1
|
Fayyad E, Anoud ZA, Habra A, Meshal HA, K G AR, Saqan R, Rizvi Z, Awad M, Al-Rawi N. The Effect of Intermittent Fasting on Salivary Inflammatory Cytokines and Dopamine Levels. Eur J Dent 2025. [PMID: 40073985 DOI: 10.1055/s-0045-1802345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025] Open
Abstract
OBJECTIVES The current study elucidates potential alterations in inflammatory cytokines and dopamine (DA) levels in saliva following a 21-day fasting regimen during Ramadan and explores their associations with mental health parameters. MATERIALS AND METHODS Forty-four healthy young university students (22 females and 22 males; median age 22 (2) and body mass index 23.40 (6.23) were enrolled, and saliva samples were collected before and after fasting. Cytokine and DA levels were quantified by ELISA and LEGENDplex Human Inflammation Panel, respectively. Participants also completed the Patient Health Questionnaire-9 and Depression Anxiety Stress Scales questionnaires to assess mental health. STATISTICAL ANALYSIS Data analysis was performed using SPSS. Differences between pre- and postfasting were tested using Wilcoxon's signed-rank test. Mann-Whitney's U test determined disparities in DA and cytokine levels across sex. Simple and multiple linear regression analyses were performed to identify the factors influencing the change in DA. Correlation analysis was employed to explore the relationships between the changes in DA and cytokine levels before and after fasting. RESULTS A significant increase in inflammatory cytokines such as interleukin (IL)-1β, interferon-α2, tumor necrosis factor-α, IL-23, IL-33, and IL-8 was observed after fasting. Anti-inflammatory cytokine, IL-10, levels remained unchanged. Females had significantly higher levels of proinflammatory cytokines before fasting compared with males, but no significant gender differences were observed after fasting. The current study also showed a significant decrease in DA levels after fasting; however, no significant difference in DA levels across genders was noted. Self-reported mental health status did not significantly change before and after fasting. Multiple linear regression analyses did not suggest potential associations between these variables and changes in DA levels before and after fasting. However, correlation analysis indicated that the change in inflammatory cytokine levels was inversely related to changes in DA levels. CONCLUSION Fasting during Ramadan significantly increased salivary cytokine levels and decreased DA levels, indicating potential relationships between immune factors and mental well-being. The findings highlight the complex interplay between inflammation, immunity, and DA regulation during fasting. Further research is warranted to elucidate the potential long-term effects of these associations and their implications for mental health and well-being.
Collapse
Affiliation(s)
- Elyazia Fayyad
- College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Zumurd Al Anoud
- College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Abdulkader Habra
- College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Hussein Al Meshal
- College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Aghila Rani K G
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Roba Saqan
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Zuha Rizvi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Manal Awad
- Department of Orthodontics, Preventive & Community Dentistry, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Natheer Al-Rawi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Oral & Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Oral Diagnosis, College of Dentistry, Mashreq University, Baghdad, Iraq
| |
Collapse
|
2
|
Bansal P, Roitman MF, Jung EE. Modulation of Hypothalamic Dopamine Neuron Activity by Interaction Between Caloric State and Amphetamine in Zebrafish Larvae. J Neurosci Res 2024; 102:e25396. [PMID: 39513618 DOI: 10.1002/jnr.25396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/24/2024] [Accepted: 10/20/2024] [Indexed: 11/15/2024]
Abstract
Dopamine (DA) signaling is evoked by both food and drugs that humans come to abuse. Moreover, physiological state (e.g., hunger versus satiety) can modulate the response. However, there is great heterogeneity among DA neurons. Limited studies have been performed that could resolve the interaction between physiological state and drug responsivity across groups of DA neurons. Here, we measured the activity of neurons in transgenic Tg (th2:GCaMP7s) zebrafish larva that expresses a calcium indicator (GCaMP7s) in A11 (posterior tuberculum) and a part of A14 (caudal hypothalamus and intermediate hypothalamus) DA populations located in the hypothalamus of the larval zebrafish. Fish were recorded in one of two physiological states: ad-libitum fed (AL) and food deprived (FD) and before and after acute exposure to different doses of the stimulant drug amphetamine (0, 0.7, and 1.5 μM). We quantified fluorescence change, activity duration, peak rise/fall time, and latency in the calcium spikes of the DA neurons. Our results show that baseline DA neuron activity amplitude, spike duration, and correlation between inter- and intra-DA neurons were higher in the FD than in the AL state. Dose-dependent AMPH treatment further increased the intensity of these parameters in the neuron spikes but only in the FD state. The DA activity correlation relatively increased in AL state post-AMPH treatment. Given that hunger increases drug reactivity and the probability of relapse to drug seeking, the results support populations of DA neurons as potential critical mediators of the interaction between physiological state and drug reinforcement.
Collapse
Affiliation(s)
- Pushkar Bansal
- Department of Mechanical and Industrial Engineering, The University of Illinois at Chicago, Chicago, Illinois, USA
| | - Mitchell F Roitman
- Department of Psychology, The University of Illinois at Chicago, Chicago, Illinois, USA
| | - Erica E Jung
- Department of Mechanical and Industrial Engineering, The University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Bioengineering, The University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
3
|
Abdel-Rahman M, Hussein AA, Ahmed-Farid OA, Sawi AA, Abdel Moneim AE. Intermittent fasting alerts neurotransmitters and oxidant/antioxidant status in the brain of rats. Metab Brain Dis 2024; 39:1291-1305. [PMID: 39292431 PMCID: PMC11513736 DOI: 10.1007/s11011-024-01415-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/14/2024] [Indexed: 09/19/2024]
Abstract
Several recent studies have attempted to understand how fasting has benefits for body health, especially the nervous system. To evaluate the impact of intermittent fasting on body weight, brain neurotransmitters, brain oxidative stress, and brain-derived neurotrophic factor (BDNF) in several areas of the brain, this study was conducted in rats. Thirty male Wistar rats were randomly divided into two groups. Group 1 (15 rats) served as the control and group 2 (15 rats) underwent intermittent fasting (IF; 24 h) for 1, 7, or 15 days. The findings demonstrated that intermittent fasting significantly reduced body weight. In this sense, brain monoamines and amino acids, namely dopamine, glutamate, aspartate, and oxidative stress markers (malondialdehyde and nitric oxide), decreased significantly after 1 day of IF. However, norepinephrine, serotonin, gamma-amino butyric acid, and glycine increased significantly. Additionally, glutathione levels were markedly elevated in IF. Surprisingly, the neuromodulatory effect of intermittent fasting fluctuates depending on the IF period. To support this fluctuation, BDNF levels increased after 1 day in the hippocampus and decreased after 15 days of intermittent fasting in all areas of the brain tested. In conclusion, our results show that intermittent fasting has beneficial influences on the brain; however, prolonged intermittent fasting can also induce some unfavorable physiological outcomes that prevent optimal neurological function.
Collapse
Affiliation(s)
- Mona Abdel-Rahman
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Aida A Hussein
- Zoology and Entomology Department, Faculty of Science, Suez University, Suez, Egypt
| | - Omar A Ahmed-Farid
- Department of Physiology, National Organization for Drug Control and Research (NODCAR), Giza, Giza Governorate, Egypt
| | - Abdullah A Sawi
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | | |
Collapse
|
4
|
Albrahim T, Alangry R, Alotaibi R, Almandil L, Alburikan S. Effects of Regular Exercise and Intermittent Fasting on Neurotransmitters, Inflammation, Oxidative Stress, and Brain-Derived Neurotrophic Factor in Cortex of Ovariectomized Rats. Nutrients 2023; 15:4270. [PMID: 37836554 PMCID: PMC10574130 DOI: 10.3390/nu15194270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/28/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
A collection of metabolic disorders and neurodegenerative diseases linked to oxidative stress and neuroinflammation frequently affect postmenopausal women or estrogen deprivation. Recent research has focused on alternative therapies that can enhance these women's quality of life. This study set out to investigate the effects of physical exercise (EX) and intermittent fasting (IF) on oxidants/antioxidants, inflammatory cytokines, neurotransmitters, and brain-derived neurotrophic factor (BDNF) in the cortex of rats. Additionally, it sought to assess the response to oxidative stress and neuroinflammation in the brains of rats following ovariectomy (OVX) and the potential mechanisms of these interventions. Fifty female rats were divided into one of the following groups 30 days after bilateral OVX: Control, OVX, OVX + EX, OVX + IF, and OVX + EX + IF groups. The rats in the Control and OVX groups continued their normal activities and had unrestricted access to food and water, but the rats in the OVX + EX and OVX + EX + IF groups had a 4-week treadmill training program, and the rats in the OXV + IF and OVX + EX + IF groups fasted for 13 h each day. The rats were killed, the cerebral cortex was taken, tissue homogenates were created, and various parameters were estimated using these homogenates. The results show that ovariectomized rats had decreased levels of neurotransmitters (DA, NE, and SE), acetylcholinesterase, brain GSH (glutathione), SOD (superoxide dismutase), catalase, GPx (glutathione peroxidase), and TAC (total antioxidant capacity), as well as elevated levels of proinflammatory cytokines and mediators (TNF-α, IL-1β, Cox-2). While ovariectomy-induced declines in neurotransmitters, enzymatic and nonenzymatic molecules, neuroinflammation, and oxidative brain damage were considerably mitigated and prevented by treadmill exercise and intermittent fasting, BDNF was significantly increased. These results suggest that ovariectomy can impair rat neuronal function and regular treadmill exercise and intermittent fasting seem to protect against ovariectomy-induced neuronal impairment through the inhibition of oxidative stress and neuroinflammation and increased BDNF levels in the brain cortex. However, combining regular exercise and intermittent fasting did not provide additional benefits compared to either treatment alone.
Collapse
Affiliation(s)
- Tarfa Albrahim
- Department of Health Sciences, Clinical Nutrition, College of Health and Rehabilitation Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (R.A.); (R.A.); (L.A.); (S.A.)
| | | | | | | | | |
Collapse
|
5
|
Intermittent fasting protects the nigral dopaminergic neurons from MPTP-mediated dopaminergic neuronal injury in mice. J Nutr Biochem 2023; 112:109212. [PMID: 36370926 DOI: 10.1016/j.jnutbio.2022.109212] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/15/2022] [Accepted: 09/23/2022] [Indexed: 11/11/2022]
Abstract
Dietary restriction through low-calorie intake or intermittent fasting benefits many organs, including the brain. This study investigated the neuroprotective effects of fasting in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. We found that fasting every other day rather than weekly increased the levels of brain-derived neurotrophic factor and glial-derived neurotrophic factor in the nigrostriatal pathway. Therefore, we maintained the animals on alternate-day fasting for 2 weeks and injected MPTP (30 mg/kg/day, intraperitoneally [i.p.]) for five days. We observed that alternate-day fasting attenuated MPTP-induced dopaminergic neuronal loss and astroglial activation in the substantia nigra and the striatum. Moreover, neurochemical analysis using high-performance liquid chromatography showed that alternate-day fasting reduced MPTP-induced depletion of striatal dopamine. Consistent with these results, behavioral tests showed that fasting suppressed the motor impairment caused by MPTP. Furthermore, fasting increased the phosphorylation of phosphatidylinositol-3-kinase and protein kinase B, which are downstream signaling molecules of neurotrophic factors. Fasting also increased the phosphorylation of extracellular signal-regulated protein kinase and cAMP response element-binding protein, further supporting the involvement of neurotrophic factors in the observed neuroprotective effects. Hence, our results demonstrated the dopaminergic neuroprotection of intermittent fasting in an MPTP mouse model of Parkinson's disease, supporting the idea that fasting could be an instrumental tool for preventing neurodegeneration in the brain.
Collapse
|
6
|
Godfrey N, Qiao M, Borgland SL. Activation of LH GABAergic inputs counteracts fasting-induced changes in tVTA/RMTG neurons. J Physiol 2022; 600:2203-2224. [PMID: 35338656 DOI: 10.1113/jp282653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/04/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS While dopamine neuronal activity changes with motivational state, it is unknown if fasting influences tVTA/RMTg GABAergic neurons, a major inhibitory input to VTA dopamine neurons. In unfasted mice, there were sex differences in inhibitory synaptic transmission onto tVTA/RMTg GABAergic neurons. Activation of LH GABAergic neurons decreases firing of tVTA/RMTg GABAergic neurons through a monosynaptic input. An acute fast decreased the excitability of tVTA/RMTg GABAergic neurons. An acute fast decreases inhibitory synaptic transmission of the LH GABA input to tVTA/RMTg GABAergic neurons in both male and female mice. ABSTRACT Dopamine neurons in the ventral tegmental area (VTA) are strongly innervated by GABAergic neurons in the 'tail of the VTA' (tVTA), also known as the rostralmedial tegmental nucleus (RMTg). Disinhibition of dopamine neurons through firing of the GABAergic neurons projecting from the lateral hypothalamus (LH) leads to reward seeking and consumption through dopamine release in the nucleus accumbens. VTA dopamine neurons respond to changes in motivational state, yet less is known of whether tVTA/RMTg GABAergic neurons or the LH GABAergic neurons that project to them are also affected by changes in motivational state, such as fasting. An acute 16 h overnight fast decreased the excitability of tVTA/RMTg GABAergic neurons of male and female mice. In addition, fasting decreased synaptic strength at LH GABA to tVTA/RMTg GABAergic synapses, indicated by reduced amplitude of optically evoked currents, decreased readily releasable pool (RRP) size and replenishment. Optical stimulation of LH GABA terminals suppressed evoked action potentials of tVTA/RMTg GABAergic neurons in unfasted mice, but this effect decreased following fasting. Furthermore, during fasting, LH GABA inputs to tVTA/RMTg neurons maintained functional connectivity during depolarization, as depolarization block was reduced following fasting. Taken together, inhibitory synaptic transmission from LH GABA inputs onto tVTA/RMTg GABAergic neurons decreases following fasting, however ability to functionally inhibit tVTA/RMTg GABAergic neurons is preserved, allowing for possible disinhibition of dopamine neurons and subsequent foraging. Abstract figure legend The inhibitory synaptic input is represented by the downward arrows. Following fasting, there was a decrease in inhibitory synaptic strength in both males and females. The action potentials represent the excitability, which also decreases in both males and females following fasting. Because both the LH GABA input and excitability of tVTA/RMTg GABA neurons have reduced activity following fasting, we predict that disinhibition of dopamine neurons with stimulation of LH inputs is preserved. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nathan Godfrey
- University of Calgary, Department of Physiology and Pharmacology, Calgary, Alberta, T2N 4N1
| | - Min Qiao
- University of Calgary, Department of Physiology and Pharmacology, Calgary, Alberta, T2N 4N1
| | - Stephanie L Borgland
- University of Calgary, Department of Physiology and Pharmacology, Calgary, Alberta, T2N 4N1
| |
Collapse
|
7
|
Tacad DKM, Tovar AP, Richardson CE, Horn WF, Keim NL, Krishnan GP, Krishnan S. Satiety Associated with Calorie Restriction and Time-Restricted Feeding: Central Neuroendocrine Integration. Adv Nutr 2022; 13:758-791. [PMID: 35134815 PMCID: PMC9156369 DOI: 10.1093/advances/nmac011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/08/2021] [Accepted: 02/02/2022] [Indexed: 02/06/2023] Open
Abstract
This review focuses on summarizing current knowledge on how time-restricted feeding (TRF) and continuous caloric restriction (CR) affect central neuroendocrine systems involved in regulating satiety. Several interconnected regions of the hypothalamus, brainstem, and cortical areas of the brain are involved in the regulation of satiety. Following CR and TRF, the increase in hunger and reduction in satiety signals of the melanocortin system [neuropeptide Y (NPY), proopiomelanocortin (POMC), and agouti-related peptide (AgRP)] appear similar between CR and TRF protocols, as do the dopaminergic responses in the mesocorticolimbic circuit. However, ghrelin and leptin signaling via the melanocortin system appears to improve energy balance signals and reduce hyperphagia following TRF, which has not been reported in CR. In addition to satiety systems, CR and TRF also influence circadian rhythms. CR influences the suprachiasmatic nucleus (SCN) or the primary circadian clock as seen by increased clock gene expression. In contrast, TRF appears to affect both the SCN and the peripheral clocks, as seen by phasic changes in the non-SCN (potentially the elusive food entrainable oscillator) and metabolic clocks. The peripheral clocks are influenced by the primary circadian clock but are also entrained by food timing, sleep timing, and other lifestyle parameters, which can supersede the metabolic processes that are regulated by the primary circadian clock. Taken together, TRF influences hunger/satiety, energy balance systems, and circadian rhythms, suggesting a role for adherence to CR in the long run if implemented using the TRF approach. However, these suggestions are based on only a few studies, and future investigations that use standardized protocols for the evaluation of the effect of these diet patterns (time, duration, meal composition, sufficiently powered) are necessary to verify these preliminary observations.
Collapse
Affiliation(s)
- Debra K M Tacad
- Obesity and Metabolism Research Unit, USDA–Western Human Nutrition Research Center, Davis, CA, USA,Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Ashley P Tovar
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | | | - William F Horn
- Obesity and Metabolism Research Unit, USDA–Western Human Nutrition Research Center, Davis, CA, USA
| | - Nancy L Keim
- Obesity and Metabolism Research Unit, USDA–Western Human Nutrition Research Center, Davis, CA, USA,Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Giri P Krishnan
- Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, USA
| | | |
Collapse
|
8
|
van Galen KA, Booij J, Schrantee A, Adriaanse SM, Unmehopa UA, Fliers E, Schwartz GJ, DiLeone RJ, Ter Horst KW, la Fleur SE, Serlie MJ. The response to prolonged fasting in hypothalamic serotonin transporter availability is blunted in obesity. Metabolism 2021; 123:154839. [PMID: 34331964 PMCID: PMC8994212 DOI: 10.1016/j.metabol.2021.154839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND AIMS Serotonergic and dopaminergic systems in the brain are essential for homeostatic and reward-associated regulation of food intake and systemic energy metabolism. It is largely unknown how fasting influences these systems or if such effects are altered in humans with obesity. We therefore aimed to evaluate the effects of fasting on hypothalamic/thalamic serotonin transporter (SERT) and striatal dopamine transporter (DAT) availability in lean subjects and subjects with obesity. METHODS In this randomized controlled cross-over trial, we assessed the effects of 12 vs 24 h of fasting on SERT and DAT availability in the hypothalamus/thalamus and striatum, respectively, using SPECT imaging in 10 lean men and 10 men with obesity. RESULTS As compared with the 12-h fast, a 24-h fast increased hypothalamic SERT availability in lean men, but not in men with obesity. We observed high inter-individual variation in the effects of fasting on thalamic SERT and striatal DAT, with no differences between lean men and those with obesity. In all subjects, fasting-induced increases in circulating free fatty acid (FFA) concentrations were associated with an increase in hypothalamic SERT availability and a decrease in striatal DAT availability. Multiple regression analysis showed that changes in plasma insulin and FFAs together accounted for 44% of the observed variation in striatal DAT availability. CONCLUSION Lean men respond to prolonged fasting by increasing hypothalamic SERT availability, whereas this response is absent in men with obesity. Inter-individual differences in the adaptations of the cerebral serotonergic and dopaminergic systems to fasting may, in part, be explained by changes in peripheral metabolic signals of fasting, including FFAs and insulin.
Collapse
Affiliation(s)
- Katy A van Galen
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Anouk Schrantee
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Sofie M Adriaanse
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Unga A Unmehopa
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Eric Fliers
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Gary J Schwartz
- Fleischer Institute for Diabetes and Metabolism, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ralph J DiLeone
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Kasper W Ter Horst
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Susanne E la Fleur
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands; Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| | - Mireille J Serlie
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands.
| |
Collapse
|
9
|
Edvardsson CE, Vestlund J, Jerlhag E. A ghrelin receptor antagonist reduces the ability of ghrelin, alcohol or amphetamine to induce a dopamine release in the ventral tegmental area and in nucleus accumbens shell in rats. Eur J Pharmacol 2021; 899:174039. [PMID: 33737011 DOI: 10.1016/j.ejphar.2021.174039] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 11/24/2022]
Abstract
The orexigenic peptide ghrelin increases the release of dopamine in the nucleus accumbens (NAc) shell via central ghrelin receptors, especially those located in the ventral tegmental area (VTA). The activity of the VTA dopamine neurons projecting to NAc shell, involves somatodendritic dopamine release within the VTA. However, the effects of ghrelin on the concomitant dopamine release in the VTA and NAc shell is unknown. It is further unknown whether addictive drugs, such as alcohol and amphetamine, enhance the dopamine levels in both these areas via ghrelin receptor dependent mechanisms. Thus, the effects of a ghrelin receptor antagonist, JMV2959, on the ability of i) central ghrelin ii) systemic alcohol or iii) systemic amphetamine to increase the dopamine release in the VTA and in the NAc shell in rats by using in vivo microdialysis was explored. We showed that systemic administration of JMV2959 blocks the ability of central ghrelin to increases dopamine release in the VTA and the NAc shell, and reduces the alcohol- and amphetamine-induced dopamine release in both these areas. Locomotor activity studies was then conducted in an attempt to correlate the ghrelin-induced dopamine release in the VTA to a behavioural outcome. These revealed that local infusion of a dopamine D1 receptor antagonist into the VTA blocks the ability of central ghrelin to cause a locomotor stimulation in mice. Collectively, this study adds to the growing body of evidence indicating that ghrelin signalling modulates the ability of ghrelin, and addictive drugs, to activate the mesoaccumbal dopamine pathway.
Collapse
Affiliation(s)
- Christian E Edvardsson
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Jesper Vestlund
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
10
|
Decarie-Spain L, Kanoski SE. Ghrelin and Glucagon-Like Peptide-1: A Gut-Brain Axis Battle for Food Reward. Nutrients 2021; 13:977. [PMID: 33803053 PMCID: PMC8002922 DOI: 10.3390/nu13030977] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/14/2021] [Accepted: 03/14/2021] [Indexed: 12/17/2022] Open
Abstract
Eating behaviors are influenced by the reinforcing properties of foods that can favor decisions driven by reward incentives over metabolic needs. These food reward-motivated behaviors are modulated by gut-derived peptides such as ghrelin and glucagon-like peptide-1 (GLP-1) that are well-established to promote or reduce energy intake, respectively. In this review we highlight the antagonizing actions of ghrelin and GLP-1 on various behavioral constructs related to food reward/reinforcement, including reactivity to food cues, conditioned meal anticipation, effort-based food-motivated behaviors, and flavor-nutrient preference and aversion learning. We integrate physiological and behavioral neuroscience studies conducted in both rodents and human to illustrate translational findings of interest for the treatment of obesity or metabolic impairments. Collectively, the literature discussed herein highlights a model where ghrelin and GLP-1 regulate food reward-motivated behaviors via both competing and independent neurobiological and behavioral mechanisms.
Collapse
Affiliation(s)
- Lea Decarie-Spain
- Human & Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA;
| | - Scott E. Kanoski
- Human & Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA;
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
11
|
Godfrey N, Borgland SL. Sex differences in the effect of acute fasting on excitatory and inhibitory synapses onto ventral tegmental area dopamine neurons. J Physiol 2020; 598:5523-5539. [PMID: 32886798 DOI: 10.1113/jp280412] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
KEY POINTS Fasting can increase motivation for food and can energize reward-seeking. Ventral tegmental area (VTA) dopamine neurons respond to motivationally relevant information and fasting can influence mesolimbic dopamine concentration. An acute overnight fast differentially alters food approach behaviours and excitatory synaptic transmission onto VTA dopamine neurons of male or female mice. While inhibitory synapses onto VTA dopamine neurons are not altered by fasting in male or female mice, male mice had strengthened excitatory synapses whereas female mice had increased endocannabinoid-mediated short-term plasticity at excitatory synapses. These results help us understand how fasting differentially influences excitatory synaptic transmission onto dopamine neurons and may inform different strategies for fasting-induced food seeking by male and female mice. ABSTRACT Dopamine neurons in the ventral tegmental area (VTA) are important for energizing goal-directed behaviour towards food and are sensitive to changes in metabolic states. Fasting increases the incentive motivation for food and the mobilization of energy stores and has sex-dependent effects. However, it is unknown how acute fasting alters excitatory or inhibitory synaptic transmission onto VTA dopamine neurons. An acute 16 h overnight fast induced increased food-seeking behaviour that was more predominant in male mice. Fasting increased miniature excitatory postsynaptic current frequency and amplitude in male, but not female, mice. This effect was not due to altered release probability as there was no change in the paired pulse ratio, nor was it due to an altered postsynaptic response as there was no change in the AMPA receptor/NMDA receptor ratio or response to glutamate uncaging. However, this effect was consistent with an increase in the number of release sites. In addition, depolarization-induced suppression of excitation, a measure of short-term endocannabinoid-mediated plasticity, was enhanced in female but not male fasted mice. There were no fasting-induced changes at inhibitory synapses onto dopamine neurons of male or female mice. Taken together, these results demonstrate that fasting influences excitatory synapses differentially in male and female mice, but preserves inhibitory synapses onto dopamine neurons, indicating that the mesolimbic circuits of male and female mice respond differently to acute energy deprivation.
Collapse
Affiliation(s)
- Nathan Godfrey
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
12
|
Shin S, Kim K, Pak K, Nam HY, Im HJ, Lee MJ, Kim SJ, Kim IJ. Effects of animal handling on striatal DAT availability in rats. Ann Nucl Med 2020; 34:496-501. [PMID: 32424547 DOI: 10.1007/s12149-020-01476-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/07/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Positron emission tomography (PET) is a non-invasive technique measuring quantification of physiological and biochemical processes in the living organism. However, there are many considerations including anesthesia and fasting to acquire small animal imaging. We aimed to evaluate the effects of anesthesia and fasting of rats in dopamine transporter (DAT) imaging acquisition. METHODS Male Sprague Dawley (SD) rats aged 7 weeks and weighing 180-260 g were used in this study. Rats were randomly divided by 4 groups. Group A was kept under anesthesia for 40 min and fasted over 12 h. Group B was only fasted over 12 h. Group C was only kept under anesthesia for 40 min. Group D was neither kept under anesthesia nor fasted over 12 h. PET scans were started at 40 min after 18F-FP-CIT injection and obtained for 20 min. Volumes-of-interest for striatum and extrastriatal area were used for 18F-FP-CIT PET analysis. Cerebellum was considered as a reference region. Specific binding ratio (SBR) was calculated as follows: [(uptake of target-uptake of cerebellum)]/(uptake of cerebellum). RESULTS SBR without fasting and anesthesia (group D) was significantly lower than those of other groups (vs group A, p = 0.0004; vs group B, p = 0.0377; vs group C, p = 0.0134). However, SBRs of extrastriatal area (p = 0.5120) were not affected by fasting and anesthesia. CONCLUSIONS In conclusion, the SBR of striatum was increased after anesthesia by isoflurane and fasting. When designing an experiment using DAT imaging, the effects of isoflurane and fasting should be considered.
Collapse
Affiliation(s)
- Seunghyeon Shin
- Department of Nuclear Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| | - Keunyoung Kim
- Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, 179 Gudeok-ro, Seo-gu, Busan, 49241, Republic of Korea
| | - Kyoungjune Pak
- Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, 179 Gudeok-ro, Seo-gu, Busan, 49241, Republic of Korea.
| | - Hyun-Yeol Nam
- Department of Nuclear Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea.
| | - Hyung-Jun Im
- Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Republic of Korea
| | - Myung Jun Lee
- Department of Neurology and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Seong-Jang Kim
- Department of Nuclear Medicine and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - In Joo Kim
- Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, 179 Gudeok-ro, Seo-gu, Busan, 49241, Republic of Korea.
| |
Collapse
|
13
|
Papalini S, Beckers T, Vervliet B. Dopamine: from prediction error to psychotherapy. Transl Psychiatry 2020; 10:164. [PMID: 32451377 PMCID: PMC7248121 DOI: 10.1038/s41398-020-0814-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
Dopamine, one of the main neurotransmitters in the mammalian brain, has been implicated in the coding of prediction errors that govern reward learning as well as fear extinction learning. Psychotherapy too can be viewed as a form of error-based learning, because it challenges erroneous beliefs and behavioral patterns in order to induce long-term changes in emotions, cognitions, and behaviors. Exposure therapy, for example, relies in part on fear extinction principles to violate erroneous expectancies of danger and induce novel safety learning that inhibits and therefore reduces fear in the long term. As most forms of psychotherapy, however, exposure therapy suffers from non-response, dropout, and relapse. This narrative review focuses on the role of midbrain and prefrontal dopamine in novel safety learning and investigates possible pathways through which dopamine-based interventions could be used as an adjunct to improve both the response and the long-term effects of the therapy. Convincing evidence exists for an involvement of the midbrain dopamine system in the acquisition of new, safe memories. Additionally, prefrontal dopamine is emerging as a key ingredient for the consolidation of fear extinction. We propose that applying a dopamine prediction error perspective to psychotherapy can inspire both pharmacological and non-pharmacological studies aimed at discovering innovative ways to enhance the acquisition of safety memories. Additionally, we call for further empirical investigations on dopamine-oriented drugs that might be able to maximize consolidation of successful fear extinction and its long-term retention after therapy, and we propose to also include investigations on non-pharmacological interventions with putative prefrontal dopaminergic effects, like working memory training.
Collapse
Affiliation(s)
- Silvia Papalini
- Laboratory of Biological Psychology (LBP), Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium. .,Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| | - Tom Beckers
- grid.5596.f0000 0001 0668 7884Leuven Brain Institute, KU Leuven, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Centre for the Psychology of Learning and Experimental Psychopathology (CLEP), Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Bram Vervliet
- grid.5596.f0000 0001 0668 7884Laboratory of Biological Psychology (LBP), Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Ge TT, Yao XX, Zhao FL, Zou XH, Yang W, Cui RJ, Li BJ. Role of leptin in the regulation of food intake in fasted mice. J Cell Mol Med 2020; 24:4524-4532. [PMID: 32174013 PMCID: PMC7176890 DOI: 10.1111/jcmm.15110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/25/2022] Open
Abstract
Leptin is well acknowledged as an anorexigenic hormone that plays an important role in feeding control. Hypothalamic GABA system plays a significant role in leptin regulation on feeding and metabolism control. However, the pharmacological relationship of leptin and GABA receptor is still obscure. Therefore, we investigated the effect of leptin or combined with baclofen on the food intake in fasted mice. We detected the changes in hypothalamic c-Fos expression, hypothalamic TH, POMC and GAD67 expression, plasma insulin, POMC and GABA levels to demonstrate the mechanisms. We found that leptin inhibit fasting-induced increased food intake and activated hypothalamic neurons. The inhibitory effect on food intake induced by leptin in fasted mice can be reversed by pretreatment with baclofen. Baclofen reversed leptin's inhibition on c-Fos expression of PAMM in fasted mice. Therefore, these results indicate that leptin might inhibit fasting-triggered activation of PVN neurons via presynaptic GABA synaptic functions which might be partially blocked by pharmacological activating GABA-B. Our findings identify the role of leptin in the regulation of food intake.
Collapse
Affiliation(s)
- Tong Tong Ge
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Xiao Xiao Yao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Feng Lian Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Xiao Han Zou
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Ran Ji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Bing Jin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
Dunn JP, Abumrad NN, Patterson BW, Kessler RM, Tamboli RA. Brief communication: β-cell function influences dopamine receptor availability. PLoS One 2019; 14:e0212738. [PMID: 30849082 PMCID: PMC6407783 DOI: 10.1371/journal.pone.0212738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 02/10/2019] [Indexed: 11/19/2022] Open
Abstract
We aim to identify physiologic regulators of dopamine (DA) signaling in obesity but previously did not find a compelling relationship with insulin sensitivity measured by oral-minimal model (OMM) and DA subtype 2 and 3 receptor (D2/3R) binding potential (BPND). Reduced disposition index (DI), a β-cell function metric that can also be calculated by OMM, was shown to predict a negative reward behavior that occurs in states of lower endogenous DA. We hypothesized that reduced DI would occur with higher D2/3R BPND, reflecting lower endogenous DA. Participants completed PET scanning, with a displaceable radioligand to measure D2/3R BPND, and a 5-hour oral glucose tolerance test to measure DI by OMM. We studied 26 age-similar females without (n = 8) and with obesity (n = 18) (22 vs 39 kg/m2). Reduced DI predicted increased striatal D2/3R BPND independent of BMI. By accounting for β-cell function, we were able to determine that the state of insulin and glucose metabolism is pertinent to striatal D2/3R BPND in obesity. Clinical Trial Registration Number: NCT00802204.
Collapse
Affiliation(s)
- Julia P. Dunn
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Veterans Administration St. Louis Health Care System, St. Louis, Missouri, United States of America
- * E-mail:
| | - Naji N. Abumrad
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Bruce W. Patterson
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Robert M. Kessler
- Department of Radiology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Robyn A. Tamboli
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| |
Collapse
|
16
|
Nguyen TTL, Chan LC, Borreginne K, Kale RP, Hu C, Tye SJ. A review of brain insulin signaling in mood disorders: From biomarker to clinical target. Neurosci Biobehav Rev 2018; 92:7-15. [PMID: 29758232 DOI: 10.1016/j.neubiorev.2018.05.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/08/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022]
Abstract
Patients with mood disorders are at increased risk for metabolic dysfunction. Co-occurrence of the two conditions is typically associated with a more severe disease course and poorer treatment outcomes. The specific pathophysiological mechanisms underlying this bidirectional relationship between mood and metabolic dysfunction remains poorly understood. However, it is likely that impairment of metabolic processes within the brain play a critical role. The insulin signaling pathway mediates metabolic homeostasis and is important in the regulation of neurotrophic and synaptic plasticity processes, including those involved in neurodegenerative diseases like Alzheimer's. Thus, insulin signaling in the brain may serve to link metabolic function and mood. Central insulin signaling is mediated through locally secreted insulin and widespread insulin receptor expression. Here we review the preclinical and clinical data addressing the relationships between central insulin signaling, cellular metabolism, neurotrophic processes, and mood regulation, including key points of mechanistic overlap. These relationships have important implications for developing biomarker-based diagnostics and precision medicine approaches to treat severe mood disorders.
Collapse
Affiliation(s)
- Thanh Thanh L Nguyen
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, United States; Department of Biology and Psychology, Green Mountain College, 1 Brennan Cir, Poultney, VT, 05764, United States
| | - Lily C Chan
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, United States
| | - Kristin Borreginne
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, United States
| | - Rajas P Kale
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, United States; School of Engineering, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - Chunling Hu
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, United States
| | - Susannah J Tye
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, United States; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, United States; Department of Psychiatry, University of Minnesota, 3 Morrill Hall, 100 Church Street SE, Minneapolis, MN, 55454, United States; School of Psychology, Deakin University, Burwood, VIC, 3125, Australia; Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
17
|
Jensen KL, Sørensen G, Dencker D, Owens WA, Rahbek-Clemmensen T, Brett Lever M, Runegaard AH, Riis Christensen N, Weikop P, Wörtwein G, Fink-Jensen A, Madsen KL, Daws L, Gether U, Rickhag M. PICK1-Deficient Mice Exhibit Impaired Response to Cocaine and Dysregulated Dopamine Homeostasis. eNeuro 2018; 5:ENEURO.0422-17.2018. [PMID: 29911172 PMCID: PMC6001137 DOI: 10.1523/eneuro.0422-17.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/18/2018] [Accepted: 04/27/2018] [Indexed: 01/11/2023] Open
Abstract
Protein interacting with C-kinase 1 (PICK1) is a widely expressed scaffold protein known to interact via its PSD-95/discs-large/ZO-1 (PDZ)-domain with several membrane proteins including the dopamine (DA) transporter (DAT), the primary target for cocaine's reinforcing actions. Here, we establish the importance of PICK1 for behavioral effects observed after both acute and repeated administration of cocaine. In PICK1 knock-out (KO) mice, the acute locomotor response to a single injection of cocaine was markedly attenuated. Moreover, in support of a role for PICK1 in neuroadaptive changes induced by cocaine, we observed diminished cocaine intake in a self-administration paradigm. Reduced behavioral effects of cocaine were not associated with decreased striatal DAT distribution and most likely not caused by the ∼30% reduction in synaptosomal DA uptake observed in PICK1 KO mice. The PICK1 KO mice demonstrated preserved behavioral responses to DA receptor agonists supporting intact downstream DA receptor signaling. Unexpectedly, we found a prominent increase in striatal DA content and levels of striatal tyrosine hydroxylase (TH) in PICK1 KO mice. Chronoamperometric recordings showed enhanced DA release in PICK1 KO mice, consistent with increased striatal DA pools. Viral-mediated knock-down (KD) of PICK1 in cultured dopaminergic neurons increased TH expression, supporting a direct cellular effect of PICK1. In summary, in addition to demonstrating a key role of PICK1 in mediating behavioral effects of cocaine, our data reveal a so far unappreciated role of PICK1 in DA homeostasis that possibly involves negative regulation of striatal TH levels.
Collapse
Affiliation(s)
- Kathrine Louise Jensen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Gunnar Sørensen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Ditte Dencker
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - William Anthony Owens
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, TX 78229
| | - Troels Rahbek-Clemmensen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Michael Brett Lever
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Annika H. Runegaard
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Nikolaj Riis Christensen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Pia Weikop
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Gitta Wörtwein
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Anders Fink-Jensen
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Kenneth L. Madsen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Lynette Daws
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, TX 78229
| | - Ulrik Gether
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Mattias Rickhag
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| |
Collapse
|
18
|
Bastani A, Rajabi S, Kianimarkani F. The Effects of Fasting During Ramadan on the Concentration of Serotonin, Dopamine, Brain-Derived Neurotrophic Factor and Nerve Growth Factor. Neurol Int 2017; 9:7043. [PMID: 28713531 PMCID: PMC5505095 DOI: 10.4081/ni.2017.7043] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/24/2017] [Accepted: 05/17/2017] [Indexed: 11/25/2022] Open
Abstract
Neurotransmitters and neurotrophic factors are signaling molecules that play a crucial role in cell proliferation, differentiation, survival and functions of neurons. It is believed that caloric restriction could help the health of the nervous system by affecting the synthesis of neurotrophins and neurotransmitter and oxygen radical metabolism. The objective was to investigate the plasma levels of serotonin, dopamine, brain-derived neurotrophic factor (BDNF), and nerve growth factor (NGF) in 29 healthy fasted subjects (22 women and 7 men) during the month of fasting in Ramadan. The levels of these factors were measured (using ELISA method) three times, 2 days before the fasting month as a control, on the 14th and 29th day of Ramadan as test groups. In addition, these factors were investigated in the group of women only. According to our investigation, the plasma levels of serotonin, BDNF and NGF were significantly increased during fasting month of Ramadan. In detail, the levels of these factors were increased in 14th and 29th day test groups compared to controls (P<0.05). Moreover, these levels were significantly increased on the 29th day compared to the 14th day test groups, but there were no differences between dopamine levels in all groups. Furthermore, the results obtained in women's groups were the same as those obtained in previous groups. Our findings suggest that plasma levels of serotonin, BDNF and NGF were significantly increased during fasting month of Ramadan.
Collapse
Affiliation(s)
- Abdolhossein Bastani
- Biochemistry Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sadegh Rajabi
- Biochemistry Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Kianimarkani
- Biochemistry Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Ikeda H, Nagasawa M, Yamaguchi T, Minaminaka K, Goda R, Chowdhury VS, Yasuo S, Furuse M. Disparities in activity levels and learning ability between Djungarian hamster ( Phodopus sungorus) and Roborovskii hamster ( Phodopus roborovskii). Anim Sci J 2017; 88:533-545. [DOI: 10.1111/asj.12659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/10/2016] [Accepted: 04/13/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Hiromi Ikeda
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture; Kyushu University; Fukuoka Japan
| | - Mao Nagasawa
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture; Kyushu University; Fukuoka Japan
| | - Takeshi Yamaguchi
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture; Kyushu University; Fukuoka Japan
| | - Kimie Minaminaka
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture; Kyushu University; Fukuoka Japan
| | - Ryosei Goda
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture; Kyushu University; Fukuoka Japan
| | - Vishwajit S. Chowdhury
- Division for Experimental Natural Science, Faculty of Arts and Science; Kyushu University; Fukuoka Japan
| | - Shinobu Yasuo
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture; Kyushu University; Fukuoka Japan
| | - Mitsuhiro Furuse
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture; Kyushu University; Fukuoka Japan
| |
Collapse
|
20
|
Yousuf MS, Kerr BJ. The Role of Regulatory Transporters in Neuropathic Pain. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 75:245-71. [PMID: 26920015 DOI: 10.1016/bs.apha.2015.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Neuropathic pain arises from an injury or disease of the somatosensory nervous system rather than stimulation of pain receptors. As a result, the fine balance between excitation and inhibition is perturbed leading to hyperalgesia and allodynia. Various neuropathic pain models provide considerable evidence that changes in the glutamatergic, GABAergic, and monoaminergic systems. Neurotransmitter reuptake transporter proteins have the potential to change the temporal and spatial profile of various neurotransmitters throughout the nervous system. This, in turn, can affect the downstream effects of these neurotransmitters and hence modulate pain. This chapter explores various reuptake transporter systems and implicates their role in pain processing. Understanding the transporter systems will enhance drug discovery targeting different facets of neuropathic pain.
Collapse
Affiliation(s)
- Muhammad Saad Yousuf
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Bradley J Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada; Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada; Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
21
|
Laoye BJ, Okurumeh OA, Obagaye OV, Olagunju MO, Bankole OO, Olubiyi OO, Ogundele OM. Dopamine binds calmodulin during autoregulation of dopaminergic D2 receptor signaling through CaMKIIα-calmodulin complex. J Recept Signal Transduct Res 2015; 36:271-7. [DOI: 10.3109/10799893.2015.1091476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|