1
|
Gulli A, Fontana F, Aruffo A, Orzan E, Muzzi E. Previous binaural experience supports compensatory strategies in hearing-impaired children's auditory horizontal localization. PLoS One 2024; 19:e0312073. [PMID: 39637020 PMCID: PMC11620673 DOI: 10.1371/journal.pone.0312073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/30/2024] [Indexed: 12/07/2024] Open
Abstract
This study investigates auditory localization in children with a diagnosis of hearing impairment rehabilitated with bilateral cochlear implants or hearing aids. Localization accuracy in the anterior horizontal field and its distribution along the angular position of the source were analyzed. Participants performed a localization task in a virtual environment where they could move their heads freely and were asked to point to an invisible sound source. The source was rendered using a loudspeaker set arranged as a semi-circular array in the horizontal plane. The participants' head positions were tracked while their hands pointed to the auditory target; the preferred listening position and the onset of active strategies involving head movement were extracted. A significant correlation was found between age and localization accuracy and age and head movement in children with bilateral hearing aids. Investigating conditions where no, one, or both hearing devices were turned off, it was found that asymmetrical hearing caused the largest errors. Under this specific condition, head movement was used erratically by children with bilateral cochlear implants who focused on postures maximizing sound intensity at the more sensitive ear. Conversely, those with a consolidated binaural hearing experience could use dynamic cues even if one hearing aid was turned off. This finding may have implications for the clinical evaluation and rehabilitation of individuals with hearing impairments.
Collapse
Affiliation(s)
- Andrea Gulli
- Department of Engineering and Management, University of Padua, Padua, Italy
| | - Federico Fontana
- HCI Lab, Department of Mathematics, Computer Science and Physics, University of Udine, Udine, Italy
| | - Alessandro Aruffo
- Otorhinolaryngology and Audiology, Institute for Maternal and Child Health IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Eva Orzan
- Otorhinolaryngology and Audiology, Institute for Maternal and Child Health IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Enrico Muzzi
- Otorhinolaryngology and Audiology, Institute for Maternal and Child Health IRCCS “Burlo Garofolo”, Trieste, Italy
| |
Collapse
|
2
|
Adenis V, Partouche E, Stahl P, Gnansia D, Huetz C, Edeline JM. Asymmetric pulses delivered by a cochlear implant allow a reduction in evoked firing rate and in spatial activation in the guinea pig auditory cortex. Hear Res 2024; 447:109027. [PMID: 38723386 DOI: 10.1016/j.heares.2024.109027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
Despite that fact that the cochlear implant (CI) is one of the most successful neuro-prosthetic devices which allows hearing restoration, several aspects still need to be improved. Interactions between stimulating electrodes through current spread occurring within the cochlea drastically limit the number of discriminable frequency channels and thus can ultimately result in poor speech perception. One potential solution relies on the use of new pulse shapes, such as asymmetric pulses, which can potentially reduce the current spread within the cochlea. The present study characterized the impact of changing electrical pulse shapes from the standard biphasic symmetric to the asymmetrical shape by quantifying the evoked firing rate and the spatial activation in the guinea pig primary auditory cortex (A1). At a fixed charge, the firing rate and the spatial activation in A1 decreased by 15 to 25 % when asymmetric pulses were used to activate the auditory nerve fibers, suggesting a potential reduction of the spread of excitation inside the cochlea. A strong "polarity-order" effect was found as the reduction was more pronounced when the first phase of the pulse was cathodic with high amplitude. These results suggest that the use of asymmetrical pulse shapes in clinical settings can potentially reduce the channel interactions in CI users.
Collapse
Affiliation(s)
- V Adenis
- Paris-Saclay Institute of Neurosciences (Neuro-PSI), France; CNRS UMR 9197, 91405 Orsay cedex, France; Université Paris-Saclay, 91405 Orsay cedex, France
| | - E Partouche
- Paris-Saclay Institute of Neurosciences (Neuro-PSI), France; CNRS UMR 9197, 91405 Orsay cedex, France; Université Paris-Saclay, 91405 Orsay cedex, France
| | - P Stahl
- Oticon Medical, Vallauris, France
| | | | - C Huetz
- Paris-Saclay Institute of Neurosciences (Neuro-PSI), France; CNRS UMR 9197, 91405 Orsay cedex, France; Université Paris-Saclay, 91405 Orsay cedex, France
| | - J-M Edeline
- Paris-Saclay Institute of Neurosciences (Neuro-PSI), France; CNRS UMR 9197, 91405 Orsay cedex, France; Université Paris-Saclay, 91405 Orsay cedex, France.
| |
Collapse
|
3
|
Buck AN, Buchholz S, Schnupp JW, Rosskothen-Kuhl N. Interaural time difference sensitivity under binaural cochlear implant stimulation persists at high pulse rates up to 900 pps. Sci Rep 2023; 13:3785. [PMID: 36882473 PMCID: PMC9992369 DOI: 10.1038/s41598-023-30569-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
Spatial hearing remains one of the major challenges for bilateral cochlear implant (biCI) users, and early deaf patients in particular are often completely insensitive to interaural time differences (ITDs) delivered through biCIs. One popular hypothesis is that this may be due to a lack of early binaural experience. However, we have recently shown that neonatally deafened rats fitted with biCIs in adulthood quickly learn to discriminate ITDs as well as their normal hearing litter mates, and perform an order of magnitude better than human biCI users. Our unique behaving biCI rat model allows us to investigate other possible limiting factors of prosthetic binaural hearing, such as the effect of stimulus pulse rate and envelope shape. Previous work has indicated that ITD sensitivity may decline substantially at the high pulse rates often used in clinical practice. We therefore measured behavioral ITD thresholds in neonatally deafened, adult implanted biCI rats to pulse trains of 50, 300, 900 and 1800 pulses per second (pps), with either rectangular or Hanning window envelopes. Our rats exhibited very high sensitivity to ITDs at pulse rates up to 900 pps for both envelope shapes, similar to those in common clinical use. However, ITD sensitivity declined to near zero at 1800 pps, for both Hanning and rectangular windowed pulse trains. Current clinical cochlear implant (CI) processors are often set to pulse rates ≥ 900 pps, but ITD sensitivity in human CI listeners has been reported to decline sharply above ~ 300 pps. Our results suggest that the relatively poor ITD sensitivity seen at > 300 pps in human CI users may not reflect the hard upper limit of biCI ITD performance in the mammalian auditory pathway. Perhaps with training or better CI strategies good binaural hearing may be achievable at pulse rates high enough to allow good sampling of speech envelopes while delivering usable ITDs.
Collapse
Affiliation(s)
- Alexa N Buck
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.,Plasticity of Central Auditory Circuits, Institut de l'Audition, Institut Pasteur, Paris, France
| | - Sarah Buchholz
- Neurobiological Research Laboratory, Section of Clinical and Experimental Otology, Department of Oto-Rhino-Laryngology, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Killianst. 5, 79106, Freiburg im Breisgau, Germany
| | - Jan W Schnupp
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Nicole Rosskothen-Kuhl
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China. .,Neurobiological Research Laboratory, Section of Clinical and Experimental Otology, Department of Oto-Rhino-Laryngology, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Killianst. 5, 79106, Freiburg im Breisgau, Germany. .,Bernstein Center Freiburg and Faculty of Biology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
4
|
Leclère T, Johannesen PT, Wijetillake A, Segovia-Martínez M, Lopez-Poveda EA. A computational modelling framework for assessing information transmission with cochlear implants. Hear Res 2023; 432:108744. [PMID: 37004271 DOI: 10.1016/j.heares.2023.108744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/05/2023] [Accepted: 03/24/2023] [Indexed: 03/28/2023]
Abstract
Computational models are useful tools to investigate scientific questions that would be complicated to address using an experimental approach. In the context of cochlear-implants (CIs), being able to simulate the neural activity evoked by these devices could help in understanding their limitations to provide natural hearing. Here, we present a computational modelling framework to quantify the transmission of information from sound to spikes in the auditory nerve of a CI user. The framework includes a model to simulate the electrical current waveform sensed by each auditory nerve fiber (electrode-neuron interface), followed by a model to simulate the timing at which a nerve fiber spikes in response to a current waveform (auditory nerve fiber model). Information theory is then applied to determine the amount of information transmitted from a suitable reference signal (e.g., the acoustic stimulus) to a simulated population of auditory nerve fibers. As a use case example, the framework is applied to simulate published data on modulation detection by CI users obtained using direct stimulation via a single electrode. Current spread as well as the number of fibers were varied independently to illustrate the framework capabilities. Simulations reasonably matched experimental data and suggested that the encoded modulation information is proportional to the total neural response. They also suggested that amplitude modulation is well encoded in the auditory nerve for modulation rates up to 1000 Hz and that the variability in modulation sensitivity across CI users is partly because different CI users use different references for detecting modulation.
Collapse
Affiliation(s)
- Thibaud Leclère
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca 37007, Spain; Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca 37007, Spain
| | - Peter T Johannesen
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca 37007, Spain; Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca 37007, Spain
| | | | | | - Enrique A Lopez-Poveda
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca 37007, Spain; Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca 37007, Spain; Departamento de Cirugía, Facultad de Medicina, Universidad de Salamanca, Salamanca 37007, Spain.
| |
Collapse
|
5
|
Schvartz-Leyzac KC, Colesa DJ, Swiderski DL, Raphael Y, Pfingst BE. Cochlear Health and Cochlear-implant Function. J Assoc Res Otolaryngol 2023; 24:5-29. [PMID: 36600147 PMCID: PMC9971430 DOI: 10.1007/s10162-022-00882-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/24/2022] [Indexed: 01/06/2023] Open
Abstract
The cochlear implant (CI) is widely considered to be one of the most innovative and successful neuroprosthetic treatments developed to date. Although outcomes vary, CIs are able to effectively improve hearing in nearly all recipients and can substantially improve speech understanding and quality of life for patients with significant hearing loss. A wealth of research has focused on underlying factors that contribute to success with a CI, and recent evidence suggests that the overall health of the cochlea could potentially play a larger role than previously recognized. This article defines and reviews attributes of cochlear health and describes procedures to evaluate cochlear health in humans and animal models in order to examine the effects of cochlear health on performance with a CI. Lastly, we describe how future biologic approaches can be used to preserve and/or enhance cochlear health in order to maximize performance for individual CI recipients.
Collapse
Affiliation(s)
- Kara C Schvartz-Leyzac
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Ave, Charleston, SC, 29425, USA
| | - Deborah J Colesa
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
| | - Donald L Swiderski
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
| | - Yehoash Raphael
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
| | - Bryan E Pfingst
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5616, USA.
| |
Collapse
|
6
|
Nishimura M, Song WJ. Region-dependent Millisecond Time-scale Sensitivity in Spectrotemporal Integrations in Guinea Pig Primary Auditory Cortex. Neuroscience 2022; 480:229-245. [PMID: 34762984 DOI: 10.1016/j.neuroscience.2021.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/18/2022]
Abstract
Spectrotemporal integration is a key function of our auditory system for discriminating spectrotemporally complex sounds, such as words. Response latency in the auditory cortex is known to change with the millisecond time-scale depending on acoustic parameters, such as sound frequency and intensity. The functional significance of the millisecond-range latency difference in the integration remains unclear. Actually, whether the auditory cortex has a sensitivity to the millisecond-range difference has not been systematically examined. Herein, we examined the sensitivity in the primary auditory cortex (A1) using voltage-sensitive dye imaging techniques in guinea pigs. Bandpass noise bursts in two different bands (band-noises), centered at 1 and 16 kHz, respectively, were used for the examination. Onset times of individual band-noises (spectral onset-times) were varied to virtually cancel or magnify the latency difference observed with the band-noises. Conventionally defined nonlinear effects in integration were analyzed at A1 with varying sound intensities (or response latencies) and/or spectral onset-times of the two band-noises. The nonlinear effect measured in the high-frequency region of the A1 linearly changed depending on the millisecond difference of the response onset-times, which were estimated from the spatially-local response latencies and spectral onset-times. In contrast, the low-frequency region of the A1 had no significant sensitivity to the millisecond difference. The millisecond-range latency difference may have functional significance in the spectrotemporal integration with the millisecond time-scale sensitivity at the high-frequency region of A1 but not at the low-frequency region.
Collapse
Affiliation(s)
- Masataka Nishimura
- Department of Sensory and Cognitive Physiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 8608556, Japan.
| | - Wen-Jie Song
- Department of Sensory and Cognitive Physiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 8608556, Japan; Program for Leading Graduate Schools HIGO Program, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
7
|
Weltin A, Kieninger J, Urban GA, Buchholz S, Arndt S, Rosskothen-Kuhl N. Standard cochlear implants as electrochemical sensors: Intracochlear oxygen measurements in vivo. Biosens Bioelectron 2021; 199:113859. [PMID: 34911002 DOI: 10.1016/j.bios.2021.113859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/02/2022]
Abstract
Cochlear implants are the most successful neural prostheses worldwide and routinely restore sensorineural hearing loss by direct electrical stimulation of the auditory nerve. Enhancing this standard implant by chemical sensor functionality opens up new possibilities, ranging from access to the biochemical microenvironment of the implanted electrode array to the long-term study of the electrode status. We developed an electrochemical method to turn the platinum stimulation microelectrodes of cochlear implants into electrochemical sensors. The electrodes showed excellent and stable chemical sensor properties, as demonstrated by in vitro characterizations with combined amperometric and active potentiometric dissolved oxygen and hydrogen peroxide measurements. Linear, stable and highly reproducible sensor responses within the relevant concentration ranges with negligible offset were shown. This approach was successfully applied in vivo in an animal model. Intracochlear oxygen dynamics in rats upon breathing pure oxygen were reproducibly and precisely measured in real-time from the perilymph. At the same time, correct implant placement and its functionality was verified by measurements of electrically evoked auditory brainstem responses with clearly distinguishable peaks. Acute measurements indicated no adverse influence of electrical stimulation on electrochemical measurements and vice versa. Our work is ground-breaking towards advanced implant functionality, future implant lifetime monitoring, and implant-life-long in situ investigation of electrode degradation in cochlear implant patients.
Collapse
Affiliation(s)
- Andreas Weltin
- Laboratory for Sensors, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany; BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany.
| | - Jochen Kieninger
- Laboratory for Sensors, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany; BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany
| | - Gerald A Urban
- Laboratory for Sensors, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany; BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany
| | - Sarah Buchholz
- Department of Oto-Rhino-Laryngology, Section of Experimental and Clinical Otology, Neurobiological Research Laboratory, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Susan Arndt
- Department of Oto-Rhino-Laryngology, Section of Experimental and Clinical Otology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Nicole Rosskothen-Kuhl
- Department of Oto-Rhino-Laryngology, Section of Experimental and Clinical Otology, Neurobiological Research Laboratory, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.
| |
Collapse
|
8
|
Yao JD, Sanes DH. Temporal Encoding is Required for Categorization, But Not Discrimination. Cereb Cortex 2021; 31:2886-2897. [PMID: 33429423 DOI: 10.1093/cercor/bhaa396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 11/14/2022] Open
Abstract
Core auditory cortex (AC) neurons encode slow fluctuations of acoustic stimuli with temporally patterned activity. However, whether temporal encoding is necessary to explain auditory perceptual skills remains uncertain. Here, we recorded from gerbil AC neurons while they discriminated between a 4-Hz amplitude modulation (AM) broadband noise and AM rates >4 Hz. We found a proportion of neurons possessed neural thresholds based on spike pattern or spike count that were better than the recorded session's behavioral threshold, suggesting that spike count could provide sufficient information for this perceptual task. A population decoder that relied on temporal information outperformed a decoder that relied on spike count alone, but the spike count decoder still remained sufficient to explain average behavioral performance. This leaves open the possibility that more demanding perceptual judgments require temporal information. Thus, we asked whether accurate classification of different AM rates between 4 and 12 Hz required the information contained in AC temporal discharge patterns. Indeed, accurate classification of these AM stimuli depended on the inclusion of temporal information rather than spike count alone. Overall, our results compare two different representations of time-varying acoustic features that can be accessed by downstream circuits required for perceptual judgments.
Collapse
Affiliation(s)
- Justin D Yao
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Dan H Sanes
- Center for Neural Science, New York University, New York, NY 10003, USA.,Department of Psychology, New York University, New York, NY 10003, USA.,Department of Biology, New York University, New York, NY 10003, USA.,Neuroscience Institute, NYU Langone Medical Center, New York University, New York, NY 10016, USA
| |
Collapse
|
9
|
Shader MJ, Gordon-Salant S, Goupell MJ. Impact of Aging and the Electrode-to-Neural Interface on Temporal Processing Ability in Cochlear-Implant Users: Amplitude-Modulation Detection Thresholds. Trends Hear 2020; 24:2331216520936160. [PMID: 32833587 PMCID: PMC7448135 DOI: 10.1177/2331216520936160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Although cochlear implants (CIs) are a viable treatment option for severe hearing loss in adults of any age, older adults may be at a disadvantage compared with younger adults. CIs deliver signals that contain limited spectral information, requiring CI users to attend to the temporal information within the signal to recognize speech. Older adults are susceptible to acquiring auditory temporal processing deficits, presenting a potential age-related limitation for recognizing speech signals delivered by CIs. The goal of this study was to measure auditory temporal processing ability via amplitude-modulation (AM) detection as a function of age in CI users. The contribution of the electrode-to-neural interface, in addition to age, was estimated using electrically evoked compound action potential (ECAP) amplitude growth functions. Within each participant, two electrodes were selected: one with the steepest ECAP slope and one with the shallowest ECAP slope, in order to represent electrodes with varied estimates of the electrode-to-neural interface. Single-electrode AM detection thresholds were measured using direct stimulation at these two electrode locations. Results revealed that AM detection ability significantly declined as a function of chronological age. ECAP slope did not significantly impact AM detection, but ECAP slope decreased (became shallower) with increasing age, suggesting that factors influencing the electrode-to-neural interface change with age. Results demonstrated a significant negative impact of chronological age on auditory temporal processing. The locus of the age-related limitation (peripheral vs. central origin), however, is difficult to evaluate because the peripheral influence (ECAPs) was correlated with the central factor (age).
Collapse
Affiliation(s)
- Maureen J Shader
- Department of Hearing and Speech Sciences, University of Maryland
| | | | | |
Collapse
|
10
|
Reynolds SM, Gifford RH. Effect of signal processing strategy and stimulation type on speech and auditory perception in adult cochlear implant users. Int J Audiol 2019; 58:363-372. [PMID: 30987476 DOI: 10.1080/14992027.2019.1580390] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE The objective of this study was to investigate the effects of signal processing strategy on speech understanding and auditory function for adult cochlear implant (CI) users with a focus on the effects of sequential versus paired stimulation. DESIGN Within-subjects, repeated measures design was utilised to compare performance between processing strategies and stimulation type on various measures of auditory function and subjective sound quality. Testing with subsequent strategies was completed after a total familiarisation time of two weeks. STUDY SAMPLE Ten post-lingually deafened adult CI users were recruited from a clinical population. Participants had a minimum of 13 months CI experience. Ages ranged from 25-78 years. All participants had long-term experience with the optima strategy; eight with sequential stimulation and two with paired stimulation. RESULTS We found no statistically significant effect of processing strategy. We observed an effect of stimulation type with sequential stimulation yielding significantly higher performance than paired stimulation for speech understanding in quiet and in noise, and subjective estimates of sound quality. No significant differences were noted across strategy or stimulation for music perception, spectral resolution or temporal resolution. CONCLUSIONS Many patients utilise paired stimulation - the default stimulation type in the clinical software; however, sequential stimulation yielded significantly higher outcomes on multiple measures.
Collapse
Affiliation(s)
- Susan M Reynolds
- a Department of Hearing and Speech Sciences , Vanderbilt University Medical Center, Vanderbilt Bill Wilkerson Center , Nashville , TN , USA
| | - René H Gifford
- a Department of Hearing and Speech Sciences , Vanderbilt University Medical Center, Vanderbilt Bill Wilkerson Center , Nashville , TN , USA
| |
Collapse
|
11
|
Carlyon RP, Guérit F, Billig AJ, Tam YC, Harris F, Deeks JM. Effect of Chronic Stimulation and Stimulus Level on Temporal Processing by Cochlear Implant Listeners. J Assoc Res Otolaryngol 2019; 20:169-185. [PMID: 30543016 PMCID: PMC6453997 DOI: 10.1007/s10162-018-00706-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 10/29/2018] [Indexed: 01/26/2023] Open
Abstract
A series of experiments investigated potential changes in temporal processing during the months following activation of a cochlear implant (CI) and as a function of stimulus level. Experiment 1 tested patients on the day of implant activation and 2 and 6 months later. All stimuli were presented using direct stimulation of a single apical electrode. The dependent variables were rate discrimination ratios (RDRs) for pulse trains with rates centred on 120 pulses per second (pps), obtained using an adaptive procedure, and a measure of the upper limit of temporal pitch, obtained using a pitch-ranking procedure. All stimuli were presented at their most comfortable level (MCL). RDRs decreased from 1.23 to 1.16 and the upper limit increased from 357 to 485 pps from 0 to 2 months post-activation, with no overall change from 2 to 6 months. Because MCLs and hence the testing level increased across sessions, two further experiments investigated whether the performance changes observed across sessions could be due to level differences. Experiment 2 re-tested a subset of subjects at 9 months post-activation, using current levels similar to those used at 0 months. Although the stimuli sounded softer, some subjects showed lower RDRs and/or higher upper limits at this re-test. Experiment 3 measured RDRs and the upper limit for a separate group of subjects at levels equal to 60 %, 80 % and 100 % of the dynamic range. RDRs decreased with increasing level. The upper limit increased with increasing level for most subjects, with two notable exceptions. Implications of the results for temporal plasticity are discussed, along with possible influences of the effects of level and of across-session learning.
Collapse
Affiliation(s)
- Robert P Carlyon
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK.
| | - François Guérit
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| | - Alexander J Billig
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| | | | | | - John M Deeks
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| |
Collapse
|
12
|
Carlyon RP, Deeks JM, Guérit F, Lamping W, Billig AJ, Large CH, Saeed SR, Harris P. Evaluation of Possible Effects of a Potassium Channel Modulator on Temporal Processing by Cochlear Implant Listeners. J Assoc Res Otolaryngol 2018; 19:669-680. [PMID: 30232712 PMCID: PMC6249161 DOI: 10.1007/s10162-018-00694-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/16/2018] [Indexed: 12/20/2022] Open
Abstract
Temporal processing by cochlear implant listeners is degraded and is affected by auditory deprivation. The fast-acting Kv3.1 potassium channel is important for sustained temporally accurate firing and is also susceptible to deprivation, the effects of which can be partially restored in animals by the molecule AUT00063. We report the results of a randomised placebo-controlled double-blind study on psychophysical tests of the effects of AUT00063 on temporal processing by CI listeners. The study measured the upper limit of temporal pitch, gap detection, and discrimination of low rates (centred on 120 pps) for monopolar pulse trains presented to an apical electrode. The upper limit was measured using the optimally efficient midpoint comparison (MPC) pitch-ranking procedure; thresholds were obtained for the other two measures using an adaptive procedure. Twelve CI users (MedEl and Cochlear) were tested before and after two periods of AUT00063 or placebo in a within-subject crossover study. No significant differences occurred between post-drug and post-placebo conditions. This absence of effect occurred despite high test-retest reliability for all three measures, obtained by comparing performance on the two baseline visits, and despite the demonstrated sensitivity of the measures to modest changes in temporal processing obtained in other studies from our laboratory. Hence, we have no evidence that AUT00063 improves temporal processing for the doses and patient population employed.
Collapse
Affiliation(s)
- Robert P Carlyon
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK.
| | - John M Deeks
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| | - François Guérit
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| | - Wiebke Lamping
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| | - Alexander J Billig
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| | - Charles H Large
- Autifony Therapeutics Limited, Imperial College Incubator, London, UK
| | - Shakeel R Saeed
- Royal National Throat, Nose and Ear Hospital, UCL Ear Institute, 330 Gray's Inn Road, London, WC1X 8DA, UK
| | - Peter Harris
- Autifony Therapeutics Limited, Imperial College Incubator, London, UK
| |
Collapse
|
13
|
Yao JD, Sanes DH. Developmental deprivation-induced perceptual and cortical processing deficits in awake-behaving animals. eLife 2018; 7:33891. [PMID: 29873632 PMCID: PMC6005681 DOI: 10.7554/elife.33891] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 06/04/2018] [Indexed: 01/02/2023] Open
Abstract
Sensory deprivation during development induces lifelong changes to central nervous system function that are associated with perceptual impairments. However, the relationship between neural and behavioral deficits is uncertain due to a lack of simultaneous measurements during task performance. Therefore, we telemetrically recorded from auditory cortex neurons in gerbils reared with developmental conductive hearing loss as they performed an auditory task in which rapid fluctuations in amplitude are detected. These data were compared to a measure of auditory brainstem temporal processing from each animal. We found that developmental HL diminished behavioral performance, but did not alter brainstem temporal processing. However, the simultaneous assessment of neural and behavioral processing revealed that perceptual deficits were associated with a degraded cortical population code that could be explained by greater trial-to-trial response variability. Our findings suggest that the perceptual limitations that attend early hearing loss are best explained by an encoding deficit in auditory cortex.
Collapse
Affiliation(s)
- Justin D Yao
- Center for Neural Science, New York University, New York, United States
| | - Dan H Sanes
- Center for Neural Science, New York University, New York, United States.,Department of Psychology, New York University, New York, United States.,Department of Biology, New York University, New York, United States.,Neuroscience Institute, NYU Langone Medical Center, New York, United States
| |
Collapse
|
14
|
Abstract
Stimulation pulse rate affects current amplitude discrimination by cochlear implant (CI) users, indicated by the evidence that the JND (just noticeable difference) in current amplitude delivered by a CI electrode becomes larger at higher pulse rates. However, it is not clearly understood whether pulse rate would affect discrimination of speech intensities presented acoustically to CI processors, or what the size of this effect might be. Intensity discrimination depends on two factors: the growth of loudness with increasing sound intensity and the loudness JND (or the just noticeable loudness increment). This study evaluated the hypothesis that stimulation pulse rate affects loudness JND. This was done by measuring current amplitude JNDs in an experiment design based on signal detection theory according to which loudness discrimination is related to internal noise (which is manifested by variability in loudness percept in response to repetitions of the same physical stimulus). Current amplitude JNDs were measured for equally loud pulse trains of 500 and 3000 pps (pulses per second) by increasing the current amplitude of the target pulse train until it was perceived just louder than a same-rate or different-rate reference pulse train. The JND measures were obtained at two presentation levels. At the louder level, the current amplitude JNDs were affected by the rate of the reference pulse train in a way that was consistent with greater noise or variability in loudness perception for the higher pulse rate. The results suggest that increasing pulse rate from 500 to 3000 pps can increase loudness JND by 60 % at the upper portion of the dynamic range. This is equivalent to a 38 % reduction in the number of discriminable steps for acoustic and speech intensities.
Collapse
|
15
|
Jain S, Vipin Ghosh PG. Acoustic simulation of cochlear implant hearing: Effect of manipulating various acoustic parameters on intelligibility of speech. Cochlear Implants Int 2017; 19:46-53. [PMID: 29032744 DOI: 10.1080/14670100.2017.1386384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Cochlear implants process the acoustic speech signal and convert it into electrical impulses. During this processing, many parameters contribute to speech perception. The available literature reviewed the effect of manipulating one or two such parameters on speech intelligibility, but multiple parameters are seldom manipulated. METHOD Acoustic parameters, including pulse rate, number of channels, 'n of m', number of electrodes, and channel spacing, were manipulated in acoustic simulations of cochlear implant hearing and 90 different combinations were created. Speech intelligibility at sentence level was measured using subjective and objective tests. RESULTS Principal component analysis was employed to select only those components with maximum factor loading, thus reducing the number of components to a reasonable limit. Perceptual speech intelligibility was maximum for signal processing manipulation with respect to 'n of m' and rate of pulses/sec. Regression analysis revealed that lower rate (=500 pps/ch) and lesser stimulating electrodes per cycle (2-4) contributed maximally for speech intelligibility. Perceptual estimate of speech quality (PESQ) and composite measures of spectral weights and likelihood ratio correlated with subjective speech intelligibility scores. DISCUSSION The findings are consistent with the literature review, indicating that lesser stimulated channel per cycle reduces electrode interaction and hence improve spectral resolution of speech. Reduced rate of pulses/second enhances temporal resolution of speech. Thus, these two components contribute significantly to speech intelligibility. CONCLUSION Pulse rate/channel and 'n of m' contribute maximally to speech intelligibility, at least in simulations of electric hearing.
Collapse
Affiliation(s)
- Saransh Jain
- a Department of Audiology and Speech Language Pathology , Jagadguru Sri Shivarathreeswara (JSS) Institute of Speech and Hearing, University of Mysore , Mysuru , Karnataka , India
| | - P G Vipin Ghosh
- a Department of Audiology and Speech Language Pathology , Jagadguru Sri Shivarathreeswara (JSS) Institute of Speech and Hearing, University of Mysore , Mysuru , Karnataka , India
| |
Collapse
|
16
|
Mielczarek M, Michalska J, Polatyńska K, Olszewski J. An Increase in Alpha Band Frequency in Resting State EEG after Electrical Stimulation of the Ear in Tinnitus Patients-A Pilot Study. Front Neurosci 2016; 10:453. [PMID: 27766069 PMCID: PMC5052278 DOI: 10.3389/fnins.2016.00453] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 09/21/2016] [Indexed: 11/22/2022] Open
Abstract
In our clinic invasive transtympanal promontory positive DC stimulations were first used, with a success rate of 42%. However, non-invasive hydrotransmissive negative DC stimulations are now favored, with improvement being obtained in 37.8% directly after the treatment, and 51.3% in a follow up 1 month after treatment. The further improvement after 1 month may be due to neuroplastic changes at central level as a result of altered peripheral input. The aim of the study was to determine how/whether a single electrical stimulation of the ear influences cortical activity, and whether changes observed in tinnitus after electrical stimulation are associated with any changes in cortical activity recorded in EEG. The study included 12 tinnitus patients (F–6, M-6) divided into two groups. Group I comprised six patients with unilateral tinnitus - unilateral, ipsilateral ES was performed. Group II comprised six patients with bilateral tinnitus—bilateral ES was performed. ES was performed using a custom-made apparatus. The active, silver probe—was immersed inside the external ear canal filled with saline. The passive electrode was placed on the forehead. The stimulating frequency was 250 Hz, the intensity ranged from 0.14 to 1.08 mA. The voltage was kept constant at 3 V. The duration of stimulation was 4 min. The EEG recording (Deymed QEST 32) was performed before and after ES. The patients assessed the intensity of tinnitus on the VAS 1-10. Results: In both groups an improvement in VAS was observed—in group I—in five ears (83.3%), in group II—in seven ears (58.3%). In Group I, a significant increase in the upper and lower limit frequency of alpha band was observed in the central temporal and frontal regions following ES. These changes, however, were not correlated with improvement in tinnitus. No significant changes were observed in the beta and theta bands and in group II. Preliminary results of our research reveal a change in cortical activity after electrical stimulations of the ear. However, it remains unclear if it is primary or secondary to peripheral auditory excitation. No similar studies had been found in the literature.
Collapse
Affiliation(s)
- Marzena Mielczarek
- Department of Otolaryngology, Laryngological Oncology, Audiology, and Phoniatrics, Medical University of Lodz Lodz, Poland
| | - Joanna Michalska
- Department of Otolaryngology, Laryngological Oncology, Audiology, and Phoniatrics, Medical University of Lodz Lodz, Poland
| | - Katarzyna Polatyńska
- Department of Neurology, Polish Mother's Memorial Hospital Research Institute Lodz, Poland
| | - Jurek Olszewski
- Department of Otolaryngology, Laryngological Oncology, Audiology, and Phoniatrics, Medical University of Lodz Lodz, Poland
| |
Collapse
|
17
|
George SS, Shivdasani MN, Fallon JB. Effect of current focusing on the sensitivity of inferior colliculus neurons to amplitude-modulated stimulation. J Neurophysiol 2016; 116:1104-16. [PMID: 27306672 DOI: 10.1152/jn.00126.2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/15/2016] [Indexed: 11/22/2022] Open
Abstract
In multichannel cochlear implants (CIs), current is delivered to specific electrodes along the cochlea in the form of amplitude-modulated pulse trains, to convey temporal and spectral cues. Our previous studies have shown that focused multipolar (FMP) and tripolar (TP) stimulation produce more restricted neural activation and reduced channel interactions in the inferior colliculus (IC) compared with traditional monopolar (MP) stimulation, suggesting that focusing of stimulation could produce better transmission of spectral information. The present study explored the capability of IC neurons to detect modulated CI stimulation with FMP and TP stimulation compared with MP stimulation. The study examined multiunit responses of IC neurons in acutely deafened guinea pigs by systematically varying the stimulation configuration, modulation depth, and stimulation level. Stimuli were sinusoidal amplitude-modulated pulse trains (carrier rate of 120 pulses/s). Modulation sensitivity was quantified by measuring modulation detection thresholds (MDTs), defined as the lowest modulation depth required to differentiate the response of a modulated stimulus from an unmodulated one. Whereas MP stimulation showed significantly lower MDTs than FMP and TP stimulation (P values <0.05) at stimulation ≤2 dB above threshold, all stimulation configurations were found to have similar modulation sensitivities at 4 dB above threshold. There was no difference found in modulation sensitivity between FMP and TP stimulation. The present study demonstrates that current focusing techniques such as FMP and TP can adequately convey amplitude modulation and are comparable to MP stimulation, especially at higher stimulation levels, although there may be some trade-off between spectral and temporal fidelity with current focusing stimulation.
Collapse
Affiliation(s)
- Shefin S George
- The Bionics Institute, East Melbourne, Australia; and Department of Medical Bionics, University of Melbourne, Melbourne, Australia
| | - Mohit N Shivdasani
- The Bionics Institute, East Melbourne, Australia; and Department of Medical Bionics, University of Melbourne, Melbourne, Australia
| | - James B Fallon
- The Bionics Institute, East Melbourne, Australia; and Department of Medical Bionics, University of Melbourne, Melbourne, Australia
| |
Collapse
|
18
|
Won JH, Moon IJ, Jin S, Park H, Woo J, Cho YS, Chung WH, Hong SH. Spectrotemporal Modulation Detection and Speech Perception by Cochlear Implant Users. PLoS One 2015; 10:e0140920. [PMID: 26485715 PMCID: PMC4617902 DOI: 10.1371/journal.pone.0140920] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 10/01/2015] [Indexed: 11/18/2022] Open
Abstract
Spectrotemporal modulation (STM) detection performance was examined for cochlear implant (CI) users. The test involved discriminating between an unmodulated steady noise and a modulated stimulus. The modulated stimulus presents frequency modulation patterns that change in frequency over time. In order to examine STM detection performance for different modulation conditions, two different temporal modulation rates (5 and 10 Hz) and three different spectral modulation densities (0.5, 1.0, and 2.0 cycles/octave) were employed, producing a total 6 different STM stimulus conditions. In order to explore how electric hearing constrains STM sensitivity for CI users differently from acoustic hearing, normal-hearing (NH) and hearing-impaired (HI) listeners were also tested on the same tasks. STM detection performance was best in NH subjects, followed by HI subjects. On average, CI subjects showed poorest performance, but some CI subjects showed high levels of STM detection performance that was comparable to acoustic hearing. Significant correlations were found between STM detection performance and speech identification performance in quiet and in noise. In order to understand the relative contribution of spectral and temporal modulation cues to speech perception abilities for CI users, spectral and temporal modulation detection was performed separately and related to STM detection and speech perception performance. The results suggest that that slow spectral modulation rather than slow temporal modulation may be important for determining speech perception capabilities for CI users. Lastly, test–retest reliability for STM detection was good with no learning. The present study demonstrates that STM detection may be a useful tool to evaluate the ability of CI sound processing strategies to deliver clinically pertinent acoustic modulation information.
Collapse
Affiliation(s)
- Jong Ho Won
- Division of Ophthalmic and Ear, Nose and Throat Devices, Office of Device Evaluation, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Il Joon Moon
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 135-710, Republic of Korea
- * E-mail:
| | - Sunhwa Jin
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 135-710, Republic of Korea
| | - Heesung Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 135-710, Republic of Korea
| | - Jihwan Woo
- School of Electrical Engineering, Biomedical Engineering, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Yang-Sun Cho
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 135-710, Republic of Korea
| | - Won-Ho Chung
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 135-710, Republic of Korea
| | - Sung Hwa Hong
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 135-710, Republic of Korea
| |
Collapse
|
19
|
Fielden CA, Kluk K, Boyle PJ, McKay CM. The perception of complex pitch in cochlear implants: A comparison of monopolar and tripolar stimulation. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 138:2524-36. [PMID: 26520335 DOI: 10.1121/1.4931910] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Cochlear implant listeners typically perform poorly in tasks of complex pitch perception (e.g., musical pitch and voice pitch). One explanation is that wide current spread during implant activation creates channel interactions that may interfere with perception of temporal fundamental frequency information contained in the amplitude modulations within channels. Current focusing using a tripolar mode of stimulation has been proposed as a way of reducing channel interactions, minimising spread of excitation and potentially improving place and temporal pitch cues. The present study evaluated the effect of mode in a group of cochlear implant listeners on a pitch ranking task using male and female singing voices separated by either a half or a quarter octave. Results were variable across participants, but on average, pitch ranking was at chance level when the pitches were a quarter octave apart and improved when the difference was a half octave. No advantage was observed for tripolar over monopolar mode at either pitch interval, suggesting that previously published psychophysical advantages for focused modes may not translate into improvements in complex pitch ranking. Evaluation of the spectral centroid of the stimulation pattern, plus a lack of significant difference between male and female voices, suggested that participants may have had difficulty in accessing temporal pitch cues in either mode.
Collapse
Affiliation(s)
- Claire A Fielden
- School of Psychological Sciences, University of Manchester, Ellen Wilkinson Building, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Karolina Kluk
- School of Psychological Sciences, University of Manchester, Ellen Wilkinson Building, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Patrick J Boyle
- Advanced Bionics UK Ltd., 2 Breaks House, Mill Court, Great Shelford, Cambridge, CB22 5LD, United Kingdom
| | - Colette M McKay
- School of Psychological Sciences, University of Manchester, Ellen Wilkinson Building, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
20
|
Tan X, Young H, Matic AI, Zirkle W, Rajguru S, Richter CP. Temporal properties of inferior colliculus neurons to photonic stimulation in the cochlea. Physiol Rep 2015; 3:3/8/e12491. [PMID: 26311831 PMCID: PMC4562577 DOI: 10.14814/phy2.12491] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Infrared neural stimulation (INS) may be beneficial in auditory prostheses because of its spatially selective activation of spiral ganglion neurons. However, the response properties of single auditory neurons to INS and the possible contributions of its optoacoustic effects are yet to be examined. In this study, the temporal properties of auditory neurons in the central nucleus of the inferior colliculus (ICC) of guinea pigs in response to INS were characterized. Spatial selectivity of INS was observed along the tonotopically organized ICC. Trains of laser pulses and trains of acoustic clicks were used to evoke single unit responses in ICC of normal hearing animals. In response to INS, ICC neurons showed lower limiting rates, longer latencies, and lower firing efficiencies. In deaf animals, ICC neurons could still be stimulated by INS while unresponsive to acoustic stimulation. The site and spatial selectivity of INS both likely shaped the temporal properties of ICC neurons.
Collapse
Affiliation(s)
- Xiaodong Tan
- Department of Otolaryngology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Hunter Young
- Department of Otolaryngology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Agnella Izzo Matic
- Department of Otolaryngology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Whitney Zirkle
- Department of Otolaryngology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Suhrud Rajguru
- Department of Biomedical Engineering, University of Miami, Miami, Florida, USA Department of Otolaryngology, University of Miami, Miami, Florida, USA
| | - Claus-Peter Richter
- Department of Otolaryngology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
21
|
Perception and coding of interaural time differences with bilateral cochlear implants. Hear Res 2015; 322:138-50. [DOI: 10.1016/j.heares.2014.10.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 10/01/2014] [Accepted: 10/07/2014] [Indexed: 11/21/2022]
|
22
|
Comparison of signal and gap-detection thresholds for focused and broad cochlear implant electrode configurations. J Assoc Res Otolaryngol 2015; 16:273-84. [PMID: 25644786 PMCID: PMC4368655 DOI: 10.1007/s10162-015-0507-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 12/23/2014] [Indexed: 01/04/2023] Open
Abstract
Cochlear implant (CI) users usually exhibit marked across-electrode differences in detection thresholds with "focused" modes of stimulation, such as partial-tripolar (pTP) mode. This may reflect differences either in local neural survival or in the distance of the electrodes from the modiolus. To shed light on these two explanations, we compared stimulus-detection thresholds and gap-detection thresholds (GDTs) at comfortably loud levels for at least four electrodes in each of ten Advanced Bionics CI users, using 1031-pps pulse trains. The electrodes selected for each user had a wide range of stimulus-detection thresholds in pTP mode. We also measured across-electrode variations in both stimulus-detection and gap-detection tasks in monopolar (MP) mode. Both stimulus-detection and gap-detection thresholds correlated across modes. However, there was no significant correlation between stimulus-detection and gap-detection thresholds in either mode. Hence, gap-detection thresholds likely tap a source of across-electrode variation additional to, or different from, that revealed by stimulus-detection thresholds. Stimulus-detection thresholds were significantly lower for apical than for basal electrodes in both modes; this was only true for gap detection in pTP mode. Finally, although the across-electrode standard deviation in stimulus-detection thresholds was greater in pTP than in MP mode, the reliability of these differences--assessed by dividing the across-electrode standard deviation by the standard deviation across adaptive runs for each electrode--was similar for the two modes; this metric was also similar across modes for gap detection. Hence across-electrode differences can be revealed using clinically available MP stimulation, with a reliability comparable to that observed with focused stimulation.
Collapse
|
23
|
Mesnildrey Q, Macherey O. Simulating the dual-peak excitation pattern produced by bipolar stimulation of a cochlear implant: effects on speech intelligibility. Hear Res 2014; 319:32-47. [PMID: 25449010 DOI: 10.1016/j.heares.2014.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 10/28/2014] [Accepted: 11/05/2014] [Indexed: 10/24/2022]
Abstract
Several electrophysiological and psychophysical studies have shown that the spatial excitation pattern produced by bipolar stimulation of a cochlear implant (CI) can have a dual-peak shape. The perceptual effects of this dual-peak shape were investigated using noise-vocoded CI simulations in which synthesis filters were designed to simulate the spread of neural activity produced by various electrode configurations, as predicted by a simple cochlear model. Experiments 1 and 2 tested speech recognition in the presence of a concurrent speech masker for various sets of single-peak and dual-peak synthesis filters and different numbers of channels. Similarly as results obtained in real CIs, both monopolar (MP, single-peak) and bipolar (BP + 1, dual-peak) simulations showed a plateau of performance above 8 channels. The benefit of increasing the number of channels was also lower for BP + 1 than for MP. This shows that channel interactions in BP + 1 become especially deleterious for speech intelligibility when a simulated electrode acts both as an active and as a return electrode for different channels because envelope information from two different analysis bands are being conveyed to the same spectral location. Experiment 3 shows that these channel interactions are even stronger in wide BP configuration (BP + 5), likely because the interfering speech envelopes are less correlated than in narrow BP + 1. Although the exact effects of dual- or multi-peak excitation in real CIs remain to be determined, this series of experiments suggest that multipolar stimulation strategies, such as bipolar or tripolar, should be controlled to avoid neural excitation in the vicinity of the return electrodes.
Collapse
Affiliation(s)
- Quentin Mesnildrey
- LMA-CNRS, UPR 7051, Aix-Marseille Univ., Centrale Marseille, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| | - Olivier Macherey
- LMA-CNRS, UPR 7051, Aix-Marseille Univ., Centrale Marseille, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| |
Collapse
|
24
|
Effects of deafness and cochlear implant use on temporal response characteristics in cat primary auditory cortex. Hear Res 2014; 315:1-9. [PMID: 24933111 DOI: 10.1016/j.heares.2014.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/28/2014] [Accepted: 06/03/2014] [Indexed: 11/24/2022]
Abstract
We have previously shown that neonatal deafness of 7-13 months duration leads to loss of cochleotopy in the primary auditory cortex (AI) that can be reversed by cochlear implant use. Here we describe the effects of a similar duration of deafness and cochlear implant use on temporal processing. Specifically, we compared the temporal resolution of neurons in AI of young adult normal-hearing cats that were acutely deafened and implanted immediately prior to recording with that in three groups of neonatally deafened cats. One group of neonatally deafened cats received no chronic stimulation. The other two groups received up to 8 months of either low- or high-rate (50 or 500 pulses per second per electrode, respectively) stimulation from a clinical cochlear implant, initiated at 10 weeks of age. Deafness of 7-13 months duration had no effect on the duration of post-onset response suppression, latency, latency jitter, or the stimulus repetition rate at which units responded maximally (best repetition rate), but resulted in a statistically significant reduction in the ability of units to respond to every stimulus in a train (maximum following rate). None of the temporal response characteristics of the low-rate group differed from those in acutely deafened controls. In contrast, high-rate stimulation had diverse effects: it resulted in decreased suppression duration, longer latency and greater jitter relative to all other groups, and an increase in best repetition rate and cut-off rate relative to acutely deafened controls. The minimal effects of moderate-duration deafness on temporal processing in the present study are in contrast to its previously-reported pronounced effects on cochleotopy. Much longer periods of deafness have been reported to result in significant changes in temporal processing, in accord with the fact that duration of deafness is a major factor influencing outcome in human cochlear implantees.
Collapse
|
25
|
Fielden CA, Kluk K, McKay CM. Interpulse interval discrimination within and across channels: comparison of monopolar and tripolar mode of stimulation. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2014; 135:2913-2922. [PMID: 24815271 DOI: 10.1121/1.4869687] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Perception of temporal patterns is crucial to speech understanding and music perception in normal hearing, and is fundamental in the design and implementation of processing strategies for cochlear implants. Two experiments described here investigated the effect of stimulation mode (monopolar versus tripolar) on interpulse interval discrimination using single-electrode stimulation (experiment 1) and dual-electrode stimulation (experiment 2). Experiment 1 required participants to discriminate stimuli containing different interpulse intervals and experiment 2 required listeners to discriminate between two dual-electrode stimuli that had the same temporal pattern on each electrode, but differed in inter-electrode timing. The hypotheses were that (i) stimulation mode would affect the ability to distinguish interpulse interval patterns on a single electrode and (ii) the electrode separation range in which subjects were sensitive to inter-electrode timing would be more restricted in tripolar than in monopolar stimulation. Results in nine cochlear implant users showed that mode did not have a significant mean effect on either the ability to discriminate interpulse intervals in single-electrode stimulation or the range of electrode separation in dual-electrode stimulation in which participants were sensitive to inter-electrode timing. In conclusion, tripolar stimulation did not show any advantage in delivering temporal information within or across channels in this group.
Collapse
Affiliation(s)
- Claire A Fielden
- School of Psychological Sciences, Ellen Wilkinson Building, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Karolina Kluk
- School of Psychological Sciences, Ellen Wilkinson Building, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Colette M McKay
- School of Psychological Sciences, Ellen Wilkinson Building, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
26
|
Variations in carrier pulse rate and the perception of amplitude modulation in cochlear implant users. Ear Hear 2012; 33:221-30. [PMID: 22367093 DOI: 10.1097/aud.0b013e318230fff8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVES A major focus of recent attempts to enhance cochlear implant (CI) systems has been to increase the rate at which pulses are delivered to the electrode array. One basis for these attempts has been the expectation that faster stimulation rates would lead to an enhanced representation of temporal modulation information. However, there is recent physiological and behavioral evidence to suggest that the reverse may be the case. Here, the effects of stimulation rate on the perception of amplitude modulation were assessed using both modulation detection and modulation frequency discrimination tasks for a range of pulse rates extending considerably higher than the highest rate tested in previous studies and for different speech-relevant modulation frequencies. DESIGN Detection of sinusoidal amplitude modulation was assessed in five CI users using monopolar pulse trains presented to a single electrode at rates of 482, 723, 1447, 2894, and 5787 pulses per second (pps). Adaptive procedures were used to find the minimal detectable modulation depth at modulation frequencies of 10 and 100 Hz and at carrier levels of 25%, 50%, and 75% of the electrode's dynamic range. Discrimination of modulation frequency was examined for the same range of pulse rates for the highest carrier level. Similar adaptive procedures determined the minimum increase in modulation frequency that could be detected relative to reference modulation frequencies of 10, 100, and 200 Hz. In both tasks, level roving was implemented to minimize possible loudness cues. RESULTS Consistent with previous evidence, modulation detection thresholds were better for higher carrier levels and lower modulation frequencies. When modulation depth at threshold was expressed in terms of the ratio of the depth of the modulation and the carrier level in dB (i.e., 20 log m), performance was significantly better at lower pulse rates. However, when modulation depth was expressed relative to dynamic range, the effect of pulse rate was no longer significant, reflecting the fact that dynamic range increases with pulse rate. Modulation frequency discrimination clearly worsened with increasing modulation frequency, but there was no significant effect of pulse rate. CONCLUSIONS In contrast to some recent evidence, no clearly harmful effect of higher pulse rates on modulation perception was found. However, even with very fast stimulation rates, tested over a wide range of modulation frequencies and with two different tasks, there is no evidence of benefit from faster stimulation rates in the perception of amplitude modulation.
Collapse
|
27
|
Johnson JS, Yin P, O'Connor KN, Sutter ML. Ability of primary auditory cortical neurons to detect amplitude modulation with rate and temporal codes: neurometric analysis. J Neurophysiol 2012; 107:3325-41. [PMID: 22422997 DOI: 10.1152/jn.00812.2011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Amplitude modulation (AM) is a common feature of natural sounds, and its detection is biologically important. Even though most sounds are not fully modulated, the majority of physiological studies have focused on fully modulated (100% modulation depth) sounds. We presented AM noise at a range of modulation depths to awake macaque monkeys while recording from neurons in primary auditory cortex (A1). The ability of neurons to detect partial AM with rate and temporal codes was assessed with signal detection methods. On average, single-cell synchrony was as or more sensitive than spike count in modulation detection. Cells are less sensitive to modulation depth if tested away from their best modulation frequency, particularly for temporal measures. Mean neural modulation detection thresholds in A1 are not as sensitive as behavioral thresholds, but with phase locking the most sensitive neurons are more sensitive, suggesting that for temporal measures the lower-envelope principle cannot account for thresholds. Three methods of preanalysis pooling of spike trains (multiunit, similar to convergence from a cortical column; within cell, similar to convergence of cells with matched response properties; across cell, similar to indiscriminate convergence of cells) all result in an increase in neural sensitivity to modulation depth for both temporal and rate codes. For the across-cell method, pooling of a few dozen cells can result in detection thresholds that approximate those of the behaving animal. With synchrony measures, indiscriminate pooling results in sensitive detection of modulation frequencies between 20 and 60 Hz, suggesting that differences in AM response phase are minor in A1.
Collapse
Affiliation(s)
- Jeffrey S Johnson
- Center for Neuroscience, Univ. of California at Davis, Davis, CA 95618, USA
| | | | | | | |
Collapse
|
28
|
Intensity coding in electric hearing: effects of electrode configurations and stimulation waveforms. Ear Hear 2012; 32:679-89. [PMID: 21610498 DOI: 10.1097/aud.0b013e31821a47df] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Current cochlear implants typically stimulate the auditory nerve with biphasic pulses and monopolar electrode configurations. Tripolar stimulation can increase spatial selectivity and potentially improve place pitch related perception but requires higher current levels to elicit the same loudness as monopolar stimulation. The present study combined delayed pseudomonophonasic pulses, which produce lower thresholds, with tripolar stimulation in an attempt to solve the power-performance tradeoff problem. DESIGN The present study systematically measured thresholds, dynamic range, loudness growth, and intensity discrimination using either biphasic or delayed pseudomonophonasic pulses under both monopolar and tripolar stimulation. Participants were five Clarion cochlear implant users. For each subject, data from apical, middle, and basal electrode positions were collected when possible. RESULTS Compared with biphasic pulses, delayed pseudomonophonasic pulses increased the dynamic range by lowering thresholds while maintaining comparable maximum allowable levels under both electrode configurations. However, delayed pseudomonophonasic pulses did not change the shape of loudness growth function and actually increased intensity discrimination limens, especially at lower current levels. CONCLUSIONS The present results indicate that delayed pseudomonophonasic pulses coupled with tripolar stimulation cannot provide significant power savings nor can it increase the functional dynamic range. Whether this combined stimulation could improve functional spectral resolution remains to be seen.
Collapse
|
29
|
Zhou N, Xu L, Pfingst BE. Characteristics of detection thresholds and maximum comfortable loudness levels as a function of pulse rate in human cochlear implant users. Hear Res 2012; 284:25-32. [PMID: 22245714 DOI: 10.1016/j.heares.2011.12.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 12/20/2011] [Accepted: 12/28/2011] [Indexed: 12/20/2022]
Abstract
The ability of an implanted ear to integrate multiple pulses, as measured by the slopes of detection threshold level (T level) versus pulse rate functions, may reflect cochlear health in the cochlea, as suggested by previous animal studies (Kang et al., 2010; Pfingst et al., 2011). In the current study, we examined the slopes of T level versus pulse rate functions in human subjects with cochlear implants. Typically, T levels decrease as a function of pulse rate, consistent with a multipulse integration mechanism. The magnitudes of the slopes of the T level versus pulse rate functions obtained from the human subjects were comparable to those reported in the animal studies. The slopes varied across stimulation sites, but did not change systematically along the tonotopic axis. This suggests that the slopes are dependent on local conditions near the individual stimulation sites. The characteristics of these functions were also similar to those found in animals in that the slopes for higher pulse rates were steeper than those for the lower pulse rates, consistent with a combined effect of multipulse integration and cumulative partial depolarization mechanisms at rates above 1000 pps. The maximum comfortable loudness level (C level) versus pulse rate functions were also examined to determine the effect of level on the slopes. Slopes of C-level functions were shallower than those for the T-level functions and were not correlated with those of the T-level functions, so the mechanisms underlying these two functions are probably not identical. The slopes of the T- or C-level functions were not dependent on stimulus-current level. Based on these results, we suggest that slopes of T level versus pulse rate functions might be a useful measure for estimating nerve survival in the cochlea in regions close to the stimulation sites.
Collapse
Affiliation(s)
- Ning Zhou
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, 1301 East Ann Street, Ann Arbor, MI 48109-5616, USA
| | | | | |
Collapse
|
30
|
Fraser M, McKay CM. Temporal modulation transfer functions in cochlear implantees using a method that limits overall loudness cues. Hear Res 2011; 283:59-69. [PMID: 22146425 PMCID: PMC3314947 DOI: 10.1016/j.heares.2011.11.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 11/07/2011] [Accepted: 11/22/2011] [Indexed: 11/29/2022]
Abstract
Temporal modulation transfer functions (TMTFs) were measured for six users of cochlear implants, using different carrier rates and levels. Unlike most previous studies investigating modulation detection, the experimental design limited potential effects of overall loudness cues. Psychometric functions (percent correct discrimination of modulated from unmodulated stimuli versus modulation depth) were obtained. For each modulation depth, each modulated stimulus was loudness balanced to the unmodulated reference stimulus, and level jitter was applied in the discrimination task. The loudness-balance data showed that the modulated stimuli were louder than the unmodulated reference stimuli with the same average current, thus confirming the need to limit loudness cues when measuring modulation detection. TMTFs measured in this way had a low-pass characteristic, with a cut-off frequency (at comfortably loud levels) similar to that for normal-hearing listeners. A reduction in level caused degradation in modulation detection efficiency and a lower-cut-off frequency (i.e. poorer temporal resolution). An increase in carrier rate also led to a degradation in modulation detection efficiency, but only at lower levels or higher modulation frequencies. When detection thresholds were expressed as a proportion of dynamic range, there was no effect of carrier rate for the lowest modulation frequency (50 Hz) at either level.
Collapse
Affiliation(s)
- Matthew Fraser
- School of Psychological Sciences, The University of Manchester, Manchester M13 9PL, UK
| | | |
Collapse
|
31
|
Pfingst BE, Colesa DJ, Hembrador S, Kang SY, Middlebrooks JC, Raphael Y, Su GL. Detection of pulse trains in the electrically stimulated cochlea: effects of cochlear health. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 130:3954-68. [PMID: 22225050 PMCID: PMC3253597 DOI: 10.1121/1.3651820] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 09/13/2011] [Accepted: 09/14/2011] [Indexed: 05/25/2023]
Abstract
Perception of electrical stimuli varies widely across users of cochlear implants and across stimulation sites in individual users. It is commonly assumed that the ability of subjects to detect and discriminate electrical signals is dependent, in part, on conditions in the implanted cochlea, but evidence supporting that hypothesis is sparse. The objective of this study was to define specific relationships between the survival of tissues near the implanted electrodes and the functional responses to electrical stimulation of those electrodes. Psychophysical and neurophysiological procedures were used to assess stimulus detection as a function of pulse rate under the various degrees of cochlear pathology. Cochlear morphology, assessed post-mortem, ranged from near-normal numbers of hair cells, peripheral processes and spiral ganglion cells, to complete absence of hair cells and peripheral processes and small numbers of surviving spiral ganglion cells. The psychophysical and neurophysiological studies indicated that slopes and levels of the threshold versus pulse rate functions reflected multipulse integration throughout the 200 ms pulse train with an additional contribution of interactions between adjacent pulses at high pulse rates. The amount of multipulse integration was correlated with the health of the implanted cochlea with implications for perception of more complex prosthetic stimuli.
Collapse
Affiliation(s)
- Bryan E Pfingst
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109-5616, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Kirby AE, Middlebrooks JC. Unanesthetized auditory cortex exhibits multiple codes for gaps in cochlear implant pulse trains. J Assoc Res Otolaryngol 2011; 13:67-80. [PMID: 21969022 PMCID: PMC3254721 DOI: 10.1007/s10162-011-0293-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 09/12/2011] [Indexed: 11/29/2022] Open
Abstract
Cochlear implant listeners receive auditory stimulation through amplitude-modulated electric pulse trains. Auditory nerve studies in animals demonstrate qualitatively different patterns of firing elicited by low versus high pulse rates, suggesting that stimulus pulse rate might influence the transmission of temporal information through the auditory pathway. We tested in awake guinea pigs the temporal acuity of auditory cortical neurons for gaps in cochlear implant pulse trains. Consistent with results using anesthetized conditions, temporal acuity improved with increasing pulse rates. Unlike the anesthetized condition, however, cortical neurons responded in the awake state to multiple distinct features of the gap-containing pulse trains, with the dominant features varying with stimulus pulse rate. Responses to the onset of the trailing pulse train (Trail-ON) provided the most sensitive gap detection at 1,017 and 4,069 pulse-per-second (pps) rates, particularly for short (25 ms) leading pulse trains. In contrast, under conditions of 254 pps rate and long (200 ms) leading pulse trains, a sizeable fraction of units demonstrated greater temporal acuity in the form of robust responses to the offsets of the leading pulse train (Lead-OFF). Finally, TONIC responses exhibited decrements in firing rate during gaps, but were rarely the most sensitive feature. Unlike results from anesthetized conditions, temporal acuity of the most sensitive units was nearly as sharp for brief as for long leading bursts. The differences in stimulus coding across pulse rates likely originate from pulse rate-dependent variations in adaptation in the auditory nerve. Two marked differences from responses to acoustic stimulation were: first, Trail-ON responses to 4,069 pps trains encoded substantially shorter gaps than have been observed with acoustic stimuli; and second, the Lead-OFF gap coding seen for <15 ms gaps in 254 pps stimuli is not seen in responses to sounds. The current results may help to explain why moderate pulse rates around 1,000 pps are favored by many cochlear implant listeners.
Collapse
Affiliation(s)
- Alana E Kirby
- Department of Otolaryngology, University of California, Medical Sciences E, Room E101, Irvine, CA 92697-5310, USA.
| | | |
Collapse
|
33
|
Zeng FG, Tang Q, Dimitrijevic A, Starr A, Larky J, Blevins NH. Tinnitus suppression by low-rate electric stimulation and its electrophysiological mechanisms. Hear Res 2011; 277:61-6. [PMID: 21447376 DOI: 10.1016/j.heares.2011.03.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 02/17/2011] [Accepted: 03/16/2011] [Indexed: 12/16/2022]
Abstract
Tinnitus is a phantom sensation of sound in the absence of external stimulation. However, external stimulation, particularly electric stimulation via a cochlear implant, has been shown to suppress tinnitus. Different from traditional methods of delivering speech sounds or high-rate (>2000 Hz) stimulation, the present study found a unique unilaterally-deafened cochlear implant subject whose tinnitus was completely suppressed by a low-rate (<100 Hz) stimulus, delivered at a level softer than tinnitus to the apical part of the cochlea. Taking advantage of this novel finding, the present study compared both event-related and spontaneous cortical activities in the same subject between the tinnitus-present and tinnitus-suppressed states. Compared with the results obtained in the tinnitus-present state, the low-rate stimulus reduced cortical N100 potentials while increasing the spontaneous alpha power in the auditory cortex. These results are consistent with previous neurophysiological studies employing subjects with and without tinnitus and shed light on both tinnitus mechanism and treatment.
Collapse
Affiliation(s)
- Fan-Gang Zeng
- Department of Otolaryngology-Head and Neck Surgery, 110 Medical Science E, University of California, Irvine, CA 92697-5320, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Arora K, Vandali A, Dowell R, Dawson P. Effects of stimulation rate on modulation detection and speech recognition by cochlear implant users. Int J Audiol 2010; 50:123-32. [PMID: 21070121 DOI: 10.3109/14992027.2010.527860] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE This study investigated the effect of low to moderate electrical stimulation rates (275, 350, 500 and 900 pps/ch) on modulation detection ability of cochlear implant subjects, and the relationship between modulation detection and speech perception as a function of rate. DESIGN A repeated ABCD experimental design for the four rate conditions was employed. A sinusoidally amplitude modulated acoustic signal was presented to the audio input of a research processor. Stimuli were presented at an acoustic level that produced electrical levels close to the subjects' most comfortable level (MCL) of stimulation and at an acoustic level 20 dB below this. STUDY SAMPLE Ten postlingually deaf adult users of the Nucleus CI24 cochlear implant participated. RESULTS Acoustic modulation detection thresholds (MDTs), averaged across the subject group, were significantly better for rates of 500 pps/ch compared to the other rates examined for stimuli presented at MCL. In addition, there was a significant relation between speech perception in noise and acoustic MDTs at MCL. CONCLUSIONS The benefits obtained in speech perception and modulation detection as a function of rate were attributed to an increased electrical dynamic range as a function of stimulation rate, at least for rates up to 500 pps/ch.
Collapse
Affiliation(s)
- Komal Arora
- Department of Otolaryngology, The University of Melbourne, Melbourne, Australia.
| | | | | | | |
Collapse
|
35
|
O'Gorman DE, Colburn HS, Shera CA. Auditory sensitivity may require dynamically unstable spike generators: evidence from a model of electrical stimulation. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2010; 128:EL300-EL305. [PMID: 21110542 PMCID: PMC2997813 DOI: 10.1121/1.3469765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 06/30/2010] [Indexed: 05/30/2023]
Abstract
The response of the auditory nerve to electrical stimulation is highly sensitive to small modulations (<0.5%). This report demonstrates that dynamical instability (i.e., a positive Lyapunov exponent) can account for this sensitivity in a modified FitzHugh-Nagumo model of spike generation, so long as the input noise is not too large. This finding suggests both that spike generator instability is necessary to account for auditory nerve sensitivity and that the amplitude of physiological noise, such as that produced by the random behavior of voltage-gated sodium channels, is small. Based on these results with direct electrical stimulation, it is hypothesized that spike generator instability may be the mechanism that reconciles high sensitivity with the cross-fiber independence observed under acoustic stimulation.
Collapse
Affiliation(s)
- David E O'Gorman
- Department of Biomedical Engineering, Hearing Research Center, Boston University, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
36
|
Goldwyn JH, Shea-Brown E, Rubinstein JT. Encoding and decoding amplitude-modulated cochlear implant stimuli--a point process analysis. J Comput Neurosci 2010; 28:405-24. [PMID: 20177761 DOI: 10.1007/s10827-010-0224-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/21/2010] [Accepted: 02/02/2010] [Indexed: 11/25/2022]
Abstract
Cochlear implant speech processors stimulate the auditory nerve by delivering amplitude-modulated electrical pulse trains to intracochlear electrodes. Studying how auditory nerve cells encode modulation information is of fundamental importance, therefore, to understanding cochlear implant function and improving speech perception in cochlear implant users. In this paper, we analyze simulated responses of the auditory nerve to amplitude-modulated cochlear implant stimuli using a point process model. First, we quantify the information encoded in the spike trains by testing an ideal observer's ability to detect amplitude modulation in a two-alternative forced-choice task. We vary the amount of information available to the observer to probe how spike timing and averaged firing rate encode modulation. Second, we construct a neural decoding method that predicts several qualitative trends observed in psychophysical tests of amplitude modulation detection in cochlear implant listeners. We find that modulation information is primarily available in the sequence of spike times. The performance of an ideal observer, however, is inconsistent with observed trends in psychophysical data. Using a neural decoding method that jitters spike times to degrade its temporal resolution and then computes a common measure of phase locking from spike trains of a heterogeneous population of model nerve cells, we predict the correct qualitative dependence of modulation detection thresholds on modulation frequency and stimulus level. The decoder does not predict the observed loss of modulation sensitivity at high carrier pulse rates, but this framework can be applied to future models that better represent auditory nerve responses to high carrier pulse rate stimuli. The supplemental material of this article contains the article's data in an active, re-usable format.
Collapse
Affiliation(s)
- Joshua H Goldwyn
- Department of Applied Mathematics, University of Washington, Seattle, WA, USA.
| | | | | |
Collapse
|
37
|
Kirby AE, Middlebrooks JC. Auditory temporal acuity probed with cochlear implant stimulation and cortical recording. J Neurophysiol 2009; 103:531-42. [PMID: 19923242 DOI: 10.1152/jn.00794.2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cochlear implants stimulate the auditory nerve with amplitude-modulated (AM) electric pulse trains. Pulse rates >2,000 pulses per second (pps) have been hypothesized to enhance transmission of temporal information. Recent studies, however, have shown that higher pulse rates impair phase locking to sinusoidal AM in the auditory cortex and impair perceptual modulation detection. Here, we investigated the effects of high pulse rates on the temporal acuity of transmission of pulse trains to the auditory cortex. In anesthetized guinea pigs, signal-detection analysis was used to measure the thresholds for detection of gaps in pulse trains at rates of 254, 1,017, and 4,069 pps and in acoustic noise. Gap-detection thresholds decreased by an order of magnitude with increases in pulse rate from 254 to 4,069 pps. Such a pulse-rate dependence would likely influence speech reception through clinical speech processors. To elucidate the neural mechanisms of gap detection, we measured recovery from forward masking after a 196.6-ms pulse train. Recovery from masking was faster at higher carrier pulse rates and masking increased linearly with current level. We fit the data with a dual-exponential recovery function, consistent with a peripheral and a more central process. High-rate pulse trains evoked less central masking, possibly due to adaptation of the response in the auditory nerve. Neither gap detection nor forward masking varied with cortical depth, indicating that these processes are likely subcortical. These results indicate that gap detection and modulation detection are mediated by two separate neural mechanisms.
Collapse
Affiliation(s)
- Alana E Kirby
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
38
|
Influence of stimulation rate and loudness growth on modulation detection and intensity discrimination in cochlear implant users. Hear Res 2009; 250:46-54. [PMID: 19450432 DOI: 10.1016/j.heares.2009.01.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 01/20/2009] [Accepted: 01/28/2009] [Indexed: 11/21/2022]
Abstract
In cochlear implants (CIs), increasing the stimulation rate typically increases the electric dynamic range (DR), mostly by reducing audibility thresholds. While CI users' intensity resolution has been shown to be fairly constant across stimulation rates, high rates have been shown to weaken modulation sensitivity, especially at low listening levels. In this study, modulation detection thresholds (MDTs) were measured in five CI users for a range of stimulation rates (250-2000 pulses per second) and modulation frequencies (5-100 Hz) at 8 stimulation levels that spanned the DR (loudness-balanced across stimulation rates). Intensity difference limens (IDLs) were measured for the same stimulation rates and levels used for modulation detection. For all modulation frequencies, modulation sensitivity was generally poorer at low levels and at higher stimulation rates. CI users were sensitive to modulation frequency only at relatively high levels. Similarly, IDLs were poorer at low levels and at high stimulation rates. When compared directly in terms of relative amplitude, IDLs were generally better than MDTs at low levels. Differences in loudness growth between dynamic and steady stimuli might explain level-dependent differences between MDTs and IDLs. The slower loudness growth associated with high stimulation rates might explain the poorer MDTs and IDLs with high rates. In general, high stimulation rates provided no advantage in intensity resolution and a disadvantage in modulation sensitivity.
Collapse
|
39
|
Middlebrooks JC. Auditory cortex phase locking to amplitude-modulated cochlear implant pulse trains. J Neurophysiol 2008; 100:76-91. [PMID: 18367697 DOI: 10.1152/jn.01109.2007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cochlear implant speech processors transmit temporal features of sound as amplitude modulation of constant-rate electrical pulse trains. This study evaluated the central representation of amplitude modulation in the form of phase-locked firing of neurons in the auditory cortex. Anesthetized pigmented guinea pigs were implanted with cochlear electrode arrays. Stimuli were 254 pulse/s (pps) trains of biphasic electrical pulses, sinusoidally modulated with frequencies of 10-64 Hz and modulation depths of -40 to -5 dB re 100% (i.e., 1-56.2% modulation). Single- and multiunit activity was recorded from multi-site silicon-substrate probes. The maximum frequency for significant phase locking (limiting modulation frequency) was >or=60 Hz for 42% of recording sites, whereas phase locking to pulses of unmodulated pulse trains rarely exceeded 30 pps. The strength of phase locking to frequencies >or=40 Hz often varied nonmonotonically with modulation depth, commonly peaking at modulation depths around -15 to -10 dB. Cortical phase locking coded modulation frequency reliably, whereas a putative rate code for frequency was confounded by rate changes with modulation depth. Group delay computed from the slope of mean phase versus modulation frequency tended to increase with decreasing limiting modulation frequency. Neurons in cortical extragranular layers had lower limiting modulation frequencies than did neurons in thalamic afferent layers. Those observations suggest that the low-pass characteristic of cortical phase locking results from intracortical filtering mechanisms. The results show that cortical neurons can phase lock to modulated electrical pulse trains across the range of modulation frequencies and depths presented by cochlear implant speech processors.
Collapse
Affiliation(s)
- John C Middlebrooks
- Kresge Hearing Research Institute, Department of Otolaryngology Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|