1
|
Kebschull JM, Casoni F, Consalez GG, Goldowitz D, Hawkes R, Ruigrok TJH, Schilling K, Wingate R, Wu J, Yeung J, Uusisaari MY. Cerebellum Lecture: the Cerebellar Nuclei-Core of the Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2024; 23:620-677. [PMID: 36781689 PMCID: PMC10951048 DOI: 10.1007/s12311-022-01506-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/10/2022] [Indexed: 02/15/2023]
Abstract
The cerebellum is a key player in many brain functions and a major topic of neuroscience research. However, the cerebellar nuclei (CN), the main output structures of the cerebellum, are often overlooked. This neglect is because research on the cerebellum typically focuses on the cortex and tends to treat the CN as relatively simple output nuclei conveying an inverted signal from the cerebellar cortex to the rest of the brain. In this review, by adopting a nucleocentric perspective we aim to rectify this impression. First, we describe CN anatomy and modularity and comprehensively integrate CN architecture with its highly organized but complex afferent and efferent connectivity. This is followed by a novel classification of the specific neuronal classes the CN comprise and speculate on the implications of CN structure and physiology for our understanding of adult cerebellar function. Based on this thorough review of the adult literature we provide a comprehensive overview of CN embryonic development and, by comparing cerebellar structures in various chordate clades, propose an interpretation of CN evolution. Despite their critical importance in cerebellar function, from a clinical perspective intriguingly few, if any, neurological disorders appear to primarily affect the CN. To highlight this curious anomaly, and encourage future nucleocentric interpretations, we build on our review to provide a brief overview of the various syndromes in which the CN are currently implicated. Finally, we summarize the specific perspectives that a nucleocentric view of the cerebellum brings, move major outstanding issues in CN biology to the limelight, and provide a roadmap to the key questions that need to be answered in order to create a comprehensive integrated model of CN structure, function, development, and evolution.
Collapse
Affiliation(s)
- Justus M Kebschull
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA.
| | - Filippo Casoni
- Division of Neuroscience, San Raffaele Scientific Institute, and San Raffaele University, Milan, Italy
| | - G Giacomo Consalez
- Division of Neuroscience, San Raffaele Scientific Institute, and San Raffaele University, Milan, Italy
| | - Daniel Goldowitz
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Richard Hawkes
- Department of Cell Biology & Anatomy and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Tom J H Ruigrok
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Karl Schilling
- Department of Anatomy, Anatomy & Cell Biology, Rheinische Friedrich-Wilhelms-Universität, 53115, Bonn, Federal Republic of Germany
| | - Richard Wingate
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Joshua Wu
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Joanna Yeung
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Marylka Yoe Uusisaari
- Neuronal Rhythms in Movement Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-Son, Kunigami-Gun, Okinawa, 904-0495, Japan.
| |
Collapse
|
2
|
Wu S, Wardak A, Khan MM, Chen CH, Regehr WG. Implications of variable synaptic weights for rate and temporal coding of cerebellar outputs. eLife 2024; 13:e89095. [PMID: 38241596 PMCID: PMC10798666 DOI: 10.7554/elife.89095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 12/27/2023] [Indexed: 01/21/2024] Open
Abstract
Purkinje cell (PC) synapses onto cerebellar nuclei (CbN) neurons allow signals from the cerebellar cortex to influence the rest of the brain. PCs are inhibitory neurons that spontaneously fire at high rates, and many PC inputs are thought to converge onto each CbN neuron to suppress its firing. It has been proposed that PCs convey information using a rate code, a synchrony and timing code, or both. The influence of PCs on CbN neuron firing was primarily examined for the combined effects of many PC inputs with comparable strengths, and the influence of individual PC inputs has not been extensively studied. Here, we find that single PC to CbN synapses are highly variable in size, and using dynamic clamp and modeling we reveal that this has important implications for PC-CbN transmission. Individual PC inputs regulate both the rate and timing of CbN firing. Large PC inputs strongly influence CbN firing rates and transiently eliminate CbN firing for several milliseconds. Remarkably, the refractory period of PCs leads to a brief elevation of CbN firing prior to suppression. Thus, individual PC-CbN synapses are suited to concurrently convey rate codes and generate precisely timed responses in CbN neurons. Either synchronous firing or synchronous pauses of PCs promote CbN neuron firing on rapid time scales for nonuniform inputs, but less effectively than for uniform inputs. This is a secondary consequence of variable input sizes elevating the baseline firing rates of CbN neurons by increasing the variability of the inhibitory conductance. These findings may generalize to other brain regions with highly variable inhibitory synapse sizes.
Collapse
Affiliation(s)
- Shuting Wu
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Asem Wardak
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Mehak M Khan
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Christopher H Chen
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of MedicineHersheyUnited States
| | - Wade G Regehr
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
3
|
Wu S, Wardak A, Khan MM, Chen CH, Regehr WG. Implications of variable synaptic weights for rate and temporal coding of cerebellar outputs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542308. [PMID: 37292884 PMCID: PMC10245953 DOI: 10.1101/2023.05.25.542308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Purkinje cell (PC) synapses onto cerebellar nuclei (CbN) neurons convey signals from the cerebellar cortex to the rest of the brain. PCs are inhibitory neurons that spontaneously fire at high rates, and many uniform sized PC inputs are thought to converge onto each CbN neuron to suppress or eliminate firing. Leading theories maintain that PCs encode information using either a rate code, or by synchrony and precise timing. Individual PCs are thought to have limited influence on CbN neuron firing. Here, we find that single PC to CbN synapses are highly variable in size, and using dynamic clamp and modelling we reveal that this has important implications for PC-CbN transmission. Individual PC inputs regulate both the rate and timing of CbN firing. Large PC inputs strongly influence CbN firing rates and transiently eliminate CbN firing for several milliseconds. Remarkably, the refractory period of PCs leads to a brief elevation of CbN firing prior to suppression. Thus, PC-CbN synapses are suited to concurrently convey rate codes, and generate precisely-timed responses in CbN neurons. Variable input sizes also elevate the baseline firing rates of CbN neurons by increasing the variability of the inhibitory conductance. Although this reduces the relative influence of PC synchrony on the firing rate of CbN neurons, synchrony can still have important consequences, because synchronizing even two large inputs can significantly increase CbN neuron firing. These findings may be generalized to other brain regions with highly variable sized synapses.
Collapse
Affiliation(s)
- Shuting Wu
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Asem Wardak
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Mehak M. Khan
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Wade G. Regehr
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
van der Heijden ME, Brown AM, Sillitoe RV. Influence of data sampling methods on the representation of neural spiking activity in vivo. iScience 2022; 25:105429. [PMID: 36388953 PMCID: PMC9641233 DOI: 10.1016/j.isci.2022.105429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/06/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
In vivo single-unit recordings distinguish the basal spiking properties of neurons in different experimental settings and disease states. Here, we examined over 300 spike trains recorded from Purkinje cells and cerebellar nuclei neurons to test whether data sampling approaches influence the extraction of rich descriptors of firing properties. Our analyses included neurons recorded in awake and anesthetized control mice, and disease models of ataxia, dystonia, and tremor. We find that recording duration circumscribes overall representations of firing rate and pattern. Notably, shorter recording durations skew estimates for global firing rate variability toward lower values. We also find that only some populations of neurons in the same mouse are more similar to each other than to neurons recorded in different mice. These data reveal that recording duration and approach are primary considerations when interpreting task-independent single neuron firing properties. If not accounted for, group differences may be concealed or exaggerated.
Collapse
Affiliation(s)
- Meike E. van der Heijden
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
| | - Amanda M. Brown
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
| | - Roy V. Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Development, Disease Models and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
| |
Collapse
|
5
|
Andersen LM, Jerbi K, Dalal SS. Can EEG and MEG detect signals from the human cerebellum? Neuroimage 2020; 215:116817. [PMID: 32278092 PMCID: PMC7306153 DOI: 10.1016/j.neuroimage.2020.116817] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 03/17/2020] [Accepted: 03/31/2020] [Indexed: 01/11/2023] Open
Abstract
The cerebellum plays a key role in the regulation of motor learning, coordination and timing, and has been implicated in sensory and cognitive processes as well. However, our current knowledge of its electrophysiological mechanisms comes primarily from direct recordings in animals, as investigations into cerebellar function in humans have instead predominantly relied on lesion, haemodynamic and metabolic imaging studies. While the latter provide fundamental insights into the contribution of the cerebellum to various cerebellar-cortical pathways mediating behaviour, they remain limited in terms of temporal and spectral resolution. In principle, this shortcoming could be overcome by monitoring the cerebellum's electrophysiological signals. Non-invasive assessment of cerebellar electrophysiology in humans, however, is hampered by the limited spatial resolution of electroencephalography (EEG) and magnetoencephalography (MEG) in subcortical structures, i.e., deep sources. Furthermore, it has been argued that the anatomical configuration of the cerebellum leads to signal cancellation in MEG and EEG. Yet, claims that MEG and EEG are unable to detect cerebellar activity have been challenged by an increasing number of studies over the last decade. Here we address this controversy and survey reports in which electrophysiological signals were successfully recorded from the human cerebellum. We argue that the detection of cerebellum activity non-invasively with MEG and EEG is indeed possible and can be enhanced with appropriate methods, in particular using connectivity analysis in source space. We provide illustrative examples of cerebellar activity detected with MEG and EEG. Furthermore, we propose practical guidelines to optimize the detection of cerebellar activity with MEG and EEG. Finally, we discuss MEG and EEG signal contamination that may lead to localizing spurious sources in the cerebellum and suggest ways of handling such artefacts. This review is to be read as a perspective review that highlights that it is indeed possible to measure cerebellum with MEG and EEG and encourages MEG and EEG researchers to do so. Its added value beyond highlighting and encouraging is that it offers useful advice for researchers aspiring to investigate the cerebellum with MEG and EEG.
Collapse
Affiliation(s)
- Lau M Andersen
- Center of Functionally Integrative Neuroscience, Aarhus University, Denmark; NatMEG, Karolinska Institutet, Stockholm, Sweden.
| | - Karim Jerbi
- Computational and Cognitive Neuroscience Lab (CoCo Lab), Psychology Department, University of Montreal, Montreal, QC, Canada; MEG Unit, University of Montreal, Montreal, QC, Canada
| | - Sarang S Dalal
- Center of Functionally Integrative Neuroscience, Aarhus University, Denmark
| |
Collapse
|
6
|
Differential Coding Strategies in Glutamatergic and GABAergic Neurons in the Medial Cerebellar Nucleus. J Neurosci 2019; 40:159-170. [PMID: 31694963 DOI: 10.1523/jneurosci.0806-19.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 10/08/2019] [Accepted: 10/30/2019] [Indexed: 11/21/2022] Open
Abstract
The cerebellum drives motor coordination and sequencing of actions at the millisecond timescale through adaptive control of cerebellar nuclear output. Cerebellar nuclei integrate high-frequency information from both the cerebellar cortex and the two main excitatory inputs of the cerebellum: the mossy fibers and the climbing fiber collaterals. However, how nuclear cells process rate and timing of inputs carried by these inputs is still debated. Here, we investigate the influence of the cerebellar cortical output, the Purkinje cells, on identified cerebellar nuclei neurons in vivo in male mice. Using transgenic mice expressing Channelrhodopsin2 specifically in Purkinje cells and tetrode recordings in the medial nucleus, we identified two main groups of neurons based on the waveform of their action potentials. These two groups of neurons coincide with glutamatergic and GABAergic neurons identified by optotagging after Chrimson expression in VGLUT2-cre and GAD-cre mice, respectively. The glutamatergic-like neurons fire at high rate and respond to both rate and timing of Purkinje cell population inputs, whereas GABAergic-like neurons only respond to the mean population firing rate of Purkinje cells at high frequencies. Moreover, synchronous activation of Purkinje cells can entrain the glutamatergic-like, but not the GABAergic-like, cells over a wide range of frequencies. Our results suggest that the downstream effect of synchronous and rhythmic Purkinje cell discharges depends on the type of cerebellar nuclei neurons targeted.SIGNIFICANCE STATEMENT Motor coordination and skilled movements are driven by the permanent discharge of neurons from the cerebellar nuclei that communicate cerebellar computation to other brain areas. Here, we set out to study how specific subtypes of cerebellar nuclear neurons of the medial nucleus are controlled by Purkinje cells, the sole output of the cerebellar cortex. We could isolate different subtypes of nuclear cell that differentially encode Purkinje cell inhibition. Purkinje cell stimulation entrains glutamatergic projection cells at their firing frequency, whereas GABAergic neurons are only inhibited. These differential coding strategies may favor temporal precision of cerebellar excitatory outputs associated with specific features of movement control while setting the global level of cerebellar activity through inhibition via rate coding mechanisms.
Collapse
|
7
|
Negrello M, Warnaar P, Romano V, Owens CB, Lindeman S, Iavarone E, Spanke JK, Bosman LWJ, De Zeeuw CI. Quasiperiodic rhythms of the inferior olive. PLoS Comput Biol 2019; 15:e1006475. [PMID: 31059498 PMCID: PMC6538185 DOI: 10.1371/journal.pcbi.1006475] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 05/28/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022] Open
Abstract
Inferior olivary activity causes both short-term and long-term changes in cerebellar output underlying motor performance and motor learning. Many of its neurons engage in coherent subthreshold oscillations and are extensively coupled via gap junctions. Studies in reduced preparations suggest that these properties promote rhythmic, synchronized output. However, the interaction of these properties with torrential synaptic inputs in awake behaving animals is not well understood. Here we combine electrophysiological recordings in awake mice with a realistic tissue-scale computational model of the inferior olive to study the relative impact of intrinsic and extrinsic mechanisms governing its activity. Our data and model suggest that if subthreshold oscillations are present in the awake state, the period of these oscillations will be transient and variable. Accordingly, by using different temporal patterns of sensory stimulation, we found that complex spike rhythmicity was readily evoked but limited to short intervals of no more than a few hundred milliseconds and that the periodicity of this rhythmic activity was not fixed but dynamically related to the synaptic input to the inferior olive as well as to motor output. In contrast, in the long-term, the average olivary spiking activity was not affected by the strength and duration of the sensory stimulation, while the level of gap junctional coupling determined the stiffness of the rhythmic activity in the olivary network during its dynamic response to sensory modulation. Thus, interactions between intrinsic properties and extrinsic inputs can explain the variations of spiking activity of olivary neurons, providing a temporal framework for the creation of both the short-term and long-term changes in cerebellar output. Activity of the inferior olive, transmitted via climbing fibers to the cerebellum, regulates initiation and amplitude of movements, signals unexpected sensory feedback, and directs cerebellar learning. It is characterized by widespread subthreshold oscillations and synchronization promoted by strong electrotonic coupling. In brain slices, subthreshold oscillations gate which inputs can be transmitted by inferior olivary neurons and which will not—dependent on the phase of the oscillation. We tested whether the subthreshold oscillations had a measurable impact on temporal patterning of climbing fiber activity in intact, awake mice. We did so by recording neural activity of the postsynaptic Purkinje cells, in which complex spike firing faithfully represents climbing fiber activity. For short intervals (<300 ms) many Purkinje cells showed spontaneously rhythmic complex spike activity. However, our experiments designed to evoke conditional responses indicated that complex spikes are not predominantly predicated on stimulus history. Our realistic network model of the inferior olive explains the experimental observations via continuous phase modulations of the subthreshold oscillations under the influence of synaptic fluctuations. We conclude that complex spike activity emerges from a quasiperiodic rhythm that is stabilized by electrotonic coupling between its dendrites, yet dynamically influenced by the status of their synaptic inputs.
Collapse
Affiliation(s)
- Mario Negrello
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
- * E-mail: (MN); (LWJB); (CIDZ)
| | - Pascal Warnaar
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Vincenzo Romano
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Cullen B. Owens
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Sander Lindeman
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Jochen K. Spanke
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Laurens W. J. Bosman
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
- * E-mail: (MN); (LWJB); (CIDZ)
| | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, the Netherlands
- * E-mail: (MN); (LWJB); (CIDZ)
| |
Collapse
|
8
|
Moscato L, Montagna I, De Propris L, Tritto S, Mapelli L, D'Angelo E. Long-Lasting Response Changes in Deep Cerebellar Nuclei in vivo Correlate With Low-Frequency Oscillations. Front Cell Neurosci 2019; 13:84. [PMID: 30894802 PMCID: PMC6414422 DOI: 10.3389/fncel.2019.00084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/19/2019] [Indexed: 01/21/2023] Open
Abstract
The deep cerebellar nuclei (DCN) have been suggested to play a critical role in sensorimotor learning and some forms of long-term synaptic plasticity observed in vitro have been proposed as a possible substrate. However, till now it was not clear whether and how DCN neuron responses manifest long-lasting changes in vivo. Here, we have characterized DCN unit responses to tactile stimulation of the facial area in anesthetized mice and evaluated the changes induced by theta-sensory stimulation (TSS), a 4 Hz stimulation pattern that is known to induce plasticity in the cerebellar cortex in vivo. DCN units responded to tactile stimulation generating bursts and pauses, which reflected combinations of excitatory inputs most likely relayed by mossy fiber collaterals, inhibitory inputs relayed by Purkinje cells, and intrinsic rebound firing. Interestingly, initial bursts and pauses were often followed by stimulus-induced oscillations in the peri-stimulus time histograms (PSTH). TSS induced long-lasting changes in DCN unit responses. Spike-related potentiation and suppression (SR-P and SR-S), either in units initiating the response with bursts or pauses, were correlated with stimulus-induced oscillations. Fitting with resonant functions suggested the existence of peaks in the theta-band (burst SR-P at 9 Hz, pause SR-S at 5 Hz). Optogenetic stimulation of the cerebellar cortex altered stimulus-induced oscillations suggesting that Purkinje cells play a critical role in the circuits controlling DCN oscillations and plasticity. This observation complements those reported before on the granular and molecular layers supporting the generation of multiple distributed plasticities in the cerebellum following naturally patterned sensory entrainment. The unique dependency of DCN plasticity on circuit oscillations discloses a potential relationship between cerebellar learning and activity patterns generated in the cerebellar network.
Collapse
Affiliation(s)
- Letizia Moscato
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Ileana Montagna
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Licia De Propris
- Brain Connectivity Center, C. Mondino National Neurological Institute, Pavia, Italy
| | - Simona Tritto
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Lisa Mapelli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Brain Connectivity Center, C. Mondino National Neurological Institute, Pavia, Italy
| |
Collapse
|
9
|
Custead R, Oh H, Wang Y, Barlow S. Brain encoding of saltatory velocity through a pulsed pneumotactile array in the lower face. Brain Res 2017; 1677:58-73. [PMID: 28958864 DOI: 10.1016/j.brainres.2017.09.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 08/31/2017] [Accepted: 09/20/2017] [Indexed: 12/25/2022]
Abstract
Processing dynamic tactile inputs is a primary function of the somatosensory system. Spatial velocity encoding mechanisms by the nervous system are important for skilled movement production and may play a role in recovery of sensorimotor function following neurological insult. Little is known about tactile velocity encoding in mechanosensory trigeminal networks required for speech, suck, mastication, and facial gesture. High resolution functional magnetic resonance imaging (fMRI) was used to investigate the neural substrates of velocity encoding in the human orofacial somatosensory system during unilateral saltatory pneumotactile stimulation of perioral and buccal hairy skin in 20 neurotypical adults. A custom multichannel, scalable pneumotactile array consisting of 7 TAC-Cells was used to present 5 stimulus conditions: 5cm/s, 25cm/s, 65cm/s, ALL-ON synchronous activation, and ALL-OFF. The spatiotemporal organization of whole-brain blood oxygen level-dependent (BOLD) response was analyzed with general linear modeling (GLM) and fitted response estimates of percent signal change to compare activations associated with each velocity, and the main effect of velocity alone. Sequential saltatory inputs to the right lower face produced localized BOLD responses in 6 key regions of interest (ROI) including; contralateral precentral and postcentral gyri, and ipsilateral precentral, superior temporal (STG), supramarginal gyri (SMG), and cerebellum. The spatiotemporal organization of the evoked BOLD response was highly dependent on velocity, with the greatest amplitude of BOLD signal change recorded during the 5cm/s presentation in the contralateral hemisphere. Temporal analysis of BOLD response by velocity indicated rapid adaptation via a scalability of networks processing changing pneumotactile velocity cues.
Collapse
Affiliation(s)
- Rebecca Custead
- Special Education and Communication Disorders, University of Nebraska, Lincoln, NE, USA; Center for Brain, Biology and Behavior, University of Nebraska, Lincoln, NE, USA.
| | - Hyuntaek Oh
- Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA; Center for Brain, Biology and Behavior, University of Nebraska, Lincoln, NE, USA.
| | - Yingying Wang
- Special Education and Communication Disorders, University of Nebraska, Lincoln, NE, USA; Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA; Center for Brain, Biology and Behavior, University of Nebraska, Lincoln, NE, USA.
| | - Steven Barlow
- Special Education and Communication Disorders, University of Nebraska, Lincoln, NE, USA; Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA; Center for Brain, Biology and Behavior, University of Nebraska, Lincoln, NE, USA.
| |
Collapse
|
10
|
The Roles of the Olivocerebellar Pathway in Motor Learning and Motor Control. A Consensus Paper. THE CEREBELLUM 2017; 16:230-252. [PMID: 27193702 DOI: 10.1007/s12311-016-0787-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
For many decades, the predominant view in the cerebellar field has been that the olivocerebellar system's primary function is to induce plasticity in the cerebellar cortex, specifically, at the parallel fiber-Purkinje cell synapse. However, it has also long been proposed that the olivocerebellar system participates directly in motor control by helping to shape ongoing motor commands being issued by the cerebellum. Evidence consistent with both hypotheses exists; however, they are often investigated as mutually exclusive alternatives. In contrast, here, we take the perspective that the olivocerebellar system can contribute to both the motor learning and motor control functions of the cerebellum and might also play a role in development. We then consider the potential problems and benefits of it having multiple functions. Moreover, we discuss how its distinctive characteristics (e.g., low firing rates, synchronization, and variable complex spike waveforms) make it more or less suitable for one or the other of these functions, and why having multiple functions makes sense from an evolutionary perspective. We did not attempt to reach a consensus on the specific role(s) the olivocerebellar system plays in different types of movements, as that will ultimately be determined experimentally; however, collectively, the various contributions highlight the flexibility of the olivocerebellar system, and thereby suggest that it has the potential to act in both the motor learning and motor control functions of the cerebellum.
Collapse
|
11
|
Lu H, Yang B, Jaeger D. Cerebellar Nuclei Neurons Show Only Small Excitatory Responses to Optogenetic Olivary Stimulation in Transgenic Mice: In Vivo and In Vitro Studies. Front Neural Circuits 2016; 10:21. [PMID: 27047344 PMCID: PMC4805604 DOI: 10.3389/fncir.2016.00021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/09/2016] [Indexed: 11/13/2022] Open
Abstract
To study the olivary input to the cerebellar nuclei (CN) we used optogenetic stimulation in transgenic mice expressing channelrhodopsin-2 (ChR2) in olivary neurons. We obtained in vivo extracellular Purkinje cell (PC) and CN recordings in anesthetized mice while stimulating the contralateral inferior olive (IO) with a blue laser (single pulse, 10-50 ms duration). Peri-stimulus histograms (PSTHs) were constructed to show the spike rate changes after optical stimulation. Among 29 CN neurons recorded, 15 showed a decrease in spike rate of variable strength and duration, and only 1 showed a transient spiking response. These results suggest that direct olivary input to CN neurons is usually overridden by stronger PC inhibition triggered by climbing fiber responses. To further investigate the direct input from the climbing fiber collaterals we also conducted whole cell recordings in brain slices, where we used local stimulation with blue light. Due to the expression of ChR2 in PC axons as well as the IO in our transgenic line, strong inhibitory responses could be readily triggered with optical stimulation (13 of 15 neurons). After blocking this inhibition with GABAzine, only in 5 of 13 CN neurons weak excitatory responses were revealed. Therefore our in vitro results support the in vivo findings that the excitatory input to CN neurons from climbing fiber collaterals in adult mice is masked by the inhibition under normal conditions.
Collapse
Affiliation(s)
- Huo Lu
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine-Georgia CampusSuwannee, GA, USA; Department of Biology, Emory UniversityAtlanta, GA, USA
| | - Bo Yang
- Department of Biology, Emory University Atlanta, GA, USA
| | - Dieter Jaeger
- Department of Biology, Emory University Atlanta, GA, USA
| |
Collapse
|
12
|
Ding N, Jin H, Zhang BB, Guo A, Shi JD, Feng JY, Li J, Shen XX, Shi Y, Qiu DL, Chu CP. Anatomical and functional relationships between deep cerebellar nuclei and cerebellar cortical Crus II in vivo in mice. Neurosci Lett 2016; 610:73-8. [PMID: 26547033 DOI: 10.1016/j.neulet.2015.10.064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/22/2015] [Accepted: 10/25/2015] [Indexed: 11/17/2022]
Abstract
We previously reported that an air-puff stimulation on the ipsilateral whisker pad evoked responses in molecular layer (ML) and Purkinje cell (PC) layer in cerebellar cortex folium Crus II. We used anterograde tracing and electrophysiological methods to investigate the anatomical and functional relationships between the trigeminal tactile response area in the cerebellar cortex Crus II and deep cerebellar nuclei (DCN) in living mice. We found that the axons of tactile activated PCs projected in anterior part (IntA) and posterior part (IntP), and dorsolateral hump (IntDL) of ipsilateral interposed cerebellar nucleus (ICN). In ICN, the tactile stimulus evoked-field potential expressed a sequence of two negative components N1 and N2, while extracellular recordings from ICN neurons revealed that an increase in spike frequency in response to tactile stimulus. When the duration of facial air-puff stimulus were ≥ 30 ms, stimulation off response (Roff) were observed in the ICN, but an increase in the duration of facial air-puff stimulation did not significantly affect the amplitude of Ron (N1 and N2) and Roff. The latency and time to peak of N1 in ICN were significantly shorter than that of N1 in the ML, but the latency and time to peak of N2 in ICN were significantly later than that of P1 in the ML. The present results suggest that the facial sensory information, at least in part, is transferred to ICN by PC axons from Crus II, which evokes excitation in ICN neurons.
Collapse
Affiliation(s)
- Nan Ding
- Cellular Function Research Center, Yanbian University, 977 GongYuan Road, Yanji, Jilin, China; Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Jilin, China
| | - Hua Jin
- Department of Psychology, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Bin-Bin Zhang
- Cellular Function Research Center, Yanbian University, 977 GongYuan Road, Yanji, Jilin, China; Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Jilin, China
| | - Ao Guo
- Cellular Function Research Center, Yanbian University, 977 GongYuan Road, Yanji, Jilin, China
| | - Jin-Di Shi
- Cellular Function Research Center, Yanbian University, 977 GongYuan Road, Yanji, Jilin, China
| | - Jun-Yang Feng
- Cellular Function Research Center, Yanbian University, 977 GongYuan Road, Yanji, Jilin, China
| | - Jia Li
- Cellular Function Research Center, Yanbian University, 977 GongYuan Road, Yanji, Jilin, China
| | - Xuan-Xi Shen
- Cellular Function Research Center, Yanbian University, 977 GongYuan Road, Yanji, Jilin, China
| | - Yu Shi
- Cellular Function Research Center, Yanbian University, 977 GongYuan Road, Yanji, Jilin, China
| | - De-Lai Qiu
- Cellular Function Research Center, Yanbian University, 977 GongYuan Road, Yanji, Jilin, China; Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Jilin, China.
| | - Chun-Ping Chu
- Cellular Function Research Center, Yanbian University, 977 GongYuan Road, Yanji, Jilin, China.
| |
Collapse
|
13
|
Kros L, Eelkman Rooda OHJ, De Zeeuw CI, Hoebeek FE. Controlling Cerebellar Output to Treat Refractory Epilepsy. Trends Neurosci 2015; 38:787-799. [PMID: 26602765 DOI: 10.1016/j.tins.2015.10.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/12/2015] [Accepted: 10/18/2015] [Indexed: 11/27/2022]
Abstract
Generalized epilepsy is characterized by recurrent seizures caused by oscillatory neuronal firing throughout thalamocortical networks. Current therapeutic approaches often intervene at the level of the thalamus or cerebral cortex to ameliorate seizures. We review here the therapeutic potential of cerebellar stimulation. The cerebellum forms a prominent ascending input to the thalamus and, whereas stimulation of the foliated cerebellar cortex exerts inconsistent results, stimulation of the centrally located cerebellar nuclei (CN) reliably stops generalized seizures in experimental models. Stimulation of this area indicates that the period of stimulation with respect to the phase of the oscillations in thalamocortical networks can optimize its effect, opening up the possibility of developing on-demand deep brain stimulation (DBS) treatments.
Collapse
Affiliation(s)
- Lieke Kros
- Department of Neuroscience, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Oscar H J Eelkman Rooda
- Department of Neuroscience, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands; Netherlands Institute for Neuroscience, Royal Dutch Academy for Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Freek E Hoebeek
- Department of Neuroscience, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands.
| |
Collapse
|
14
|
Bengtsson F, Jörntell H. Specific relationship between excitatory inputs and climbing fiber receptive fields in deep cerebellar nuclear neurons. PLoS One 2014; 9:e84616. [PMID: 24416251 PMCID: PMC3885585 DOI: 10.1371/journal.pone.0084616] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 11/25/2013] [Indexed: 11/19/2022] Open
Abstract
Many mossy fiber pathways to the neurons of the deep cerebellar nucleus (DCN) originate from the spinal motor circuitry. For cutaneously activated spinal neurons, the receptive field is a tag indicating the specific motor function the spinal neuron has. Similarly, the climbing fiber receptive field of the DCN neuron reflects the specific motor output function of the DCN neuron. To explore the relationship between the motor information the DCN neuron receives and the output it issues, we made patch clamp recordings of DCN cell responses to tactile skin stimulation in the forelimb region of the anterior interposed nucleus in vivo. The excitatory responses were organized according to a general principle, in which the DCN cell responses became stronger the closer the skin site was located to its climbing fiber receptive field. The findings represent a novel functional principle of cerebellar connectivity, with crucial importance for our understanding of the function of the cerebellum in movement coordination.
Collapse
Affiliation(s)
- Fredrik Bengtsson
- Neural Basis for Sensorimotor Control, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Henrik Jörntell
- Neural Basis for Sensorimotor Control, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
15
|
Weihberger O, Okujeni S, Mikkonen JE, Egert U. Quantitative examination of stimulus-response relations in cortical networks in vitro. J Neurophysiol 2013; 109:1764-74. [DOI: 10.1152/jn.00481.2012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Variable responses of neuronal networks to repeated sensory or electrical stimuli reflect the interaction of the stimulus' response with ongoing activity in the brain and its modulation by adaptive mechanisms, such as cognitive context, network state, or cellular excitability and synaptic transmission capability. Here, we focus on reliability, length, delays, and variability of evoked responses with respect to their spatial distribution, interaction with spontaneous activity in the networks, and the contribution of GABAergic inhibition. We identified network-intrinsic principles that underlie the formation and modulation of spontaneous activity and stimulus-response relations with the use of state-dependent stimulation in generic neuronal networks in vitro. The duration of spontaneously recurring network-wide bursts of spikes was best predicted by the length of the preceding interval. Length, delay, and structure of responses to identical stimuli systematically depended on stimulus timing and distance to the stimulation site, which were described by a set of simple functions of spontaneous activity. Response length at proximal recording sites increased with the duration of prestimulus inactivity and was best described by a saturation function y( t) = A( 1 − e−α t). Concomitantly, the delays of polysynaptic late responses at distant sites followed an exponential decay y( t) = Be−β t + C. In addition, the speed of propagation was determined by the overall state of the network at the moment of stimulation. Disinhibition increased the number of spikes/network burst and interburst interval length at unchanged gross firing rate, whereas the response modulation by the duration of prestimulus inactivity was preserved. Our data suggest a process of network depression during bursts and subsequent recovery that limit evoked responses following distinct rules. We discuss short-term synaptic depression due to depletion of neurotransmitter vesicles as an underlying mechanism. The seemingly unreliable patterns of spontaneous activity and stimulus-response relations thus follow a predictable structure determined by the interdependencies of network structures and activity states.
Collapse
Affiliation(s)
- Oliver Weihberger
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Neurobiology and Biophysics, Faculty of Biology, University of Freiburg, Freiburg, Germany; and
- Department of Microsystems Engineering–IMTEK, University of Freiburg, Freiburg, Germany
| | - Samora Okujeni
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Neurobiology and Biophysics, Faculty of Biology, University of Freiburg, Freiburg, Germany; and
- Department of Microsystems Engineering–IMTEK, University of Freiburg, Freiburg, Germany
| | - Jarno E. Mikkonen
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Ulrich Egert
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Department of Microsystems Engineering–IMTEK, University of Freiburg, Freiburg, Germany
| |
Collapse
|
16
|
Dalal SS, Osipova D, Bertrand O, Jerbi K. Oscillatory activity of the human cerebellum: the intracranial electrocerebellogram revisited. Neurosci Biobehav Rev 2013; 37:585-93. [PMID: 23415812 DOI: 10.1016/j.neubiorev.2013.02.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 01/19/2013] [Accepted: 02/05/2013] [Indexed: 01/27/2023]
Abstract
The functional electrophysiology of the human cerebellum remains poorly characterized. Existing knowledge originates primarily from lesion studies and increasingly from hemodynamic measures such as functional magnetic resonance imaging, along with some evidence in recent years from transcranial magnetic stimulation. In this context, we revisit the few existing records of intracranial recordings from the human cerebellum, and uncover additional little-known reports - three from the Soviet Union, published in Russian between 1949 and 1951, and one from Belgium, published in French in 1964. These studies together demonstrate electrical rhythms of the human cerebellar cortex at frequencies as high as 250 Hz, including task-related modulations. A reanalysis of their electrode traces with state-of-the-art spectral analysis techniques confirm the reported frequency bands, and showed that these modulations were sustained for 100-200 ms. These remarkable observations from the early ages of intracranial mapping of the human brain are in line with recent electrophysiological studies of oscillations in the rodent cerebellum as well as magnetoencephalographic findings in humans. Time-frequency analyses have provided valuable insight into the function of cerebral cortex, and may prove even more critical for the differing neurophysiology of the cerebellum. We contend that these insights will be invaluable to bridge the role of oscillatory networks in the cerebellum with those of cerebral cortex in mediating perception, action, and cognition and to investigate possible cerebellar involvement in neurological dysfunction.
Collapse
Affiliation(s)
- Sarang S Dalal
- Zukunftskolleg & Department of Psychology, University of Konstanz, Germany.
| | | | | | | |
Collapse
|
17
|
Person AL, Raman IM. Synchrony and neural coding in cerebellar circuits. Front Neural Circuits 2012; 6:97. [PMID: 23248585 PMCID: PMC3518933 DOI: 10.3389/fncir.2012.00097] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 11/16/2012] [Indexed: 11/18/2022] Open
Abstract
The cerebellum regulates complex movements and is also implicated in cognitive tasks, and cerebellar dysfunction is consequently associated not only with movement disorders, but also with conditions like autism and dyslexia. How information is encoded by specific cerebellar firing patterns remains debated, however. A central question is how the cerebellar cortex transmits its integrated output to the cerebellar nuclei via GABAergic synapses from Purkinje neurons. Possible answers come from accumulating evidence that subsets of Purkinje cells synchronize their firing during behaviors that require the cerebellum. Consistent with models predicting that coherent activity of inhibitory networks has the capacity to dictate firing patterns of target neurons, recent experimental work supports the idea that inhibitory synchrony may regulate the response of cerebellar nuclear cells to Purkinje inputs, owing to the interplay between unusually fast inhibitory synaptic responses and high rates of intrinsic activity. Data from multiple laboratories lead to a working hypothesis that synchronous inhibitory input from Purkinje cells can set the timing and rate of action potentials produced by cerebellar nuclear cells, thereby relaying information out of the cerebellum. If so, then changing spatiotemporal patterns of Purkinje activity would allow different subsets of inhibitory neurons to control cerebellar output at different times. Here we explore the evidence for and against the idea that a synchrony code defines, at least in part, the input–output function between the cerebellar cortex and nuclei. We consider the literature on the existence of simple spike synchrony, convergence of Purkinje neurons onto nuclear neurons, and intrinsic properties of nuclear neurons that contribute to responses to inhibition. Finally, we discuss factors that may disrupt or modulate a synchrony code and describe the potential contributions of inhibitory synchrony to other motor circuits.
Collapse
Affiliation(s)
- Abigail L Person
- Department of Physiology and Biophysics, University of Colorado School of Medicine Aurora, CO, USA
| | | |
Collapse
|
18
|
Jaeger D. Mini-review: synaptic integration in the cerebellar nuclei--perspectives from dynamic clamp and computer simulation studies. THE CEREBELLUM 2012; 10:659-66. [PMID: 21259124 DOI: 10.1007/s12311-011-0248-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The cerebellar nuclei (CN) process inhibition from Purkinje cells (PC) and excitation from mossy and climbing fiber collaterals. CN neurons in slices show intrinsic pacemaking activity, which is easily modulated by synaptic inputs. Our work using dynamic clamping and computer modeling shows that synchronicity between PC inputs is an important factor in determining spike rate and spike timing of CN neurons and that brief pauses in PC inputs provide a potent stimulus to trigger CN spikes. Excitatory input can equally control spike rate, but, due to a large slow, NMDA component also amplifies responses to inhibitory inputs. Intrinsic properties of CN neurons are well suited to provide prolonged responses to strong input transients and could be involved in motor pattern generation. One such specific mechanism is given by fast and slow rebound bursting. Nevertheless, we are just beginning to unravel synaptic integration in the CN, and the outcome of the work to date is best characterized by the generation of new specific questions that lend themselves to a combined experimental and computer modeling approach in future studies.
Collapse
Affiliation(s)
- Dieter Jaeger
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA.
| |
Collapse
|
19
|
Uusisaari M, Knöpfel T. Functional classification of neurons in the mouse lateral cerebellar nuclei. THE CEREBELLUM 2012; 10:637-46. [PMID: 21116763 PMCID: PMC3215887 DOI: 10.1007/s12311-010-0240-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The deep cerebellar nuclei (DCN) are at the center of the cerebellum not only anatomically but also functionally. Classical anatomical studies have described different types of DCN neurons according to their expression of various marker proteins, but only recently have we begun to characterize these different cell types according to their electrophysiological properties. These efforts have benefited greatly from the availability of transgenic mouse lines that express green fluorescent protein under the control of the glutamic acid decarboxylase (GAD67) and glycine transporter (GlyT2) promoters, which are markers for GABAergic and glycinergic neurons, respectively. These studies have identified several types of neurons within the lateral cerebellar nuclei, each of which exhibits distinct active membrane properties. In addition to their differential use of neurotransmitters (glutamate, GABA, or glycine), these cell types also receive and provide synaptic information from different sources and to different targets.
Collapse
Affiliation(s)
- Marylka Uusisaari
- Laboratory for Neuronal Circuit Dynamics, RIKEN Brain Science Institute, Wako-shi, Saitama 351-0198 Japan
- Theoretical and Experimental Neurobiology Unit, OIST, Onna, Okinawa 904-0412 Japan
| | - Thomas Knöpfel
- Laboratory for Neuronal Circuit Dynamics, RIKEN Brain Science Institute, Wako-shi, Saitama 351-0198 Japan
| |
Collapse
|
20
|
Avizienis AV, Sillin HO, Martin-Olmos C, Shieh HH, Aono M, Stieg AZ, Gimzewski JK. Neuromorphic atomic switch networks. PLoS One 2012; 7:e42772. [PMID: 22880101 PMCID: PMC3412809 DOI: 10.1371/journal.pone.0042772] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 07/11/2012] [Indexed: 11/22/2022] Open
Abstract
Efforts to emulate the formidable information processing capabilities of the brain through neuromorphic engineering have been bolstered by recent progress in the fabrication of nonlinear, nanoscale circuit elements that exhibit synapse-like operational characteristics. However, conventional fabrication techniques are unable to efficiently generate structures with the highly complex interconnectivity found in biological neuronal networks. Here we demonstrate the physical realization of a self-assembled neuromorphic device which implements basic concepts of systems neuroscience through a hardware-based platform comprised of over a billion interconnected atomic-switch inorganic synapses embedded in a complex network of silver nanowires. Observations of network activation and passive harmonic generation demonstrate a collective response to input stimulus in agreement with recent theoretical predictions. Further, emergent behaviors unique to the complex network of atomic switches and akin to brain function are observed, namely spatially distributed memory, recurrent dynamics and the activation of feedforward subnetworks. These devices display the functional characteristics required for implementing unconventional, biologically and neurally inspired computational methodologies in a synthetic experimental system.
Collapse
Affiliation(s)
- Audrius V. Avizienis
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Henry O. Sillin
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Cristina Martin-Olmos
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Hsien Hang Shieh
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Masakazu Aono
- World Premier International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - Adam Z. Stieg
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
- World Premier International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - James K. Gimzewski
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
- World Premier International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| |
Collapse
|
21
|
Sugihara I. Compartmentalization of the deep cerebellar nuclei based on afferent projections and aldolase C expression. THE CEREBELLUM 2012; 10:449-63. [PMID: 20981512 DOI: 10.1007/s12311-010-0226-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The distribution of aldolase C (zebrin II)-positive and -negative Purkinje cells (PCs) can be used to define about 20 longitudinally extended compartments in the cerebellar cortex of the rat, which may correspond to certain aspects of cerebellar functional localization. An equivalent compartmental organization may exist in the deep cerebellar nuclei (DCN). This DCN compartmentalization is primarily represented by the afferent projection pattern in the DCN. PC projections and collateral nuclear projections of olivocerebellar climbing fiber axons have a relatively localized terminal arbor in the DCN. Projections of these axons make a closed olivo-cortico-nuclear circuit to connect a longitudinal stripe-shaped cortical compartment to a small subarea in the DCN, which can be defined as a DCN compartment. The actual DCN compartmentalization, which has been revealed by systematically mapping these projections, is quite different from the cortical compartmentalization. The stripe-shaped alternation of aldolase C-positive and -negative narrow longitudinal compartments in the cerebellar cortex is transformed to the separate clustering of positive and negative compartments in the caudoventral and rostrodorsal DCN, respectively. The distinctive projection of aldolase C-positive and -negative PCs to the caudoventral and rostrodorsal DCN underlies this transformation. Accordingly, the medial cerebellar nucleus is divided into the rostrodorsal aldolase C-negative and caudoventral aldolase C-positive parts. The anterior and posterior interposed nuclei generally correspond to the aldolase C-negative and -positive parts, respectively. DCN compartmentalization is important for understanding functional localization in the DCN since it is speculated that aldolase C-positive and -negative compartments are generally associated with somatosensory and other functions, respectively.
Collapse
Affiliation(s)
- Izumi Sugihara
- Department of Systems Neurophysiology, Tokyo Medical and Dental University Graduate School, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.
| |
Collapse
|
22
|
Witter L, De Zeeuw CI, Ruigrok TJH, Hoebeek FE. The cerebellar nuclei take center stage. CEREBELLUM (LONDON, ENGLAND) 2011; 10:633-6. [PMID: 21279491 PMCID: PMC3215877 DOI: 10.1007/s12311-010-0245-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Laurens Witter
- Netherlands Institute for Neuroscience, Royal Academy for Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Chris I. De Zeeuw
- Netherlands Institute for Neuroscience, Royal Academy for Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
- Department of Neuroscience, Ee 1202, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Tom J. H. Ruigrok
- Department of Neuroscience, Ee 1202, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Freek E. Hoebeek
- Department of Neuroscience, Ee 1202, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
23
|
Engbers JDT, Anderson D, Tadayonnejad R, Mehaffey WH, Molineux ML, Turner RW. Distinct roles for I(T) and I(H) in controlling the frequency and timing of rebound spike responses. J Physiol 2011; 589:5391-413. [PMID: 21969455 PMCID: PMC3240880 DOI: 10.1113/jphysiol.2011.215632] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/26/2011] [Indexed: 12/22/2022] Open
Abstract
The ability for neurons to generate rebound bursts following inhibitory synaptic input relies on ion channels that respond in a unique fashion to hyperpolarization. Inward currents provided by T-type calcium channels (I(T)) and hyperpolarization-activated HCN channels (I(H)) increase in availability upon hyperpolarization, allowing for a rebound depolarization after a period of inhibition. Although rebound responses have long been recognized in deep cerebellar nuclear (DCN) neurons, the actual extent to which I(T) and I(H) contribute to rebound spike output following physiological levels of membrane hyperpolarization has not been clearly established. The current study used recordings and simulations of large diameter cells of the in vitro rat DCN slice preparation to define the roles for I(T) and I(H) in a rebound response. We find that physiological levels of hyperpolarization make only small proportions of the total I(T) and I(H) available, but that these are sufficient to make substantial contributions to a rebound response. At least 50% of the early phase of the rebound spike frequency increase is generated by an I(T)-mediated depolarization. An additional frequency increase is provided by I(H) in reducing the time constant and thus the extent of I(T) inactivation as the membrane returns from a hyperpolarized state to the resting level. An I(H)-mediated depolarization creates an inverse voltage-first spike latency relationship and produces a 35% increase in the precision of the first spike latency of a rebound. I(T) and I(H) can thus be activated by physiologically relevant stimuli and have distinct roles in the frequency, timing and precision of rebound responses.
Collapse
Affiliation(s)
- Jordan D T Engbers
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive N.W., Calgary, AB, Canada T2N 4N1.
| | | | | | | | | | | |
Collapse
|
24
|
Multiple types of cerebellar target neurons and their circuitry in the vestibulo-ocular reflex. J Neurosci 2011; 31:10776-86. [PMID: 21795530 DOI: 10.1523/jneurosci.0768-11.2011] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cerebellum influences behavior and cognition exclusively via Purkinje cell synapses onto neurons in the deep cerebellar and vestibular nuclei. In contrast with the rich information available about the organization of the cerebellar cortex and its synaptic inputs, relatively little is known about microcircuitry postsynaptic to Purkinje cells. Here we examined the cell types and microcircuits through which Purkinje cells influence an oculomotor behavior controlled by the cerebellum, the horizontal vestibulo-ocular reflex, which involves only two eye muscles. Using a combination of anatomical tracing and electrophysiological recordings in transgenic mouse lines, we identified several classes of neurons in the medial vestibular nucleus that receive Purkinje cell synapses from the cerebellar flocculus. Glycinergic and glutamatergic flocculus target neurons (FTNs) with somata densely surrounded by Purkinje cell terminals projected axons to the ipsilateral abducens and oculomotor nuclei, respectively. Of three additional types of FTNs that were sparsely innervated by Purkinje cells, glutamatergic and glycinergic neurons projected to the contralateral and ipsilateral abducens, respectively, and GABAergic neurons projected to contralateral vestibular nuclei. Densely innervated FTNs had high spontaneous firing rates and pronounced postinhibitory rebound firing, and were physiologically homogeneous, whereas the intrinsic excitability of sparsely innervated FTNs varied widely. Heterogeneity in the molecular expression, physiological properties, and postsynaptic targets of FTNs implies that Purkinje cell activity influences the neural control of eye movements in several distinct ways. These results indicate that the cerebellum regulates a simple reflex behavior via at least five different cell types that are postsynaptic to Purkinje cells.
Collapse
|
25
|
Boehme R, Uebele VN, Renger JJ, Pedroarena C. Rebound excitation triggered by synaptic inhibition in cerebellar nuclear neurons is suppressed by selective T-type calcium channel block. J Neurophysiol 2011; 106:2653-61. [PMID: 21849607 DOI: 10.1152/jn.00612.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Following hyperpolarizing inputs, many neurons respond with an increase in firing rate, a phenomenon known as rebound excitation. Rebound excitation has been proposed as a mechanism to encode and process inhibitory signals and transfer them to target structures. Activation of low-voltage-activated T-type calcium channels and the ensuing low-threshold calcium spikes is one of the mechanisms proposed to support rebound excitation. However, there is still not enough evidence that the hyperpolarization provided by inhibitory inputs, particularly those dependent on chloride ions, is adequate to deinactivate a sufficient number of T-type calcium channels to drive rebound excitation on return to baseline. Here, this issue was investigated in the deep cerebellar nuclear neurons (DCNs), which receive the output of the cerebellar cortex conveyed exclusively by the inhibitory Purkinje cells and are also known to display rebound excitation. Using cerebellar slices and whole cell recordings of large DCNs, we show that a novel piperidine-based compound that selectively antagonizes T-type calcium channel activity, 3,5-dichloro-N-[1-(2,2-dimethyl-tetrahydropyran-4-ylmethyl)-4-fluoro-piperidin-4-ylmethyl]-benzamide (TTA-P2), suppressed rebound excitation elicited by current injection as well as by synaptic inhibition, whereas other electrophysiological properties of large DCNs were unaltered. Furthermore, TTA-P2 suppressed transient high-frequency rebounds found in DCNs with low-threshold spikes as well as the slow rebounds present in DCNs without low-threshold spikes. These findings demonstrate that chloride-dependent synaptic inhibition effectively triggers T-type calcium channel-mediated rebounds and that the latter channels may support slow rebound excitation in neurons without low-threshold spikes.
Collapse
Affiliation(s)
- Rebecca Boehme
- Dept. of Cognitive Neurology, Hertie Institute, Univ. of Tübingen, Otfried Müller Str. 27, 72076 Tübingen, Germany
| | | | | | | |
Collapse
|
26
|
Uusisaari M, De Schutter E. The mysterious microcircuitry of the cerebellar nuclei. J Physiol 2011; 589:3441-57. [PMID: 21521761 PMCID: PMC3167109 DOI: 10.1113/jphysiol.2010.201582] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 04/20/2011] [Indexed: 11/08/2022] Open
Abstract
The microcircuitry of cerebellar cortex and, in particular, the physiology of its main element, the Purkinje neuron, has been extensively investigated and described. However, activity in Purkinje neurons, either as single cells or populations, does not directly mediate the cerebellar effects on the motor effector systems. Rather, the result of the entire cerebellar cortical computation is passed to the relatively small cerebellar nuclei that act as the final, integrative processing unit in the cerebellar circuitry. The nuclei ultimately control the temporal and spatial features of the cerebellar output. Given this key role, it is striking that the internal organization and the connectivity with afferent and efferent pathways in the cerebellar nuclei are rather poorly known. In the present review, we discuss some of the many critical shortcomings in the understanding of cerebellar nuclei microcircuitry: the extent of convergence and divergence of the cerebellar cortical pathway to the various cerebellar nuclei neurons and subareas, the possible (lack of) conservation of the finely-divided topographical organization in the cerebellar cortex at the level of the nuclei, as well as the absence of knowledge of the synaptic circuitry within the cerebellar nuclei. All these issues are important for predicting the pattern-extraction and encoding capabilities of the cerebellar nuclei and, until resolved, theories and models of cerebellar motor control and learning may err considerably.
Collapse
Affiliation(s)
- Marylka Uusisaari
- Theoretical and Experimental Neurobiology Unit, Okinawa Institute of Science and Technology, 7542 Onna, Onna-son, Okinawa 904-0411, Japan.
| | | |
Collapse
|
27
|
Alvarez-Icaza R, Boahen K. Deep cerebellar neurons mirror the spinal cord's gain to implement an inverse controller. BIOLOGICAL CYBERNETICS 2011; 105:29-40. [PMID: 21789607 DOI: 10.1007/s00422-011-0448-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 06/29/2011] [Indexed: 05/31/2023]
Abstract
Smooth and coordinated motion requires precisely timed muscle activation patterns, which due to biophysical limitations, must be predictive and executed in a feed-forward manner. In a previous study, we tested Kawato's original proposition, that the cerebellum implements an inverse controller, by mapping a multizonal microcomplex's (MZMC) biophysics to a joint's inverse transfer function and showing that inferior olivary neuron may use their intrinsic oscillations to mirror a joint's oscillatory dynamics. Here, to continue to validate our mapping, we propose that climbing fiber input into the deep cerebellar nucleus (DCN) triggers rebounds, primed by Purkinje cell inhibition, implementing gain on IO's signal to mirror the spinal cord reflex's gain thereby achieving inverse control. We used biophysical modeling to show that Purkinje cell inhibition and climbing fiber excitation interact in a multiplicative fashion to set DCN's rebound strength; where the former primes the cell for rebound by deinactivating its T-type Ca2(+) channels and the latter triggers the channels by rapidly depolarizing the cell. We combined this result with our control theory mapping to predict how experimentally injecting current into DCN will affect overall motor output performance, and found that injecting current will proportionally scale the output and unmask the joint's natural response as observed by motor output ringing at the joint's natural frequency. Experimental verification of this prediction will lend support to a MZMC as a joint's inverse controller and the role we assigned underlying biophysical principles that enable it.
Collapse
|
28
|
De Zeeuw CI, Hoebeek FE, Bosman LWJ, Schonewille M, Witter L, Koekkoek SK. Spatiotemporal firing patterns in the cerebellum. Nat Rev Neurosci 2011; 12:327-44. [PMID: 21544091 DOI: 10.1038/nrn3011] [Citation(s) in RCA: 287] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurons are generally considered to communicate information by increasing or decreasing their firing rate. However, in principle, they could in addition convey messages by using specific spatiotemporal patterns of spiking activities and silent intervals. Here, we review expanding lines of evidence that such spatiotemporal coding occurs in the cerebellum, and that the olivocerebellar system is optimally designed to generate and employ precise patterns of complex spikes and simple spikes during the acquisition and consolidation of motor skills. These spatiotemporal patterns may complement rate coding, thus enabling precise control of motor and cognitive processing at a high spatiotemporal resolution by fine-tuning sensorimotor integration and coordination.
Collapse
Affiliation(s)
- Chris I De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
29
|
Tadayonnejad R, Anderson D, Molineux ML, Mehaffey WH, Jayasuriya K, Turner RW. Rebound discharge in deep cerebellar nuclear neurons in vitro. THE CEREBELLUM 2011; 9:352-74. [PMID: 20396983 PMCID: PMC2949560 DOI: 10.1007/s12311-010-0168-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Neurons of the deep cerebellar nuclei (DCN) play a critical role in defining the output of cerebellum in the course of encoding Purkinje cell inhibitory inputs. The earliest work performed with in vitro preparations established that DCN cells have the capacity to translate membrane hyperpolarizations into a rebound increase in firing frequency. The primary means of distinguishing between DCN neurons has been according to cell size and transmitter phenotype, but in some cases, differences in the firing properties of DCN cells maintained in vitro have been reported. In particular, it was shown that large diameter cells in the rat DCN exhibit two phenotypes of rebound discharge in vitro that may eventually help define their functional roles in cerebellar output. A transient burst and weak burst phenotype can be distinguished based on the frequency and pattern of rebound discharge immediately following a hyperpolarizing stimulus. Work to date indicates that the difference in excitability arises from at least the degree of activation of T-type Ca(2+) current during the immediate phase of rebound firing and Ca(2+)-dependent K(+) channels that underlie afterhyperpolarizations. Both phenotypes can be detected following stimulation of Purkinje cell inhibitory inputs under conditions that preserve resting membrane potential and natural ionic gradients. In this paper, we review the evidence supporting the existence of different rebound phenotypes in DCN cells and the ion channel expression patterns that underlie their generation.
Collapse
Affiliation(s)
- Reza Tadayonnejad
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta Canada T2N 4N1
| | - Dustin Anderson
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta Canada T2N 4N1
| | - Michael L. Molineux
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta Canada T2N 4N1
| | - W. Hamish Mehaffey
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta Canada T2N 4N1
| | - Kusala Jayasuriya
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta Canada T2N 4N1
| | - Ray W. Turner
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta Canada T2N 4N1
- Hotchkiss Brain Institute, HRIC 1AA14, University of Calgary, 3330 Hospital Dr. N.W., Calgary, Alberta Canada T2N 4N1
| |
Collapse
|
30
|
Sangrey T, Jaeger D. Analysis of distinct short and prolonged components in rebound spiking of deep cerebellar nucleus neurons. Eur J Neurosci 2010; 32:1646-57. [PMID: 21039958 DOI: 10.1111/j.1460-9568.2010.07408.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Deep cerebellar nucleus (DCN) neurons show pronounced post-hyperpolarization rebound burst behavior, which may contribute significantly to responses to strong inhibitory inputs from cerebellar cortical Purkinje cells. Thus, rebound behavior could importantly shape the output from the cerebellum. We used whole-cell recordings in brain slices to characterize DCN rebound properties and their dependence on hyperpolarization duration and depth. We found that DCN rebounds showed distinct fast and prolonged components, with different stimulus dependence and different underlying currents. The initial depolarization leading into rebound spiking was carried by hyperpolarization-activated cyclic nucleotide-gated current, and variable expression of this current could lead to a control of rebound latency. The ensuing fast rebound burst was due to T-type calcium current, as previously described. It was highly variable between cells in strength, and could be expressed fully after short periods of hyperpolarization. In contrast, a subsequent prolonged rebound component required longer and deeper periods of hyperpolarization before it was fully established. We found using voltage-clamp and dynamic-clamp analyses that a slowly inactivating persistent sodium current fits the conductance underlying this prolonged rebound component, resulting in spike rate increases over several seconds. Overall, our results demonstrate that multiphasic DCN rebound properties could be elicited differentially by different levels of Purkinje cell activation, and thus create a rich repertoire of potential rebound dynamics in the cerebellar control of motor timing.
Collapse
Affiliation(s)
- Thomas Sangrey
- Department of Biology, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
31
|
Pedroarena CM. Mechanisms supporting transfer of inhibitory signals into the spike output of spontaneously firing cerebellar nuclear neurons in vitro. THE CEREBELLUM 2010; 9:67-76. [PMID: 20148319 DOI: 10.1007/s12311-009-0153-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cerebellar cortical signals are carried to their principal target, the deep cerebellar nuclear neurons (DCNs), via the inhibitory pathway formed by Purkinje cell (PC) axons. Two different intrinsic properties of DCNs, rebound excitation and automatic firing, have been proposed to support ensuing mechanisms for information transfer via inhibitory synapses. The efficacy of these mechanisms was investigated using whole-cell recordings of spontaneously firing DCNs in cerebellar slices. Results using current injection revealed that both mechanisms are effective in spontaneously firing DCNs but operate at different ranges of membrane potential. Rebound frequency was well correlated to the duration and amplitude of the preceding hyperpolarization. Activation of PC synapses with trains of stimuli few seconds long elicited rebound firing in all tested neurons, demonstrating that inhibition can elicit rebounds in DCNs held at their spontaneous membrane potential. Rebounds could be also elicited by single stimulus in a subset of neurons. The rebound frequency was significantly correlated to the synaptic stimulus strength, supporting the idea that rebound frequency may encode the amplitude of inhibition and thus serve to transfer inhibitory signals in the cerebellar circuit.
Collapse
Affiliation(s)
- Christine M Pedroarena
- Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried Müller Str. 27, Tübingen, Germany.
| |
Collapse
|
32
|
Differential olivo-cerebellar cortical control of rebound activity in the cerebellar nuclei. Proc Natl Acad Sci U S A 2010; 107:8410-5. [PMID: 20395550 DOI: 10.1073/pnas.0907118107] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The output of the cerebellar cortex is controlled by two main inputs, (i.e., the climbing fiber and mossy fiber-parallel fiber pathway) and activations of these inputs elicit characteristic effects in its Purkinje cells: that is, the so-called complex spikes and simple spikes. Target neurons of the Purkinje cells in the cerebellar nuclei show rebound firing, which has been implicated in the processing and storage of motor coordination signals. Yet, it is not known to what extent these rebound phenomena depend on different modes of Purkinje cell activation. Using extracellular as well as patch-clamp recordings, we show here in both anesthetized and awake rodents that simple and complex spike-like train stimuli to the cerebellar cortex, as well as direct activation of the inferior olive, all result in rebound increases of the firing frequencies of cerebellar nuclei neurons for up to 250 ms, whereas single-pulse stimuli to the cerebellar cortex predominantly elicit well-timed spiking activity without changing the firing frequency of cerebellar nuclei neurons. We conclude that the rebound phenomenon offers a rich and powerful mechanism for cerebellar nuclei neurons, which should allow them to differentially process the climbing fiber and mossy fiber inputs in a physiologically operating cerebellum.
Collapse
|
33
|
Cortico-cerebellar coherence and causal connectivity during slow-wave activity. Neuroscience 2009; 166:698-711. [PMID: 20036719 DOI: 10.1016/j.neuroscience.2009.12.048] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 12/15/2009] [Accepted: 12/21/2009] [Indexed: 11/23/2022]
Abstract
Cerebral cortical slow-wave activity (SWA) is prominent during sleep and also during ketamine-induced anesthesia. SWA in electroencephalogram (EEG) recordings is closely linked to prominent fluctuations between up- and down-states in the membrane potential of pyramidal neurons. However, little is known about how the cerebellum is linked into SWA and whether slow cortical oscillations influence sensory cerebellar responses. To examine these issues, we simultaneously recorded EEG activity from the cerebral cortex (SI, MI, and supplementary motor area (SMA)), local field potentials at the input stage of cerebellar processing in the cerebellar granule cell layer (GCL) and inferior olive (IO), and single unit activity at the output stage of the cerebellum in the deep cerebellar nuclei (DCN). We found that in ketamine-anesthetized rats, SWA was synchronized between all recorded cortical areas and was phase locked with local field potentials of the GCL, IO and single unit activity in the DCN. We also found that cortical up-states are linked to activation of GCL neurons but to inhibition of cerebellar output from the DCN, with the latter an effect likely mediated by Purkinje cells. A partial coherence analysis showed further that a large portion of SWA shared between GCL and DCN was transmitted from the cortex, since the coherence shared between GCL and DCN was diminished when the effect of cortical activity was subtracted. To determine the causal flow of information between structures, a directed transfer function was calculated between the simultaneous activities of SI, MI, SMA, GCL and DCN. This analysis demonstrated that the primary direction of information flow was from cortex to the cerebellum and that SI had a stronger influence than other cortical areas on DCN activity. The strong functional connectivity with SI in particular is in agreement with previous findings of a strong cortical component in cerebellar sensory responses.
Collapse
|
34
|
Baumel Y, Jacobson GA, Cohen D. Implications of functional anatomy on information processing in the deep cerebellar nuclei. Front Cell Neurosci 2009; 3:14. [PMID: 19949453 PMCID: PMC2783015 DOI: 10.3389/neuro.03.014.2009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 11/08/2009] [Indexed: 12/31/2022] Open
Abstract
The cerebellum has been implicated as a major player in producing temporal acuity. Theories of cerebellar timing typically emphasize the role of the cerebellar cortex while overlooking the role of the deep cerebellar nuclei (DCN) that provide the sole output of the cerebellum. Here we review anatomical and electrophysiological studies to shed light on the DCN's ability to support temporal pattern generation in the cerebellum. Specifically, we examine data on the structure of the DCN, the biophysical properties of DCN neurons and properties of the afferent systems to evaluate their contribution to DCN firing patterns. In addition, we manipulate one of the afferent structures, the inferior olive (IO), using systemic harmaline injection to test for a network effect on activity of single DCN neurons in freely moving animals. Harmaline induces a rhythmic firing pattern of short bursts on a quiescent background at about 8 Hz. Other neurons become quiescent for long periods (seconds to minutes). The observed patterns indicate that the major effect harmaline exerts on the DCN is carried indirectly by the inhibitory Purkinje cells (PCs) activated by the IO, rather than by direct olivary excitation. Moreover, we suggest that the DCN response profile is determined primarily by the number of concurrently active PCs, their firing rate and the level of synchrony occurring in their transitions between continuous firing and quiescence. We argue that DCN neurons faithfully transfer temporal patterns resulting from strong correlations in PCs state transitions, while largely ignoring the timing of simple spikes from individual PCs. Future research should aim at quantifying the contribution of PC state transitions to DCN activity, and the interplay between the different afferent systems that drive DCN activity.
Collapse
Affiliation(s)
- Yuval Baumel
- Gonda Interdisciplinary Brain Research Center, Bar Ilan UniversityRamat Gan, Israel
| | - Gilad A. Jacobson
- Friedrich Miescher Institute for Biomedical ResearchBasel, Switzerland
| | - Dana Cohen
- Gonda Interdisciplinary Brain Research Center, Bar Ilan UniversityRamat Gan, Israel
- The Goodman Faculty of Life Sciences, Bar Ilan UniversityRamat Gan, Israel
| |
Collapse
|
35
|
Alviña K, Ellis-Davies G, Khodakhah K. T-type calcium channels mediate rebound firing in intact deep cerebellar neurons. Neuroscience 2009; 158:635-41. [PMID: 18983899 PMCID: PMC2649676 DOI: 10.1016/j.neuroscience.2008.09.052] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 09/22/2008] [Accepted: 09/26/2008] [Indexed: 10/21/2022]
Abstract
Neurons of the deep cerebellar nuclei (DCN) form the main output of the cerebellar circuitry and thus play an important role in cerebellar motor coordination. A prominent biophysical property observed in rat DCN neurons is rebound firing; a brief but strong hyperpolarizing input transiently increases their firing rate to much higher levels compared with that prior to the inhibitory input. Low-threshold T-type voltage-gated calcium channels have been suspected for a long time to be responsible for this phenomenon, but direct pharmacological evidence in support of this proposition is lacking. Even though a multitude of functional roles has been assigned to rebound firing in DCN neurons, their prevalence under physiological conditions is in question. Studies aimed at delineating the physiological role of rebound firing are hampered by the lack of a good pharmacological blocker. Here we show that mibefradil, a compound that blocks T-type calcium channels, potently blocks rebound firing in DCN neurons. In whole-cell experiments both mibefradil and NNC 55-0396 [(1S,2S)-2-(2-(N-[(3-benzimidazol-2-yl)propyl]-N-methylamino)ethyl)-6-fluoro-1,2,3,4-tetrahydro-1-isopropyl-2-naphtyl cyclopropanecarboxylate dihydrochloride]. a more selective T-type calcium channel blocker, effectively blocked rebound firing produced by direct current injection. Thus, mibefradil and other T-type channel modulators may prove to be invaluable tools for elucidating the functional importance of DCN rebound firing in cerebellar computation.
Collapse
Affiliation(s)
- Karina Alviña
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
- Departmento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Graham Ellis-Davies
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Kamran Khodakhah
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
36
|
Alviña K, Walter J, Kohn A, Ellis-Davies G, Khodakhah K. Questioning the role of rebound firing in the cerebellum. Nat Neurosci 2008; 11:1256-8. [PMID: 18820695 PMCID: PMC2691662 DOI: 10.1038/nn.2195] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 08/06/2008] [Indexed: 11/08/2022]
Abstract
A key component of recent theories on cerebellar function is rebound firing in neurons of the deep cerebellar nuclei (DCN). Despite the robustness of this phenomenon in vitro, in vivo studies have provided little evidence for its prevalence. We found that intact mouse or rat DCN neurons rarely showed rebound firing under physiological conditions in vitro or in vivo. These observations necessitate a critical re-evaluation of recent cerebellar models.
Collapse
Affiliation(s)
- Karina Alviña
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
- Departmento de Ciencias Fisiologicas, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Joy Walter
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Adam Kohn
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Graham Ellis-Davies
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Kamran Khodakhah
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
37
|
A model of the olivo-cerebellar system as a temporal pattern generator. Trends Neurosci 2008; 31:617-25. [PMID: 18952303 DOI: 10.1016/j.tins.2008.09.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2008] [Revised: 08/28/2008] [Accepted: 09/08/2008] [Indexed: 11/21/2022]
Abstract
The olivo-cerebellar system has been implicated in temporal coordination of task components. Here, we propose a novel model that enables the olivo-cerebellar system to function as a generator of temporal patterns. These patterns could be used for timing of motor, sensory and cognitive tasks. The proposed mechanism for the generation of these patterns is based on subthreshold oscillations in a network of inferior olivary neurons and their control by the cerebellar cortex and nuclei. Our model, which integrates a large body of anatomical and physiological observations, lends itself to simple, testable predictions and provides a new conceptual framework for olivo-cerebellar research.
Collapse
|