Robots and Systems, Ministry of Education China
| | - Jinglong Wu
- Biomedical Engineering Laboratory, Graduate School of Natural Science and Technology, Okayama University Okayama, Japan ; Key Laboratory of Biomimetic Robots and Systems, Ministry of Education China
| | - Nobukatsu Sawamoto
- Human Brain Research Center (HBRC), Kyoto University Graduate School of Medicine Kyoto, Japan
| | - Hidenao Fukuyama
- Human Brain Research Center (HBRC), Kyoto University Graduate School of Medicine Kyoto, Japan
| |
Collapse
|
30
|
Voss P, Pike BG, Zatorre RJ. Evidence for both compensatory plastic and disuse atrophy-related neuroanatomical changes in the blind. ACTA ACUST UNITED AC 2014; 137:1224-40. [PMID: 24648057 DOI: 10.1093/brain/awu030] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The behavioural and neurofunctional consequences of blindness are becoming increasingly well established, and it has become evident that the amount of reorganization is directly linked to the behavioural adaptations observed in the blind. However investigations of potential neuroanatomical changes resulting from blindness have yielded conflicting results as to the nature of the observed changes, because apparent loss of occipital tissue is difficult to reconcile with observed functional recruitment. To address this issue we used two complementary brain measures of neuroanatomy, voxel-based morphometry and magnetization transfer imaging, with the latter providing insight into myelin concentration through the magnetization transfer ratio. Both early and late blind, as well as sighted control subjects participated in the study and were tested on a series of auditory and tactile tasks to provide behavioural data that we could relate to neuroanatomy. The behavioural findings show that the early blind outperform the sighted in four of five tasks, whereas the late blind do so for only one. Moreover, correlations between the auditory and tactile performance of early blind individuals seem to indicate that they might benefit from some general-purpose compensatory plasticity mechanisms, as opposed to modality-specific ones. Neuroanatomical findings reveal three key findings: (i) occipital regions in the early blind have higher magnetization transfer ratio and grey matter concentration than in the sighted; (ii) behavioural performance of the blind is strongly predicted by magnetization transfer ratio and grey matter concentration in different occipital regions; and (iii) lower grey matter and white matter concentration was also found in other occipital areas in the early blind compared to the sighted. We thus show a clear dissociation between anatomical changes that are direct result of sensory deprivation and consequent atrophy, and those related to compensatory reorganization and behavioural adaptations. Moreover, the magnetization transfer ratio results also suggest that one mechanism for this reorganization may be related to increased myelination of intracortical neurons, or perhaps of fibres conveying information to and from remote locations.
Collapse
Affiliation(s)
- Patrice Voss
- 1 Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | | |
Collapse
|
31
|
Extensive occupational finger use delays age effects in tactileperception—an ERP study. Atten Percept Psychophys 2014; 76:1160-75. [DOI: 10.3758/s13414-014-0634-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
32
|
Yau JM, Celnik P, Hsiao SS, Desmond JE. Feeling better: separate pathways for targeted enhancement of spatial and temporal touch. Psychol Sci 2014; 25:555-65. [PMID: 24390826 DOI: 10.1177/0956797613511467] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
People perceive spatial form and temporal frequency through touch. Although distinct somatosensory neurons represent spatial and temporal information, these neural populations are intermixed throughout the somatosensory system. Here, we show that spatial and temporal touch can be dissociated and separately enhanced via cortical pathways that are normally associated with vision and audition. In Experiments 1 and 2, we found that anodal transcranial direct current stimulation (tDCS) applied over visual cortex, but not auditory cortex, enhances tactile perception of spatial orientation. In Experiments 3 and 4, we found that anodal tDCS over auditory cortex, but not visual cortex, enhances tactile perception of temporal frequency. This double dissociation reveals separate cortical pathways that selectively support spatial and temporal channels. These results bolster the emerging view that sensory areas process multiple modalities and suggest that supramodal domains may be more fundamental to cortical organization.
Collapse
|
33
|
Abstract
Humans typically rely upon vision to identify object shape, but we can also recognize shape via touch (haptics). Our haptic shape recognition ability raises an intriguing question: To what extent do visual cortical shape recognition mechanisms support haptic object recognition? We addressed this question using a haptic fMRI repetition design, which allowed us to identify neuronal populations sensitive to the shape of objects that were touched but not seen. In addition to the expected shape-selective fMRI responses in dorsal frontoparietal areas, we observed widespread shape-selective responses in the ventral visual cortical pathway, including primary visual cortex. Our results indicate that shape processing via touch engages many of the same neural mechanisms as visual object recognition. The shape-specific repetition effects we observed in primary visual cortex show that visual sensory areas are engaged during the haptic exploration of object shape, even in the absence of concurrent shape-related visual input. Our results complement related findings in visually deprived individuals and highlight the fundamental role of the visual system in the processing of object shape.
Collapse
|
34
|
Kim HS, Choi MH, Chung YG, Kim SP, Jun JH, Park JY, Yi JH, Park JR, Lim DW, Chung SC. Development of a simple MR-compatible vibrotactile stimulator using a planar-coil-type actuator. Behav Res Methods 2013; 45:364-371. [PMID: 23055173 DOI: 10.3758/s13428-012-0268-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
For this study, we developed a magnetic resonance (MR)-compatible vibrotactile stimulator using a planar-coil-type actuator. The newly developed vibrotactile stimulator consists of three units: control unit, drive unit, and planar-coil-type actuator. The control unit controls frequency, intensity, time, and channel, and transfers the stimulation signals to the drive unit. The drive unit operates the planar-coil-type actuator in response to commands from the control unit. The planar-coil-type actuator, which uses a planar coil instead of conventional electric wire, generates vibrating stimulation through interaction of the current of the planar coil with the static magnetic field of the MR scanner. Even though the developed tactile stimulating system is small, simple, and inexpensive, it has a wide range of stimulation frequencies (20 ~ 400 Hz, at 40 levels) and stimulation intensities (0 ~ 7 V, at 256 levels). The stimulation intensity does not change due to frequency changes. Since the transient response time is a few microseconds, the stimulation time can be controlled on a scale of microseconds. In addition, this actuator has the advantages of providing highly repeatable stimulation, being durable, being able to assume various shapes, and having an adjustable contact area with the skin. The new stimulator operated stably in an MR environment without affecting the MR images. Using functional magnetic resonance imaging, we observed the brain activation changes resulting from stimulation frequency and intensity changes.
Collapse
Affiliation(s)
- Hyung-Sik Kim
- Department of Biomedical Engineering, Research Institute of Biomedical Engineering, College of Biomedical & Health Science, Konkuk University, 322 Danwol-dong, Chungju-si, Chungcheongbuk-do, 380-701, South Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Chung YG, Kim J, Han SW, Kim HS, Choi MH, Chung SC, Park JY, Kim SP. Frequency-dependent patterns of somatosensory cortical responses to vibrotactile stimulation in humans: a fMRI study. Brain Res 2013; 1504:47-57. [PMID: 23399687 DOI: 10.1016/j.brainres.2013.02.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/02/2013] [Accepted: 02/02/2013] [Indexed: 11/23/2022]
Abstract
In the human mechanosensation system, rapidly adapting afferents project sensory signals of flutter (5-50Hz) to the contralateral primary somatosensory cortex (S1) and bilateral secondary somatosensory cortex (S2) whereas Pacinian afferents project sensory signals of vibration (50-400Hz) to bilateral S2. However, it remains largely unknown how somatosensory cortical activity changes as a function of vibrotactile frequency. This functional magnetic resonance imaging (fMRI) study investigated frequency dependency of somatosensory cortical activity in humans by applying vibrotactile stimulation with various frequencies (20-200Hz) to the index finger. We found more frequency-dependent voxels in the upper bank of the lateral sulcus (LS) of S2 than in S1 and the posterior parietal cortex of S2. Our statistical spatial clustering analysis showed that two groups of positively or negatively frequency-dependent voxels formed distinct clusters, most clearly in the LS. Using a cortical separability index, we reaffirmed that somatosensory cortical activity was most separable at 50Hz, previously known to demarcate flutter and vibration. Our results suggest that the LS (S2) may play an important role in processing vibrotactile frequency information and that the somatosensory cortex may include spatially localized neural assemblies specialized to higher or lower vibrotactile frequency.
Collapse
Affiliation(s)
- Yoon Gi Chung
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 136-713, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Kalberlah C, Villringer A, Pleger B. Dynamic causal modeling suggests serial processing of tactile vibratory stimuli in the human somatosensory cortex--an fMRI study. Neuroimage 2013; 74:164-71. [PMID: 23435215 DOI: 10.1016/j.neuroimage.2013.02.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 02/08/2013] [Accepted: 02/12/2013] [Indexed: 01/18/2023] Open
Abstract
Sensitivity to location and frequency of tactile stimuli is a characterizing feature of human primary (S1), and secondary (S2) somatosensory cortices. Recent evidence suggests that S1 is predominantly receptive to stimulus location, while S2 is attuned to stimulus frequency. Although it is well established in humans that tactile frequency information is relayed serially from S1 to S2, a recent study, using functional magnetic resonance imaging (fMRI) in combination with dynamic causal modeling (DCM), suggested that somatosensory inputs are processed in parallel in S1 and S2. In the present fMRI/DCM study, we revisited this controversy and investigated the specialization of the human somatosensory cortical areas with regard to tactile stimulus representations, as well as their effective connectivity. During brain imaging, 14 participants performed a somatosensory discrimination task on vibrotactile stimuli. Importantly, the model space for DCM was chosen to allow for direct inference on the question of interest by systematically varying the information transmission from pure parallel to pure serial implementations. Bayesian model comparison on the level of model families strongly favors a serial, instead of a parallel processing route for tactile stimulus information along the somatosensory pathway. Our fMRI/DCM data thus support previous suggestions of a sequential information transmission from S1 to S2 in humans.
Collapse
Affiliation(s)
- Christian Kalberlah
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | | | | |
Collapse
|
37
|
Debowska W, Wolak T, Soluch P, Orzechowski M, Kossut M. Design and evaluation of an innovative MRI-compatible Braille stimulator with high spatial and temporal resolution. J Neurosci Methods 2013; 213:32-8. [DOI: 10.1016/j.jneumeth.2012.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/04/2012] [Accepted: 12/06/2012] [Indexed: 11/16/2022]
|
38
|
Legon W, Rowlands A, Opitz A, Sato TF, Tyler WJ. Pulsed ultrasound differentially stimulates somatosensory circuits in humans as indicated by EEG and FMRI. PLoS One 2012; 7:e51177. [PMID: 23226567 PMCID: PMC3514181 DOI: 10.1371/journal.pone.0051177] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 10/30/2012] [Indexed: 11/19/2022] Open
Abstract
Peripheral somatosensory circuits are known to respond to diverse stimulus modalities. The energy modalities capable of eliciting somatosensory responses traditionally belong to mechanical, thermal, electromagnetic, and photonic domains. Ultrasound (US) applied to the periphery has also been reported to evoke diverse somatosensations. These observations however have been based primarily on subjective reports and lack neurophysiological descriptions. To investigate the effects of peripherally applied US on human somatosensory brain circuit activity we recorded evoked potentials using electroencephalography and conducted functional magnetic resonance imaging of blood oxygen level-dependent (BOLD) responses to fingertip stimulation with pulsed US. We found a pulsed US waveform designed to elicit a mild vibration sensation reliably triggered evoked potentials having distinct waveform morphologies including a large double-peaked vertex potential. Fingertip stimulation with this pulsed US waveform also led to the appearance of BOLD signals in brain regions responsible for somatosensory discrimination including the primary somatosensory cortex and parietal operculum, as well as brain regions involved in hierarchical somatosensory processing, such as the insula, anterior middle cingulate cortex, and supramarginal gyrus. By changing the energy profile of the pulsed US stimulus waveform we observed pulsed US can differentially activate somatosensory circuits and alter subjective reports that are concomitant with changes in evoked potential morphology and BOLD response patterns. Based on these observations we conclude pulsed US can functionally stimulate different somatosensory fibers and receptors, which may permit new approaches to the study and diagnosis of peripheral nerve injury, dysfunction, and disease.
Collapse
Affiliation(s)
- Wynn Legon
- Virginia Tech Carilion Research Institute and School of Biomedical Engineering and Sciences, Virginia Tech, Roanoke, Virginia, United States of America
| | - Abby Rowlands
- Virginia Tech Carilion Research Institute and School of Biomedical Engineering and Sciences, Virginia Tech, Roanoke, Virginia, United States of America
| | - Alexander Opitz
- Virginia Tech Carilion Research Institute and School of Biomedical Engineering and Sciences, Virginia Tech, Roanoke, Virginia, United States of America
| | - Tomokazu F. Sato
- Virginia Tech Carilion Research Institute and School of Biomedical Engineering and Sciences, Virginia Tech, Roanoke, Virginia, United States of America
| | - William J. Tyler
- Virginia Tech Carilion Research Institute and School of Biomedical Engineering and Sciences, Virginia Tech, Roanoke, Virginia, United States of America
| |
Collapse
|
39
|
Tamè L, Braun C, Lingnau A, Schwarzbach J, Demarchi G, Li Hegner Y, Farnè A, Pavani F. The Contribution of Primary and Secondary Somatosensory Cortices to the Representation of Body Parts and Body Sides: An fMRI Adaptation Study. J Cogn Neurosci 2012; 24:2306-20. [DOI: 10.1162/jocn_a_00272] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Although the somatosensory homunculus is a classically used description of the way somatosensory inputs are processed in the brain, the actual contributions of primary (SI) and secondary (SII) somatosensory cortices to the spatial coding of touch remain poorly understood. We studied adaptation of the fMRI BOLD response in the somatosensory cortex by delivering pairs of vibrotactile stimuli to the finger tips of the index and middle fingers. The first stimulus (adaptor) was delivered either to the index or to the middle finger of the right or left hand, and the second stimulus (test) was always administered to the left index finger. The overall BOLD response evoked by the stimulation was primarily contralateral in SI and was more bilateral in SII. However, our fMRI adaptation approach also revealed that both somatosensory cortices were sensitive to ipsilateral as well as to contralateral inputs. SI and SII adapted more after subsequent stimulation of homologous as compared with nonhomologous fingers, showing a distinction between different fingers. Most importantly, for both somatosensory cortices, this finger-specific adaptation occurred irrespective of whether the tactile stimulus was delivered to the same or to different hands. This result implies integration of contralateral and ipsilateral somatosensory inputs in SI as well as in SII. Our findings suggest that SI is more than a simple relay for sensory information and that both SI and SII contribute to the spatial coding of touch by discriminating between body parts (fingers) and by integrating the somatosensory input from the two sides of the body (hands).
Collapse
Affiliation(s)
- Luigi Tamè
- 1University of Trento
- 2University of Reading
| | | | | | | | | | | | - Alessandro Farnè
- 4INSERM U1028, CNRS UMR5292, Bron, France
- 5Université Claude Bernard Lyon I, Lyon, F-69000, France
| | | |
Collapse
|
40
|
Callaghan CK, Hok V, Della-Chiesa A, Virley DJ, Upton N, O'Mara SM. Age-related declines in delayed non-match-to-sample performance (DNMS) are reversed by the novel 5HT6 receptor antagonist SB742457. Neuropharmacology 2012; 63:890-7. [DOI: 10.1016/j.neuropharm.2012.06.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 06/14/2012] [Accepted: 06/15/2012] [Indexed: 12/18/2022]
|
41
|
Glover S, Wall MB, Smith AT. Distinct cortical networks support the planning and online control of reaching-to-grasp in humans. Eur J Neurosci 2012; 35:909-15. [PMID: 22429244 DOI: 10.1111/j.1460-9568.2012.08018.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A number of brain imaging studies have identified regions involved in the planning and control of complex actions. Here we attempt to contrast activity related to planning and online control in the human brain during simple reaching and grasping movements. In four conditions, participants did one of the following: passively observed a grasp target; planned a grasping movement without executing; planned and then executed a grasp; or immediately executed a grasp. Neural activity was measured using functional magnetic resonance imaging and activity in the various conditions compared. Two large, independent networks of brain activity were identified: (i) a planning network including the premotor cortex, basal ganglia, anterior cingulate, posterior medial parietal area, superior parietal occipital cortex and middle intraparietal sulcus; and (ii) a control network including sensorimotor cortex, the cerebellum, the supramarginal gyrus and the superior parietal lobule. These findings provide evidence that the planning and control of even simple reaching and grasping actions use different brain regions, including different parts of the frontal and parietal lobes.
Collapse
Affiliation(s)
- Scott Glover
- Department of Psychology, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK.
| | | | | |
Collapse
|
42
|
Stanton TR, Lin CWC, Smeets RJEM, Taylor D, Law R, Lorimer Moseley G. Spatially defined disruption of motor imagery performance in people with osteoarthritis. Rheumatology (Oxford) 2012; 51:1455-64. [PMID: 22467086 DOI: 10.1093/rheumatology/kes048] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES To determine whether motor imagery performance is disrupted in patients with painful knee OA and if this disruption is specific to the location of the pain. METHODS Twenty patients with painful knee OA, 20 patients with arm pain and 20 healthy pain-free controls undertook a motor imagery task in which they made left/right judgements of pictured hands and feet. Accuracy and reaction time of judgements were compared between groups and pain locations (side: left vs right; site: upper vs lower). RESULTS Patients with knee pain were less accurate (P < 0.01) than healthy controls, but not different from people with arm pain (all P > 0.11). There were no differences in reaction time between groups (P = 0.64). Further, there was no effect of side or site of pain on reaction time (P = 0.43, 0.54, respectively) and no effect of site of pain on accuracy of left/right judgements (P = 0.12). However, there was an interaction effect of side of pain on accuracy of left vs right images (P = 0.03). If left-sided pain was present, accuracy was lower when images showed left hands/feet than when images showed right hands/feet. CONCLUSION Motor imagery performance is disrupted in patients with knee OA, but is also disrupted in patients with arm pain. Accuracy of left/right judgements is disrupted in a spatially defined manner, raising the important possibility that brain-grounded maps of peripersonal space contribute to the cortical proprioceptive representation.
Collapse
Affiliation(s)
- Tasha R Stanton
- Sansom Institute for Health Research, University of South Australia, GPO Box 2471, Adelaide SA 5001, Australia
| | | | | | | | | | | |
Collapse
|
43
|
Auld ML, Boyd R, Moseley GL, Ware R, Johnston LM. Tactile function in children with unilateral cerebral palsy compared to typically developing children. Disabil Rehabil 2012; 34:1488-94. [DOI: 10.3109/09638288.2011.650314] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
44
|
Bolognini N, Cecchetto C, Geraci C, Maravita A, Pascual-Leone A, Papagno C. Hearing Shapes Our Perception of Time: Temporal Discrimination of Tactile Stimuli in Deaf People. J Cogn Neurosci 2012; 24:276-86. [DOI: 10.1162/jocn_a_00135] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abstract
Confronted with the loss of one type of sensory input, we compensate using information conveyed by other senses. However, losing one type of sensory information at specific developmental times may lead to deficits across all sensory modalities. We addressed the effect of auditory deprivation on the development of tactile abilities, taking into account changes occurring at the behavioral and cortical level. Congenitally deaf and hearing individuals performed two tactile tasks, the first requiring the discrimination of the temporal duration of touches and the second requiring the discrimination of their spatial length. Compared with hearing individuals, deaf individuals were impaired only in tactile temporal processing. To explore the neural substrate of this difference, we ran a TMS experiment. In deaf individuals, the auditory association cortex was involved in temporal and spatial tactile processing, with the same chronometry as the primary somatosensory cortex. In hearing participants, the involvement of auditory association cortex occurred at a later stage and selectively for temporal discrimination. The different chronometry in the recruitment of the auditory cortex in deaf individuals correlated with the tactile temporal impairment. Thus, early hearing experience seems to be crucial to develop an efficient temporal processing across modalities, suggesting that plasticity does not necessarily result in behavioral compensation.
Collapse
|
45
|
Bancroft TD, Hockley WE, Servos P. Vibrotactile working memory as a model paradigm for psychology, neuroscience, and computational modeling. Front Hum Neurosci 2011; 5:162. [PMID: 22163217 PMCID: PMC3234499 DOI: 10.3389/fnhum.2011.00162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 11/21/2011] [Indexed: 12/03/2022] Open
Affiliation(s)
- Tyler D Bancroft
- Department of Psychology, Wilfrid Laurier University Waterloo, ON, Canada
| | | | | |
Collapse
|
46
|
Master S, Tremblay F. Differential modulation of corticospinal excitability during haptic sensing of 2-D patterns vs. textures. BMC Neurosci 2010; 11:149. [PMID: 21108825 PMCID: PMC3003249 DOI: 10.1186/1471-2202-11-149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 11/25/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recently, we showed a selective enhancement in corticospinal excitability when participants actively discriminated raised 2-D symbols with the index finger. This extra-facilitation likely reflected activation in the premotor and dorsal prefrontal cortices modulating motor cortical activity during attention to haptic sensing. However, this parieto-frontal network appears to be finely modulated depending upon whether haptic sensing is directed towards material or geometric properties. To examine this issue, we contrasted changes in corticospinal excitability when young adults (n = 18) were engaged in either a roughness discrimination on two gratings with different spatial periods, or a 2-D pattern discrimination of the relative offset in the alignment of a row of small circles in the upward or downward direction. RESULTS A significant effect of task conditions was detected on motor evoked potential amplitudes, reflecting the observation that corticospinal facilitation was, on average, ~18% greater in the pattern discrimination than in the roughness discrimination. CONCLUSIONS This differential modulation of corticospinal excitability during haptic sensing of 2-D patterns vs. roughness is consistent with the existence of preferred activation of a visuo-haptic cortical dorsal stream network including frontal motor areas during spatial vs. intensive processing of surface properties in the haptic system.
Collapse
|