1
|
Zai AT, Stepien AE, Giret N, Hahnloser RHR. Goal-directed vocal planning in a songbird. eLife 2024; 12:RP90445. [PMID: 38959057 PMCID: PMC11221833 DOI: 10.7554/elife.90445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
Songbirds' vocal mastery is impressive, but to what extent is it a result of practice? Can they, based on experienced mismatch with a known target, plan the necessary changes to recover the target in a practice-free manner without intermittently singing? In adult zebra finches, we drive the pitch of a song syllable away from its stable (baseline) variant acquired from a tutor, then we withdraw reinforcement and subsequently deprive them of singing experience by muting or deafening. In this deprived state, birds do not recover their baseline song. However, they revert their songs toward the target by about 1 standard deviation of their recent practice, provided the sensory feedback during the latter signaled a pitch mismatch with the target. Thus, targeted vocal plasticity does not require immediate sensory experience, showing that zebra finches are capable of goal-directed vocal planning.
Collapse
Affiliation(s)
- Anja T Zai
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH ZurichZurichSwitzerland
- Institute of Neuroinformatics, University of Zurich and ETH ZurichZurichSwitzerland
| | - Anna E Stepien
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH ZurichZurichSwitzerland
- Institute of Neuroinformatics, University of Zurich and ETH ZurichZurichSwitzerland
| | - Nicolas Giret
- Institut des Neurosciences Paris-Saclay, UMR 9197 CNRS, Université Paris-SaclaySaclayFrance
| | - Richard HR Hahnloser
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH ZurichZurichSwitzerland
- Institute of Neuroinformatics, University of Zurich and ETH ZurichZurichSwitzerland
| |
Collapse
|
2
|
Koparkar A, Warren TL, Charlesworth JD, Shin S, Brainard MS, Veit L. Lesions in a songbird vocal circuit increase variability in song syntax. eLife 2024; 13:RP93272. [PMID: 38635312 PMCID: PMC11026095 DOI: 10.7554/elife.93272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Complex skills like speech and dance are composed of ordered sequences of simpler elements, but the neuronal basis for the syntactic ordering of actions is poorly understood. Birdsong is a learned vocal behavior composed of syntactically ordered syllables, controlled in part by the songbird premotor nucleus HVC (proper name). Here, we test whether one of HVC's recurrent inputs, mMAN (medial magnocellular nucleus of the anterior nidopallium), contributes to sequencing in adult male Bengalese finches (Lonchura striata domestica). Bengalese finch song includes several patterns: (1) chunks, comprising stereotyped syllable sequences; (2) branch points, where a given syllable can be followed probabilistically by multiple syllables; and (3) repeat phrases, where individual syllables are repeated variable numbers of times. We found that following bilateral lesions of mMAN, acoustic structure of syllables remained largely intact, but sequencing became more variable, as evidenced by 'breaks' in previously stereotyped chunks, increased uncertainty at branch points, and increased variability in repeat numbers. Our results show that mMAN contributes to the variable sequencing of vocal elements in Bengalese finch song and demonstrate the influence of recurrent projections to HVC. Furthermore, they highlight the utility of species with complex syntax in investigating neuronal control of ordered sequences.
Collapse
Affiliation(s)
- Avani Koparkar
- Neurobiology of Vocal Communication, Institute for Neurobiology, University of TübingenTübingenGermany
| | - Timothy L Warren
- Howard Hughes Medical Institute and Center for Integrative Neuroscience, University of California San FranciscoSan FranciscoUnited States
- Departments of Horticulture and Integrative Biology, Oregon State UniversityCorvallisUnited States
| | - Jonathan D Charlesworth
- Howard Hughes Medical Institute and Center for Integrative Neuroscience, University of California San FranciscoSan FranciscoUnited States
| | - Sooyoon Shin
- Howard Hughes Medical Institute and Center for Integrative Neuroscience, University of California San FranciscoSan FranciscoUnited States
| | - Michael S Brainard
- Howard Hughes Medical Institute and Center for Integrative Neuroscience, University of California San FranciscoSan FranciscoUnited States
| | - Lena Veit
- Neurobiology of Vocal Communication, Institute for Neurobiology, University of TübingenTübingenGermany
| |
Collapse
|
3
|
Zhao Z, Teoh HK, Carpenter J, Nemon F, Kardon B, Cohen I, Goldberg JH. Anterior forebrain pathway in parrots is necessary for producing learned vocalizations with individual signatures. Curr Biol 2023; 33:5415-5426.e4. [PMID: 38070505 PMCID: PMC10799565 DOI: 10.1016/j.cub.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/30/2023] [Accepted: 11/08/2023] [Indexed: 12/21/2023]
Abstract
Parrots have enormous vocal imitation capacities and produce individually unique vocal signatures. Like songbirds, parrots have a nucleated neural song system with distinct anterior (AFP) and posterior forebrain pathways (PFP). To test if song systems of parrots and songbirds, which diverged over 50 million years ago, have a similar functional organization, we first established a neuroscience-compatible call-and-response behavioral paradigm to elicit learned contact calls in budgerigars (Melopsittacus undulatus). Using variational autoencoder-based machine learning methods, we show that contact calls within affiliated groups converge but that individuals maintain unique acoustic features, or vocal signatures, even after call convergence. Next, we transiently inactivated the outputs of AFP to test if learned vocalizations can be produced by the PFP alone. As in songbirds, AFP inactivation had an immediate effect on vocalizations, consistent with a premotor role. But in contrast to songbirds, where the isolated PFP is sufficient to produce stereotyped and acoustically normal vocalizations, isolation of the budgerigar PFP caused a degradation of call acoustic structure, stereotypy, and individual uniqueness. Thus, the contribution of AFP and the capacity of isolated PFP to produce learned vocalizations have diverged substantially between songbirds and parrots, likely driven by their distinct behavioral ecology and neural connectivity.
Collapse
Affiliation(s)
- Zhilei Zhao
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Han Kheng Teoh
- Department of Physics, Cornell University, Ithaca, NY 14853, USA
| | - Julie Carpenter
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Frieda Nemon
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Brian Kardon
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Itai Cohen
- Department of Physics, Cornell University, Ithaca, NY 14853, USA
| | - Jesse H Goldberg
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
4
|
Tian LY, Warren TL, Mehaffey WH, Brainard MS. Dynamic top-down biasing implements rapid adaptive changes to individual movements. eLife 2023; 12:e83223. [PMID: 37733005 PMCID: PMC10513479 DOI: 10.7554/elife.83223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/11/2023] [Indexed: 09/22/2023] Open
Abstract
Complex behaviors depend on the coordinated activity of neural ensembles in interconnected brain areas. The behavioral function of such coordination, often measured as co-fluctuations in neural activity across areas, is poorly understood. One hypothesis is that rapidly varying co-fluctuations may be a signature of moment-by-moment task-relevant influences of one area on another. We tested this possibility for error-corrective adaptation of birdsong, a form of motor learning which has been hypothesized to depend on the top-down influence of a higher-order area, LMAN (lateral magnocellular nucleus of the anterior nidopallium), in shaping moment-by-moment output from a primary motor area, RA (robust nucleus of the arcopallium). In paired recordings of LMAN and RA in singing birds, we discovered a neural signature of a top-down influence of LMAN on RA, quantified as an LMAN-leading co-fluctuation in activity between these areas. During learning, this co-fluctuation strengthened in a premotor temporal window linked to the specific movement, sequential context, and acoustic modification associated with learning. Moreover, transient perturbation of LMAN activity specifically within this premotor window caused rapid occlusion of pitch modifications, consistent with LMAN conveying a temporally localized motor-biasing signal. Combined, our results reveal a dynamic top-down influence of LMAN on RA that varies on the rapid timescale of individual movements and is flexibly linked to contexts associated with learning. This finding indicates that inter-area co-fluctuations can be a signature of dynamic top-down influences that support complex behavior and its adaptation.
Collapse
Affiliation(s)
- Lucas Y Tian
- Center for Integrative Neuroscience and Howard Hughes Medical Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Timothy L Warren
- Center for Integrative Neuroscience and Howard Hughes Medical Institute, University of California, San FranciscoSan FranciscoUnited States
| | - William H Mehaffey
- Center for Integrative Neuroscience and Howard Hughes Medical Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Michael S Brainard
- Center for Integrative Neuroscience and Howard Hughes Medical Institute, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
5
|
Fujimoto H, Hasegawa T. Reversible inhibition of the basal ganglia prolongs repetitive vocalization but only weakly affects sequencing at branch points in songbirds. Cereb Cortex Commun 2023; 4:tgad016. [PMID: 37675437 PMCID: PMC10477706 DOI: 10.1093/texcom/tgad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023] Open
Abstract
Although vocal signals, including languages and songbird syllables, are composed of a finite number of acoustic elements, diverse vocal sequences are composed of a combination of these elements, which are linked together by syntactic rules. However, the neural basis of syntactic vocalization generation remains poorly understood. Here, we report that inhibition using tetrodotoxin (TTX) and manipulations of gamma-aminobutyric acid (GABA) receptors within the basal ganglia Area X or lateral magnocellular nucleus of the anterior neostriatum (LMAN) alter and prolong repetitive vocalization in Bengalese finches (Lonchura striata var. domestica). These results suggest that repetitive vocalizations are modulated by the basal ganglia and not solely by higher motor cortical neurons. These data highlight the importance of neural circuits, including the basal ganglia, in the production of stereotyped repetitive vocalizations and demonstrate that dynamic disturbances within the basal ganglia circuitry can differentially affect the repetitive temporal features of songs.
Collapse
Affiliation(s)
- Hisataka Fujimoto
- Department of Anatomy, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Taku Hasegawa
- Laboratory for Imagination and Executive functions, RIKEN Center for Brain Science, 2-1 Hirosawa, Wakoshi, Saitama 351-0198, Japan
| |
Collapse
|
6
|
Ota N, Gahr M. Context‐sensitive dance–vocal displays affect song patterns and partner responses in a socially monogamous songbird. Ethology 2021. [DOI: 10.1111/eth.13240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Nao Ota
- Department of Behavioural Neurobiology Max Planck Institute for Ornithology Seewiesen Germany
- JSPS Overseas Research Fellow Japan Society for the Promotion of Science Tokyo Japan
| | - Manfred Gahr
- Department of Behavioural Neurobiology Max Planck Institute for Ornithology Seewiesen Germany
| |
Collapse
|
7
|
Moorman S, Ahn JR, Kao MH. Plasticity of stereotyped birdsong driven by chronic manipulation of cortical-basal ganglia activity. Curr Biol 2021; 31:2619-2632.e4. [PMID: 33974850 PMCID: PMC8222193 DOI: 10.1016/j.cub.2021.04.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/05/2021] [Accepted: 04/13/2021] [Indexed: 10/21/2022]
Abstract
Cortical-basal ganglia (CBG) circuits are critical for motor learning and performance, and are a major site of pathology. In songbirds, a CBG circuit regulates moment-by-moment variability in song and also enables song plasticity. Studies have shown that variable burst firing in LMAN, the output nucleus of this CBG circuit, actively drives acute song variability, but whether and how LMAN drives long-lasting changes in song remains unclear. Here, we ask whether chronic pharmacological augmentation of LMAN bursting is sufficient to drive plasticity in birds singing stereotyped songs. We show that altered LMAN activity drives cumulative changes in acoustic structure, timing, and sequencing over multiple days, and induces repetitions and silent pauses reminiscent of human stuttering. Changes persisted when LMAN was subsequently inactivated, indicating plasticity in song motor regions. Following cessation of pharmacological treatment, acoustic features and song sequence gradually recovered to their baseline values over a period of days to weeks. Together, our findings show that augmented bursting in CBG circuitry drives plasticity in well-learned motor skills, and may inform treatments for basal ganglia movement disorders.
Collapse
Affiliation(s)
- Sanne Moorman
- Psychology Department, Utrecht University, Yalelaan 2, 3584 CM Utrecht, the Netherlands; Biology Department, Tufts University, 200 Boston Avenue, Medford, MA 02155, USA.
| | - Jae-Rong Ahn
- Biology Department, Tufts University, 200 Boston Avenue, Medford, MA 02155, USA
| | - Mimi H Kao
- Biology Department, Tufts University, 200 Boston Avenue, Medford, MA 02155, USA; Neuroscience Graduate Program, Tufts University, Boston, MA 02111, USA.
| |
Collapse
|
8
|
Palmer SE, Wright BD, Doupe AJ, Kao MH. Variable but not random: temporal pattern coding in a songbird brain area necessary for song modification. J Neurophysiol 2020; 125:540-555. [PMID: 33296616 DOI: 10.1152/jn.00034.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Practice of a complex motor gesture involves motor exploration to attain a better match to target, but little is known about the neural code for such exploration. We examine spiking in a premotor area of the songbird brain critical for song modification and quantify correlations between spiking and time in the motor sequence. While isolated spikes code for time in song during performance of song to a female bird, extended strings of spiking and silence, particularly bursts, code for time in song during undirected (solo) singing, or "practice." Bursts code for particular times in song with more information than individual spikes, and this spike-spike synergy is significantly higher during undirected singing. The observed pattern information cannot be accounted for by a Poisson model with a matched time-varying rate, indicating that the precise timing of spikes in both bursts in undirected singing and isolated spikes in directed singing code for song with a temporal code. Temporal coding during practice supports the hypothesis that lateral magnocellular nucleus of the anterior nidopallium neurons actively guide song modification at local instances in time.NEW & NOTEWORTHY This paper shows that bursts of spikes in the songbird brain during practice carry information about the output motor pattern. The brain's code for song changes with social context, in performance versus practice. Synergistic combinations of spiking and silence code for time in the bird's song. This is one of the first uses of information theory to quantify neural information about a motor output. This activity may guide changes to the song.
Collapse
Affiliation(s)
- S E Palmer
- Department of Organismal Biology and Anatomy, Department of Physics, Committee on Computational Neuroscience, University of Chicago, Chicago, Illinois
| | - B D Wright
- Department of Organismal Biology and Anatomy, Department of Physics, Committee on Computational Neuroscience, University of Chicago, Chicago, Illinois
| | - A J Doupe
- Department of Organismal Biology and Anatomy, Department of Physics, Committee on Computational Neuroscience, University of Chicago, Chicago, Illinois
| | - M H Kao
- Department of Biology & Program in Neuroscience, Tufts University, Medford, Massachusetts
| |
Collapse
|
9
|
Kumar S, Mohapatra AN, Pundir AS, Kumari M, Din U, Sharma S, Datta A, Arora V, Iyengar S. Blocking Opioid Receptors in a Songbird Cortical Region Modulates the Acoustic Features and Levels of Female-Directed Singing. Front Neurosci 2020; 14:554094. [PMID: 33071736 PMCID: PMC7533562 DOI: 10.3389/fnins.2020.554094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
The organization of the anterior forebrain pathway (AFP) of songbirds important for context-dependent singing is similar to that of cortical basal ganglia loops (CBG) in mammals, which underlie motor behaviors including vocalization. Since different components of the AFP express high levels of μ-opioid receptors (μ-ORs) as do CBG loops, songbirds act as model systems to study the role of opioid modulation on vocalization and the motivation to sing. The AFP in songbirds includes the cortical/pallial region LMAN (lateral magnocellular nucleus of the anterior nidopallium) which projects to Area X, a nucleus of the avian basal ganglia. In the present study, microdialysis was used to infuse different doses of the opioid antagonist naloxone in LMAN of adult male zebra finches. Whereas all doses of naloxone led to significant decreases in the number of FD (female-directed) songs, only 100 and 200 ng/ml of naloxone affected their acoustic properties. The decrease in FD song was not accompanied by changes in levels of attention toward females or those of neurotransmitters (dopamine, glutamate, and GABA) in LMAN. An earlier study had shown that similar manipulations in Area X did not lead to alterations in the number of FD songs but had significantly greater effects on their acoustic properties. Taken together, our results suggest that there are reciprocal effects of OR modulation on cortical and basal ganglia components of the AFP in songbirds.
Collapse
Affiliation(s)
| | | | | | | | - Uzma Din
- National Brain Research Centre, Manesar, India
| | | | - Atanu Datta
- National Brain Research Centre, Manesar, India
| | - Vasav Arora
- National Brain Research Centre, Manesar, India
| | | |
Collapse
|
10
|
An avian cortical circuit for chunking tutor song syllables into simple vocal-motor units. Nat Commun 2020; 11:5029. [PMID: 33024101 PMCID: PMC7538968 DOI: 10.1038/s41467-020-18732-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
How are brain circuits constructed to achieve complex goals? The brains of young songbirds develop motor circuits that achieve the goal of imitating a specific tutor song to which they are exposed. Here, we set out to examine how song-generating circuits may be influenced early in song learning by a cortical region (NIf) at the interface between auditory and motor systems. Single-unit recordings reveal that, during juvenile babbling, NIf neurons burst at syllable onsets, with some neurons exhibiting selectivity for particular emerging syllable types. When juvenile birds listen to their tutor, NIf neurons are also activated at tutor syllable onsets, and are often selective for particular syllable types. We examine a simple computational model in which tutor exposure imprints the correct number of syllable patterns as ensembles in an interconnected NIf network. These ensembles are then reactivated during singing to train a set of syllable sequences in the motor network. Young songbirds learn to imitate their parents’ songs. Here, the authors find that, in baby birds, neurons in a brain region at the interface of auditory and motor circuits signal the onsets of song syllables during both tutoring and babbling, suggesting a specific neural mechanism for vocal imitation.
Collapse
|
11
|
Sheldon ZP, Castelino CB, Glaze CM, Bibu SP, Yau E, Schmidt MF. Regulation of vocal precision by noradrenergic modulation of a motor nucleus. J Neurophysiol 2020; 124:458-470. [DOI: 10.1152/jn.00154.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Norepinephrine (NE) function is often implicated in regulating arousal levels. Recent theory suggests that the noradrenergic system also regulates the optimization of behavior with respect to reward maximization by controlling a switch between exploration and exploitation of the specific actions that yield greatest utility. We show in the songbird that NE can act directly on a cortical motor area and cause a switch between exploratory and exploitative behavior.
Collapse
Affiliation(s)
- Zachary P. Sheldon
- Biology Department, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | - Steve P. Bibu
- Biology Department, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elvina Yau
- Biology Department, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marc F. Schmidt
- Biology Department, University of Pennsylvania, Philadelphia, Pennsylvania
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
12
|
James LS, Davies R, Mori C, Wada K, Sakata JT. Manipulations of sensory experiences during development reveal mechanisms underlying vocal learning biases in zebra finches. Dev Neurobiol 2020; 80:132-146. [PMID: 32330360 DOI: 10.1002/dneu.22754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/10/2020] [Accepted: 04/20/2020] [Indexed: 12/28/2022]
Abstract
Biological predispositions in learning can bias and constrain the cultural evolution of social and communicative behaviors (e.g., speech and birdsong), and lead to the emergence of behavioral and cultural "universals." For example, surveys of laboratory and wild populations of zebra finches (Taeniopygia guttata) document consistent patterning of vocal elements ("syllables") with respect to their acoustic properties (e.g., duration, mean frequency). Furthermore, such universal patterns are also produced by birds that are experimentally tutored with songs containing randomly sequenced syllables ("tutored birds"). Despite extensive demonstrations of learning biases, much remains to be uncovered about the nature of biological predispositions that bias song learning and production in songbirds. Here, we examined the degree to which "innate" auditory templates and/or biases in vocal motor production contribute to vocal learning biases and production in zebra finches. Such contributions can be revealed by examining acoustic patterns in the songs of birds raised without sensory exposure to song ("untutored birds") or of birds that are unable to hear from early in development ("early-deafened birds"). We observed that untutored zebra finches and early-deafened zebra finches produce songs with positional variation in some acoustic features (e.g., mean frequency) that resemble universal patterns observed in tutored birds. Similar to tutored birds, early-deafened birds also produced song motifs with alternation in acoustic features across adjacent syllables. That universal acoustic patterns are observed in the songs of both untutored and early-deafened birds highlights the contribution motor production biases to the emergence of universals in culturally transmitted behaviors.
Collapse
Affiliation(s)
- Logan S James
- Department of Biology, McGill University, Montreal, QC, Canada.,Centre for Research in Brain, Language and Music, McGill University, Montreal, Quebec, Canada
| | - Ronald Davies
- Department of Biology, McGill University, Montreal, QC, Canada
| | - Chihiro Mori
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Kazuhiro Wada
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan.,Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Jon T Sakata
- Department of Biology, McGill University, Montreal, QC, Canada.,Centre for Research in Brain, Language and Music, McGill University, Montreal, Quebec, Canada.,Center for Studies of Behavioral Neurobiology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
13
|
Jaffe PI, Brainard MS. Acetylcholine acts on songbird premotor circuitry to invigorate vocal output. eLife 2020; 9:e53288. [PMID: 32425158 PMCID: PMC7237207 DOI: 10.7554/elife.53288] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 04/01/2020] [Indexed: 01/14/2023] Open
Abstract
Acetylcholine is well-understood to enhance cortical sensory responses and perceptual sensitivity in aroused or attentive states. Yet little is known about cholinergic influences on motor cortical regions. Here we use the quantifiable nature of birdsong to investigate how acetylcholine modulates the cortical (pallial) premotor nucleus HVC and shapes vocal output. We found that dialyzing the cholinergic agonist carbachol into HVC increased the pitch, amplitude, tempo and stereotypy of song, similar to the natural invigoration of song that occurs when males direct their songs to females. These carbachol-induced effects were associated with increased neural activity in HVC and occurred independently of basal ganglia circuitry. Moreover, we discovered that the normal invigoration of female-directed song was also accompanied by increased HVC activity and was attenuated by blocking muscarinic acetylcholine receptors. These results indicate that, analogous to its influence on sensory systems, acetylcholine can act directly on cortical premotor circuitry to adaptively shape behavior.
Collapse
Affiliation(s)
- Paul I Jaffe
- Departments of Physiology and Psychiatry, University of California, San FranciscoSan FranciscoUnited States
- Center for Integrative Neuroscience, University of California, San FranciscoSan FranciscoUnited States
- Kavli Institute for Fundamental Neuroscience, University of California, San FranciscoSan FranciscoUnited States
| | - Michael S Brainard
- Departments of Physiology and Psychiatry, University of California, San FranciscoSan FranciscoUnited States
- Center for Integrative Neuroscience, University of California, San FranciscoSan FranciscoUnited States
- Kavli Institute for Fundamental Neuroscience, University of California, San FranciscoSan FranciscoUnited States
- Howard Hughes Medical Institute, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
14
|
Statistical learning for vocal sequence acquisition in a songbird. Sci Rep 2020; 10:2248. [PMID: 32041978 PMCID: PMC7010765 DOI: 10.1038/s41598-020-58983-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/17/2020] [Indexed: 01/31/2023] Open
Abstract
Birdsong is a learned communicative behavior that consists of discrete acoustic elements (“syllables”) that are sequenced in a controlled manner. While the learning of the acoustic structure of syllables has been extensively studied, relatively little is known about sequence learning in songbirds. Statistical learning could contribute to the acquisition of vocal sequences, and we investigated the nature and extent of sequence learning at various levels of song organization in the Bengalese finch, Lonchura striata var. domestica. We found that, under semi-natural conditions, pupils (sons) significantly reproduced the sequence statistics of their tutor’s (father’s) songs at multiple levels of organization (e.g., syllable repertoire, prevalence, and transitions). For example, the probability of syllable transitions at “branch points” (relatively complex sequences that are followed by multiple types of transitions) were significantly correlated between the songs of tutors and pupils. We confirmed the contribution of learning to sequence similarities between fathers and sons by experimentally tutoring juvenile Bengalese finches with the songs of unrelated tutors. We also discovered that the extent and fidelity of sequence similarities between tutors and pupils were significantly predicted by the prevalence of sequences in the tutor’s song and that distinct types of sequence modifications (e.g., syllable additions or deletions) followed distinct patterns. Taken together, these data provide compelling support for the role of statistical learning in vocal production learning and identify factors that could modulate the extent of vocal sequence learning.
Collapse
|
15
|
Isola GR, Vochin A, Sakata JT. Manipulations of inhibition in cortical circuitry differentially affect spectral and temporal features of Bengalese finch song. J Neurophysiol 2020; 123:815-830. [PMID: 31967928 DOI: 10.1152/jn.00142.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The interplay between inhibition and excitation can regulate behavioral expression and control, including the expression of communicative behaviors like birdsong. Computational models postulate varying degrees to which inhibition within vocal motor circuitry influences birdsong, but few studies have tested these models by manipulating inhibition. Here we enhanced and attenuated inhibition in the cortical nucleus HVC (used as proper name) of Bengalese finches (Lonchura striata var. domestica). Enhancement of inhibition (with muscimol) in HVC dose-dependently reduced the amount of song produced. Infusions of higher concentrations of muscimol caused some birds to produce spectrally degraded songs, whereas infusions of lower doses of muscimol led to the production of relatively normal (nondegraded) songs. However, the spectral and temporal structures of these nondegraded songs were significantly different from songs produced under control conditions. In particular, muscimol infusions decreased the frequency and amplitude of syllables, increased various measures of acoustic entropy, and increased the variability of syllable structure. Muscimol also increased sequence durations and the variability of syllable timing and syllable sequencing. Attenuation of inhibition (with bicuculline) in HVC led to changes to song distinct from and often opposite to enhancing inhibition. For example, in contrast to muscimol, bicuculline infusions increased syllable amplitude, frequency, and duration and decreased the variability of acoustic features. However, like muscimol, bicuculline increased the variability of syllable sequencing. These data highlight the importance of inhibition to the production of stereotyped vocalizations and demonstrate that changes to neural dynamics within cortical circuitry can differentially affect spectral and temporal features of song.NEW & NOTEWORTHY We reveal that manipulations of inhibition in the cortical nucleus HVC affect the structure, timing, and sequencing of syllables in Bengalese finch song. Enhancing and blocking inhibition led to opposite changes to the acoustic structure and timing of vocalizations, but both caused similar changes to vocal sequencing. These data provide support for computational models of song control but also motivate refinement of existing models to account for differential effects on syllable structure, timing, and sequencing.
Collapse
Affiliation(s)
- Gaurav R Isola
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Anca Vochin
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Jon T Sakata
- Department of Biology, McGill University, Montreal, Quebec, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada.,Centre for Research on Brain, Language, and Music, Montreal, Quebec, Canada.,Center for Studies in Behavioral Neurobiology, Montreal, Quebec, Canada
| |
Collapse
|
16
|
James LS, Fan R, Sakata JT. Behavioural responses to video and live presentations of females reveal a dissociation between performance and motivational aspects of birdsong. ACTA ACUST UNITED AC 2019; 222:jeb.206318. [PMID: 31331939 DOI: 10.1242/jeb.206318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022]
Abstract
Understanding the regulation of social behavioural expression requires insight into motivational and performance aspects. While a number of studies have independently assessed these aspects of social behaviours, few have examined how they relate to each other. By comparing behavioural variation in response to live or video presentations of conspecific females, we analysed how variation in the motivation to produce courtship song covaries with variation in performance aspects of courtship song in male zebra finches (Taeniopygia guttata). In agreement with previous reports, we observed that male zebra finches were less motivated to produce courtship songs to videos of females than to live presentations of females. However, we found that acoustic features that reflect song performance were not significantly different between songs produced in response to videos of females, and those produced in response to live females. For example, songs directed at video presentations of females were just as fast and stereotyped as songs directed at live females. These experimental manipulations and correlational analyses reveal a dissociation between motivational and performance aspects of birdsong and suggest a refinement of neural models of song production and control. In addition, they support the efficacy of videos to study both motivational and performance aspects of social behaviours.
Collapse
Affiliation(s)
- Logan S James
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Raina Fan
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Jon T Sakata
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| |
Collapse
|
17
|
James LS, Sakata JT. Developmental modulation and predictability of age-dependent vocal plasticity in adult zebra finches. Brain Res 2019; 1721:146336. [PMID: 31310739 DOI: 10.1016/j.brainres.2019.146336] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 02/07/2023]
Abstract
Predicting the nature of behavioral plasticity can provide insight into mechanisms of behavioral expression and control. Songbirds like the zebra finch rely on vocal signals for communication, and the performance of these signals demonstrate considerable plasticity over development. Traditionally, these signals were thought to be fixed in adulthood, but recent studies have revealed significant age-dependent changes to spectral and temporal features of song in adult songbirds. A number of age-dependent changes to song resemble acute changes to adult song performance across social contexts (e.g., when an adult male sings to a female relative to when he sings in isolation). The ability of variation in social context-dependent changes to predict variation in age-dependent plasticity would suggest shared mechanisms, but little is known about this predictability. In addition, although developmental experiences can shape adult plasticity, little is known about the extent to which social interactions during development affect age-dependent change to adult song. To this end, we systematically analyzed age- and context-dependent changes to adult zebra finch song, and then examined the degree to which age-dependent changes varied across birds that were social or non-socially tutored birds and to which social context-dependent changes predicted age-dependent changes. Non-socially tutored birds showed more dramatic changes to the broad structure of their motif over time than socially tutored birds, but non-socially and socially tutored birds did not differ in the extent of changes to various spectral and temporal features of song. Overall, we found that adult zebra finches produced longer and more spectrally stereotyped songs when they were older than when they were younger. Moreover, regardless of developmental tutoring, individual variation in age-dependent changes to song bout duration and syllable repetition were predicted by variation in social context-dependent changes to these features. These data indicate that social experiences during development can shape some aspects of adult plasticity and that acute context-dependent and long-term age-dependent changes to some song features could be mediated by modifications within similar neural substrates.
Collapse
Affiliation(s)
- Logan S James
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada; Centre for Research for Brain, Language, and Music, Montreal, QC H3G 2A8, Canada
| | - Jon T Sakata
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada; Centre for Research for Brain, Language, and Music, Montreal, QC H3G 2A8, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
18
|
The Avian Basal Ganglia Are a Source of Rapid Behavioral Variation That Enables Vocal Motor Exploration. J Neurosci 2018; 38:9635-9647. [PMID: 30249800 DOI: 10.1523/jneurosci.2915-17.2018] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 09/07/2018] [Accepted: 09/08/2018] [Indexed: 11/21/2022] Open
Abstract
The basal ganglia (BG) participate in aspects of reinforcement learning that require evaluation and selection of motor programs associated with improved performance. However, whether the BG additionally contribute to behavioral variation ("motor exploration") that forms the substrate for such learning remains unclear. In songbirds, a tractable system for studying BG-dependent skill learning, a role for the BG in generating exploratory variability, has been challenged by the finding that lesions of Area X, the song-specific component of the BG, have no lasting effects on several forms of vocal variability that have been studied. Here we demonstrate that lesions of Area X in adult male zebra finches (Taeniopygia gutatta) permanently eliminate rapid within-syllable variation in fundamental frequency (FF), which can act as motor exploration to enable reinforcement-driven song learning. In addition, we found that this within-syllable variation is elevated in juveniles and in adults singing alone, conditions that have been linked to enhanced song plasticity and elevated neural variability in Area X. Consistent with a model that variability is relayed from Area X, via its cortical target, the lateral magnocellular nucleus of the anterior nidopallium (LMAN), to influence song motor circuitry, we found that lesions of LMAN also eliminate within-syllable variability. Moreover, we found that electrical perturbation of LMAN can drive fluctuations in FF that mimic naturally occurring within-syllable variability. Together, these results demonstrate that the BG are a central source of rapid behavioral variation that can serve as motor exploration for vocal learning.SIGNIFICANCE STATEMENT Many complex motor skills, such as speech, are not innately programmed but are learned gradually through trial and error. Learning involves generating exploratory variability in action ("motor exploration") and evaluating subsequent performance to acquire motor programs that lead to improved performance. Although it is well established that the basal ganglia (BG) process signals relating to action evaluation and selection, whether and how the BG promote exploratory motor variability remain unclear. We investigated this question in songbirds, which learn to produce complex vocalizations through trial and error. In contrast with previous studies that did not find effects of BG lesions on vocal motor variability, we demonstrate that the BG are an essential source of rapid behavioral variation linked to vocal learning.
Collapse
|
19
|
Individual Differences in Motor Noise and Adaptation Rate Are Optimally Related. eNeuro 2018; 5:eN-NWR-0170-18. [PMID: 30073197 PMCID: PMC6071200 DOI: 10.1523/eneuro.0170-18.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/09/2018] [Accepted: 06/13/2018] [Indexed: 02/08/2023] Open
Abstract
Individual variations in motor adaptation rate were recently shown to correlate with movement variability or "motor noise" in a forcefield adaptation task. However, this finding could not be replicated in a meta-analysis of adaptation experiments. Possibly, this inconsistency stems from noise being composed of distinct components that relate to adaptation rate in different ways. Indeed, previous modeling and electrophysiological studies have suggested that motor noise can be factored into planning noise, originating from the brain, and execution noise, stemming from the periphery. Were the motor system optimally tuned to these noise sources, planning noise would correlate positively with adaptation rate, and execution noise would correlate negatively with adaptation rate, a phenomenon familiar in Kalman filters. To test this prediction, we performed a visuomotor adaptation experiment in 69 subjects. Using a novel Bayesian fitting procedure, we succeeded in applying the well-established state-space model of adaptation to individual data. We found that adaptation rate correlates positively with planning noise (β = 0.44; 95% HDI = [0.27 0.59]) and negatively with execution noise (β = -0.39; 95% HDI = [-0.50 -0.30]). In addition, the steady-state Kalman gain calculated from planning and execution noise correlated positively with adaptation rate (r = 0.54; 95% HDI = [0.38 0.66]). These results suggest that motor adaptation is tuned to approximate optimal learning, consistent with the "optimal control" framework that has been used to explain motor control. Since motor adaptation is thought to be a largely cerebellar process, the results further suggest the sensitivity of the cerebellum to both planning noise and execution noise.
Collapse
|
20
|
Jones CA, Meisner EL, Broadfoot CK, Rosen SP, Samuelsen CR, McCulloch TM. Methods for measuring swallowing pressure variability using high-resolution manometry. FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS 2018; 4:23. [PMID: 30687729 PMCID: PMC6345545 DOI: 10.3389/fams.2018.00023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Any movement performed repeatedly will be executed with inter-trial variability. Oropharyngeal swallowing is a complex sensorimotor action, and swallow-to-swallow variability can have consequences that impact swallowing safety. Our aim was to determine an appropriate method to measure swallowing pressure waveform variability. An ideal variability metric must be sensitive to known deviations in waveform amplitude, duration, and overall shape, without being biased by waveforms that have both positive and sub-atmospheric pressure profiles. Through systematic analysis of model waveforms, we found a coefficient of variability (CV) parameter on waveforms adjusted such that the overall mean was 0 to be best suited for swallowing pressure variability analysis. We then investigated pharyngeal swallowing pressure variability using high-resolution manometry data from healthy individuals to assess impacts of waveform alignment, pharyngeal region, and number of swallows investigated. The alignment that resulted in the lowest overall swallowing pressure variability was when the superior-most sensor in the upper esophageal sphincter reached half its maximum pressure. Pressures in the tongue base region of the pharynx were least variable and pressures in the hypopharynx region were most variable. Sets of 3 - 10 consecutive swallows had no overall difference in variability, but sets of 2 swallows resulted in significantly less variability than the other dataset sizes. This study identified variability in swallowing pressure waveform shape throughout the pharynx in healthy adults; we discuss implications for swallowing motor control.
Collapse
Affiliation(s)
- Corinne A. Jones
- Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, University of Wisconsin – Madison, Madison, WI, USA
- Department of Communication Sciences & Disorders; University of Wisconsin – Madison, Madison, WI, USA D
- Neuroscience Training Program; University of Wisconsin – Madison; Madison, WI, USA
| | - Ellen L. Meisner
- Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, University of Wisconsin – Madison, Madison, WI, USA
- Department of Physical Therapy, Mayo Clinic School of Health Sciences, Rochester, MN, USA
| | - Courtney K. Broadfoot
- Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, University of Wisconsin – Madison, Madison, WI, USA
- Department of Communication Sciences & Disorders; University of Wisconsin – Madison, Madison, WI, USA D
| | - Sarah P. Rosen
- Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, University of Wisconsin – Madison, Madison, WI, USA
| | - Christine R. Samuelsen
- Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, University of Wisconsin – Madison, Madison, WI, USA
| | - Timothy M. McCulloch
- Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, University of Wisconsin – Madison, Madison, WI, USA
- Department of Communication Sciences & Disorders; University of Wisconsin – Madison, Madison, WI, USA D
| |
Collapse
|
21
|
Gahr M. Vocal Communication: Decoding Sexy Songs. Curr Biol 2018; 28:R315-R317. [DOI: 10.1016/j.cub.2018.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
22
|
Chen Y, Clark O, Woolley SC. Courtship song preferences in female zebra finches are shaped by developmental auditory experience. Proc Biol Sci 2018; 284:rspb.2017.0054. [PMID: 28539523 DOI: 10.1098/rspb.2017.0054] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/06/2017] [Indexed: 01/24/2023] Open
Abstract
The performance of courtship signals provides information about the behavioural state and quality of the signaller, and females can use such information for social decision-making (e.g. mate choice). However, relatively little is known about the degree to which the perception of and preference for differences in motor performance are shaped by developmental experiences. Furthermore, the neural substrates that development could act upon to influence the processing of performance features remains largely unknown. In songbirds, females use song to identify males and select mates. Moreover, female songbirds are often sensitive to variation in male song performance. Consequently, we investigated how developmental exposure to adult male song affected behavioural and neural responses to song in a small, gregarious songbird, the zebra finch. Zebra finch males modulate their song performance when courting females, and previous work has shown that females prefer the high-performance, female-directed courtship song. However, unlike females allowed to hear and interact with an adult male during development, females reared without developmental song exposure did not demonstrate behavioural preferences for high-performance courtship songs. Additionally, auditory responses to courtship and non-courtship song were altered in adult females raised without developmental song exposure. These data highlight the critical role of developmental auditory experience in shaping the perception and processing of song performance.
Collapse
Affiliation(s)
- Yining Chen
- Integrated program in Neuroscience, Montreal, Quebec, Canada
| | - Oliver Clark
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Sarah C Woolley
- Integrated program in Neuroscience, Montreal, Quebec, Canada .,Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
23
|
Mackevicius EL, Fee MS. Building a state space for song learning. Curr Opin Neurobiol 2017; 49:59-68. [PMID: 29268193 DOI: 10.1016/j.conb.2017.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/05/2017] [Accepted: 12/02/2017] [Indexed: 11/29/2022]
Abstract
The songbird system has shed light on how the brain produces precisely timed behavioral sequences, and how the brain implements reinforcement learning (RL). RL is a powerful strategy for learning what action to produce in each state, but requires a unique representation of the states involved in the task. Songbird RL circuitry is thought to operate using a representation of each moment within song syllables, consistent with the sparse sequential bursting of neurons in premotor cortical nucleus HVC. However, such sparse sequences are not present in very young birds, which sing highly variable syllables of random lengths. Here, we review and expand upon a model for how the songbird brain could construct latent sequences to support RL, in light of new data elucidating connections between HVC and auditory cortical areas. We hypothesize that learning occurs via four distinct plasticity processes: 1) formation of 'tutor memory' sequences in auditory areas; 2) formation of appropriately-timed latent HVC sequences, seeded by inputs from auditory areas spontaneously replaying the tutor song; 3) strengthening, during spontaneous replay, of connections from HVC to auditory neurons of corresponding timing in the 'tutor memory' sequence, aligning auditory and motor representations for subsequent song evaluation; and 4) strengthening of connections from premotor neurons to motor output neurons that produce the desired sounds, via well-described song RL circuitry.
Collapse
Affiliation(s)
- Emily Lambert Mackevicius
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, 46-5133 Cambridge, MA, USA
| | - Michale Sean Fee
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, 46-5133 Cambridge, MA, USA.
| |
Collapse
|
24
|
Miller MN, Cheung CYJ, Brainard MS. Vocal learning promotes patterned inhibitory connectivity. Nat Commun 2017; 8:2105. [PMID: 29235480 PMCID: PMC5727387 DOI: 10.1038/s41467-017-01914-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/25/2017] [Indexed: 01/25/2023] Open
Abstract
Skill learning is instantiated by changes to functional connectivity within premotor circuits, but whether the specificity of learning depends on structured changes to inhibitory circuitry remains unclear. We used slice electrophysiology to measure connectivity changes associated with song learning in the avian analog of primary motor cortex (robust nucleus of the arcopallium, RA) in Bengalese Finches. Before song learning, fast-spiking interneurons (FSIs) densely innervated glutamatergic projection neurons (PNs) with apparently random connectivity. After learning, there was a profound reduction in the overall strength and number of inhibitory connections, but this was accompanied by a more than two-fold enrichment in reciprocal FSI-PN connections. Moreover, in singing birds, we found that pharmacological manipulations of RA's inhibitory circuitry drove large shifts in learned vocal features, such as pitch and amplitude, without grossly disrupting the song. Our results indicate that skill learning establishes nonrandom inhibitory connectivity, and implicates this patterning in encoding specific features of learned movements.
Collapse
Affiliation(s)
- Mark N Miller
- Howard Hughes Medical Institute and Departments of Physiology and Psychiatry, University of California-San Francisco, San Francisco, CA, 94158, USA.
| | - Chung Yan J Cheung
- Neuroscience Graduate, Program, University of California-San Francisco, San Francisco, CA, 94158, USA
| | - Michael S Brainard
- Howard Hughes Medical Institute and Departments of Physiology and Psychiatry, University of California-San Francisco, San Francisco, CA, 94158, USA
| |
Collapse
|
25
|
James LS, Sakata JT. Learning Biases Underlie "Universals" in Avian Vocal Sequencing. Curr Biol 2017; 27:3676-3682.e4. [PMID: 29174890 DOI: 10.1016/j.cub.2017.10.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/11/2017] [Accepted: 10/06/2017] [Indexed: 01/08/2023]
Abstract
Biological predispositions in vocal learning have been proposed to underlie commonalities in vocal sequences, including for speech and birdsong, but cultural propagation could also account for such commonalities [1-4]. Songbirds such as the zebra finch learn the sequencing of their acoustic elements ("syllables") during development [5-8]. Zebra finches are not constrained to learn a specific sequence of syllables, but significant consistencies in the positioning and sequencing of syllables have been observed between individuals within populations and between populations [8-10]. To reveal biological predispositions in vocal sequence learning, we individually tutored juvenile zebra finches with randomized and unbiased sequences of syllables and analyzed the extent to which birds produced common sequences. In support of biological predispositions, birds tutored with randomized sequences produced songs with striking similarities. Birds preferentially started and ended their song sequence with particular syllables, consistently positioned shorter and higher frequency syllables in the middle of their song, and sequenced their syllables such that pitch alternated across adjacent syllables. These patterns are reminiscent of those observed in normally tutored birds, suggesting that birds "creolize" aberrant sequence inputs to produce normal sequence outputs. Similar patterns were also observed for syllables that were not used for tutoring (i.e., unlearned syllables), suggesting that motor biases could contribute to sequence learning biases. Furthermore, zebra finches spontaneously produced acoustic patterns that are commonly observed in speech and music, suggesting that sensorimotor processes that are shared across a wide range of vertebrates could underlie these patterns in humans.
Collapse
Affiliation(s)
- Logan S James
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada.
| | - Jon T Sakata
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada; Centre for Research on Brain, Language, and Music, McGill University, Montreal, QC H3G 2A8, Canada.
| |
Collapse
|
26
|
Chakraborty M, Chen LF, Fridel EE, Klein ME, Senft RA, Sarkar A, Jarvis ED. Overexpression of human NR2B receptor subunit in LMAN causes stuttering and song sequence changes in adult zebra finches. Sci Rep 2017; 7:942. [PMID: 28432288 PMCID: PMC5430713 DOI: 10.1038/s41598-017-00519-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 03/03/2017] [Indexed: 01/04/2023] Open
Abstract
Zebra finches (Taeniopygia guttata) learn to produce songs in a manner reminiscent of spoken language development in humans. One candidate gene implicated in influencing learning is the N-methyl-D-aspartate (NMDA) subtype 2B glutamate receptor (NR2B). Consistent with this idea, NR2B levels are high in the song learning nucleus LMAN (lateral magnocellular nucleus of the anterior nidopallium) during juvenile vocal learning, and decreases to low levels in adults after learning is complete and the song becomes more stereotyped. To test for the role of NR2B in generating song plasticity, we manipulated NR2B expression in LMAN of adult male zebra finches by increasing its protein levels to those found in juvenile birds, using a lentivirus containing the full-length coding sequence of the human NR2B subunit. We found that increased NR2B expression in adult LMAN induced increases in song sequence diversity and slower song tempo more similar to juvenile songs, but also increased syllable repetitions similar to stuttering. We did not observe these effects in control birds with overexpression of NR2B outside of LMAN or with the green fluorescent protein (GFP) in LMAN. Our results suggest that low NR2B subunit expression in adult LMAN is important in conserving features of stereotyped adult courtship song.
Collapse
Affiliation(s)
- Mukta Chakraborty
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Liang-Fu Chen
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Emma E Fridel
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Marguerita E Klein
- Neurotransgenic Laboratory, Department of Neurobiology, Duke University, Durham, NC, 27710, USA
| | - Rebecca A Senft
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA.,Department of Neurobiology, Harvard University, Cambridge, MA, 02138, USA
| | - Abhra Sarkar
- Department of Statistical Science, Duke University, Durham, NC, 27710, USA
| | - Erich D Jarvis
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, USA. .,Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, 10065, USA.
| |
Collapse
|
27
|
Tachibana RO, Takahasi M, Hessler NA, Okanoya K. Maturation-dependent control of vocal temporal plasticity in a songbird. Dev Neurobiol 2017; 77:995-1006. [PMID: 28188699 DOI: 10.1002/dneu.22487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 02/07/2017] [Accepted: 02/07/2017] [Indexed: 11/09/2022]
Abstract
Birdsong is a unique model to address learning mechanisms of the timing control of sequential behaviors, with characteristic temporal structures consisting of serial sequences of brief vocal elements (syllables) and silent intervals (gaps). Understanding the neural mechanisms for plasticity of such sequential behavior should be aided by characterization of its developmental changes. Here, we assessed the level of acute vocal plasticity between young and adult Bengalese finches, and also quantified developmental change in variability of temporal structure. Acute plasticity was tested by delivering aversive noise bursts contingent on duration of a target gap, such that birds could avoid the noise by modifying their song. We found that temporal variability of song features decreased with birds' maturation. Noise-avoidance experiments demonstrated that maximal changes of gap durations were larger in young that in adult birds. After these young birds matured, the maximal change decreased to a similar level as adults. The variability of these target gaps also decreased as the birds matured. Such parallel changes suggest that the level of acute temporal plasticity could be predicted from ongoing temporal variability. Further, we found that young birds gradually began to stop their song at the target gap and restart from the introductory part of song, whereas adults did not. According to a synaptic chain model for timing sequence generation in premotor nuclei, adult learning would be interpreted as adaptive changes in conduction delays between chain-to-chain connections, whereas the learning of young birds could mainly depend on changes of the connections. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 995-1006, 2017.
Collapse
Affiliation(s)
- Ryosuke O Tachibana
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Miki Takahasi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Neal A Hessler
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuo Okanoya
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.,Cognition and Behavior Joint Laboratory, RIKEN Brain Science Institute, Saitama, Japan
| |
Collapse
|
28
|
Focal expression of mutant huntingtin in the songbird basal ganglia disrupts cortico-basal ganglia networks and vocal sequences. Proc Natl Acad Sci U S A 2016; 113:E1720-7. [PMID: 26951661 DOI: 10.1073/pnas.1523754113] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The basal ganglia (BG) promote complex sequential movements by helping to select elementary motor gestures appropriate to a given behavioral context. Indeed, Huntington's disease (HD), which causes striatal atrophy in the BG, is characterized by hyperkinesia and chorea. How striatal cell loss alters activity in the BG and downstream motor cortical regions to cause these disorganized movements remains unknown. Here, we show that expressing the genetic mutation that causes HD in a song-related region of the songbird BG destabilizes syllable sequences and increases overall vocal activity, but leave the structure of individual syllables intact. These behavioral changes are paralleled by the selective loss of striatal neurons and reduction of inhibitory synapses on pallidal neurons that serve as the BG output. Chronic recordings in singing birds revealed disrupted temporal patterns of activity in pallidal neurons and downstream cortical neurons. Moreover, reversible inactivation of the cortical neurons rescued the disorganized vocal sequences in transfected birds. These findings shed light on a key role of temporal patterns of cortico-BG activity in the regulation of complex motor sequences and show how a genetic mutation alters cortico-BG networks to cause disorganized movements.
Collapse
|
29
|
James LS, Sakata JT. Predicting plasticity: acute context-dependent changes to vocal performance predict long-term age-dependent changes. J Neurophysiol 2015; 114:2328-39. [PMID: 26311186 DOI: 10.1152/jn.00688.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/24/2015] [Indexed: 12/12/2022] Open
Abstract
Understanding the factors that predict and guide variation in behavioral change can lend insight into mechanisms of motor plasticity and individual differences in behavior. The performance of adult birdsong changes with age in a manner that is similar to rapid context-dependent changes to song. To reveal mechanisms of vocal plasticity, we analyzed the degree to which variation in the direction and magnitude of age-dependent changes to Bengalese finch song could be predicted by variation in context-dependent changes. Using a repeated-measures design, we found that variation in age-dependent changes to the timing, sequencing, and structure of vocal elements ("syllables") was significantly predicted by variation in context-dependent changes. In particular, the degree to which the duration of intersyllable gaps, syllable sequencing at branch points, and fundamental frequency of syllables within spontaneous [undirected (UD)] songs changed over time was correlated with the degree to which these features changed from UD song to female-directed (FD) song in young-adult finches (FDyoung). As such, the structure of some temporal features of UD songs converged over time onto the structure of FDyoung songs. This convergence suggested that the FDyoung song could serve as a stable target for vocal motor plasticity. Consequently, we analyzed the stability of FD song and found that the temporal structure of FD song changed significantly over time in a manner similar to UD song. Because FD song is considered a state of heightened performance, these data suggest that age-dependent changes could reflect practice-related improvements in vocal motor performance.
Collapse
Affiliation(s)
- Logan S James
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Jon T Sakata
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
30
|
Mehaffey WH, Doupe AJ. Naturalistic stimulation drives opposing heterosynaptic plasticity at two inputs to songbird cortex. Nat Neurosci 2015; 18:1272-80. [PMID: 26237364 DOI: 10.1038/nn.4078] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/07/2015] [Indexed: 11/09/2022]
Abstract
Songbirds learn precisely sequenced motor skills (songs) subserved by distinct brain areas, including the premotor cortical analog HVC, which is essential for producing learned song, and a 'cortical'-basal ganglia loop required for song plasticity. Inputs from these nuclei converge in RA (robust nucleus of the arcopallium), making it a likely locus for song learning. However, activity-dependent synaptic plasticity has never been described in either input. Using a slice preparation, we found that stimulation patterns based on singing-related activity were able to drive opposing changes in the strength of RA's inputs: when one input was potentiated, the other was depressed, with the direction and magnitude of changes depending on the relative timing of stimulation of the inputs. Moreover, pharmacological manipulations that blocked synaptic plasticity in vitro also prevented reinforcement-driven changes to song in vivo. Together, these findings highlight the importance of precise timing in the basal ganglia-motor cortical interactions subserving adaptive motor skills.
Collapse
Affiliation(s)
- W Hamish Mehaffey
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, California, USA.,Department of Psychiatry, University of California, San Francisco, San Francisco, California, USA.,Department of Physiology, University of California, San Francisco, San Francisco, California, USA
| | - Allison J Doupe
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, California, USA.,Department of Psychiatry, University of California, San Francisco, San Francisco, California, USA.,Department of Physiology, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
31
|
Matheson LE, Sun H, Sakata JT. Forebrain circuits underlying the social modulation of vocal communication signals. Dev Neurobiol 2015; 76:47-63. [PMID: 25959605 DOI: 10.1002/dneu.22298] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/01/2015] [Accepted: 05/01/2015] [Indexed: 12/27/2022]
Abstract
Across vertebrate species, signalers alter the structure of their communication signals based on the social context. For example, male Bengalese finches produce faster and more stereotyped songs when directing song to females (female-directed [FD] song) than when singing in isolation (undirected [UD] song), and such changes have been found to increase the attractiveness of a male's song. Despite the importance of such social influences, little is known about the mechanisms underlying the social modulation of communication signals. To this end, we analyzed differences in immediate early gene (EGR-1) expression when Bengalese finches produced FD or UD song. Relative to silent birds, EGR-1 expression was elevated in birds producing either FD or UD song throughout vocal control circuitry, including the interface nucleus of the nidopallium (NIf), HVC, the robust nucleus of the arcopallium (RA), Area X, and the lateral magnocellular nucleus of the anterior nidopallium (LMAN). Moreover, EGR-1 expression was higher in HVC, RA, Area X, and LMAN in males producing UD song than in males producing FD song, indicating that social context modulated EGR-1 expression in these areas. However, EGR-1 expression was not significantly different between males producing FD or UD song in NIf, the primary vocal motor input into HVC, suggesting that context-dependent changes could arise de novo in HVC. The pattern of context-dependent differences in EGR-1 expression in the Bengalese finch was highly similar to that in the zebra finch and suggests that social context affects song structure by modulating activity throughout vocal control nuclei.
Collapse
Affiliation(s)
| | - Herie Sun
- Department of Biology, McGill University
| | | |
Collapse
|
32
|
Woolley S, Kao M. Variability in action: Contributions of a songbird cortical-basal ganglia circuit to vocal motor learning and control. Neuroscience 2015; 296:39-47. [DOI: 10.1016/j.neuroscience.2014.10.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 10/07/2014] [Accepted: 10/08/2014] [Indexed: 10/24/2022]
|
33
|
Abstract
Starting with the work of Cajal more than 100 years ago, neuroscience has sought to understand how the cells of the brain give rise to cognitive functions. How far has neuroscience progressed in this endeavor? This Perspective assesses progress in elucidating five basic brain processes: visual recognition, long-term memory, short-term memory, action selection, and motor control. Each of these processes entails several levels of analysis: the behavioral properties, the underlying computational algorithm, and the cellular/network mechanisms that implement that algorithm. At this juncture, while many questions remain unanswered, achievements in several areas of research have made it possible to relate specific properties of brain networks to cognitive functions. What has been learned reveals, at least in rough outline, how cognitive processes can be an emergent property of neurons and their connections.
Collapse
Affiliation(s)
- John Lisman
- Biology Department and Volen Center for Complex Systems, Brandeis University, 415 South Street, Waltham, MA 02454-9110, USA.
| |
Collapse
|
34
|
Mankin EA, Diehl GW, Sparks FT, Leutgeb S, Leutgeb JK. Hippocampal CA2 activity patterns change over time to a larger extent than between spatial contexts. Neuron 2015; 85:190-201. [PMID: 25569350 DOI: 10.1016/j.neuron.2014.12.001] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2014] [Indexed: 11/24/2022]
Abstract
The hippocampal CA2 subregion has a different anatomical connectivity pattern within the entorhino-hippocampal circuit than either the CA1 or CA3 subregion. Yet major differences in the neuronal activity patterns of CA2 compared with the other CA subregions have not been reported. We show that standard spatial and temporal firing patterns of individual hippocampal principal neurons in behaving rats, such as place fields, theta modulation, and phase precession, are also present in CA2, but that the CA2 subregion differs substantially from the other CA subregions in its population coding. CA2 ensembles do not show a persistent code for space or for differences in context. Rather, CA2 activity patterns become progressively dissimilar over time periods of hours to days. The weak coding for a particular context is consistent with recent behavioral evidence that CA2 circuits preferentially support social, emotional, and temporal rather than spatial aspects of memory.
Collapse
Affiliation(s)
- Emily A Mankin
- Neurobiology Section and Center for Neural Circuits and Behavior, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Geoffrey W Diehl
- Neurobiology Section and Center for Neural Circuits and Behavior, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Fraser T Sparks
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Stefan Leutgeb
- Neurobiology Section and Center for Neural Circuits and Behavior, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jill K Leutgeb
- Neurobiology Section and Center for Neural Circuits and Behavior, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
35
|
Matheson LE, Sakata JT. Catecholaminergic contributions to vocal communication signals. Eur J Neurosci 2015; 41:1180-94. [DOI: 10.1111/ejn.12885] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 02/25/2015] [Accepted: 03/01/2015] [Indexed: 11/26/2022]
Affiliation(s)
- Laura E. Matheson
- Department of Biology; McGill University; Montreal QC H3A 1B1 Canada
| | - Jon T. Sakata
- Department of Biology; McGill University; Montreal QC H3A 1B1 Canada
| |
Collapse
|
36
|
Garst-Orozco J, Babadi B, Ölveczky BP. A neural circuit mechanism for regulating vocal variability during song learning in zebra finches. eLife 2014; 3:e03697. [PMID: 25497835 PMCID: PMC4290448 DOI: 10.7554/elife.03697] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 12/13/2014] [Indexed: 01/18/2023] Open
Abstract
Motor skill learning is characterized by improved performance and reduced motor variability. The neural mechanisms that couple skill level and variability, however, are not known. The zebra finch, a songbird, presents a unique opportunity to address this question because production of learned song and induction of vocal variability are instantiated in distinct circuits that converge on a motor cortex analogue controlling vocal output. To probe the interplay between learning and variability, we made intracellular recordings from neurons in this area, characterizing how their inputs from the functionally distinct pathways change throughout song development. We found that inputs that drive stereotyped song-patterns are strengthened and pruned, while inputs that induce variability remain unchanged. A simple network model showed that strengthening and pruning of action-specific connections reduces the sensitivity of motor control circuits to variable input and neural ‘noise’. This identifies a simple and general mechanism for learning-related regulation of motor variability. DOI:http://dx.doi.org/10.7554/eLife.03697.001 ‘Practice makes perfect’ captures the essence of how we learn new skills. When learning to play a musical instrument, for example, it often takes hours of practice before we can play a single piece of music properly for the first time. And as we get better, the variability in our performance—which is an advantage during the early stages of learning—becomes less. Likewise, songbirds need lots of practice in order to master the intricate songs they need to sing to attract mates. Studies in songbirds show that the neural circuits in the brain that are responsible for producing song and for generating vocal variability both converge on a motor control region called the robust nucleus of the arcopallium (or RA for short). However, the details of how learning a song leads to reduced variability in vocal performance are poorly understood. Now Garst-Orozco et al. have investigated the relationship between learning and variability by studying brain slices of zebra finches. Their experiments reveal that the inputs received by RA neurons from a higher-order brain region that controls song change with practice, with some inputs becoming stronger and others being eliminated as the birds' singing ability improves. However, inputs received by RA neurons from the circuit that generates vocal variability do not change despite the song becoming increasingly precise. Using a computer simulation, Garst-Orozco et al. show that the sensitivity of RA neurons to variable or ‘noisy’ input is reduced when inputs from the brain region that controls song are adaptively strengthened and eliminated. This ensures that when the notes and syllables that make up the bird's song have finally been learned, they will be uttered with high fidelity and precision. Intriguingly, motor skill learning in mammals have been associated with neural connectivity changes very similar to those described by Garst-Orozco et al., suggesting that insights from songbirds may lead to a better understanding of how ‘practice makes perfect’ also works in humans. DOI:http://dx.doi.org/10.7554/eLife.03697.002
Collapse
Affiliation(s)
| | - Baktash Babadi
- Center for Brain Science, Harvard University, Cambridge, United States
| | - Bence P Ölveczky
- Center for Brain Science, Harvard University, Cambridge, United States
| |
Collapse
|
37
|
Bertram R, Daou A, Hyson RL, Johnson F, Wu W. Two neural streams, one voice: pathways for theme and variation in the songbird brain. Neuroscience 2014; 277:806-17. [PMID: 25106128 DOI: 10.1016/j.neuroscience.2014.07.061] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/16/2014] [Accepted: 07/27/2014] [Indexed: 11/25/2022]
Abstract
Birdsong offers a unique model system to understand how a developing brain - once given a set of purely acoustic targets - teaches itself the vocal-tract gestures necessary to imitate those sounds. Like human infants, to juvenile male zebra finches (Taeniopygia guttata) falls the burden of initiating the vocal-motor learning of adult sounds. In both species, adult caregivers provide only a set of sounds to be imitated, with little or no information about the vocal-tract gestures used to produce the sounds. Here, we focus on the central control of birdsong and review the recent discovery that zebra finch song is under dual premotor control. Distinct forebrain pathways for structured (theme) and unstructured (variation) singing not only raise new questions about mechanisms of sensory-motor integration, but also provide a fascinating new research opportunity. A cortical locus for a motor memory of the learned song is now firmly established, meaning that anatomical, physiological, and computational approaches are poised to reveal the neural mechanisms used by the brain to compose the songs of birds.
Collapse
Affiliation(s)
- R Bertram
- Department of Mathematics, Program in Neuroscience, Program in Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4510, United States
| | - A Daou
- Department of Mathematics, Program in Neuroscience, Program in Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4510, United States
| | - R L Hyson
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, FL 32306-4301, United States
| | - F Johnson
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, FL 32306-4301, United States.
| | - W Wu
- Department of Statistics, Program in Neuroscience, Florida State University, Tallahassee, FL 32306-4330, United States
| |
Collapse
|
38
|
James LS, Sakata JT. Vocal motor changes beyond the sensitive period for song plasticity. J Neurophysiol 2014; 112:2040-52. [PMID: 25057147 DOI: 10.1152/jn.00217.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Behavior is critically shaped during sensitive periods in development. Birdsong is a learned vocal behavior that undergoes dramatic plasticity during a sensitive period of sensorimotor learning. During this period, juvenile songbirds engage in vocal practice to shape their vocalizations into relatively stereotyped songs. By the time songbirds reach adulthood, their songs are relatively stable and thought to be "crystallized." Recent studies, however, highlight the potential for adult song plasticity and suggest that adult song could naturally change over time. As such, we investigated the degree to which temporal and spectral features of song changed over time in adult Bengalese finches. We observed that the sequencing and timing of song syllables became more stereotyped over time. Increases in the stereotypy of syllable sequencing were due to the pruning of infrequently produced transitions and, to a lesser extent, increases in the prevalence of frequently produced transitions. Changes in song tempo were driven by decreases in the duration and variability of intersyllable gaps. In contrast to significant changes to temporal song features, we found little evidence that the spectral structure of adult song syllables changed over time. These data highlight differences in the degree to which temporal and spectral features of adult song change over time and support evidence for distinct mechanisms underlying the control of syllable sequencing, timing, and structure. Furthermore, the observed changes to temporal song features are consistent with a Hebbian framework of behavioral plasticity and support the notion that adult song should be considered a form of vocal practice.
Collapse
Affiliation(s)
- Logan S James
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Jon T Sakata
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
39
|
Evidence for a causal inverse model in an avian cortico-basal ganglia circuit. Proc Natl Acad Sci U S A 2014; 111:6063-8. [PMID: 24711417 DOI: 10.1073/pnas.1317087111] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Learning by imitation is fundamental to both communication and social behavior and requires the conversion of complex, nonlinear sensory codes for perception into similarly complex motor codes for generating action. To understand the neural substrates underlying this conversion, we study sensorimotor transformations in songbird cortical output neurons of a basal-ganglia pathway involved in song learning. Despite the complexity of sensory and motor codes, we find a simple, temporally specific, causal correspondence between them. Sensory neural responses to song playback mirror motor-related activity recorded during singing, with a temporal offset of roughly 40 ms, in agreement with short feedback loop delays estimated using electrical and auditory stimulation. Such matching of mirroring offsets and loop delays is consistent with a recent Hebbian theory of motor learning and suggests that cortico-basal ganglia pathways could support motor control via causal inverse models that can invert the rich correspondence between motor exploration and sensory feedback.
Collapse
|
40
|
Meyer CE, Boroda E, Nick TA. Sexually dimorphic perineuronal net expression in the songbird. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.baga.2013.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
41
|
Iwasaki M, Poulsen TM, Oka K, Hessler NA. Singing-related activity in anterior forebrain of male zebra finches reflects courtship motivation for target females. PLoS One 2013; 8:e81725. [PMID: 24312344 PMCID: PMC3843691 DOI: 10.1371/journal.pone.0081725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 10/18/2013] [Indexed: 01/21/2023] Open
Abstract
A critical function of singing by male songbirds is to attract a female mate. Previous studies have suggested that the anterior forebrain system is involved in this courtship behavior. Neural activity in this system, including the striatal Area X, is strikingly dependent on the function of male singing. When males sing to attract a female bird rather than while alone, less variable neural activity results in less variable song spectral features, which may be attractive to the female. These characteristics of neural activity and singing thus may reflect a male's motivation for courtship. Here, we compared the variability of neural activity and song features between courtship singing directed to a female with whom a male had previously formed a pair-bond or to other females. Surprisingly, across all units, there was no clear tendency for a difference in variability of neural activity or song features between courtship of paired females, nonpaired females, or dummy females. However, across the population of recordings, there was a significant relationship between the relative variability of syllable frequency and neural activity: when syllable frequency was less variable to paired than nonpaired females, neural activity was also less variable (and vice-versa). These results show that the lower variability of neural activity and syllable frequency during directed singing is not a binary distinction from undirected singing, but can vary in intensity, possibly related to the relative preference of a male for his singing target.
Collapse
Affiliation(s)
- Mai Iwasaki
- Brain Science Institute, RIKEN, Wako-shi, Japan
- Biosciences and Informatics, Keio University, Yokohama, Japan
| | | | - Kotaro Oka
- Biosciences and Informatics, Keio University, Yokohama, Japan
| | | |
Collapse
|
42
|
Diminished FoxP2 levels affect dopaminergic modulation of corticostriatal signaling important to song variability. Neuron 2013; 80:1464-76. [PMID: 24268418 DOI: 10.1016/j.neuron.2013.09.021] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2013] [Indexed: 11/22/2022]
Abstract
Mutations of the FOXP2 gene impair speech and language development in humans and shRNA-mediated suppression of the avian ortholog FoxP2 disrupts song learning in juvenile zebra finches. How diminished FoxP2 levels affect vocal control and alter the function of neural circuits important to learned vocalizations remains unclear. Here we show that FoxP2 knockdown in the songbird striatum disrupts developmental and social modulation of song variability. Recordings in anesthetized birds show that FoxP2 knockdown interferes with D1R-dependent modulation of activity propagation in a corticostriatal pathway important to song variability, an effect that may be partly attributable to reduced D1R and DARPP-32 protein levels. Furthermore, recordings in singing birds reveal that FoxP2 knockdown prevents social modulation of singing-related activity in this pathway. These findings show that reduced FoxP2 levels interfere with the dopaminergic modulation of vocal variability, which may impede song and speech development by disrupting reinforcement learning mechanisms.
Collapse
|
43
|
Chen JR, Stepanek L, Doupe AJ. Differential contributions of basal ganglia and thalamus to song initiation, tempo, and structure. J Neurophysiol 2013; 111:248-57. [PMID: 24174647 DOI: 10.1152/jn.00584.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Basal ganglia-thalamocortical circuits are multistage loops critical to motor behavior, but the contributions of individual components to overall circuit function remain unclear. We addressed these issues in a songbird basal ganglia-thalamocortical circuit (the anterior forebrain pathway, AFP) specialized for singing and critical for vocal plasticity. The major known afferent to the AFP is the premotor cortical nucleus, HVC. Surprisingly, previous studies found that lesions of HVC alter song but do not eliminate the ability of the AFP to drive song production. We therefore used this AFP-driven song to investigate the role of basal ganglia and thalamus in vocal structure, tempo, and initiation. We found that lesions of the striatopallidal component (Area X) slowed song and simplified its acoustic structure. Elimination of the thalamic component (DLM) further simplified the acoustic structure of song and regularized its rhythm but also dramatically reduced song production. The acoustic structure changes imply that sequential stages of the AFP each add complexity to song, but the effects of DLM lesions on song initiation suggest that thalamus is a locus of additional inputs important to initiation. Together, our results highlight the cumulative contribution of stages of a basal ganglia-thalamocortical circuit to motor output along with distinct involvement of thalamus in song initiation or "gating."
Collapse
Affiliation(s)
- J R Chen
- Center for Integrative Neuroscience, University of California, San Francisco, California
| | | | | |
Collapse
|
44
|
Brainard MS, Doupe AJ. Translating birdsong: songbirds as a model for basic and applied medical research. Annu Rev Neurosci 2013; 36:489-517. [PMID: 23750515 DOI: 10.1146/annurev-neuro-060909-152826] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Songbirds, long of interest to basic neuroscience, have great potential as a model system for translational neuroscience. Songbirds learn their complex vocal behavior in a manner that exemplifies general processes of perceptual and motor skill learning and, more specifically, resembles human speech learning. Song is subserved by circuitry that is specialized for vocal learning and production but that has strong similarities to mammalian brain pathways. The combination of highly quantifiable behavior and discrete neural substrates facilitates understanding links between brain and behavior, both in normal states and in disease. Here we highlight (a) behavioral and mechanistic parallels between birdsong and aspects of speech and social communication, including insights into mirror neurons, the function of auditory feedback, and genes underlying social communication disorders, and (b) contributions of songbirds to understanding cortical-basal ganglia circuit function and dysfunction, including the possibility of harnessing adult neurogenesis for brain repair.
Collapse
Affiliation(s)
- Michael S Brainard
- Center for Integrative Neuroscience and Departments of Physiology and Psychiatry, University of California-San Francisco, CA 94143-0444, USA.
| | | |
Collapse
|
45
|
Ali F, Otchy TM, Pehlevan C, Fantana AL, Burak Y, Ölveczky BP. The basal ganglia is necessary for learning spectral, but not temporal, features of birdsong. Neuron 2013; 80:494-506. [PMID: 24075977 PMCID: PMC3929499 DOI: 10.1016/j.neuron.2013.07.049] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2013] [Indexed: 11/19/2022]
Abstract
Executing a motor skill requires the brain to control which muscles to activate at what times. How these aspects of control-motor implementation and timing-are acquired, and whether the learning processes underlying them differ, is not well understood. To address this, we used a reinforcement learning paradigm to independently manipulate both spectral and temporal features of birdsong, a complex learned motor sequence, while recording and perturbing activity in underlying circuits. Our results uncovered a striking dissociation in how neural circuits underlie learning in the two domains. The basal ganglia was required for modifying spectral, but not temporal, structure. This functional dissociation extended to the descending motor pathway, where recordings from a premotor cortex analog nucleus reflected changes to temporal, but not spectral, structure. Our results reveal a strategy in which the nervous system employs different and largely independent circuits to learn distinct aspects of a motor skill.
Collapse
Affiliation(s)
- Farhan Ali
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Timothy M. Otchy
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
- Program in Neuroscience, Harvard University, Cambridge, MA 02138, USA
| | - Cengiz Pehlevan
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
- Swartz Program in Theoretical Neuroscience Harvard University, Cambridge, MA 02138, USA
| | - Antoniu L. Fantana
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Yoram Burak
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
- Swartz Program in Theoretical Neuroscience Harvard University, Cambridge, MA 02138, USA
| | - Bence P. Ölveczky
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
46
|
Abstract
Songbirds spend much of their time learning, producing, and listening to complex vocal sequences we call songs. Songs are learned via cultural transmission, and singing, usually by males, has a strong impact on the behavioral state of the listeners, often promoting affiliation, pair bonding, or aggression. What is it in the acoustic structure of birdsong that makes it such a potent stimulus? We suggest that birdsong potency might be driven by principles similar to those that make music so effective in inducing emotional responses in humans: a combination of rhythms and pitches-and the transitions between acoustic states-affecting emotions through creating expectations, anticipations, tension, tension release, or surprise. Here we propose a framework for investigating how birdsong, like human music, employs the above "musical" features to affect the emotions of avian listeners. First we analyze songs of thrush nightingales (Luscinia luscinia) by examining their trajectories in terms of transitions in rhythm and pitch. These transitions show gradual escalations and graceful modifications, which are comparable to some aspects of human musicality. We then explore the feasibility of stripping such putative musical features from the songs and testing how this might affect patterns of auditory responses, focusing on fMRI data in songbirds that demonstrate the feasibility of such approaches. Finally, we explore ideas for investigating whether musical features of birdsong activate avian brains and affect avian behavior in manners comparable to music's effects on humans. In conclusion, we suggest that birdsong research would benefit from current advances in music theory by attempting to identify structures that are designed to elicit listeners' emotions and then testing for such effects experimentally. Birdsong research that takes into account the striking complexity of song structure in light of its more immediate function - to affect behavioral state in listeners - could provide a useful animal model for studying basic principles of music neuroscience in a system that is very accessible for investigation, and where developmental auditory and social experience can be tightly controlled.
Collapse
|
47
|
Hanuschkin A, Ganguli S, Hahnloser RHR. A Hebbian learning rule gives rise to mirror neurons and links them to control theoretic inverse models. Front Neural Circuits 2013; 7:106. [PMID: 23801941 PMCID: PMC3686052 DOI: 10.3389/fncir.2013.00106] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 05/15/2013] [Indexed: 11/13/2022] Open
Abstract
Mirror neurons are neurons whose responses to the observation of a motor act resemble responses measured during production of that act. Computationally, mirror neurons have been viewed as evidence for the existence of internal inverse models. Such models, rooted within control theory, map-desired sensory targets onto the motor commands required to generate those targets. To jointly explore both the formation of mirrored responses and their functional contribution to inverse models, we develop a correlation-based theory of interactions between a sensory and a motor area. We show that a simple eligibility-weighted Hebbian learning rule, operating within a sensorimotor loop during motor explorations and stabilized by heterosynaptic competition, naturally gives rise to mirror neurons as well as control theoretic inverse models encoded in the synaptic weights from sensory to motor neurons. Crucially, we find that the correlational structure or stereotypy of the neural code underlying motor explorations determines the nature of the learned inverse model: random motor codes lead to causal inverses that map sensory activity patterns to their motor causes; such inverses are maximally useful, by allowing the imitation of arbitrary sensory target sequences. By contrast, stereotyped motor codes lead to less useful predictive inverses that map sensory activity to future motor actions. Our theory generalizes previous work on inverse models by showing that such models can be learned in a simple Hebbian framework without the need for error signals or backpropagation, and it makes new conceptual connections between the causal nature of inverse models, the statistical structure of motor variability, and the time-lag between sensory and motor responses of mirror neurons. Applied to bird song learning, our theory can account for puzzling aspects of the song system, including necessity of sensorimotor gating and selectivity of auditory responses to bird's own song (BOS) stimuli.
Collapse
Affiliation(s)
- A Hanuschkin
- Institute of Neuroinformatics, University of Zurich and ETH Zurich Zurich, Switzerland ; Neuroscience Center Zurich (ZNZ) Zurich, Switzerland
| | | | | |
Collapse
|
48
|
Social modulation of learned behavior by dopamine in the basal ganglia: Insights from songbirds. ACTA ACUST UNITED AC 2013; 107:219-29. [DOI: 10.1016/j.jphysparis.2012.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/22/2012] [Accepted: 09/18/2012] [Indexed: 01/25/2023]
|
49
|
Abstract
Variation in sequencing of actions occurs in many natural behaviors, yet how such variation is maintained is poorly understood. We investigated maintenance of sequence variation in adult Bengalese finch song, a learned skill with rendition-to-rendition variation in the sequencing of discrete syllables (i.e., syllable "b" might transition to "c" with 70% probability and to "d" with 30% probability). We found that probabilities of transitions ordinarily remain stable but could be modified by delivering aversive noise bursts following one transition (e.g., "b→c") but not the alternative (e.g., "b→d"). Such differential reinforcement induced gradual, adaptive decreases in probabilities of targeted transitions and compensatory increases in alternative transitions. Thus, the normal stability of transition probabilities does not reflect hardwired premotor circuitry. While all variable transitions could be modified by differential reinforcement, some were less readily modified than others; these were cases that exhibited more alternation between possible transitions than predicted by chance (i.e., "b→d " would tend to follow "b→c " and vice versa). These history-dependent transitions were less modifiable than more stochastic transitions. Similarly, highly stereotyped transitions (which are completely predictable) were not modifiable. This suggests that stochastically generated variability is crucial for sequence modification. Finally, we found that, when reinforcement ceased, birds gradually restored transition probabilities to their baseline values. Hence, the nervous system retains a representation of baseline probabilities and has the impetus to restore them. Together, our results indicate that variable sequencing in a motor skill can reflect an end point of learning that is stably maintained via continual self-monitoring.
Collapse
|
50
|
Glaze CM, Troyer TW. Development of temporal structure in zebra finch song. J Neurophysiol 2012; 109:1025-35. [PMID: 23175805 DOI: 10.1152/jn.00578.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Zebra finch song has provided an excellent case study in the neural basis of sequence learning, with a high degree of temporal precision and tight links with precisely timed bursting in forebrain neurons. To examine the development of song timing, we measured the following four aspects of song temporal structure at four age ranges between 65 and 375 days posthatch: the mean durations of song syllables and the silent gaps between them, timing variability linked to song tempo, timing variability expressed independently across syllables and gaps, and transition probabilities between consecutive syllable pairs. We found substantial increases in song tempo between 65 and 85 days posthatch, due almost entirely to a shortening of gaps. We also found a decrease in tempo variability, also specific to gaps. Both the magnitude of the increase in tempo and the decrease in tempo variability were correlated on gap-by-gap basis with increases in the reliability of corresponding syllable transitions. Syllables had no systematic increase in tempo or decrease in tempo variability. In contrast to tempo parameters, both syllables and gaps showed an early sharp reduction in independent variability followed by continued reductions over the first year. The data suggest that links between syllable-based representations are strengthened during the later parts of the traditional period of song learning and that song rhythm continues to become more regular throughout the first year of life. Similar learning patterns have been identified in human sequence learning, suggesting a potentially rich area of comparative research.
Collapse
Affiliation(s)
- Christopher M Glaze
- Program in Neuroscience and Cognitive Science, Department of Psychology, University of Maryland, College Park, Maryland, USA.
| | | |
Collapse
|