1
|
Lee EY, Kim J, Prado-Rico JM, Du G, Lewis MM, Kong L, Kim BG, Hong YS, Yanosky JD, Mailman RB, Huang X. Higher hippocampal diffusivity values in welders are associated with greater R2* in the red nucleus and lower psychomotor performance. Neurotoxicology 2023; 96:53-68. [PMID: 36966945 PMCID: PMC10445214 DOI: 10.1016/j.neuro.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/17/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023]
Abstract
INTRODUCTION Chronic excessive welding exposure may be related to higher metal accumulation and structural differences in different subcortical structures. We examined how welding affected brain structures and their associations with metal exposure and neurobehavioral consequences. METHODS Study includes 42 welders and 31 controls without a welding history. Welding-related structural differences were assessed by volume and diffusion tensor imaging (DTI) metrics in basal ganglia, red nucleus (RN), and hippocampus. Metal exposure was estimated by both exposure questionnaires and whole blood metal levels. Brain metal accumulations were estimated by R1 (for Mn) and R2* (for Fe). Neurobehavioral status was assessed by standard neuropsychological tests. RESULTS Compared to controls, welders displayed higher hippocampal mean (MD), axial (AD), and radial diffusivity (RD) (p's < 0.036), but similar DTI or volume in other ROIs (p's > 0.117). Welders had higher blood metal levels (p's < 0.004), higher caudate and RN R2* (p's < 0.014), and lower performance on processing/psychomotor speed, executive function, and visuospatial processing tasks (p's < 0.046). Higher caudate and RN R2* were associated with higher blood Fe and Pb (p's < 0.043), respectively. RN R2* was a significant predictor of all hippocampal diffusivity metrics (p's < 0.006). Higher hippocampal MD and RD values were associated with lower Trail Making Test-A scores (p's < 0.025). A mediation analysis of both groups revealed blood Pb indirectly affected hippocampal diffusivity via RN R2* (p's < 0.041). DISCUSSION Welding-related higher hippocampal diffusivity metrics may be associated with higher RN R2* and lower psychomotor speed performance. Future studies are warranted to test the role of Pb exposure in these findings.
Collapse
Affiliation(s)
- Eun-Young Lee
- Department of Health Care and Science, Dong-A University, Busan, South Korea.
| | - Juhee Kim
- Department of Health Care and Science, Dong-A University, Busan, South Korea
| | - Janina Manzieri Prado-Rico
- Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Guangwei Du
- Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Mechelle M Lewis
- Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Department of Pharmacology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Lan Kong
- Department of Public Health Sciences, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Byoung-Gwon Kim
- Department of Preventive Medicine, College of Medicine, Dong-A University, Busan, South Korea
| | - Young-Seoub Hong
- Department of Preventive Medicine, College of Medicine, Dong-A University, Busan, South Korea
| | - Jeff D Yanosky
- Department of Public Health Sciences, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Richard B Mailman
- Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Department of Pharmacology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Xuemei Huang
- Department of Neurology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Department of Pharmacology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Department of Radiology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Department of Neurosurgery, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA; Department of Kinesiology, Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, PA 17033, USA.
| |
Collapse
|
2
|
Del Rio-Bermudez C, Blumberg MS. Sleep as a window on the sensorimotor foundations of the developing hippocampus. Hippocampus 2022; 32:89-97. [PMID: 33945190 PMCID: PMC9118132 DOI: 10.1002/hipo.23334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/21/2021] [Indexed: 02/03/2023]
Abstract
The hippocampal formation plays established roles in learning, memory, and related cognitive functions. Recent findings also suggest that the hippocampus integrates sensory feedback from self-generated movements to modulate ongoing motor responses in a changing environment. Such findings support the view of Bland and Oddie (Behavioural Brain Research, 2001, 127, 119-136) that the hippocampus is a site of sensorimotor integration. In further support of this view, we review neurophysiological evidence in developing rats that hippocampal function is built on a sensorimotor foundation and that this foundation is especially evident early in development. Moreover, at those ages when the hippocampus is first establishing functional connectivity with distant sensory and motor structures, that connectivity is preferentially expressed during periods of active (or REM) sleep. These findings reinforce the notion that sleep, as the predominant state of early infancy, provides a critical context for sensorimotor development, including development of the hippocampus and its associated network.
Collapse
Affiliation(s)
| | - Mark S Blumberg
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa, USA.,Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
3
|
The Role of the Posterior Hypothalamus in the Modulation and Production of Rhythmic Theta Oscillations. Neuroscience 2021; 470:100-115. [PMID: 34271089 DOI: 10.1016/j.neuroscience.2021.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/18/2021] [Accepted: 07/05/2021] [Indexed: 11/24/2022]
Abstract
Theta rhythm recorded as an extracellular synchronous field potential is generated in a number of brain sites including the hippocampus. The physiological occurrence of hippocampal theta rhythm is associated with the activation of a number of structures forming the ascending brainstem-hippocampal synchronizing pathway. Experimental evidence indicates that the supramammillary nucleus and posterior hypothalamic nuclei, considered as the posterior hypothalamic area, comprise a critical node of this ascending pathway. The posterior hypothalamic area plays an important role in movement control, place-learning, memory processing, emotion and arousal. In the light of multiplicity of functions of the posterior hypothalamic area and the influence of theta field oscillations on a number of neural processes, it is the authors' intent to summarize the data concerning the involvement of the supramammillary nucleus and posterior hypothalamic nuclei in the modulation of limbic theta rhythmicity as well as the ability of these brain structures to independently generate theta rhythmicity.
Collapse
|
4
|
Astragaloside IV improves neurobehavior and promotes hippocampal neurogenesis in MCAO rats though BDNF-TrkB signaling pathway. Biomed Pharmacother 2020; 130:110353. [PMID: 32682983 DOI: 10.1016/j.biopha.2020.110353] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
Astragaloside IV (AST) as the main active ingredient of Astragalus membranaceus. Clinical and laboratory-based studies have demonstrated the effects of AST on cerebral protection and angiogenesis after ischemia stroke. In addition, several reports investigated the effect of AST on proliferation of neural stem cells. The current study was aimed to evaluate the influence of AST on neurogenesis in hippocampal dentate gyrus (DG) of MCAO rats and to explore the possible mechanisms. In this study, the neurobehavioral tests (Ludmila Belayev 12-point scoring, Screen test, fore limb placing test) had been employed to investigate the effect of AST treatment against functional deficit of MCAO rats. The immunofluorescence staining, western-blot and qRT-PCR was performed to evaluate the effects of AST on proliferation, differentiation and maturity of neural stemr cells in hippocampus. Moreover, we investigated the possible mechanism of the AST treatment in promoting neurogenesis after ischemic stroke. The findings indicated that AST treatment ameliorated the neurobehavior of MCAO rats. The results indicated that AST treatment possessed the potential to improve proprioceptive sense and motor function of MCAO rats. AST treatment sustained neuronal viability and stimulates sensorimotor integration functional recovery in MCAO rats. The results suggested that AST improved neurobehavior deficit after ischemic stroke. Furthermore, AST promoted neurogenesis through upregulating the expressing of BNDF/TrkB signaling pathway. Therefore AST might be a promising therapeutic agent for ischemic stroke.
Collapse
|
5
|
Abstract
Given the prevalence of sleep in early development, any satisfactory account of infant brain activity must consider what happens during sleep. Only recently, however, has it become possible to record sleep-related brain activity in newborn rodents. Using such methods in rat pups, it is now clear that sleep, more so than wake, provides a critical context for the processing of sensory input and the expression of functional connectivity throughout the sensorimotor system. In addition, sleep uniquely reveals functional activity in the developing primary motor cortex, which establishes a somatosensory map long before its role in motor control emerges. These findings will inform our understanding of the developmental processes that contribute to the nascent sense of embodiment in human infants.
Collapse
|
6
|
Del Rio-Bermudez C, Kim J, Sokoloff G, Blumberg MS. Theta Oscillations during Active Sleep Synchronize the Developing Rubro-Hippocampal Sensorimotor Network. Curr Biol 2017; 27:1413-1424.e4. [PMID: 28479324 DOI: 10.1016/j.cub.2017.03.077] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/02/2017] [Accepted: 03/29/2017] [Indexed: 12/15/2022]
Abstract
Neuronal oscillations comprise a fundamental mechanism by which distant neural structures establish and express functional connectivity. Long-range functional connectivity between the hippocampus and other forebrain structures is enabled by theta oscillations. Here, we show for the first time that the infant rat red nucleus (RN)-a brainstem sensorimotor structure-exhibits theta (4-7 Hz) oscillations restricted primarily to periods of active (REM) sleep. At postnatal day 8 (P8), theta is expressed as brief bursts immediately following myoclonic twitches; by P12, theta oscillations are expressed continuously across bouts of active sleep. Simultaneous recordings from the hippocampus and RN at P12 show that theta oscillations in both structures are coherent, co-modulated, and mutually interactive during active sleep. Critically, at P12, inactivation of the medial septum eliminates theta in both structures. The developmental emergence of theta-dependent functional coupling between the hippocampus and RN parallels that between the hippocampus and prefrontal cortex. Accordingly, disruptions in the early expression of theta could underlie the cognitive and sensorimotor deficits associated with neurodevelopmental disorders such as autism and schizophrenia.
Collapse
Affiliation(s)
- Carlos Del Rio-Bermudez
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA; DeLTA Center, University of Iowa, Iowa City, IA 52242, USA
| | - Jangjin Kim
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Greta Sokoloff
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA; DeLTA Center, University of Iowa, Iowa City, IA 52242, USA
| | - Mark S Blumberg
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, USA; Department of Biology, University of Iowa, Iowa City, IA 52242, USA; DeLTA Center, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
7
|
Distribution of cellular HSV-1 receptor expression in human brain. J Neurovirol 2016; 23:376-384. [PMID: 27981441 PMCID: PMC5440480 DOI: 10.1007/s13365-016-0504-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/23/2016] [Accepted: 12/01/2016] [Indexed: 12/18/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) is a neurotropic virus linked to a range of acute and chronic neurological disorders affecting distinct regions of the brain. Unusually, HSV-1 entry into cells requires the interaction of viral proteins glycoprotein D (gD) and glycoprotein B (gB) with distinct cellular receptor proteins. Several different gD and gB receptors have been identified, including TNFRSF14/HVEM and PVRL1/nectin 1 as gD receptors and PILRA, MAG, and MYH9 as gB receptors. We investigated the expression of these receptor molecules in different areas of the adult and developing human brain using online transcriptome databases. Whereas all HSV-1 receptors showed distinct expression patterns in different brain areas, the Allan Brain Atlas (ABA) reported increased expression of both gD and gB receptors in the hippocampus. Specifically, for PVRL1, TNFRFS14, and MYH9, the differential z scores for hippocampal expression, a measure of relative levels of increased expression, rose to 2.9, 2.9, and 2.5, respectively, comparable to the z score for the archetypical hippocampus-enriched mineralocorticoid receptor (NR3C2, z = 3.1). These data were confirmed at the Human Brain Transcriptome (HBT) database, but HBT data indicate that MAG expression is also enriched in hippocampus. The HBT database allowed the developmental pattern of expression to be investigated; we report that all HSV1 receptors markedly increase in expression levels between gestation and the postnatal/adult periods. These results suggest that differential receptor expression levels of several HSV-1 gD and gB receptors in the adult hippocampus are likely to underlie the susceptibility of this brain region to HSV-1 infection.
Collapse
|
8
|
The hippocampus participates in the control of locomotion speed. Neuroscience 2015; 311:207-15. [PMID: 26597762 DOI: 10.1016/j.neuroscience.2015.10.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/30/2015] [Accepted: 10/20/2015] [Indexed: 12/25/2022]
Abstract
The hippocampus role in sensory-motor integration remains unclear. In these experiments we study its function in the locomotor control. To establish the connection between the hippocampus and the locomotor system, electrical stimulation in the CA1 region was applied and EMG recordings were obtained. We also evaluated the hindlimbs and forelimbs kinematic patterns in rats with a penetrating injury (PI) in the hippocampus as well as in a cortex-injured group (CI), which served as control. After the PI, tamoxifen a selective estrogen receptor modulator (SERM) that has been described as a neuroprotector and antiinflammatory drug, or vehicle was administered. Electrical stimulation in the hippocampus produces muscle contractions in the contralateral triceps, when 6 Hz or 8 Hz pulse trains were applied. The penetrating injury in the hippocampus reduced the EMG amplitude after the electrical stimulation. At 7 DPI (days post-injury) we observed an increase in the strides speed in all four limbs of the non-treated group, decreasing the correlation percentage of the studied joints. After 15 DPI the strides speed in the non-treated returned to normal. These changes did not occur in the tamoxifen group nor in cortex-injured group. After 30 days, the nontreated group presented a reduction in the number of pyramidal cell layer neurons at the injury site, in comparison to the tam-treated group. The loss of neurons, may cause the interruption of the trisynaptic circuit and changes in the locomotion speed. Tamoxifen preserves the pyramidal neurons after the injury, probably resulting in the strides speed recovery.
Collapse
|
9
|
Abstract
Sensory feedback from sleep-related myoclonic twitches is thought to drive activity-dependent development in spinal cord and brain. However, little is known about the neural pathways involved in the generation of twitches early in development. The red nucleus (RN), source of the rubrospinal tract, has been implicated in the production of phasic motor activity during active sleep in adults. Here we hypothesized that the RN is also a major source of motor output for twitching in early infancy, a period when twitching is an especially abundant motor behavior. We recorded extracellular neural activity in the RN during sleep and wakefulness in 1-week-old unanesthetized rats. Neurons in the RN fired phasically before twitching and wake movements of the contralateral forelimb. A subpopulation of neurons in the RN exhibited a significant peak of activity after forelimb movement onset, suggesting reafferent sensory processing. Consistent with this observation, manual stimulation of the forelimb evoked RN responses. Unilateral inactivation of the RN using a mixture comprising GABAA, GABAB, and glycine receptor agonists caused an immediate and temporary increase in motor activity followed by a marked and prolonged decrease in twitching and wake movements. Altogether, these data support a causal role for the RN in infant motor behavior. Furthermore, they indicate that twitching, which is characterized by discrete motor output and reafferent input, provides an opportunity for sensorimotor integration and activity-dependent development of topography within the newborn RN.
Collapse
|
10
|
Konopacki J, Bocian R, Kowalczyk T, Kłos-Wojtczak P. The electrical coupling and the hippocampal formation theta rhythm in rats. Brain Res Bull 2014; 107:1-17. [PMID: 24747291 DOI: 10.1016/j.brainresbull.2014.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/03/2014] [Accepted: 04/08/2014] [Indexed: 02/05/2023]
Abstract
Gap junctions (GJs) were discovered more than five decades ago, and since that time enormous strides have been made in understanding their structure and function. Despite the voluminous literature concerning the function of GJs, the involvement of these membrane structures in the central mechanisms underlying oscillations and synchrony in the neuronal network is still a matter of intensive debate. This review summarizes what is known concerning the involvement of GJs as electrical synapses in mechanisms underlying the generation of theta band oscillations. The first part of the chapter discusses the role of GJs in mechanisms of oscillations and synchrony. Following this, in vitro, ex vivo, and in vivo experiments concerning the involvement of GJs in the generation of hippocampal formation theta in rats are reviewed.
Collapse
Affiliation(s)
- Jan Konopacki
- Department of Neurobiology, The University of Lodz, Poland.
| | - Renata Bocian
- Department of Neurobiology, The University of Lodz, Poland
| | | | | |
Collapse
|
11
|
Schulte T, Oberlin BG, Kareken DA, Marinkovic K, Müller-Oehring EM, Meyerhoff DJ, Tapert S. How acute and chronic alcohol consumption affects brain networks: insights from multimodal neuroimaging. Alcohol Clin Exp Res 2012; 36:2017-27. [PMID: 22577873 DOI: 10.1111/j.1530-0277.2012.01831.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 03/13/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND Multimodal imaging combining 2 or more techniques is becoming increasingly important because no single imaging approach has the capacity to elucidate all clinically relevant characteristics of a network. METHODS This review highlights recent advances in multimodal neuroimaging (i.e., combined use and interpretation of data collected through magnetic resonance imaging [MRI], functional MRI, diffusion tensor imaging, positron emission tomography, magnetoencephalography, MR perfusion, and MR spectroscopy methods) that leads to a more comprehensive understanding of how acute and chronic alcohol consumption affect neural networks underlying cognition, emotion, reward processing, and drinking behavior. RESULTS Several innovative investigators have started utilizing multiple imaging approaches within the same individual to better understand how alcohol influences brain systems, both during intoxication and after years of chronic heavy use. CONCLUSIONS Their findings can help identify mechanism-based therapeutic and pharmacological treatment options, and they may increase the efficacy and cost effectiveness of such treatments by predicting those at greatest risk for relapse.
Collapse
Affiliation(s)
- Tilman Schulte
- Neuroscience Program, Center of Health Sciences, SRI International, Menlo Park, CA 94025, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Orzeł-Gryglewska J, Kuśmierczak M, Majkutewicz I, Jurkowlaniec E. Induction of hippocampal theta rhythm by electrical stimulation of the ventral tegmental area and its loss after septum inactivation. Brain Res 2012; 1436:51-67. [DOI: 10.1016/j.brainres.2011.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 11/29/2011] [Accepted: 12/01/2011] [Indexed: 01/28/2023]
|
13
|
Schulte T, Müller-Oehring E, Sullivan E, Pfefferbaum A. Synchrony of corticostriatal-midbrain activation enables normal inhibitory control and conflict processing in recovering alcoholic men. Biol Psychiatry 2012; 71:269-78. [PMID: 22137506 PMCID: PMC3253929 DOI: 10.1016/j.biopsych.2011.10.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 09/28/2011] [Accepted: 10/18/2011] [Indexed: 10/14/2022]
Abstract
BACKGROUND Alcohol dependence is associated with inhibitory control deficits, possibly related to abnormalities in frontoparietal cortical and midbrain function and connectivity. METHODS We examined functional connectivity and microstructural fiber integrity between frontoparietal and midbrain structures using a Stroop Match-to-Sample task with functional magnetic resonance imaging and diffusion tensor imaging in 18 alcoholic and 17 control subjects. Manipulation of color cues and response repetition sequences modulated cognitive demands during Stroop conflict. RESULTS Despite similar lateral frontoparietal activity and functional connectivity in alcoholic and control subjects when processing conflict, control subjects deactivated the posterior cingulate cortex (PCC), whereas alcoholic subjects did not. Posterior cingulum fiber integrity predicted the degree of PCC deactivation in control but not alcoholic subjects. Also, PCC activity was modulated by executive control demands: activated during response switching and deactivated during response repetition. Alcoholics showed the opposite pattern: activation during repetition and deactivation during switching. Here, in alcoholic subjects, greater deviations from the normal PCC activity correlated with higher amounts of lifetime alcohol consumption. A functional dissociation of brain network connectivity between the groups further showed that control subjects exhibited greater corticocortical connectivity among middle cingulate, posterior cingulate, and medial prefrontal cortices than alcoholic subjects. In contrast, alcoholic subjects exhibited greater midbrain-orbitofrontal cortical network connectivity than control subjects. Degree of microstructural fiber integrity predicted robustness of functional connectivity. CONCLUSIONS Thus, even subtle compromise of microstructural connectivity in alcoholism can influence modulation of functional connectivity and underlie alcohol-related cognitive impairment.
Collapse
Affiliation(s)
- T. Schulte
- Neuroscience Program, SRI International, Menlo Park, CA 94025, USA
| | - E.M. Müller-Oehring
- Neuroscience Program, SRI International, Menlo Park, CA 94025, USA,Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Stanford, CA 94305, USA
| | - E.V. Sullivan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Stanford, CA 94305, USA
| | - A. Pfefferbaum
- Neuroscience Program, SRI International, Menlo Park, CA 94025, USA,Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Stanford, CA 94305, USA
| |
Collapse
|
14
|
Scheidt RA, Zimbelman JL, Salowitz NMG, Suminski AJ, Mosier KM, Houk J, Simo L. Remembering forward: neural correlates of memory and prediction in human motor adaptation. Neuroimage 2011; 59:582-600. [PMID: 21840405 DOI: 10.1016/j.neuroimage.2011.07.072] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 07/22/2011] [Accepted: 07/23/2011] [Indexed: 12/24/2022] Open
Abstract
We used functional MR imaging (FMRI), a robotic manipulandum and systems identification techniques to examine neural correlates of predictive compensation for spring-like loads during goal-directed wrist movements in neurologically-intact humans. Although load changed unpredictably from one trial to the next, subjects nevertheless used sensorimotor memories from recent movements to predict and compensate upcoming loads. Prediction enabled subjects to adapt performance so that the task was accomplished with minimum effort. Population analyses of functional images revealed a distributed, bilateral network of cortical and subcortical activity supporting predictive load compensation during visual target capture. Cortical regions--including prefrontal, parietal and hippocampal cortices--exhibited trial-by-trial fluctuations in BOLD signal consistent with the storage and recall of sensorimotor memories or "states" important for spatial working memory. Bilateral activations in associative regions of the striatum demonstrated temporal correlation with the magnitude of kinematic performance error (a signal that could drive reward-optimizing reinforcement learning and the prospective scaling of previously learned motor programs). BOLD signal correlations with load prediction were observed in the cerebellar cortex and red nuclei (consistent with the idea that these structures generate adaptive fusimotor signals facilitating cancelation of expected proprioceptive feedback, as required for conditional feedback adjustments to ongoing motor commands and feedback error learning). Analysis of single subject images revealed that predictive activity was at least as likely to be observed in more than one of these neural systems as in just one. We conclude therefore that motor adaptation is mediated by predictive compensations supported by multiple, distributed, cortical and subcortical structures.
Collapse
Affiliation(s)
- Robert A Scheidt
- Department of Biomedical Engineering, Marquette University, Milwaukee, WI 53201-1881, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Wang ZL, Cheng SM, Ma MM, Ma YP, Yang JP, Xu GL, Liu XF. Intranasally delivered bFGF enhances neurogenesis in adult rats following cerebral ischemia. Neurosci Lett 2008; 446:30-5. [PMID: 18822350 DOI: 10.1016/j.neulet.2008.09.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 08/19/2008] [Accepted: 09/10/2008] [Indexed: 11/25/2022]
Abstract
Basic fibroblast growth factor (bFGF) is a very important mitogenic factor with proved neurogenesis effects in the central nervous system. Intranasal administration can bypass blood-brain barrier and deliver drugs into the brain directly. We investigated whether intranasal administration of bFGF at later time points after ischemia could promote adult neurogenesis and improve neurologic functions. Rats received bFGF or saline intranasally once daily for 6 consecutive days, starting at 1 day after transient middle cerebral artery occlusion (MCAO). Bromodeoxyuridine (BrdU) was injected at 5 and 6 days after MCAO. Rats were killed at 7 or 28 days after MCAO. Neurogenesis was assessed by immunostaining for BrdU and cell type-specific markers. Neurological functions were evaluated by the modified Neurological Severity Scores. Compared with the control animals, intranasal administration of bFGF improved behavioral recovery without affecting infarct size, and enhanced proliferation of progenitor cells in the subventricular zone and the subgranular zone of the dentate gyrus (DG). Furthermore, the new proliferated cells could differentiate into neurons (BrdU+NeuN+ cells) in the striatum and DG at 28 days after MCAO. Intranasal administration of bFGF offers a non-invasive alternative for the treatment of stroke.
Collapse
Affiliation(s)
- Zhao-Lu Wang
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, 305# East Zhongshan Road, Nanjing 210002, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Schäbitz WR, Steigleder T, Cooper-Kuhn CM, Schwab S, Sommer C, Schneider A, Kuhn HG. Intravenous brain-derived neurotrophic factor enhances poststroke sensorimotor recovery and stimulates neurogenesis. Stroke 2007; 38:2165-72. [PMID: 17510456 DOI: 10.1161/strokeaha.106.477331] [Citation(s) in RCA: 327] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE The discovery of spontaneous neuronal replacement in the adult brain has shifted experimental stroke therapies toward a combined approach of preventing neuronal cell death and inducing neuronal plasticity. Brain-derived neurotrophic factor (BDNF) was shown to induce antiapoptotic mechanisms after stroke and to reduce infarct size and secondary neuronal cell death. Moreover, in intact animals, BDNF is a potent stimulator of adult neurogenesis. METHODS The current study analyzed the effects of BDNF on induction of neuronal progenitor cell migration and sensorimotor recovery after cortical photothrombotic stroke. RESULTS Daily intravenous bolus applications of BDNF during the first 5 days after stroke resulted in significantly improved sensorimotor scores up to 6 weeks. At the structural level, BDNF significantly increased neurogenesis in the dentate gyrus and enhanced migration of subventricular zone progenitor cells to the nearby striatum of the ischemic hemisphere. BDNF treatment could not, however, further stimulate progenitor cell recruitment to the cortex. CONCLUSIONS These findings consolidate the role of BDNF as a modulator of neurogenesis in the brain and as an enhancer of long-term functional neurological outcome after cerebral ischemia.
Collapse
|
17
|
Williams JHG, Whiten A, Waiter GD, Pechey S, Perrett DI. Cortical and subcortical mechanisms at the core of imitation. Soc Neurosci 2007; 2:66-78. [DOI: 10.1080/17470910701268059] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Chiocchetti R, Bombardi C, Grandis A, Mazzuoli G, Gentile A, Pisoni L, Joechler M, Lucchi ML. Cytoarchitecture, morphology, and lumbosacral spinal cord projections of the red nucleus in cattle. Am J Vet Res 2006; 67:1662-9. [PMID: 17014313 DOI: 10.2460/ajvr.67.10.1662] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To analyze the morphology, cytoarchitecture, and lumbosacral spinal cord projections of the red nucleus (RN) in cattle. ANIMALS 8 healthy Friesian male calves. PROCEDURES Anesthetized calves underwent a dorsal laminectomy at L5. Eight bilateral injections (lateral to the midline) of the neuronal retrograde fluorescent tracer fast blue (FB) were administered into the exposed lumbosacral portion of the spinal cord. A postsurgical calf survival time of 38 to 55 days was used. Following euthanasia, the midbrain and the L5-S2 spinal cord segments were removed. Nissl's method of staining was applied on paraffin-embedded and frozen sections of the midbrain. RESULTS The mean length of the RN from the caudal to cranial end ranged from 6,680 to 8,640 microm. The magnocellular and parvicellular components of the RN were intermixed throughout the nucleus, but the former predominate at the caudal portion of the nucleus and the latter at the cranial portion with a gradual transitional zone. The FB-labeled neurons were found along the entire craniocaudal extension of the nucleus, mainly in its ventrolateral part. The number of FB-labeled neurons was determined in 4 calves, ranging from 191 to 1,469 (mean, 465). The mean cross-sectional area of the FB-labeled neurons was approximately 1,680 microm2. CONCLUSIONS AND CLINICAL RELEVANCE In cattle, small, medium, and large RN neurons, located along the entire craniocaudal extension of the RN, contribute to the rubrospinal tract reaching the L6-S1 spinal cord segments. Thus, in cattle, as has been shown in cats, the RN parvicellular population also projects to the spinal cord.
Collapse
Affiliation(s)
- Roberto Chiocchetti
- Department of Veterinary Morphophysiology and Animal Productions, University of Bologna, 40064 Ozzano dell'Emilia, Bologna, Italy
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Konopacki J, Eckersdorf B, Kowalczyk T, Gołebiewski H. Firing cell repertoire during carbachol-induced theta rhythm in rat hippocampal formation slices. Eur J Neurosci 2006; 23:1811-8. [PMID: 16623838 DOI: 10.1111/j.1460-9568.2006.04679.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One hundred and seven cells were recorded extracellularly in hippocampal formation (HPC) slices during carbachol-induced theta. The data obtained provided evidence of a population of HPC neurons which, when activated cholinergically, participate in the generation of in vitro theta. The activity patterns of in vitro recorded theta-related cells were shown to be similar to those of theta-related cells recorded in vivo and cells recorded in vitro during cholinergically induced theta, and non-theta intervals were successfully classified according to previously developed criteria for in vivo recorded theta-related cells. The current in vitro experiments showed that, in addition to theta-on and theta-off cells, the HPC contained cells that were probably involved in programming the appearance and duration of theta epochs and the intervals between theta epochs. These novel types of cells were termed 'gating cells'.
Collapse
Affiliation(s)
- Jan Konopacki
- Department of Neurobiology, The University of Lodz, Lodz 90-222, Rewolucji 1905 no. 66, Poland.
| | | | | | | |
Collapse
|
20
|
Halgren E, Wang C, Schomer DL, Knake S, Marinkovic K, Wu J, Ulbert I. Processing stages underlying word recognition in the anteroventral temporal lobe. Neuroimage 2006; 30:1401-13. [PMID: 16488158 PMCID: PMC1513618 DOI: 10.1016/j.neuroimage.2005.10.053] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 10/16/2005] [Accepted: 10/31/2005] [Indexed: 11/19/2022] Open
Abstract
The anteroventral temporal lobe integrates visual, lexical, semantic and mnestic aspects of word processing, through its reciprocal connections with the ventral visual stream, language areas, and the hippocampal formation. We used linear microelectrode arrays to probe population synaptic currents and neuronal firing in different cortical layers of the anteroventral temporal lobe, during semantic judgments with implicit priming and overt word recognition. Since different extrinsic and associative inputs preferentially target different cortical layers, this method can help reveal the sequence and nature of local processing stages at a higher resolution than was previously possible. The initial response in inferotemporal and perirhinal cortices is a brief current sink beginning at approximately 120 ms and peaking at approximately 170 ms. Localization of this initial sink to middle layers suggests that it represents feedforward input from lower visual areas, and simultaneously increased firing implies that it represents excitatory synaptic currents. Until approximately 800 ms, the main focus of transmembrane current sinks alternates between middle and superficial layers, with the superficial focus becoming increasingly dominant after approximately 550 ms. Since superficial layers are the target of local and feedback associative inputs, this suggests an alternation in predominant synaptic input between feedforward and feedback modes. Word repetition does not affect the initial perirhinal and inferotemporal middle layer sink but does decrease later activity. Entorhinal activity begins later (approximately 200 ms), with greater apparent excitatory post-synaptic currents and multiunit activity in neocortically projecting than hippocampal-projecting layers. In contrast to perirhinal and entorhinal responses, entorhinal responses are larger to repeated words during memory retrieval. These results identify a sequence of physiological activation, beginning with a sharp activation from lower level visual areas carrying specific information to middle layers. This is followed by feedback and associative interactions involving upper cortical layers, which are abbreviated to repeated words. Following bottom-up and associative stages, top-down recollective processes may be driven by entorhinal cortex. Word processing involves a systematic sequence of fast feedforward information transfer from visual areas to anteroventral temporal cortex followed by prolonged interactions of this feedforward information with local associations and feedback mnestic information from the medial temporal lobe.
Collapse
Affiliation(s)
- Eric Halgren
- Multimodal Imaging Laboratory, Department of Radiology, University of California at San Diego, La Jolla, CA 92093-0841, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Asaka Y, Mauldin KN, Griffin AL, Seager MA, Shurell E, Berry SD. Nonpharmacological amelioration of age-related learning deficits: the impact of hippocampal theta-triggered training. Proc Natl Acad Sci U S A 2005; 102:13284-8. [PMID: 16150707 PMCID: PMC1201623 DOI: 10.1073/pnas.0506515102] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Indexed: 11/18/2022] Open
Abstract
Age-related learning deficits are often attributed to deterioration of hippocampal function. Conversely, a well studied index of hippocampal activity, the rhythm, is known to enhance hippocampal plasticity and accelerate learning rate in young subjects, suggesting that manipulations of activity might be used as a means to counteract impairments related to the aging process. Here, young and older rabbits were given eyeblink conditioning trials either when exhibiting hippocampal (+) or regardless of hippocampal activity (yoked control). Although, as expected, older-yoked control animals showed a learning deficit, the older + group learned as fast as young controls, demonstrating that aging deficits, at least in eyeblink classical conditioning, can be overcome by giving trials during episodes of hippocampal activity. The use of several learning criteria showed that the benefits of hippocampal occur in multiple phases of learning that may depend on different cognitive or motor processes. Whereas there was a benefit of -triggered training in both age groups during the early phase of acquisition, the enhancement persisted in older animals, peaking during later performance. These findings have implications for theories of age-related memory deficits and may contribute to the development of beneficial treatments.
Collapse
Affiliation(s)
- Yukiko Asaka
- Department of Psychology and Center for Neuroscience, Miami University, Oxford, OH 45056
| | | | | | | | | | | |
Collapse
|
22
|
Schneider A, Krüger C, Steigleder T, Weber D, Pitzer C, Laage R, Aronowski J, Maurer MH, Gassler N, Mier W, Hasselblatt M, Kollmar R, Schwab S, Sommer C, Bach A, Kuhn HG, Schäbitz WR. The hematopoietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives neurogenesis. J Clin Invest 2005; 115:2083-2098. [PMID: 16007267 PMCID: PMC1172228 DOI: 10.1172/jci23559] [Citation(s) in RCA: 542] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Accepted: 05/17/2005] [Indexed: 12/26/2022] Open
Abstract
G-CSF is a potent hematopoietic factor that enhances survival and drives differentiation of myeloid lineage cells, resulting in the generation of neutrophilic granulocytes. Here, we show that G-CSF passes the intact blood-brain barrier and reduces infarct volume in 2 different rat models of acute stroke. G-CSF displays strong anti-apoptotic activity in mature neurons and activates multiple cell survival pathways. Both G-CSF and its receptor are widely expressed by neurons in the CNS, and their expression is induced by ischemia, which suggests an autocrine protective signaling mechanism. Surprisingly, the G-CSF receptor was also expressed by adult neural stem cells, and G-CSF induced neuronal differentiation in vitro. G-CSF markedly improved long-term behavioral outcome after cortical ischemia, while stimulating neural progenitor response in vivo, providing a link to functional recovery. Thus, G-CSF is an endogenous ligand in the CNS that has a dual activity beneficial both in counteracting acute neuronal degeneration and contributing to long-term plasticity after cerebral ischemia. We therefore propose G-CSF as a potential new drug for stroke and neurodegenerative diseases.
Collapse
|