1
|
Tait CC, Ramirez MD, Katz PS. Egg-laying hormone expression in identified neurons across developmental stages and reproductive states of the nudibranch Berghia stephanieae. Horm Behav 2024; 164:105578. [PMID: 38925074 PMCID: PMC11330727 DOI: 10.1016/j.yhbeh.2024.105578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/21/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Neuropeptides play essential roles in coordinating reproduction. Egg-laying hormone (ELH) is conserved in genetic sequence and behavioral function across molluscs, where neuronal clusters secrete ELH to modulate and induce egg-laying. Here we investigated ELH in the nudibranch mollusc, Berghia stephanieae. ELH preprohormone gene orthologs, which showed clade-specific differences at the C-terminus of the predicted bioactive peptide, were identified in brain transcriptomes across several nudipleuran species, including B. stephanieae. ELH shares deep homology with the corticotropin-releasing hormone gene family, which has roles broadly in stress response. Injection of synthesized B. stephanieae ELH peptide into mature individuals induced egg-laying. ELH gene expression in the brain and body was mapped using in-situ hybridization chain reaction. Across the adult brain, 300-400 neurons expressed ELH. Twenty-one different cell types were identified in adults, three of which were located unilaterally on the right side, which corresponds to the location of the reproductive organs. Ten cell types were present in pre-reproductive juvenile stages. An asymmetric cluster of approximately 100 small neurons appeared in the right pedal ganglion of late-stage juveniles. Additional neurons in the pleural and pedal ganglia expressed ELH only in adults that were actively laying eggs and sub-adults that were on the verge of doing so, implicating their direct role in reproduction. Outside the brain, ELH was expressed on sensory appendages, including in presumptive sensory neurons. Its widespread expression in the nudibranch B. stephanieae suggests that ELH plays a role beyond reproduction in gastropod molluscs.
Collapse
Affiliation(s)
- Cheyenne C Tait
- Department of Biology, University of Massachusetts Amherst, United States of America.
| | - M Desmond Ramirez
- Department of Biology, University of Massachusetts Amherst, United States of America
| | - Paul S Katz
- Department of Biology, University of Massachusetts Amherst, United States of America; Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, United States of America
| |
Collapse
|
2
|
Monteil A, Guérineau NC, Gil-Nagel A, Parra-Diaz P, Lory P, Senatore A. New insights into the physiology and pathophysiology of the atypical sodium leak channel NALCN. Physiol Rev 2024; 104:399-472. [PMID: 37615954 DOI: 10.1152/physrev.00014.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/13/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023] Open
Abstract
Cell excitability and its modulation by hormones and neurotransmitters involve the concerted action of a large repertoire of membrane proteins, especially ion channels. Unique complements of coexpressed ion channels are exquisitely balanced against each other in different excitable cell types, establishing distinct electrical properties that are tailored for diverse physiological contributions, and dysfunction of any component may induce a disease state. A crucial parameter controlling cell excitability is the resting membrane potential (RMP) set by extra- and intracellular concentrations of ions, mainly Na+, K+, and Cl-, and their passive permeation across the cell membrane through leak ion channels. Indeed, dysregulation of RMP causes significant effects on cellular excitability. This review describes the molecular and physiological properties of the Na+ leak channel NALCN, which associates with its accessory subunits UNC-79, UNC-80, and NLF-1/FAM155 to conduct depolarizing background Na+ currents in various excitable cell types, especially neurons. Studies of animal models clearly demonstrate that NALCN contributes to fundamental physiological processes in the nervous system including the control of respiratory rhythm, circadian rhythm, sleep, and locomotor behavior. Furthermore, dysfunction of NALCN and its subunits is associated with severe pathological states in humans. The critical involvement of NALCN in physiology is now well established, but its study has been hampered by the lack of specific drugs that can block or agonize NALCN currents in vitro and in vivo. Molecular tools and animal models are now available to accelerate our understanding of how NALCN contributes to key physiological functions and the development of novel therapies for NALCN channelopathies.
Collapse
Affiliation(s)
- Arnaud Monteil
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
- LabEx "Ion Channel Science and Therapeutics," Montpellier, France
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nathalie C Guérineau
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
- LabEx "Ion Channel Science and Therapeutics," Montpellier, France
| | - Antonio Gil-Nagel
- Department of Neurology, Epilepsy Program, Hospital Ruber Internacional, Madrid, Spain
| | - Paloma Parra-Diaz
- Department of Neurology, Epilepsy Program, Hospital Ruber Internacional, Madrid, Spain
| | - Philippe Lory
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
- LabEx "Ion Channel Science and Therapeutics," Montpellier, France
| | - Adriano Senatore
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| |
Collapse
|
3
|
Chan-Andersen PC, Romanova EV, Rubakhin SS, Sweedler JV. Profiling 26,000 Aplysia californica neurons by single cell mass spectrometry reveals neuronal populations with distinct neuropeptide profiles. J Biol Chem 2022; 298:102254. [PMID: 35835221 PMCID: PMC9396074 DOI: 10.1016/j.jbc.2022.102254] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 11/30/2022] Open
Abstract
Neuropeptides are a chemically diverse class of cell-to-cell signaling molecules that are widely expressed throughout the central nervous system, often in a cell-specific manner. While cell-to-cell differences in neuropeptides is expected, it is often unclear how exactly neuropeptide expression varies among neurons. Here we created a microscopy-guided, high-throughput single cell matrix-assisted laser desorption/ionization mass spectrometry approach to investigate the neuropeptide heterogeneity of individual neurons in the central nervous system of the neurobiological model Aplysia californica, the California sea hare. In all, we analyzed more than 26,000 neurons from 18 animals and assigned 866 peptides from 66 prohormones by mass matching against an in silico peptide library generated from known Aplysia prohormones retrieved from the UniProt database. Louvain-Jaccard (LJ) clustering of mass spectra from individual neurons revealed 40 unique neuronal populations, or LJ clusters, each with a distinct neuropeptide profile. Prohormones and their related peptides were generally found in single cells from ganglia consistent with the prohormones' previously known ganglion localizations. Several LJ clusters also revealed the cellular colocalization of behaviorally related prohormones, such as an LJ cluster exhibiting achatin and neuropeptide Y, which are involved in feeding, and another cluster characterized by urotensin II, small cardiac peptide, sensorin A, and FRFa, which have shown activity in the feeding network or are present in the feeding musculature. This mass spectrometry-based approach enables the robust categorization of large cell populations based on single cell neuropeptide content and is readily adaptable to the study of a range of animals and tissue types.
Collapse
Affiliation(s)
- Peter C Chan-Andersen
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Elena V Romanova
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Stanislav S Rubakhin
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jonathan V Sweedler
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
4
|
Moroz LL, Romanova DY, Kohn AB. Neural versus alternative integrative systems: molecular insights into origins of neurotransmitters. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190762. [PMID: 33550949 PMCID: PMC7935107 DOI: 10.1098/rstb.2019.0762] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Transmitter signalling is the universal chemical language of any nervous system, but little is known about its early evolution. Here, we summarize data about the distribution and functions of neurotransmitter systems in basal metazoans as well as outline hypotheses of their origins. We explore the scenario that neurons arose from genetically different populations of secretory cells capable of volume chemical transmission and integration of behaviours without canonical synapses. The closest representation of this primordial organization is currently found in Placozoa, disk-like animals with the simplest known cell composition but complex behaviours. We propose that injury-related signalling was the evolutionary predecessor for integrative functions of early transmitters such as nitric oxide, ATP, protons, glutamate and small peptides. By contrast, acetylcholine, dopamine, noradrenaline, octopamine, serotonin and histamine were recruited as canonical neurotransmitters relatively later in animal evolution, only in bilaterians. Ligand-gated ion channels often preceded the establishment of novel neurotransmitter systems. Moreover, lineage-specific diversification of neurotransmitter receptors occurred in parallel within Cnidaria and several bilaterian lineages, including acoels. In summary, ancestral diversification of secretory signal molecules provides unique chemical microenvironments for behaviour-driven innovations that pave the way to complex brain functions and elementary cognition. This article is part of the theme issue 'Basal cognition: multicellularity, neurons and the cognitive lens'.
Collapse
Affiliation(s)
- Leonid L. Moroz
- Department of Neuroscience, McKnight Brain Institute and Whitney laboratory, University of Florida, 9505 Ocean shore Blvd, St Augustine, FL 32080, USA
| | - Daria Y. Romanova
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology of RAS, 5A Butlerova Street, Moscow 117485, Russia
| | - Andrea B. Kohn
- Department of Neuroscience, McKnight Brain Institute and Whitney laboratory, University of Florida, 9505 Ocean shore Blvd, St Augustine, FL 32080, USA
| |
Collapse
|
5
|
Hydrogen Peroxide Gates a Voltage-Dependent Cation Current in Aplysia Neuroendocrine Cells. J Neurosci 2019; 39:9900-9913. [PMID: 31676600 DOI: 10.1523/jneurosci.1460-19.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 10/07/2019] [Accepted: 10/27/2019] [Indexed: 11/21/2022] Open
Abstract
Nonselective cation channels promote persistent spiking in many neurons from a diversity of animals. In the hermaphroditic marine-snail, Aplysia californica, synaptic input to the neuroendocrine bag cell neurons triggers various cation channels, causing an ∼30 min afterdischarge of action potentials and the secretion of egg-laying hormone. During the afterdischarge, protein kinase C is also activated, which in turn elevates hydrogen peroxide (H2O2), likely by stimulating nicotinamide adenine dinucleotide phosphate oxidase. The present study investigated whether H2O2 regulates cation channels to drive the afterdischarge. In single, cultured bag cell neurons, H2O2 elicited a prolonged, concentration- and voltage-dependent inward current, associated with an increase in membrane conductance and a reversal potential of ∼+30 mV. Compared with normal saline, the presence of Ca2+-free, Na+-free, or Na+/Ca2+-free extracellular saline, lowered the current amplitude and left-shifted the reversal potential, consistent with a nonselective cationic conductance. Preventing H2O2 reduction with the glutathione peroxidase inhibitor, mercaptosuccinate, enhanced the H2O2-induced current, while boosting glutathione production with its precursor, N-acetylcysteine, or adding the reducing agent, dithiothreitol, lessened the response. Moreover, the current generated by the alkylating agent, N-ethylmaleimide, occluded the effect of H2O2 The H2O2-induced current was inhibited by tetrodotoxin as well as the cation channel blockers, 9-phenanthrol and clotrimazole. In current-clamp, H2O2 stimulated burst firing, but this was attenuated or prevented altogether by the channel blockers. Finally, H2O2 evoked an afterdischarge from whole bag cell neuron clusters recorded ex vivo by sharp-electrode. H2O2 may regulate a cation channel to influence long-term changes in activity and ultimately reproduction.SIGNIFICANCE STATEMENT Hydrogen peroxide (H2O2) is often studied in a pathological context, such as ischemia or inflammation. However, H2O2 also physiologically modulates synaptic transmission and gates certain transient receptor potential channels. That stated, the effect of H2O2 on neuronal excitability remains less well defined. Here, we examine how H2O2 influences Aplysia bag cell neurons, which elicit ovulation by releasing hormones during an afterdischarge. These neuroendocrine cells are uniquely identifiable and amenable to recording as individual cultured neurons or a cluster from the nervous system. In both culture and the cluster, H2O2 evokes prolonged, afterdischarge-like bursting by gating a nonselective voltage-dependent cationic current. Thus, H2O2, which is generated in response to afterdischarge-associated second messengers, may prompt the firing necessary for hormone secretion and procreation.
Collapse
|
6
|
Yoon S, Park S, Kim MS, Lee CY. Concomitant desalting and concentration of neuropeptides on a donut-shaped surface pattern for MALDI mass spectrometry. Chem Commun (Camb) 2018; 54:5688-5691. [DOI: 10.1039/c8cc02168f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We demonstrate a functional surface pattern that desalts and concentrates a highly saline solution of neuropeptides in a single step.
Collapse
Affiliation(s)
- Sook Yoon
- School of Energy and Chemical Engineering
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Republic of Korea
| | - Sanghwan Park
- School of Energy and Chemical Engineering
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Republic of Korea
| | - Min Sun Kim
- Scientific Instruments Reliability Assessment Center
- Korea Basic Science Institute
- Daejeon 34133
- Republic of Korea
| | - Chang Young Lee
- School of Energy and Chemical Engineering
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Republic of Korea
- School of Life Sciences
| |
Collapse
|
7
|
A neuron-in-capillary platform for facile collection and mass spectrometric characterization of a secreted neuropeptide. Sci Rep 2016; 6:26940. [PMID: 27245782 PMCID: PMC4887886 DOI: 10.1038/srep26940] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/10/2016] [Indexed: 12/21/2022] Open
Abstract
The integration of microfluidic devices—which efficiently handle small liquid volumes—with separations/mass spectrometry (MS) is an effective approach for profiling the neurochemistry occurring in selected neurons. Interfacing the microfluidic cell culture to the mass spectrometer is challenging because of geometric and scaling issues. Here we demonstrate the hyphenation of a neuron-in-capillary platform to a solid phase extraction device and off-line MS. A primary neuronal culture of Aplysia californica neurons was established directly inside a cylindrical polyimide capillary. The approach also uses a particle-embedded monolith to condition neuropeptide releasates collected from several Aplysia neurons cultured in the capillary, with the subsequent characterization of released peptides via MS. This system presents a number of advances compared to more traditional microfluidic devices fabricated with polydimethylsiloxane. These include low cost, easy access to cell culture, rigidity, ease of transport, and minimal fluid handling. The cylindrical geometry of the platform allows convenient interface with a wide range of analytical tools that utilize capillary columns.
Collapse
|
8
|
Increase in Growth Cone Size Correlates with Decrease in Neurite Growth Rate. Neural Plast 2016; 2016:3497901. [PMID: 27274874 PMCID: PMC4870373 DOI: 10.1155/2016/3497901] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/03/2016] [Indexed: 11/18/2022] Open
Abstract
Several important discoveries in growth cone cell biology were made possible by the use of growth cones derived from cultured Aplysia bag cell neurons, including the characterization of the organization and dynamics of the cytoskeleton. The majority of these Aplysia studies focused on large growth cones induced by poly-L-lysine substrates at early stages in cell culture. Under these conditions, the growth cones are in a steady state with very little net advancement. Here, we offer a comprehensive cellular analysis of the motile behavior of Aplysia growth cones in culture beyond this pausing state. We found that average growth cone size decreased with cell culture time whereas average growth rate increased. This inverse correlation of growth rate and growth cone size was due to the occurrence of large growth cones with a peripheral domain larger than 100 μm(2). The large pausing growth cones had central domains that were less consistently aligned with the direction of growth and could be converted into smaller, faster-growing growth cones by addition of a three-dimensional collagen gel. We conclude that the significant lateral expansion of lamellipodia and filopodia as observed during these culture conditions has a negative effect on neurite growth.
Collapse
|
9
|
PKC enhances the capacity for secretion by rapidly recruiting covert voltage-gated Ca2+ channels to the membrane. J Neurosci 2015; 35:2747-65. [PMID: 25673863 DOI: 10.1523/jneurosci.3581-14.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
It is unknown whether neurons can dynamically control the capacity for secretion by promptly changing the number of plasma membrane voltage-gated Ca(2+) channels. To address this, we studied peptide release from the bag cell neurons of Aplysia californica, which initiate reproduction by secreting hormone during an afterdischarge. This burst engages protein kinase C (PKC) to trigger the insertion of a covert Ca(2+) channel, Apl Cav2, alongside a basal channel, Apl Cav1. The significance of Apl Cav2 recruitment to secretion remains undetermined; therefore, we used capacitance tracking to assay secretion, along with Ca(2+) imaging and Ca(2+) current measurements, from cultured bag cell neurons under whole-cell voltage-clamp. Activating PKC with the phorbol ester, PMA, enhanced Ca(2+) entry, and potentiated stimulus-evoked secretion. This relied on channel insertion, as it was occluded by preventing Apl Cav2 engagement with prior whole-cell dialysis or the cytoskeletal toxin, latrunculin B. Channel insertion reduced the stimulus duration and/or frequency required to initiate secretion and strengthened excitation-secretion coupling, indicating that Apl Cav2 accesses peptide release more readily than Apl Cav1. The coupling of Apl Cav2 to secretion also changed with behavioral state, as Apl Cav2 failed to evoke secretion in silent neurons from reproductively inactive animals. Finally, PKC also acted secondarily to enhance prolonged exocytosis triggered by mitochondrial Ca(2+) release. Collectively, our results suggest that bag cell neurons dynamically elevate Ca(2+) channel abundance in the membrane to ensure adequate secretion during the afterdischarge.
Collapse
|
10
|
Dargaei Z, Colmers PLW, Hodgson HM, Magoski NS. Electrical coupling between Aplysia bag cell neurons: characterization and role in synchronous firing. J Neurophysiol 2014; 112:2680-96. [PMID: 25185820 DOI: 10.1152/jn.00494.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In neuroendocrine cells, hormone release often requires a collective burst of action potentials synchronized by gap junctions. This is the case for the electrically coupled bag cell neurons in the reproductive system of the marine snail, Aplysia californica. These neuroendocrine cells are found in two clusters, and fire a synchronous burst, called the afterdischarge, resulting in neuropeptide secretion and the triggering of ovulation. However, the physiology and pharmacology of the bag cell neuron electrical synapse are not completely understood. As such, we made dual whole cell recordings from pairs of electrically coupled cultured bag cell neurons. The junctional current was nonrectifying and not influenced by postsynaptic voltage. Furthermore, junctional conductance was voltage independent and, not surprisingly, strongly correlated with coupling coefficient magnitude. The electrical synapse also acted as a low-pass filter, although under certain conditions, electrotonic potentials evoked by presynaptic action potentials could drive postsynaptic spikes. If coupled neurons were stimulated to spike simultaneously, they presented a high degree of action potential synchrony compared with not-coupled neurons. The electrical synapse failed to pass various intracellular dyes, but was permeable to Cs(+), and could be inhibited by niflumic acid, meclofenamic acid, or 5-nitro-2-(3-phenylpropylamino)benzoic acid. Finally, extracellular and sharp-electrode recording from the intact bag cell neuron cluster showed that these pharmacological uncouplers disrupted both electrical coupling and afterdischarge generation in situ. Thus electrical synapses promote bag cell neuron firing synchrony and may allow for electrotonic spread of the burst through the network, ultimately contributing to propagation of the species.
Collapse
Affiliation(s)
- Zahra Dargaei
- Department of Biomedical and Molecular Sciences, Physiology Graduate Program, Queen's University, Kingston, Ontario, Canada
| | - Phillip L W Colmers
- Department of Biomedical and Molecular Sciences, Physiology Graduate Program, Queen's University, Kingston, Ontario, Canada
| | - Heather M Hodgson
- Department of Biomedical and Molecular Sciences, Physiology Graduate Program, Queen's University, Kingston, Ontario, Canada
| | - Neil S Magoski
- Department of Biomedical and Molecular Sciences, Physiology Graduate Program, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
11
|
Fan Y, Lee CY, Rubakhin SS, Sweedler JV. Stimulation and release from neurons via a dual capillary collection device interfaced to mass spectrometry. Analyst 2014; 138:6337-46. [PMID: 24040641 DOI: 10.1039/c3an01010d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neuropeptides are cell to cell signaling molecules that modulate a wide range of physiological processes. Neuropeptide release has been studied in sample sizes ranging from single cells and neuronal clusters, to defined brain nuclei and large brain regions. We have developed and optimized cell stimulation and collection approaches for the efficient measurement of neuropeptide release from neuronal samples using a dual capillary system. The defining feature is a capillary that contains octadecyl-modified silica nanoparticles on its inner wall to capture and extract releasates. This collection capillary is inserted into another capillary used to deliver solutions that chemically stimulate the cells, with solution flowing up the inner capillary to facilitate peptide collection. The efficiency of peptide collection was evaluated using six peptide standards mixed in physiological saline. The extracted peptides eluted from these capillaries were characterized via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with low femtomole detection limits. Using the capillary collection system in small custom-fabricated culturing chambers, individual cultured neurons and neuronal clusters from the model animal Aplysia californica were stimulated with distinct neuronal secretagogues and the releasates were collected and characterized using MALDI-TOF MS.
Collapse
Affiliation(s)
- Yi Fan
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | | | | | |
Collapse
|
12
|
Regeneration of Aplysia bag cell neurons is synergistically enhanced by substrate-bound hemolymph proteins and laminin. Sci Rep 2014; 4:4617. [PMID: 24722588 PMCID: PMC3983596 DOI: 10.1038/srep04617] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/12/2014] [Indexed: 11/08/2022] Open
Abstract
We have investigated Aplysia hemolymph as a source of endogenous factors to promote regeneration of bag cell neurons. We describe a novel synergistic effect between substrate-bound hemolymph proteins and laminin. This combination increased outgrowth and branching relative to either laminin or hemolymph alone. Notably, the addition of hemolymph to laminin substrates accelerated growth cone migration rate over ten-fold. Our results indicate that the active factor is either a high molecular weight protein or protein complex and is not the respiratory protein hemocyanin. Substrate-bound factor(s) from central nervous system-conditioned media also had a synergistic effect with laminin, suggesting a possible cooperation between humoral proteins and nervous system extracellular matrix. Further molecular characterization of active factors and their cellular targets is warranted on account of the magnitude of the effects reported here and their potential relevance for nervous system repair.
Collapse
|
13
|
Voltage-gated Ca2+ influx and mitochondrial Ca2+ initiate secretion from Aplysia neuroendocrine cells. Neuroscience 2013; 250:755-72. [PMID: 23876326 DOI: 10.1016/j.neuroscience.2013.07.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 07/10/2013] [Accepted: 07/11/2013] [Indexed: 01/14/2023]
Abstract
Neuroendocrine secretion often requires prolonged voltage-gated Ca(2+) entry; however, the ability of Ca(2+) from intracellular stores, such as endoplasmic reticulum or mitochondria, to elicit secretion is less clear. We examined this using the bag cell neurons, which trigger ovulation in Aplysia by releasing egg-laying hormone (ELH) peptide. Secretion from cultured bag cell neurons was observed as an increase in plasma membrane capacitance following Ca(2+) influx evoked by a 5-Hz, 1-min train of depolarizing steps under voltage-clamp. The response was similar for step durations of ≥ 50 ms, but fell off sharply with shorter stimuli. The capacitance change was attenuated by replacing external Ca(2+) with Ba(2+), blocking Ca(2+) channels, buffering intracellular Ca(2+) with EGTA, disrupting synaptic protein recycling, or genetic knock-down of ELH. Regarding intracellular stores, liberating mitochondrial Ca(2+) with the protonophore, carbonyl cyanide-p-trifluoromethoxyphenyl-hydrazone (FCCP), brought about an EGTA-sensitive elevation of capacitance. Conversely, no change was observed to Ca(2+) released from the endoplasmic reticulum or acidic stores. Prior exposure to FCCP lessened the train-induced capacitance increase, suggesting overlap in the pool of releasable vesicles. Employing GTP-γ-S to interfere with endocytosis delayed recovery (presumed membrane retrieval) of the capacitance change following FCCP, but not the train. Finally, secretion was correlated with reproductive behavior, in that neurons isolated from animals engaged in egg-laying presented a greater train-induced capacitance elevation vs quiescent animals. The bag cell neuron capacitance increase is consistent with peptide secretion requiring high Ca(2+), either from influx or stores, and may reflect the all-or-none nature of reproduction.
Collapse
|
14
|
Hou X, Xie F, Sweedler JV. Relative quantitation of neuropeptides over a thousand-fold concentration range. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:2083-93. [PMID: 22993045 PMCID: PMC3515743 DOI: 10.1007/s13361-012-0481-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/16/2012] [Accepted: 08/17/2012] [Indexed: 05/23/2023]
Abstract
Neuropeptides are essential cell-to-cell signaling molecules that influence diverse regulatory and behavioral functions within biological systems. Differing in their amino acid sequences and post-translational modifications, hundreds of neuropeptides are produced via a series of enzymatic processing steps, and their levels vary with location, time, and physiological condition. Due to their wide range of endogenous concentrations and inherent chemical complexity, using mass spectrometry (MS) to accurately quantify changes in peptide levels can be challenging. Here we evaluate three different MS systems for their ability to accurately measure neuropeptide levels: capillary liquid chromatography-electrospray ionization-ion trap (CapLC-ESI-IT) MS, ultraperformance liquid chromatography-electrospray ionization-quadrupole-time-of-flight (UPLC-LC-ESI-Q-TOF) MS, and matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) MS. Specifically, eight sample mixtures composed of five neuropeptide standards, with four technical replicates of each, were labeled with H(4)/D(4)-succinic anhydride, followed by relative peptide quantitation using the three MS platforms. For these samples, the CapLC-ESI-IT MS platform offered the most robust ability to accurately quantify peptides over a concentration range of 1200-fold, although it required larger sample sizes than the other two platforms. Both the UPLC-ESI-Q-TOF MS and the MALDI-TOF MS systems had lower limits of quantification, with the MALDI-TOF having the lowest. By implementing several data acquisition schemes and optimizing the data analysis approaches, we were able to accurately quantify peptides over a three orders of magnitude concentration range using either the UPLC or MALDI-TOF platforms. Overall these results increase our understanding of both the capabilities and limits of using MS-based approaches to measure peptides.
Collapse
Affiliation(s)
| | | | - Jonathan V. Sweedler
- Address reprint requests to: Jonathan V. Sweedler, Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, 63-5, Urbana, Il 61801, Ph: 217-244-7359, Fax: 217-265-6290,
| |
Collapse
|
15
|
Croushore CA, Supharoek SA, Lee CY, Jakmunee J, Sweedler JV. Microfluidic device for the selective chemical stimulation of neurons and characterization of peptide release with mass spectrometry. Anal Chem 2012; 84:9446-52. [PMID: 23004687 PMCID: PMC3490451 DOI: 10.1021/ac302283u] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neuropeptides are synthesized in and released from neurons and are involved in a wide range of physiological processes, including temperature homeostasis, learning, memory, and disease. When working with sparse neuronal networks, the ability to collect and characterize small sample volumes is important as neurons often release only a small proportion of their mass-limited content. Microfluidic systems are well suited for the study of neuropeptides. They offer the ability to control and manipulate the extracellular environment and small sample volumes, thereby reducing the dilution of peptides following release. We present an approach for the culture and stimulation of a neuronal network within a microfluidic device, subsequent collection of the released peptides, and their detection via mass spectrometry. The system employs microvalve-controlled stimulation channels to selectively stimulate a low-density neuronal culture, allowing us to determine the temporal onset of peptide release. Released peptides from the well-characterized, peptidergic bag cell neurons of Aplysia californica were collected and their temporal pattern of release was characterized with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. We show a robust difference in the timing of release for chemical solutions containing elevated K(+) (7 ± 3 min), when compared to insulin (19 ± 7 min) (p < 0.000 01).
Collapse
Affiliation(s)
- Callie A Croushore
- Department of Chemistry and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | | | | | | | | |
Collapse
|
16
|
Zhong M, Lee CY, Croushore CA, Sweedler JV. Label-free quantitation of peptide release from neurons in a microfluidic device with mass spectrometry imaging. LAB ON A CHIP 2012; 12:2037-45. [PMID: 22508372 PMCID: PMC3558029 DOI: 10.1039/c2lc21085a] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Microfluidic technology allows the manipulation of mass-limited samples and when used with cultured cells, enables control of the extracellular microenvironment, making it well suited for studying neurons and their response to environmental perturbations. While matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) provides for off-line coupling to microfluidic devices for characterizing small-volume extracellular releasates, performing quantitative studies with MALDI is challenging. Here we describe a label-free absolute quantitation approach for microfluidic devices. We optimize device fabrication to prevent analyte losses before measurement and then incorporate a substrate that collects the analytes as they flow through a collection channel. Following collection, the channel is interrogated using MS imaging. Rather than quantifying the sample present via MS peak height, the length of the channel containing appreciable analyte signal is used as a measure of analyte amount. A linear relationship between peptide amount and band length is suggested by modeling the adsorption process and this relationship is validated using two neuropeptides, acidic peptide (AP) and α-bag cell peptide [1-9] (αBCP). The variance of length measurement, defined as the ratio of standard error to mean value, is as low as 3% between devices. The limit of detection (LOD) of our system is 600 fmol for AP and 400 fmol for αBCP. Using appropriate calibrations, we determined that an individual Aplysia bag cell neuron secretes 0.15 ± 0.03 pmol of AP and 0.13 ± 0.06 pmol of αBCP after being stimulated with elevated KCl. This quantitation approach is robust, does not require labeling, and is well suited for miniaturized off-line characterization from microfluidic devices.
Collapse
Affiliation(s)
| | | | | | - Jonathan V. Sweedler
- Corresponding Author: Jonathan V. Sweedler, , Phone: 217-244-7359, Fax: 217-265-6290
| |
Collapse
|
17
|
Fan Y, Rubakhin SS, Sweedler JV. Collection of peptides released from single neurons with particle-embedded monolithic capillaries followed by detection with matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 2011; 83:9557-63. [PMID: 22053721 DOI: 10.1021/ac202338e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Characterization of the stimulated release of neuropeptides from brain slices and individual cultured neurons requires efficient collection of the releasate from relatively large volumes of physiological saline. Here, several collection approaches are optimized using particle-embedded monolithic capillaries (PEMCs) with poly(stearyl methacrylate-co-ethylene glycol dimethacrylate) monolith acting as a "glue". Two distinct extraction particles, with either pyrrolidone (PY) or ethylenediamine (EDA) as the functional group on polystyrene backbone, have been embedded into capillaries having an inner diameter of 250 μm. The capillaries act as collection devices for sampling neuropeptide release; the collection protocols are described, and the extraction efficiency of the probes are characterized. Specifically, the binding of angiotensin II from a peptide mixture onto the PY and EDA columns was 16 and 28 pmol, respectively, in a volume of 20 μL of saline. The peptides released from these columns have been characterized via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with low femtomole detection limits. When the PEMC columns were positioned in close proximity to individual neurons and 50 mM KCl was used as the secretagogue, peptides released from individual identified cultured neurons isolated from Aplysia californica were collected and characterized.
Collapse
Affiliation(s)
- Yi Fan
- Department of Chemistry, University of Illinois at Urbana-Champaign, Illinois 61801, United States
| | | | | |
Collapse
|
18
|
Scanlan C, Shi T, Hatcher NG, Rubakhin SS, Sweedler JV. Synthesis, accumulation, and release of d-aspartate in the Aplysia californica CNS. J Neurochem 2010; 115:1234-44. [PMID: 20874765 PMCID: PMC2972370 DOI: 10.1111/j.1471-4159.2010.07020.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
d-Aspartate (d-Asp) is an endogenous molecule that is often detected in CNS and endocrine tissues. Using capillary electrophoresis and a variety of radionuclide detection techniques, we examine the synthesis, release, and uptake/accumulation of d-Asp in the CNS of the marine mollusk Aplysia californica. We observe the preferential synthesis and accumulation of d-Asp over l-aspartate (l-Asp) in neuron-containing ganglia compared to surrounding sheath tissues. Little conversion of d-Asp to l-Asp is detected. The Ca(2+) ionophore ionomycin and elevated extracellular potassium stimulates release of d-Asp from the cerebral ganglia. Lastly, radioactive d-Asp in the extracellular media is efficiently taken up and accumulated by individual F-cluster neurons. These observations point to a role for d-Asp in cell-to-cell signaling with many characteristics similar to classical transmitters.
Collapse
Affiliation(s)
- Cory Scanlan
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, USA
| | - Ting Shi
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, USA
| | - Nathan G. Hatcher
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, USA
| | - Stanislav S. Rubakhin
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, USA
| | - Jonathan V. Sweedler
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, USA
| |
Collapse
|
19
|
Morishita F, Furukawa Y, Matsushima O, Minakata H. Regulatory actions of neuropeptides and peptide hormones on the reproduction of molluscsThe present review is one of a series of occasional review articles that have been invited by the Editors and will feature the broad range of disciplines and expertise represented in our Editorial Advisory Board. CAN J ZOOL 2010. [DOI: 10.1139/z10-041] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reproductive success of individual animals is essential for the survival of any species. Molluscs have adapted to a wide variety of environments (freshwater, brackish water, seawater, and terrestrial habits) and have evolved unique tactics for reproduction. Both of these features attract the academic interests of scientists. Because neuropeptides and peptide hormones play critical roles in neural and neurohormonal regulation of physiological functions and behaviors in this animal group, the regulatory actions of these messengers in reproduction have been extensively investigated. In this review, we will briefly summarize how peptidergic messengers are involved in various aspects of reproduction, using some peptides such as egg-laying hormone, caudo-dorsal cell hormone, APGWamide, and gonadotropin-releasing hormone as typical examples.
Collapse
Affiliation(s)
- Fumihiro Morishita
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Laboratory of Neurobiology, Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
- Department of Global Environment Studies, Faculty of Environmental Studies, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193, Japan
- Suntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | - Yasuo Furukawa
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Laboratory of Neurobiology, Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
- Department of Global Environment Studies, Faculty of Environmental Studies, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193, Japan
- Suntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | - Osamu Matsushima
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Laboratory of Neurobiology, Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
- Department of Global Environment Studies, Faculty of Environmental Studies, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193, Japan
- Suntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | - Hiroyuki Minakata
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Laboratory of Neurobiology, Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
- Department of Global Environment Studies, Faculty of Environmental Studies, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193, Japan
- Suntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| |
Collapse
|
20
|
Xie F, London SE, Southey BR, Annangudi SP, Amare A, Rodriguez-Zas SL, Clayton DF, Sweedler JV. The zebra finch neuropeptidome: prediction, detection and expression. BMC Biol 2010; 8:28. [PMID: 20359331 PMCID: PMC2873334 DOI: 10.1186/1741-7007-8-28] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 04/01/2010] [Indexed: 11/24/2022] Open
Abstract
Background Among songbirds, the zebra finch (Taeniopygia guttata) is an excellent model system for investigating the neural mechanisms underlying complex behaviours such as vocal communication, learning and social interactions. Neuropeptides and peptide hormones are cell-to-cell signalling molecules known to mediate similar behaviours in other animals. However, in the zebra finch, this information is limited. With the newly-released zebra finch genome as a foundation, we combined bioinformatics, mass-spectrometry (MS)-enabled peptidomics and molecular techniques to identify the complete suite of neuropeptide prohormones and final peptide products and their distributions. Results Complementary bioinformatic resources were integrated to survey the zebra finch genome, identifying 70 putative prohormones. Ninety peptides derived from 24 predicted prohormones were characterized using several MS platforms; tandem MS confirmed a majority of the sequences. Most of the peptides described here were not known in the zebra finch or other avian species, although homologous prohormones exist in the chicken genome. Among the zebra finch peptides discovered were several unique vasoactive intestinal and adenylate cyclase activating polypeptide 1 peptides created by cleavage at sites previously unreported in mammalian prohormones. MS-based profiling of brain areas required for singing detected 13 peptides within one brain nucleus, HVC; in situ hybridization detected 13 of the 15 prohormone genes examined within at least one major song control nucleus. Expression mapping also identified prohormone messenger RNAs in areas associated with spatial learning and social behaviours. Based on the whole-genome analysis, 40 prohormone probes were found on a commonly used zebra finch brain microarray. Analysis of these newly annotated transcripts revealed that six prohormone probes showed altered expression after birds heard song playbacks in a paradigm of song recognition learning; we partially verify this result experimentally. Conclusions The zebra finch peptidome and prohormone complement is now characterized. Based on previous microarray results on zebra finch vocal learning and synaptic plasticity, a number of these prohormones show significant changes during learning. Interestingly, most mammalian prohormones have counterparts in the zebra finch, demonstrating that this songbird uses similar biochemical pathways for neurotransmission and hormonal regulation. These findings enhance investigation into neuropeptide-mediated mechanisms of brain function, learning and behaviour in this model.
Collapse
Affiliation(s)
- Fang Xie
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Annangudi SP, Luszpak AE, Kim SH, Ren S, Hatcher NG, Weiler IJ, Thornley KT, Kile BM, Wightman RM, Greenough WT, Sweedler JV. Neuropeptide Release is Impaired in a Mouse Model of Fragile X Mental Retardation Syndrome. ACS Chem Neurosci 2010; 1:306-314. [PMID: 20495672 PMCID: PMC2873207 DOI: 10.1021/cn900036x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 12/17/2009] [Indexed: 02/05/2023] Open
Abstract
Fragile X syndrome (FXS), an inherited disorder characterized by mental retardation and autismlike behaviors, is caused by the failure to transcribe the gene for fragile X mental retardation protein (FMRP), a translational regulator and transporter of select mRNAs. FXS model mice (Fmr1 KO mice) exhibit impaired neuropeptide release. Release of biogenic amines does not differ between wild-type (WT) and Fmr1 KO mice. Rab3A, an mRNA cargo of FMRP involved in the recruitment of vesicles, is decreased by ∼50% in synaptoneurosomes of Fmr1 KO mice; however, the number of dense-core vesicles (DCVs) does not differ between WT and Fmr1 KO mice. Therefore, deficits associated with FXS may reflect this aberrant vesicle release, specifically involving docking and fusion of peptidergic DCVs, and may lead to defective maturation/maintenance of synaptic connections.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Keith T. Thornley
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514
| | - Brian M. Kile
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514
| | - R. Mark Wightman
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514
| | - William T. Greenough
- Beckman Institute
- Neuroscience Program
- Departments of Psychology, Psychiatry, and Cell and Structural Biology
| | | |
Collapse
|
22
|
Sternberg RM, Gooding MP, Hotchkiss AK, LeBlanc GA. Environmental-endocrine control of reproductive maturation in gastropods: implications for the mechanism of tributyltin-induced imposex in prosobranchs. ECOTOXICOLOGY (LONDON, ENGLAND) 2010; 19:4-23. [PMID: 19653098 DOI: 10.1007/s10646-009-0397-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 07/20/2009] [Indexed: 05/28/2023]
Abstract
Prosobranch snails have been afflicted globally by a condition whereby females develop male sex characteristics, most notably a penis. This condition, known as imposex, has been causally associated with the ubiquitous environmental contaminant tributyltin (TBT). Deduction of the mechanism by which TBT causes imposex has been hampered by the lack of understanding of the normal endocrine regulation of reproductive tract recrudescence in these organisms. We have reviewed the relevant literature on the environmental and endocrine factors that regulate reproductive tract recrudescence, sexual differentiation, and reproduction in gastropods. We provide a cohesive model for the environmental-endocrine regulation of reproduction in these organisms, and use this information to deduce a most likely mechanism by which TBT causes imposex. Photoperiod appears to be the predominant environmental cue that regulates reproductive tract recrudescence. Secondary cues include temperature and nutrition which control the timing of breeding and egg laying. Several hormone products of the central and peripheral nervous systems have been identified that contribute to recrudescence, reproductive behaviors, oocyte maturation and egg laying. Retinoic acid signaling via the retinoid X-receptor (RXR) has shown promise to be a major regulator of reproductive tract recrudescence. Furthermore, TBT has been shown to be a high affinity ligand for the RXR and the RXR ligand 9-cis retinoic acid causes imposex. We propose that TBT causes imposex through the inappropriate activation of this signaling pathway. However, uncertainties remain in our understanding of the environmental-endocrine regulation of reproduction in gastropods. Definitive elucidation of the mechanism of action of TBT awaits resolution of these uncertainties.
Collapse
Affiliation(s)
- Robin M Sternberg
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | |
Collapse
|
23
|
Zimmerman TA, Rubakhin SS, Romanova EV, Tucker KR, Sweedler JV. MALDI mass spectrometric imaging using the stretched sample method to reveal neuropeptide distributions in aplysia nervous tissue. Anal Chem 2009; 81:9402-9. [PMID: 19835365 PMCID: PMC2837479 DOI: 10.1021/ac901820v] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neuropeptides are a diverse set of complex cell-cell signaling molecules that modulate behavior, learning, and memory. Their spatially heterogeneous distributions, large number of post-translational modifications, and wide range of physiologically active concentrations make their characterization challenging. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometric imaging is well-suited to characterizing and mapping neuropeptides in the central nervous system. Because matrix application can cause peptide migration within tissue samples, application parameters for MALDI typically represent a compromise between attaining the highest signal quality and preserving native spatial distributions. The stretched sample approach minimizes this trade-off by fragmenting the tissue section into thousands of spatially isolated islands, each approximately 40 mum in size. This inhibits analyte migration between the pieces and, at the same time, reduces analyte-salt adduct formation. Here, we present methodological improvements that enable the imaging of stretched tissues and reveal neuropeptide distributions in nervous tissue from Aplysia californica. The distributions of known neuropeptides are shown to correspond with previous immunohistochemical results, demonstrating that the stretched imaging method is well-suited for working with easily redistributed molecules and heterogeneous tissues and reduces adducts from physiological salts.
Collapse
Affiliation(s)
- Tyler A. Zimmerman
- Department of Chemistry and the Beckman Institute, University of Illinois, Urbana, Illinois 61801
| | - Stanislav S. Rubakhin
- Department of Chemistry and the Beckman Institute, University of Illinois, Urbana, Illinois 61801
| | - Elena V. Romanova
- Department of Chemistry and the Beckman Institute, University of Illinois, Urbana, Illinois 61801
| | - Kevin R. Tucker
- Department of Chemistry and the Beckman Institute, University of Illinois, Urbana, Illinois 61801
| | - Jonathan V. Sweedler
- Department of Chemistry and the Beckman Institute, University of Illinois, Urbana, Illinois 61801
| |
Collapse
|
24
|
Iannacone JM, Ren S, Hatcher NG, Sweedler JV. Collecting peptide release from the brain using porous polymer monolith-based solid phase extraction capillaries. Anal Chem 2009; 81:5433-8. [PMID: 19485405 PMCID: PMC2810310 DOI: 10.1021/ac9005843] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Porous polymer monolithic (PPM) columns are employed to collect and concentrate neuronal release from invertebrate and vertebrate model systems, prior to their characterization with mass spectrometry. The monoliths are fabricated in fused-silica capillaries from lauryl methacrylate (LMA) and ethylene glycol dimethacrylate (EDMA). The binding capacities for fluorescein and for fluorescently labeled peptides are on the order of nanomoles per millimeter of length of monolith material for a capillary with an inner diameter of 200 microm. To evaluate this strategy for collecting peptides from physiological solutions, angiotensin I and insulin in artificial seawater are loaded onto, and then released from, the monoliths after a desalination rinse, resulting in femtomole limits of detection via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Positioned in the extracellular media near Aplysia californica bag cell neurons, upon electrical stimulation, these LMA-EDMA monoliths are also used to collect and concentrate peptide release, with egg-laying hormones and acidic peptide detected. In addition, the collection of several known peptides secreted from chemically stimulated mouse brain slices demonstrates their ability to collect releasates from a variety of neuronal tissues. When compared to collection approaches using individual beads placed on brain slices, the PPM capillaries offer greater binding capacity. Moreover, they maintain higher spatial resolution, compared to the larger-volume, solid-phase extraction collection strategies.
Collapse
Affiliation(s)
- Jamie M. Iannacone
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Shifang Ren
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Nathan G. Hatcher
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Jonathan V. Sweedler
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
25
|
Abstract
A significant challenge to understanding dynamic and heterogeneous brain systems lies in the chemical complexity of secreted intercellular messengers that change rapidly with space and time. Two solid-phase extraction collection strategies are presented that relate time and location of peptide release with mass spectrometric characterization. Here, complex suites of peptide-based cell-to-cell signaling molecules are characterized from the mammalian suprachiasmatic nucleus (SCN), site of the master circadian clock. Observed SCN releasates are peptide rich and demonstrate the co-release of established circadian neuropeptides and peptides with unknown roles in circadian rhythms. Additionally, the content of SCN releasate is stimulation specific. Stimulation paradigms reported to alter clock timing, including electrical stimulation of the retinohypothalamic tract, produce releasate mass spectra that are notably different from the spectra of compounds secreted endogenously over the course of the 24-h cycle. In addition to established SCN peptides, we report the presence of proSAAS peptides in releasates. One of these peptides, little SAAS, exhibits robust retinohypothalamic tract-stimulated release from the SCN, and exogenous application of little SAAS induces a phase delay consistent with light-mediated cues regulating circadian timing. These mass spectrometry-based analyses provide a new perspective on peptidergic signaling within the SCN and demonstrate that the integration of secreted compounds with information relating time and location of release generates new insights into intercellular signaling in the brain.
Collapse
|