1
|
Miranda Portillo LS, Huang AP, Hosamani IV, Sanchez CN, Heller S, Benkafadar N. Anatomical and Molecular Insights into Avian Inner Ear Sensory Hair Cell Regeneration. Dev Biol 2025:S0012-1606(25)00144-7. [PMID: 40414451 DOI: 10.1016/j.ydbio.2025.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 05/19/2025] [Accepted: 05/22/2025] [Indexed: 05/27/2025]
Abstract
Inner ear sensory hair cells are essential for auditory and vestibular functions. In mammals, loss of these cells leads to permanent hearing loss due to the inability of supporting cells to regenerate hair cells. In contrast, avian species exhibit a remarkable capacity for hair cell regeneration, primarily through the activation and proliferation of supporting cells. This review provides a comprehensive examination of the anatomical and molecular mechanisms underlying sensory hair cell regeneration in two critical avian inner ear structures: the basilar papilla and the utricle. We describe the structural and functional differences between avian and mammalian inner ear epithelia and highlight how these distinctions correlate with regenerative capabilities. Specifically, we discuss two distinct regenerative mechanisms - mitotic regeneration and direct transdifferentiation - employed by avian supporting cells in response to hair cell loss. We also explore how epithelial organization influences regenerative responses, including cellular density, cytoskeletal dynamics such as circumferential filamentous actin bands, and mechanical properties like tissue jamming and unjamming states. Additionally, we examine molecular pathways such as Hippo signaling, which mediates mechanical cues critical for regulating supporting cell proliferation and differentiation during regeneration. Recent advancements in single-cell -omics technologies have further elucidated molecular signatures and signaling pathways involved in these processes, offering novel insights that may inform therapeutic strategies aimed at inducing hair cell regeneration in mammals. This review highlights key anatomical and molecular concepts derived from avian models that hold promise for overcoming regenerative limitations in mammalian inner ears, paving the way for innovative treatments for hearing loss.
Collapse
Affiliation(s)
- Lyn S Miranda Portillo
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Austin P Huang
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Ishwar V Hosamani
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Celeste N Sanchez
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Stefan Heller
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305.
| | - Nesrine Benkafadar
- Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305; Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, UMR 1298, 80 Rue Augustin Fliche, 34295, Montpellier, France.
| |
Collapse
|
2
|
Hakizimana P. The sensitivity of mechanoelectrical transduction response phase to acoustic overstimulation is calcium-dependent. Pflugers Arch 2024; 476:271-282. [PMID: 37987805 DOI: 10.1007/s00424-023-02883-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/14/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023]
Abstract
The Mechanoelectrical transduction (MET) channels of the mammalian hair cells are essential for converting sound stimuli into electrical signals that enable hearing. However, the impact of acoustic overstimulation, a leading cause of hearing loss, on the MET channel function remains poorly understood. In this study, I investigated the effect of loud sound-induced temporary threshold shift (TTS) on the transduction response phase across a wide range of sound frequencies and amplitudes. The results demonstrated an increase in the transduction response phase following TTS, indicating altered transduction apparatus function. Further investigations involving the reduction of extracellular calcium, a known consequence of TTS, replicated the observed phase changes. Additionally, reduction of potassium entry confirmed the specific role of calcium in regulating the transduction response phase. These findings provide novel insights into the impact of loud sound exposure on hearing impairment at the transduction apparatus level and highlight the critical role of calcium in modulating sound transduction. Considering that over 1 billion teenagers and young adults globally are at risk of hearing loss due to unsafe music listening habits, these results could significantly enhance awareness about the damaging effects of loud sound exposure.
Collapse
Affiliation(s)
- Pierre Hakizimana
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, 581 83, Linköping, Sweden.
| |
Collapse
|
3
|
Fettiplace R. Cochlear tonotopy from proteins to perception. Bioessays 2023:e2300058. [PMID: 37329318 DOI: 10.1002/bies.202300058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/01/2023] [Indexed: 06/19/2023]
Abstract
A ubiquitous feature of the auditory organ in amniotes is the longitudinal mapping of neuronal characteristic frequencies (CFs), which increase exponentially with distance along the organ. The exponential tonotopic map reflects variation in hair cell properties according to cochlear location and is thought to stem from concentration gradients in diffusible morphogenic proteins during embryonic development. While in all amniotes the spatial gradient is initiated by sonic hedgehog (SHH), released from the notochord and floorplate, subsequent molecular pathways are not fully understood. In chickens, BMP7 is one such morphogen, secreted from the distal end of the cochlea. In mammals, the developmental mechanism differs from birds and may depend on cochlear location. A consequence of exponential maps is that each octave occupies an equal distance on the cochlea, a spacing preserved in the tonotopic maps in higher auditory brain regions. This may facilitate frequency analysis and recognition of acoustic sequences.
Collapse
Affiliation(s)
- Robert Fettiplace
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
4
|
Hakizimana P. The summating potential polarity encodes the ear health condition. Cell Mol Life Sci 2023; 80:163. [PMID: 37225973 DOI: 10.1007/s00018-023-04809-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 05/26/2023]
Abstract
The summating potential (SP), the DC potential which, along with the AC response, is produced when the hair cells convert the vibrational mechanical energy of sound into electrical signals, is the most enigmatic of the cochlear potentials because its polarity and function have remained elusive for more than seven decades. Despite the tremendous socioeconomic consequences of noise-induced hearing loss and the profound physiological importance of understanding how loud noise exposure impairs the hair cell receptor activation, the relationship between the SP and noise-induced hearing impairment remains poorly characterized. Here, I show that in normally hearing ears, the SP polarity is positive and its amplitude relative to the AC response grows exponentially across frequencies, and becomes negative and decreases exponentially across frequencies following noise-induced hearing injury. Since the SP is thought to be generated by K+ outflow down the gradient through the hair cell basolateral K+ channels, the SP polarity switch to negative values is consistent with a noise-induced shift in the operating point of the hair cells.
Collapse
Affiliation(s)
- Pierre Hakizimana
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, 581 83, Linköping, Sweden.
| |
Collapse
|
5
|
O'Sullivan JDB, Bullen A, Mann ZF. Mitochondrial form and function in hair cells. Hear Res 2023; 428:108660. [PMID: 36525891 DOI: 10.1016/j.heares.2022.108660] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/07/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Hair cells (HCs) are specialised sensory receptors residing in the neurosensory epithelia of inner ear sense organs. The precise morphological and physiological properties of HCs allow us to perceive sound and interact with the world around us. Mitochondria play a significant role in normal HC function and are also intricately involved in HC death. They generate ATP essential for sustaining the activity of ion pumps, Ca2+ transporters and the integrity of the stereociliary bundle during transduction as well as regulating cytosolic calcium homoeostasis during synaptic transmission. Advances in imaging techniques have allowed us to study mitochondrial populations throughout the HC, and how they interact with other organelles. These analyses have identified distinct mitochondrial populations between the apical and basolateral portions of the HC, in which mitochondrial morphology appears determined by the physiological processes in the different cellular compartments. Studies in HCs across species show that ototoxic agents, ageing and noise damage directly impact mitochondrial structure and function resulting in HC death. Deciphering the molecular mechanisms underlying this mitochondrial sensitivity, and how their morphology relates to their function during HC death, requires that we first understand this relationship in the context of normal HC function.
Collapse
Affiliation(s)
- James D B O'Sullivan
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral, Craniofacial Sciences, King's College London, London SE1 9RT, U.K
| | - Anwen Bullen
- UCL Ear Institute, University College London, London WC1×8EE, U.K.
| | - Zoë F Mann
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral, Craniofacial Sciences, King's College London, London SE1 9RT, U.K.
| |
Collapse
|
6
|
Li H, Staxäng K, Hodik M, Melkersson KG, Rask-Andersen M, Rask-Andersen H. Regeneration in the Auditory Organ in Cuban and African Dwarf Crocodiles (Crocodylus rhombifer and Osteolaemus tetraspis) Can We Learn From the Crocodile How to Restore Our Hearing? Front Cell Dev Biol 2022; 10:934571. [PMID: 35859896 PMCID: PMC9289536 DOI: 10.3389/fcell.2022.934571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Background: In several non-mammalian species, auditory receptors undergo cell renewal after damage. This has raised hope of finding new options to treat human sensorineural deafness. Uncertainty remains as to the triggering mechanisms and whether hair cells are regenerated even under normal conditions. In the present investigation, we explored the auditory organ in the crocodile to validate possible ongoing natural hair cell regeneration. Materials and Methods: Two male Cuban crocodiles (Crocodylus rhombifer) and an adult male African Dwarf crocodile (Osteolaemus tetraspis) were analyzed using transmission electron microscopy and immunohistochemistry using confocal microscopy. The crocodile ears were fixed in formaldehyde and glutaraldehyde and underwent micro-computed tomography (micro-CT) and 3D reconstruction. The temporal bones were drilled out and decalcified. Results: The crocodile papilla basilaris contained tall (inner) and short (outer) hair cells surrounded by a mosaic of tightly connected supporting cells coupled with gap junctions. Afferent neurons with and without ribbon synapses innervated both hair cell types. Supporting cells occasionally showed signs of trans-differentiation into hair cells. They expressed the MAFA and SOX2 transcription factors. Supporting cells contained organelles that may transfer genetic information between cells, including the efferent nerve fibers during the regeneration process. The tectorial membrane showed signs of being replenished and its architecture being sculpted by extracellular exosome-like proteolysis. Discussion: Crocodilians seem to produce new hair cells during their life span from a range of supporting cells. Imposing efferent nerve fibers may play a role in regeneration and re-innervation of the auditory receptors, possibly triggered by apoptotic signals from wasted hair cells. Intercellular signaling may be accomplished by elaborate gap junction and organelle systems, including neural emperipolesis. Crocodilians seem to restore and sculpt their tectorial membranes throughout their lives.
Collapse
Affiliation(s)
- Hao Li
- Department of Surgical Sciences, Head and Neck Surgery, Section of Otolaryngology, Uppsala University Hospital, Uppsala, Sweden
| | - Karin Staxäng
- The Rudbeck TEM Laboratory, BioVis Platform, Uppsala University, Uppasala, Swedan
| | - Monika Hodik
- The Rudbeck TEM Laboratory, BioVis Platform, Uppsala University, Uppasala, Swedan
| | | | - Mathias Rask-Andersen
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Helge Rask-Andersen
- Department of Surgical Sciences, Head and Neck Surgery, Section of Otolaryngology, Uppsala University Hospital, Uppsala, Sweden
- *Correspondence: Helge Rask-Andersen,
| |
Collapse
|
7
|
Abstract
Geckos are lizards capable of vocalization and can detect frequencies up to 5 kHz, but the mechanism of frequency discrimination is incompletely understood. The gecko’s auditory papilla has a unique arrangement over the high-frequency zone, with rows of mechanically sensitive hair bundles covered with gelatinous sallets. Lower-frequency hair cells are tuned by an electrical resonance employing Ca2+-activated K+ channels, but hair cells tuned above 1 kHz probably rely on a mechanical resonance of the sallets. The resonance may be boosted by an electromotile force from hair bundles found to be evoked by changes in hair cell membrane potential. This unusual mechanism operates independently of mechanotransduction and differs from mammals which amplify the mechanical input using the motor protein prestin. The auditory papilla of geckos contains two zones of sensory hair cells, one covered by a continuous tectorial membrane affixed to the hair bundles and the other by discrete tectorial sallets each surmounting a transverse row of bundles. Gecko papillae are thought to encode sound frequencies up to 5 kHz, but little is known about the hair cell electrical properties or their role in frequency tuning. We recorded from hair cells in the isolated auditory papilla of the crested gecko, Correlophus ciliatus, and found that in both the nonsalletal region and part of the salletal region, the cells displayed electrical tuning organized tonotopically. Along the salletal zone, occupying the apical two-thirds of the papilla, hair bundle length decreased threefold and stereociliary complement increased 1.5-fold. The two morphological variations predict a 13-fold gradient in bundle stiffness, confirmed experimentally, which, when coupled with salletal mass, could provide passive mechanical resonances from 1 to 6 kHz. Sinusoidal electrical currents injected across the papilla evoked hair bundle oscillations at twice the stimulation frequency, consistent with fast electromechanical responses from hair bundles of two opposing orientations across the papilla. Evoked bundle oscillations were diminished by reducing Ca2+ influx, but not by blocking the mechanotransduction channels or inhibiting prestin action, thereby distinguishing them from known electromechanical mechanisms in hair cells. We suggest the phenomenon may be a manifestation of an electromechanical amplification that augments the passive mechanical tuning of the sallets over the high-frequency region.
Collapse
|
8
|
Iwasa KH. Of mice and chickens: Revisiting the RC time constant problem. Hear Res 2021; 423:108422. [PMID: 34965897 DOI: 10.1016/j.heares.2021.108422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022]
Abstract
Avian hair cells depend on electrical resonance for frequency selectivity. The upper bound of the frequency range is limited by the RC time constant of hair cells because the sharpness of tuning requires that the resonance frequency must be lower than the RC roll-off frequency. In contrast, tuned mechanical vibration of the inner ear is the basis of frequency selectivity of the mammalian ear. This mechanical vibration is supported by outer hair cells (OHC) with their electromotility (or piezoelectricity), which is driven by the receptor potential. Thus, it is also subjected to the RC time constant problem. Association of OHCs with a system with mechanical resonance leads to piezoelectric resonance. This resonance can nullify the membrane capacitance and solves the RC time constant problem for OHCs. Therefore, avian and mammalian ears solve the same problem in the opposite way.
Collapse
Affiliation(s)
- Kuni H Iwasa
- NIDCD, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Janesick A, Scheibinger M, Benkafadar N, Kirti S, Ellwanger DC, Heller S. Cell-type identity of the avian cochlea. Cell Rep 2021; 34:108900. [PMID: 33761346 DOI: 10.1016/j.celrep.2021.108900] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/22/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
In contrast to mammals, birds recover naturally from acquired hearing loss, which makes them an ideal model for inner ear regeneration research. Here, we present a validated single-cell RNA sequencing resource of the avian cochlea. We describe specific markers for three distinct types of sensory hair cells, including a previously unknown subgroup, which we call superior tall hair cells. We identify markers for the supporting cells associated with tall hair cells, which represent the facultative stem cells of the avian inner ear. Likewise, we present markers for supporting cells that are located below the short cochlear hair cells. We further infer spatial expression gradients of hair cell genes along the tonotopic axis of the cochlea. This resource advances neurobiology, comparative biology, and regenerative medicine by providing a basis for comparative studies with non-regenerating mammalian cochleae and for longitudinal studies of the regenerating avian cochlea.
Collapse
Affiliation(s)
- Amanda Janesick
- Department of Otolaryngology - Head & Neck Surgery, Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA.
| | - Mirko Scheibinger
- Department of Otolaryngology - Head & Neck Surgery, Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Nesrine Benkafadar
- Department of Otolaryngology - Head & Neck Surgery, Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Sakin Kirti
- Department of Otolaryngology - Head & Neck Surgery, Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA; Case Western Reserve University, Cleveland, OH 44106, USA
| | - Daniel C Ellwanger
- Department of Otolaryngology - Head & Neck Surgery, Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA; Genome Analysis Unit, Amgen Research, Amgen, Inc., South San Francisco, CA 94080, USA
| | - Stefan Heller
- Department of Otolaryngology - Head & Neck Surgery, Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA.
| |
Collapse
|
10
|
Ivanchenko MV, Cicconet M, Jandal HA, Wu X, Corey DP, Indzhykulian AA. Serial scanning electron microscopy of anti-PKHD1L1 immuno-gold labeled mouse hair cell stereocilia bundles. Sci Data 2020; 7:182. [PMID: 32555200 PMCID: PMC7299942 DOI: 10.1038/s41597-020-0509-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/30/2020] [Indexed: 11/11/2022] Open
Abstract
Serial electron microscopy techniques have proven to be a powerful tool in biology. Unfortunately, the data sets they generate lack robust and accurate automated segmentation algorithms. In this data descriptor publication, we introduce a serial focused ion beam scanning electron microscopy (FIB-SEM) dataset consisting of six outer hair cell (OHC) stereocilia bundles, and the supranuclear part of the hair cell bodies. Also presented are the manual segmentations of stereocilia bundles and the gold bead labeling of PKHD1L1, a coat protein of hair cell stereocilia important for hearing in mice. This depository includes all original data and several intermediate steps of the manual analysis, as well as the MATLAB algorithm used to generate a three-dimensional distribution map of gold labels. They serve as a reference dataset, and they enable reproduction of our analysis, evaluation and improvement of current methods of protein localization, and training of algorithms for accurate automated segmentation.
Collapse
Affiliation(s)
- Maryna V Ivanchenko
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA, 02115, USA
| | - Marcelo Cicconet
- Image and Data Analysis Core, Harvard Medical School, 43 Shattuck St, Boston, MA, 02115, USA
| | - Hoor Al Jandal
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA, 02115, USA
- Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA
| | - Xudong Wu
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA, 02115, USA
| | - David P Corey
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA, 02115, USA
| | - Artur A Indzhykulian
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA, 02115, USA.
- Department of Otolaryngology, Harvard Medical School and Massachusetts Eye and Ear, 243 Charles St, Boston, MA, 02114, USA.
| |
Collapse
|
11
|
Diverse Mechanisms of Sound Frequency Discrimination in the Vertebrate Cochlea. Trends Neurosci 2020; 43:88-102. [PMID: 31954526 DOI: 10.1016/j.tins.2019.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 01/17/2023]
Abstract
Discrimination of different sound frequencies is pivotal to recognizing and localizing friend and foe. Here, I review the various hair cell-tuning mechanisms used among vertebrates. Electrical resonance, filtering of the receptor potential by voltage-dependent ion channels, is ubiquitous in all non-mammals, but has an upper limit of ~1 kHz. The frequency range is extended by mechanical resonance of the hair bundles in frogs and lizards, but may need active hair-bundle motion to achieve sharp tuning up to 5 kHz. Tuning in mammals uses somatic motility of outer hair cells, underpinned by the membrane protein prestin, to expand the frequency range. The bird cochlea may also use prestin at high frequencies, but hair cells <1 kHz show electrical resonance.
Collapse
|
12
|
Bai H, Wang X, Gao X, Bing J, Wang W, Zhang X, Xi C, Jiang L, Zhang X, Han Z, Zeng S, Xu J. Study of the Mechanisms by Which Aminoglycoside Damage Is Prevented in Chick Embryonic Hair Cells. J Assoc Res Otolaryngol 2018; 20:21-35. [PMID: 30341698 DOI: 10.1007/s10162-018-00700-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/21/2018] [Indexed: 11/27/2022] Open
Abstract
A major side effect of aminoglycoside antibiotics is mammalian hair cell death. It is thus intriguing that embryonic chick hair cells treated with aminoglycosides at embryonic day (E) 12 are insensitive to ototoxicity. To exclude some unknown factors in vivo that might be involved in preventing aminoglycoside damage to embryonic hair cells, we first cultured chick embryonic basilar papilla (BP) with an aminoglycoside antibiotic in vitro. The results indicated that the hair cells were almost intact at E12 and E14 and were only moderately damaged in most parts of the BP at E16 and E18. Generally, hair cells residing in the approximate and abneural regions were more susceptible to streptomycin damage. After incubation with gentamicin-conjugated Texas Red (GTTR), which is typically used to trace the entry route of aminoglycosides, GTTR fluorescence was not remarkable in hair cells at E12, was weak at E14, but was relatively strong in the proximal part of BP at E18. This result indicates that the amounts of GTTR that entered the hair cells are related to the degrees of aminoglycoside damage. The study further showed that the fluorescence intensity of GTTR decreased to a low level at E14 to E18 after disruption of mechanotransduction machinery, suggesting that the aminoglycoside entry into hair cells was mainly through mechanotransduction channels. In addition, most of the entered GTTR was not found to be colocalized with mitochondria even at E18. This finding provides another reason to explain why embryonic chick hair cells are insensitive to aminoglycoside damage.
Collapse
Affiliation(s)
- Huanju Bai
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, 100875, China
| | - Xi Wang
- Department of Otorhinolaryngology, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Xue Gao
- Department of Otorhinolaryngology, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Jie Bing
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, 100875, China
| | - Weiqian Wang
- Department of Otorhinolaryngology, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Xuebo Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
| | - Chao Xi
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, 100875, China
| | - Lingling Jiang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, 100875, China
| | - Xinwen Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
| | - Zhongming Han
- Department of Otorhinolaryngology, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Shaoju Zeng
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, 100875, China.
| | - Jincao Xu
- Department of Otorhinolaryngology, The General Hospital of the PLA Rocket Force, Beijing, 100088, China.
| |
Collapse
|
13
|
Abstract
Sensory hair cells are specialized secondary sensory cells that mediate our senses of hearing, balance, linear acceleration, and angular acceleration (head rotation). In addition, hair cells in fish and amphibians mediate sensitivity to water movement through the lateral line system, and closely related electroreceptive cells mediate sensitivity to low-voltage electric fields in the aquatic environment of many fish species and several species of amphibian. Sensory hair cells share many structural and functional features across all vertebrate groups, while at the same time they are specialized for employment in a wide variety of sensory tasks. The complexity of hair cell structure is large, and the diversity of hair cell applications in sensory systems exceeds that seen for most, if not all, sensory cell types. The intent of this review is to summarize the more significant structural features and some of the more interesting and important physiological mechanisms that have been elucidated thus far. Outside vertebrates, hair cells are only known to exist in the coronal organ of tunicates. Electrical resonance, electromotility, and their exquisite mechanical sensitivity all contribute to the attractiveness of hair cells as a research subject.
Collapse
|
14
|
Tompkins N, Spinelli KJ, Choi D, Barr-Gillespie PG. A Model for Link Pruning to Establish Correctly Polarized and Oriented Tip Links in Hair Bundles. Biophys J 2017; 113:1868-1881. [PMID: 29045880 DOI: 10.1016/j.bpj.2017.08.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/14/2017] [Accepted: 08/21/2017] [Indexed: 10/18/2022] Open
Abstract
Tip links are thought to gate the mechanically sensitive transduction channels of hair cells, but how they form during development and regeneration remains mysterious. In particular, it is unclear how tip links are strung between stereocilia so that they are oriented parallel to a single axis; why their polarity is uniform despite their constituent molecules' intrinsic asymmetry; and why only a single tip link is present at each tip-link position. We present here a series of simple rules that reasonably explain why these phenomena occur. In particular, our model relies on each of the two ends of the tip link having distinct Ca2+-dependent stability and being connected to different motor complexes. A simulation employing these rules allowed us to explore the parameter space for the model, demonstrating the importance of the feedback between transduction channels and angled links, links that are 60° off-axis with respect to mature tip links. We tested this key aspect of the model by examining angled links in chick cochlea hair cells. As implied by the assumptions used to generate the model, we found that angled links were stabilized if there was no tip link at the tip of the upper stereocilium, and appeared when transduction channels were blocked. The model thus plausibly explains how tip-link formation and pruning can occur.
Collapse
Affiliation(s)
- Nathan Tompkins
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, Oregon
| | - Kateri J Spinelli
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, Oregon
| | - Dongseok Choi
- School of Public Health, Oregon Health and Science University, Portland, Oregon; Graduate School of Dentistry, Kyung Hee University, Seoul, South Korea
| | - Peter G Barr-Gillespie
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, Oregon.
| |
Collapse
|
15
|
Fettiplace R. Hair Cell Transduction, Tuning, and Synaptic Transmission in the Mammalian Cochlea. Compr Physiol 2017; 7:1197-1227. [PMID: 28915323 DOI: 10.1002/cphy.c160049] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sound pressure fluctuations striking the ear are conveyed to the cochlea, where they vibrate the basilar membrane on which sit hair cells, the mechanoreceptors of the inner ear. Recordings of hair cell electrical responses have shown that they transduce sound via submicrometer deflections of their hair bundles, which are arrays of interconnected stereocilia containing the mechanoelectrical transducer (MET) channels. MET channels are activated by tension in extracellular tip links bridging adjacent stereocilia, and they can respond within microseconds to nanometer displacements of the bundle, facilitated by multiple processes of Ca2+-dependent adaptation. Studies of mouse mutants have produced much detail about the molecular organization of the stereocilia, the tip links and their attachment sites, and the MET channels localized to the lower end of each tip link. The mammalian cochlea contains two categories of hair cells. Inner hair cells relay acoustic information via multiple ribbon synapses that transmit rapidly without rundown. Outer hair cells are important for amplifying sound-evoked vibrations. The amplification mechanism primarily involves contractions of the outer hair cells, which are driven by changes in membrane potential and mediated by prestin, a motor protein in the outer hair cell lateral membrane. Different sound frequencies are separated along the cochlea, with each hair cell being tuned to a narrow frequency range; amplification sharpens the frequency resolution and augments sensitivity 100-fold around the cell's characteristic frequency. Genetic mutations and environmental factors such as acoustic overstimulation cause hearing loss through irreversible damage to the hair cells or degeneration of inner hair cell synapses. © 2017 American Physiological Society. Compr Physiol 7:1197-1227, 2017.
Collapse
Affiliation(s)
- Robert Fettiplace
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
16
|
|
17
|
Petralia RS, Wang YX, Mattson MP, Yao PJ. Invaginating Presynaptic Terminals in Neuromuscular Junctions, Photoreceptor Terminals, and Other Synapses of Animals. Neuromolecular Med 2017; 19:193-240. [PMID: 28612182 PMCID: PMC6518423 DOI: 10.1007/s12017-017-8445-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/01/2017] [Indexed: 10/19/2022]
Abstract
Typically, presynaptic terminals form a synapse directly on the surface of postsynaptic processes such as dendrite shafts and spines. However, some presynaptic terminals invaginate-entirely or partially-into postsynaptic processes. We survey these invaginating presynaptic terminals in all animals and describe several examples from the central nervous system, including giant fiber systems in invertebrates, and cup-shaped spines, electroreceptor synapses, and some specialized auditory and vestibular nerve terminals in vertebrates. We then examine mechanoreceptors and photoreceptors, concentrating on the complex of pre- and postsynaptic processes found in basal invaginations of the cell. We discuss in detail the role of vertebrate invaginating horizontal cell processes in both chemical and electrical feedback mechanisms. We also discuss the common presence of indenting or invaginating terminals in neuromuscular junctions on muscles of most kinds of animals, and especially discuss those of Drosophila and vertebrates. Finally, we consider broad questions about the advantages of possessing invaginating presynaptic terminals and describe some effects of aging and disease, especially on neuromuscular junctions. We suggest that the invagination is a mechanism that can enhance both chemical and electrical interactions at the synapse.
Collapse
Affiliation(s)
- Ronald S Petralia
- Advanced Imaging Core, NIDCD/NIH, 35A Center Drive, Room 1E614, Bethesda, MD, 20892-3729, USA.
| | - Ya-Xian Wang
- Advanced Imaging Core, NIDCD/NIH, 35A Center Drive, Room 1E614, Bethesda, MD, 20892-3729, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, NIA/NIH, Baltimore, MD, 21224, USA
| | - Pamela J Yao
- Laboratory of Neurosciences, NIA/NIH, Baltimore, MD, 21224, USA
| |
Collapse
|
18
|
Wnt9a Can Influence Cell Fates and Neural Connectivity across the Radial Axis of the Developing Cochlea. J Neurosci 2017; 37:8975-8988. [PMID: 28821654 DOI: 10.1523/jneurosci.1554-17.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/26/2017] [Accepted: 08/06/2017] [Indexed: 01/19/2023] Open
Abstract
Vertebrate hearing organs manifest cellular asymmetries across the radial axis that underlie afferent versus efferent circuits between the inner ear and the brain. Therefore, understanding the molecular control of patterning across this axis has important functional implications. Radial axis patterning begins before the cells become postmitotic and is likely linked to the onset of asymmetric expression of secreted factors adjacent to the sensory primordium. This study explores one such asymmetrically expressed gene, Wnt9a, which becomes restricted to the neural edge of the avian auditory organ, the basilar papilla, by embryonic day 5 (E5). Radial patterning is disrupted when Wnt9a is overexpressed throughout the prosensory domain beginning on E3. Sexes were pooled for analysis and sex differences were not studied. Analysis of gene expression and afferent innervation on E6 suggests that ectopic Wnt9a expands the neural-side fate, possibly by re-specifying the abneural fate. RNA sequencing reveals quantitative changes, not only in Wnt-pathway genes, but also in genes involved in axon guidance and cytoskeletal remodeling. By E18, these early patterning effects are manifest as profound changes in cell fates [short hair cells (HCs) are missing], ribbon synapse numbers, outward ionic currents, and efferent innervation. These observations suggest that Wnt9a may be one of the molecules responsible for breaking symmetry across the radial axis of the avian auditory organ. Indirectly, Wnt9a can regulate the mature phenotype whereby afferent axons predominantly innervate neural-side tall HCs, resulting in more ribbon synapses per HC compared with abneural-side short HCs with few ribbons and large efferent synapses.SIGNIFICANCE STATEMENT Wnts are a class of secreted factors that are best known for stimulating cell division in development and cancer. However, in certain contexts during development, Wnt-expressing cells can direct neighboring cells to take on specific fates. This study suggests that the Wnt9a ligand may play such a role in the developing hearing organ of the bird cochlea. This was shown through patterning defects that occur in response to the overexpression of Wnt9a. This manipulation increased one type of sensory hair cell (tall HCs) at the expense of another (short HCs) that is usually located furthest from the Wnt9a source. The extraneous tall HCs that replaced short HCs showed some physiological properties and neuronal connections consistent with a fate switch.
Collapse
|
19
|
Frolov D, Li GL. Probing electrical tuning of hair cells with a Zap current method in the intact amphibian papilla of bullfrogs. Synapse 2016; 71. [PMID: 27680688 DOI: 10.1002/syn.21942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 09/18/2016] [Accepted: 09/22/2016] [Indexed: 12/30/2022]
Abstract
Most, if not all, modern vertebrate species have evolved exquisite inner ears to discriminate acoustic signals of different frequencies, through a process called frequency tuning. For non-mammalian species, at least part of frequency tuning has been attributed to intrinsic electrical properties of hair cells, i.e. electrical tuning. Since it was first discovered, the traditional method to assess electrical tuning has been to inject step current into hair cells and examine dampened membrane voltage oscillation. However, this method is not applicable for hair cells that do not oscillate. In this study, we developed a Zap current method that can be unbiasedly applied to all hair cells regardless of their oscillating behavior. Similar to a chirp sound in acoustic stimulation, a Zap current is a sinusoidal current with the frequency increased linearly with time. We first validated this new method with the traditional step current method on hair cells with dampened membrane voltage oscillation, and then applied it to all hair cells in the intact amphibian papilla of bullfrogs. We found that while hair cells with dampened membrane voltage oscillation are sharply tuned, non-oscillating hair cells are broadly tuned. In addition, we found a third type of hair cells, which oscillate continuously and are extremely sharply tuned, with multiple peaks that are reminiscent of harmonics in the mammalian cochlea. In conclusion, the new Zap current method provides an unbiased way to assess electrical tuning, and it reveals an underappreciated heterogeneity of electrical tuning in the bullfrog amphibian papilla.
Collapse
Affiliation(s)
- Daniil Frolov
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, 611 N Pleasant St, Amherst, Massachusetts, 01003, USA
| | - Geng-Lin Li
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, 611 N Pleasant St, Amherst, Massachusetts, 01003, USA.,Biology Department, University of Massachusetts Amherst, 611 N Pleasant St, Amherst, Massachusetts, 01003, USA
| |
Collapse
|
20
|
Xia A, Liu X, Raphael PD, Applegate BE, Oghalai JS. Hair cell force generation does not amplify or tune vibrations within the chicken basilar papilla. Nat Commun 2016; 7:13133. [PMID: 27796310 PMCID: PMC5095595 DOI: 10.1038/ncomms13133] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 09/07/2016] [Indexed: 12/22/2022] Open
Abstract
Frequency tuning within the auditory papilla of most non-mammalian species is electrical, deriving from ion-channel resonance within their sensory hair cells. In contrast, tuning within the mammalian cochlea is mechanical, stemming from active mechanisms within outer hair cells that amplify the basilar membrane travelling wave. Interestingly, hair cells in the avian basilar papilla demonstrate both electrical resonance and force-generation, making it unclear which mechanism creates sharp frequency tuning. Here, we measured sound-induced vibrations within the apical half of the chicken basilar papilla in vivo and found broadly-tuned travelling waves that were not amplified. However, distortion products were found in live but not dead chickens. These findings support the idea that avian hair cells do produce force, but that their effects on vibration are small and do not sharpen tuning. Therefore, frequency tuning within the apical avian basilar papilla is not mechanical, and likely derives from hair cell electrical resonance. The avian auditory papilla has many similarities to the mammalian cochlea but whether force generation by hair cells amplifies the travelling wave, as it does in mammals, remains unknown. Here the authors show that the chicken basilar papilla does not have a ‘cochlear amplifier' and that sharp frequency tuning does not derive from mechanical vibrations.
Collapse
Affiliation(s)
- Anping Xia
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, California 94305, USA
| | - Xiaofang Liu
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, California 94305, USA.,Department of Anorectal Surgery, the First Affiliated hospital of China Medical University, 155 NanjingBei Street, ShenYang, LiaoNing Province 110001, China
| | - Patrick D Raphael
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, California 94305, USA
| | - Brian E Applegate
- Department of Biomedical Engineering, Texas A&M University, 5059 Emerging Technology Building, 3120 TAMU, College Station, Texas 77843, USA
| | - John S Oghalai
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, California 94305, USA
| |
Collapse
|
21
|
Im GJ, Moskowitz HS, Lehar M, Hiel H, Fuchs PA. Synaptic calcium regulation in hair cells of the chicken basilar papilla. J Neurosci 2014; 34:16688-97. [PMID: 25505321 PMCID: PMC4261095 DOI: 10.1523/jneurosci.2615-14.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/26/2014] [Accepted: 10/30/2014] [Indexed: 11/21/2022] Open
Abstract
Cholinergic inhibition of hair cells occurs by activation of calcium-dependent potassium channels. A near-membrane postsynaptic cistern has been proposed to serve as a store from which calcium is released to supplement influx through the ionotropic ACh receptor. However, the time and voltage dependence of acetylcholine (ACh)-evoked potassium currents reveal a more complex relationship between calcium entry and release from stores. The present work uses voltage steps to regulate calcium influx during the application of ACh to hair cells in the chicken basilar papilla. When calcium influx was terminated at positive membrane potential, the ACh-evoked potassium current decayed exponentially over ∼100 ms. However, at negative membrane potentials, this current exhibited a secondary rise in amplitude that could be eliminated by dihydropyridine block of the voltage-gated calcium channels of the hair cell. Calcium entering through voltage-gated channels may transit through the postsynaptic cistern, since ryanodine and sarcoendoplasmic reticulum calcium-ATPase blockers altered the time course and magnitude of this secondary, voltage-dependent contribution to ACh-evoked potassium current. Serial section electron microscopy showed that efferent and afferent synaptic structures are juxtaposed, supporting the possibility that voltage-gated influx at afferent ribbon synapses influences calcium homeostasis during long-lasting cholinergic inhibition. In contrast, spontaneous postsynaptic currents ("minis") resulting from stochastic efferent release of ACh were made briefer by ryanodine, supporting the hypothesis that the synaptic cistern serves primarily as a calcium barrier and sink during low-level synaptic activity. Hypolemmal cisterns such as that at the efferent synapse of the hair cell can play a dynamic role in segregating near-membrane calcium for short-term and long-term signaling.
Collapse
Affiliation(s)
- Gi Jung Im
- The Center for Hearing and Balance, Department of Otolaryngology-Head and Neck Surgery, and the Center for Sensory Biology, the Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Howard S Moskowitz
- The Center for Hearing and Balance, Department of Otolaryngology-Head and Neck Surgery, and the Center for Sensory Biology, the Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Mohammed Lehar
- The Center for Hearing and Balance, Department of Otolaryngology-Head and Neck Surgery, and the Center for Sensory Biology, the Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Hakim Hiel
- The Center for Hearing and Balance, Department of Otolaryngology-Head and Neck Surgery, and the Center for Sensory Biology, the Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Paul Albert Fuchs
- The Center for Hearing and Balance, Department of Otolaryngology-Head and Neck Surgery, and the Center for Sensory Biology, the Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
22
|
Reverse correlation analysis of auditory-nerve fiber responses to broadband noise in a bird, the barn owl. J Assoc Res Otolaryngol 2014; 16:101-19. [PMID: 25315358 DOI: 10.1007/s10162-014-0494-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 09/24/2014] [Indexed: 10/24/2022] Open
Abstract
While the barn owl has been extensively used as a model for sound localization and temporal coding, less is known about the mechanisms at its sensory organ, the basilar papilla (homologous to the mammalian cochlea). In this paper, we characterize, for the first time in the avian system, the auditory nerve fiber responses to broadband noise using reverse correlation. We use the derived impulse responses to study the processing of sounds in the cochlea of the barn owl. We characterize the frequency tuning, phase, instantaneous frequency, and relationship to input level of impulse responses. We show that, even features as complex as the phase dependence on input level, can still be consistent with simple linear filtering. Where possible, we compare our results with mammalian data. We identify salient differences between the barn owl and mammals, e.g., a much smaller frequency glide slope and a bimodal impulse response for the barn owl, and discuss what they might indicate about cochlear mechanics. While important for research on the avian auditory system, the results from this paper also allow us to examine hypotheses put forward for the mammalian cochlea.
Collapse
|
23
|
Fettiplace R, Kim KX. The physiology of mechanoelectrical transduction channels in hearing. Physiol Rev 2014; 94:951-86. [PMID: 24987009 DOI: 10.1152/physrev.00038.2013] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Much is known about the mechanotransducer (MT) channels mediating transduction in hair cells of the vertrbrate inner ear. With the use of isolated preparations, it is experimentally feasible to deliver precise mechanical stimuli to individual cells and record the ensuing transducer currents. This approach has shown that small (1-100 nm) deflections of the hair-cell stereociliary bundle are transmitted via interciliary tip links to open MT channels at the tops of the stereocilia. These channels are cation-permeable with a high selectivity for Ca(2+); two channels are thought to be localized at the lower end of the tip link, each with a large single-channel conductance that increases from the low- to high-frequency end of the cochlea. Ca(2+) influx through open channels regulates their resting open probability, which may contribute to setting the hair cell resting potential in vivo. Ca(2+) also controls transducer fast adaptation and force generation by the hair bundle, the two coupled processes increasing in speed from cochlear apex to base. The molecular intricacy of the stereocilary bundle and the transduction apparatus is reflected by the large number of single-gene mutations that are linked to sensorineural deafness, especially those in Usher syndrome. Studies of such mutants have led to the discovery of many of the molecules of the transduction complex, including the tip link and its attachments to the stereociliary core. However, the MT channel protein is still not firmly identified, nor is it known whether the channel is activated by force delivered through accessory proteins or by deformation of the lipid bilayer.
Collapse
Affiliation(s)
- Robert Fettiplace
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kyunghee X Kim
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
24
|
A gradient of Bmp7 specifies the tonotopic axis in the developing inner ear. Nat Commun 2014; 5:3839. [PMID: 24845721 PMCID: PMC4264580 DOI: 10.1038/ncomms4839] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 04/08/2014] [Indexed: 11/09/2022] Open
Abstract
The auditory systems of animals that perceive sounds in air are organized to separate sound stimuli into their component frequencies. Individual tones then stimulate mechanosensory hair cells located at different positions on an elongated frequency (tonotopic) axis. During development, immature hair cells located along the axis must determine their tonotopic position in order to generate frequency-specific characteristics. Expression profiling along the developing tonotopic axis of the chick basilar papilla (BP) identified a gradient of Bmp7. Disruption of that gradient in vitro or in ovo induces changes in hair cell morphologies consistent with a loss of tonotopic organization and the formation of an organ with uniform frequency characteristics. Further, the effects of Bmp7 in determination of positional identity are shown to be mediated through activation of the Mapk, Tak1. These results indicate that graded, Bmp7-dependent, activation of Tak1 signalling controls the determination of frequency-specific hair cell characteristics along the tonotopic axis.
Collapse
|
25
|
A prestin motor in chicken auditory hair cells: active force generation in a nonmammalian species. Neuron 2013; 79:69-81. [PMID: 23746629 DOI: 10.1016/j.neuron.2013.05.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2013] [Indexed: 12/19/2022]
Abstract
Active force generation by outer hair cells (OHCs) underlies amplification and frequency tuning in the mammalian cochlea but whether such a process exists in nonmammals is unclear. Here, we demonstrate that hair cells of the chicken auditory papilla possess an electromechanical force generator in addition to active hair bundle motion due to mechanotransducer channel gating. The properties of the force generator, its voltage dependence and susceptibility to salicylate, as well as an associated chloride-sensitive nonlinear capacitance, suggest involvement of the chicken homolog of prestin, the OHC motor protein. The presence of chicken prestin in the hair cell lateral membrane was confirmed by immunolabeling studies. The hair bundle and prestin motors together create sufficient force to produce fast lateral displacements of the tectorial membrane. Our results imply that the first use of prestin as a motor protein occurred early in amniote evolution and was not a mammalian invention as is usually supposed.
Collapse
|