1
|
Cui Z, Yu C, Wang X, Yin K, Luo J. Prevalent Harmonic Interaction in the Bat Inferior Colliculus. J Neurosci 2024; 44:e0916242024. [PMID: 39424367 PMCID: PMC11622178 DOI: 10.1523/jneurosci.0916-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/28/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024] Open
Abstract
Animal vocalizations and human speech are typically characterized by a complex spectrotemporal structure, composed of multiple harmonics, and patterned as temporally organized sequences. However, auditory research often employed simple artificial acoustic stimuli or their combinations. Here we addressed the question of whether the neuronal responses to natural echolocation call sequences can be predicted by manipulated sequences of incomplete constituents at the midbrain inferior colliculus (IC). We characterized the extracellular single-unit activity of IC neurons in the great roundleaf bat, Hipposideros armiger (both sexes), using natural call sequences, various manipulated sequences of incomplete vocalizations, and pure tones. We report that approximately two-thirds of IC neurons exhibited a harmonic interaction. Neurons with high harmonic interactions exhibited greater selectivity to natural call sequences, and the degree of harmonic interaction was robust to the natural amplitude variations between call harmonics. For 81% of the IC neurons, the responses to the natural echolocation call sequence could not be predicted by altered sequences of missing call components. Surprisingly, nearly 70% of the neurons that showed a harmonic interaction were characterized by a single excitatory response peak as revealed by pure tones. Our results suggest that prevalent harmonic processing has already emerged in the auditory midbrain IC in the echolocating bat.
Collapse
Affiliation(s)
- Zhongdan Cui
- Hubei Key Laboratory of Genetic Regulation & Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Chao Yu
- Nanjing Research Institute of Electronics Technology, Nanjing 210039, China
| | - Xindong Wang
- Hubei Key Laboratory of Genetic Regulation & Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Kuiying Yin
- Nanjing Research Institute of Electronics Technology, Nanjing 210039, China
| | - Jinhong Luo
- Hubei Key Laboratory of Genetic Regulation & Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
2
|
Diebold CA, Lawlor J, Allen K, Capshaw G, Humphrey MG, Cintron-De Leon D, Kuchibhotla KV, Moss CF. Rapid sensorimotor adaptation to auditory midbrain silencing in free-flying bats. Curr Biol 2024; 34:5507-5517.e3. [PMID: 39549701 PMCID: PMC11614681 DOI: 10.1016/j.cub.2024.10.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/03/2024] [Accepted: 10/16/2024] [Indexed: 11/18/2024]
Abstract
Echolocating bats rely on rapid processing of auditory information to guide moment-to-moment decisions related to echolocation call design and flight path selection. The fidelity of sonar echoes, however, can be disrupted in natural settings due to occlusions, noise, and conspecific jamming signals. Behavioral sensorimotor adaptation to external blocks of relevant cues has been studied extensively, but little is known about adaptations that mitigate internal sensory flow interruption. How do bats modify their sensory-guided behaviors in natural tasks when central auditory processing is interrupted? Here, we induced internal sensory interruptions by reversibly inactivating excitatory neurons in the inferior colliculus (IC) using ligand-activated inhibitory designer receptors exclusively activated by designer drugs (DREADDs). Bats were trained to navigate through one of three open windows in a curtain to obtain a food reward, while their echolocation and flight behaviors were quantified with synchronized ultrasound microphone and stereo video recordings. Under control conditions, bats reliably steered through the open window, only occasionally contacting the curtain edge. Suppressing IC excitatory activity elevated hearing thresholds, disrupted overall performance in the task, increased the frequency of curtain contact, and led to striking compensatory sensorimotor adjustments. DREADDs-treated bats modified flight trajectories to maximize returning echo information and adjusted sonar call design to boost detection of obstacles. Sensorimotor adaptations appeared immediately and did not change over successive trials, suggesting that these behavioral adaptations are mediated through existing neural circuitry. Our findings highlight the remarkable rapid adaptive strategies bats employ to compensate for internal sensory interruptions to effectively navigate their environments.
Collapse
Affiliation(s)
- Clarice A Diebold
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Jennifer Lawlor
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Kathryne Allen
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Grace Capshaw
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Megan G Humphrey
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Diego Cintron-De Leon
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kishore V Kuchibhotla
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA; The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Cynthia F Moss
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA; The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
3
|
Alluri RK, Rose GJ, McDowell J, Mukhopadhyay A, Leary CJ, Graham JA, Vasquez-Opazo GA. How auditory neurons count temporal intervals and decode information. Proc Natl Acad Sci U S A 2024; 121:e2404157121. [PMID: 39159380 PMCID: PMC11363261 DOI: 10.1073/pnas.2404157121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/05/2024] [Indexed: 08/21/2024] Open
Abstract
The numerical sense of animals includes identifying the numerosity of a sequence of events that occur with specific intervals, e.g., notes in a call or bar of music. Across nervous systems, the temporal patterning of spikes can code these events, but how this information is decoded (counted) remains elusive. In the anuran auditory system, temporal information of this type is decoded in the midbrain, where "interval-counting" neurons spike only after at least a threshold number of sound pulses have occurred with specific timing. We show that this decoding process, i.e., interval counting, arises from integrating phasic, onset-type and offset inhibition with excitation that augments across successive intervals, possibly due to a progressive decrease in "shunting" effects of inhibition. Because these physiological properties are ubiquitous within and across central nervous systems, interval counting may be a general mechanism for decoding diverse information coded/encoded in temporal patterns of spikes, including "bursts," and estimating elapsed time.
Collapse
Affiliation(s)
- Rishi K. Alluri
- School of Biological Sciences, University of Utah, Salt Lake City, UT84112
| | - Gary J. Rose
- School of Biological Sciences, University of Utah, Salt Lake City, UT84112
| | - Jamie McDowell
- Department of Psychology, University of California, Los Angeles, CA90095
| | | | | | - Jalina A. Graham
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH03755
| | | |
Collapse
|
4
|
Wang F, Chen M. Bionic study of distance-azimuth discrimination of multi-scattered point objects in bat bio-sonar. BIOINSPIRATION & BIOMIMETICS 2024; 19:026011. [PMID: 38241718 DOI: 10.1088/1748-3190/ad2085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/19/2024] [Indexed: 01/21/2024]
Abstract
This paper presents a novel approach to enhance the discrimination capacity of multi-scattered point objects in bat bio-sonar. A broadband interferometer mathematical model is developed, incorporating both distance and azimuth information, to simulate the transmitted and received signals of bats. The Fourier transform is employed to simulate the preprocessing step of bat information for feature extraction. Furthermore, the bat bio-sonar model based on convolutional neural network (BS-CNN) is constructed to compensate for the limitations of conventional machine learning and CNN networks, including three strategies: Mix-up data enhancement, joint feature and hybrid atrous convolution module. The proposed BS-CNN model emulates the perceptual nerves of the bat brain for distance-azimuth discrimination and compares with four conventional classifiers to assess its discrimination efficacy. Experimental results demonstrate that the overall discrimination accuracy of the BS-CNN model is 93.4%, surpassing conventional CNN networks and machine learning methods by at least 5.9%. This improvement validates the efficacy of the BS-CNN bionic model in enhancing the discrimination accuracy in bat bio-sonar and offers valuable references for radar and sonar target classification.
Collapse
Affiliation(s)
- Feng Wang
- Hohai University, Nanjing, Jiangsu 211100, People's Republic of China
| | - Ming Chen
- Hohai University, Nanjing, Jiangsu 211100, People's Republic of China
| |
Collapse
|
5
|
Brown AD, Hayward T, Portfors CV, Coffin AB. On the value of diverse organisms in auditory research: From fish to flies to humans. Hear Res 2023; 432:108754. [PMID: 37054531 PMCID: PMC10424633 DOI: 10.1016/j.heares.2023.108754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/28/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Historically, diverse organisms have contributed to our understanding of auditory function. In recent years, the laboratory mouse has become the prevailing non-human model in auditory research, particularly for biomedical studies. There are many questions in auditory research for which the mouse is the most appropriate (or the only) model system available. But mice cannot provide answers for all auditory problems of basic and applied importance, nor can any single model system provide a synthetic understanding of the diverse solutions that have evolved to facilitate effective detection and use of acoustic information. In this review, spurred by trends in funding and publishing and inspired by parallel observations in other domains of neuroscience, we highlight a few examples of the profound impact and lasting benefits of comparative and basic organismal research in the auditory system. We begin with the serendipitous discovery of hair cell regeneration in non-mammalian vertebrates, a finding that has fueled an ongoing search for pathways to hearing restoration in humans. We then turn to the problem of sound source localization - a fundamental task that most auditory systems have been compelled to solve despite large variation in the magnitudes and kinds of spatial acoustic cues available, begetting varied direction-detecting mechanisms. Finally, we consider the power of work in highly specialized organisms to reveal exceptional solutions to sensory problems - and the diverse returns of deep neuroethological inquiry - via the example of echolocating bats. Throughout, we consider how discoveries made possible by comparative and curiosity-driven organismal research have driven fundamental scientific, biomedical, and technological advances in the auditory field.
Collapse
Affiliation(s)
- Andrew D Brown
- Department of Speech and Hearing Sciences, University of Washington, 1417 NE 42nd St, Seattle, WA, 98105 USA; Virginia-Merrill Bloedel Hearing Research Center, University of Washington, 1701 NE Columbia Rd, Seattle, WA, 98195 USA.
| | - Tamasen Hayward
- College of Arts and Sciences, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA
| | - Christine V Portfors
- School of Biological Sciences, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA
| | - Allison B Coffin
- College of Arts and Sciences, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA; School of Biological Sciences, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA; Department of Integrative Physiology and Neuroscience, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA.
| |
Collapse
|
6
|
Descending projections to the auditory midbrain: evolutionary considerations. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:131-143. [PMID: 36323876 PMCID: PMC9898193 DOI: 10.1007/s00359-022-01588-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
The mammalian inferior colliculus (IC) is massively innervated by multiple descending projection systems. In addition to a large projection from the auditory cortex (AC) primarily targeting the non-lemniscal portions of the IC, there are less well-characterized projections from non-auditory regions of the cortex, amygdala, posterior thalamus and the brachium of the IC. By comparison, the frog auditory midbrain, known as the torus semicircularis, is a large auditory integration center that also receives descending input, but primarily from the posterior thalamus and without a projection from a putative cortical homolog: the dorsal pallium. Although descending projections have been implicated in many types of behaviors, a unified understanding of their function has not yet emerged. Here, we take a comparative approach to understanding the various top-down modulators of the IC to gain insights into their functions. One key question that we identify is whether thalamotectal projections in mammals and amphibians are homologous and whether they interact with evolutionarily more newly derived projections from the cerebral cortex. We also consider the behavioral significance of these descending pathways, given anurans' ability to navigate complex acoustic landscapes without the benefit of a corticocollicular projection. Finally, we suggest experimental approaches to answer these questions.
Collapse
|
7
|
Beetz MJ, Hechavarría JC. Neural Processing of Naturalistic Echolocation Signals in Bats. Front Neural Circuits 2022; 16:899370. [PMID: 35664459 PMCID: PMC9157489 DOI: 10.3389/fncir.2022.899370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/21/2022] [Indexed: 11/18/2022] Open
Abstract
Echolocation behavior, a navigation strategy based on acoustic signals, allows scientists to explore neural processing of behaviorally relevant stimuli. For the purpose of orientation, bats broadcast echolocation calls and extract spatial information from the echoes. Because bats control call emission and thus the availability of spatial information, the behavioral relevance of these signals is undiscussable. While most neurophysiological studies, conducted in the past, used synthesized acoustic stimuli that mimic portions of the echolocation signals, recent progress has been made to understand how naturalistic echolocation signals are encoded in the bat brain. Here, we review how does stimulus history affect neural processing, how spatial information from multiple objects and how echolocation signals embedded in a naturalistic, noisy environment are processed in the bat brain. We end our review by discussing the huge potential that state-of-the-art recording techniques provide to gain a more complete picture on the neuroethology of echolocation behavior.
Collapse
Affiliation(s)
- M. Jerome Beetz
- Zoology II, Biocenter, University of Würzburg, Würzburg, Germany
| | - Julio C. Hechavarría
- Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
8
|
Yu C, Moss CF. Natural acoustic stimuli evoke selective responses in the hippocampus of passive listening bats. Hippocampus 2022; 32:298-309. [PMID: 35085416 PMCID: PMC9306857 DOI: 10.1002/hipo.23407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/21/2021] [Accepted: 01/12/2022] [Indexed: 11/10/2022]
Abstract
A growing body of research details spatial representation in bat hippocampus, and experiments have yet to explore hippocampal neuron responses to sonar signals in animals that rely on echolocation for spatial navigation. To bridge this gap, we investigated bat hippocampal responses to natural echolocation sounds in a non‐spatial context. In this experiment, we recorded from CA1 of the hippocampus of three awake bats that listened passively to single echolocation calls, call‐echo pairs, or natural echolocation sequences. Our data analysis identified a subset of neurons showing response selectivity to the duration of single echolocation calls. However, the sampled population of CA1 neurons did not respond selectively to call‐echo delay, a stimulus dimension posited to simulate target distance in recordings from auditory brain regions of bats. A population analysis revealed ensemble coding of call duration and sequence identity. These findings open the door to many new investigations of auditory coding in the mammalian hippocampus.
Collapse
Affiliation(s)
- Chao Yu
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Cynthia F Moss
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Abstract
Animals must encode fundamental physical relationships in their brains. A heron plunging its head underwater to skewer a fish must correct for light refraction, an archerfish shooting down an insect must "consider" gravity, and an echolocating bat that is attacking prey must account for the speed of sound in order to assess its distance. Do animals learn these relations or are they encoded innately and can they adjust them as adults are all open questions. We addressed this question by shifting the speed of sound and assessing the sensory behavior of a bat species that naturally experiences different speeds of sound. We found that both newborn pups and adults are unable to adjust to this shift, suggesting that the speed of sound is innately encoded in the bat brain. Moreover, our results suggest that bats encode the world in terms of time and do not translate time into distance. Our results shed light on the evolution of innate and flexible sensory perception.
Collapse
|
10
|
Enhanced representation of natural sound sequences in the ventral auditory midbrain. Brain Struct Funct 2020; 226:207-223. [PMID: 33315120 PMCID: PMC7817570 DOI: 10.1007/s00429-020-02188-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 11/24/2020] [Indexed: 11/30/2022]
Abstract
The auditory midbrain (inferior colliculus, IC) plays an important role in sound processing, acting as hub for acoustic information extraction and for the implementation of fast audio-motor behaviors. IC neurons are topographically organized according to their sound frequency preference: dorsal IC regions encode low frequencies while ventral areas respond best to high frequencies, a type of sensory map defined as tonotopy. Tonotopic maps have been studied extensively using artificial stimuli (pure tones) but our knowledge of how these maps represent information about sequences of natural, spectro-temporally rich sounds is sparse. We studied this question by conducting simultaneous extracellular recordings across IC depths in awake bats (Carollia perspicillata) that listened to sequences of natural communication and echolocation sounds. The hypothesis was that information about these two types of sound streams is represented at different IC depths since they exhibit large differences in spectral composition, i.e., echolocation covers the high-frequency portion of the bat soundscape (> 45 kHz), while communication sounds are broadband and carry most power at low frequencies (20–25 kHz). Our results showed that mutual information between neuronal responses and acoustic stimuli, as well as response redundancy in pairs of neurons recorded simultaneously, increase exponentially with IC depth. The latter occurs regardless of the sound type presented to the bats (echolocation or communication). Taken together, our results indicate the existence of mutual information and redundancy maps at the midbrain level whose response cannot be predicted based on the frequency composition of natural sounds and classic neuronal tuning curves.
Collapse
|
11
|
Experience-Dependent Coding of Time-Dependent Frequency Trajectories by Off Responses in Secondary Auditory Cortex. J Neurosci 2020; 40:4469-4482. [PMID: 32327533 PMCID: PMC7275866 DOI: 10.1523/jneurosci.2665-19.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/02/2020] [Accepted: 04/07/2020] [Indexed: 11/21/2022] Open
Abstract
Time-dependent frequency trajectories are an inherent feature of many behaviorally relevant sounds, such as species-specific vocalizations. Dynamic frequency trajectories, even in short sounds, often convey meaningful information, which may be used to differentiate sound categories. However, it is not clear what and where neural responses in the auditory cortical pathway are critical for conveying information about behaviorally relevant frequency trajectories, and how these responses change with experience. Here, we uncover tuning to subtle variations in frequency trajectories in auditory cortex of female mice. We found that auditory cortical responses could be modulated by variations in a pure tone trajectory as small as 1/24th of an octave, comparable to what has been reported in primates. In particular, late spiking after the end of a sound stimulus was more often sensitive to the sound's subtle frequency variation compared with spiking during the sound. Such “Off” responses in the adult A2, but not those in core auditory cortex, were plastic in a way that may enhance the representation of a newly acquired, behaviorally relevant sound category. We illustrate this with the maternal mouse paradigm for natural vocalization learning. By using an ethologically inspired paradigm to drive auditory responses in higher-order neurons, our results demonstrate that mouse auditory cortex can track fine frequency changes, which allows A2 Off responses in particular to better respond to pitch trajectories that distinguish behaviorally relevant, natural sound categories. SIGNIFICANCE STATEMENT A whistle's pitch conveys meaning to its listener, as when dogs learn that distinct pitch trajectories whistled by their owner differentiate specific commands. Many species use pitch trajectories in their own vocalizations to distinguish sound categories, such as in human languages, such as Mandarin. How and where auditory neural activity encodes these pitch trajectories as their meaning is learned but not well understood, especially for short-duration sounds. We studied this in mice, where infants use ultrasonic whistles to communicate to adults. We found that late neural firing after a sound ends can be tuned to how the pitch changes in time, and that this response in a secondary auditory cortical field changes with experience to acquire a pitch change's meaning.
Collapse
|
12
|
Butman JA, Suga N. Inhibitory mechanisms shaping delay-tuned combination-sensitivity in the auditory cortex and thalamus of the mustached bat. Hear Res 2019; 373:71-84. [PMID: 30612026 DOI: 10.1016/j.heares.2018.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/11/2018] [Accepted: 12/21/2018] [Indexed: 10/27/2022]
Abstract
Delay-tuned auditory neurons of the mustached bat show facilitative responses to a combination of signal elements of a biosonar pulse-echo pair with a specific echo delay. The subcollicular nuclei produce latency-constant phasic on-responding neurons, and the inferior colliculus produces delay-tuned combination-sensitive neurons, designated "FM-FM" neurons. The combination-sensitivity is a facilitated response to the coincidence of the excitatory rebound following glycinergic inhibition to the pulse (1st harmonic) and the short-latency response to the echo (2nd-4th harmonics). The facilitative response of thalamic FM-FM neurons is mediated by glutamate receptors (NMDA and non-NMDA receptors). Different from collicular FM-FM neurons, thalamic ones respond more selectively to pulse-echo pairs than individual signal elements. A number of differences in response properties between collicular and thalamic or cortical FM-FM neurons have been reported. However, differences between thalamic and cortical FM-FM neurons have remained to be studied. Here, we report that GABAergic inhibition controls the duration of burst of spikes of facilitative responses of thalamic FM-FM neurons and sharpens the delay tuning of cortical ones. That is, intra-cortical inhibition sharpens the delay tuning of cortical FM-FM neurons that is potentially broad because of divergent/convergent thalamo-cortical projections. Compared with thalamic neurons, cortical ones tend to show sharper delay tuning, longer response duration, and larger facilitation index. However, those differences are statistically insignificant.
Collapse
Affiliation(s)
- John A Butman
- Department of Biology, Washington University, One Brookings Drive, St. Louis, MO 63130, USA.
| | - Nobuo Suga
- Department of Biology, Washington University, One Brookings Drive, St. Louis, MO 63130, USA.
| |
Collapse
|
13
|
Smotherman M, Bakshi K. Forward masking enhances the auditory brainstem response in the free-tailed bat, Tadarida brasiliensis, during a critical time window for sonar reception. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 145:EL19. [PMID: 30710968 DOI: 10.1121/1.5087278] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/27/2018] [Indexed: 06/09/2023]
Abstract
Forward masking is a widespread auditory phenomenon in which the response to one sound transiently reduces the response to a succeeding sound. This study used auditory brainstem responses to measure temporal masking effects in the free-tailed bat, Tadarida brasiliensis. A digital subtraction protocol was used to isolate responses to the second of a pair of pulses varying in interval, revealing a suppression phase lasting <4 ms followed by an enhancement phase lasting 4-15 ms during which the ABR waveform was amplified up to 100%. The results suggest echolocating bats possess adaptations for enhancing sonar receiver gain shortly after pulse emission.
Collapse
Affiliation(s)
- Michael Smotherman
- Institute for Neuroscience, Texas A&M University, College Station, Texas 77843-3258, ,
| | - Kushal Bakshi
- Institute for Neuroscience, Texas A&M University, College Station, Texas 77843-3258, ,
| |
Collapse
|
14
|
Washington SD, Hamaide J, Jeurissen B, van Steenkiste G, Huysmans T, Sijbers J, Deleye S, Kanwal JS, De Groof G, Liang S, Van Audekerke J, Wenstrup JJ, Van der Linden A, Radtke-Schuller S, Verhoye M. A three-dimensional digital neurological atlas of the mustached bat (Pteronotus parnellii). Neuroimage 2018; 183:300-313. [PMID: 30102998 DOI: 10.1016/j.neuroimage.2018.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/26/2018] [Accepted: 08/09/2018] [Indexed: 12/24/2022] Open
Abstract
Substantial knowledge of auditory processing within mammalian nervous systems emerged from neurophysiological studies of the mustached bat (Pteronotus parnellii). This highly social and vocal species retrieves precise information about the velocity and range of its targets through echolocation. Such high acoustic processing demands were likely the evolutionary pressures driving the over-development at peripheral (cochlea), metencephalic (cochlear nucleus), mesencephalic (inferior colliculus), diencephalic (medial geniculate body of the thalamus), and telencephalic (auditory cortex) auditory processing levels in this species. Auditory researchers stand to benefit from a three dimensional brain atlas of this species, due to its considerable contribution to auditory neuroscience. Our MRI-based atlas was generated from 2 sets of image data of an ex-vivo male mustached bat's brain: a detailed 3D-T2-weighted-RARE scan [(59 × 63 x 85) μm3] and track density images based on super resolution diffusion tensor images [(78) μm3] reconstructed from a set of low resolution diffusion weighted images using Super-Resolution-Reconstruction (SRR). By surface-rendering these delineations and extrapolating from cortical landmarks and data from previous studies, we generated overlays that estimate the locations of classic functional subregions within mustached bat auditory cortex. This atlas is freely available from our website and can simplify future electrophysiological, microinjection, and neuroimaging studies in this and related species.
Collapse
Affiliation(s)
- Stuart D Washington
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Julie Hamaide
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Ben Jeurissen
- Imec-Vision Lab, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | | | - Toon Huysmans
- Imec-Vision Lab, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Jan Sijbers
- Imec-Vision Lab, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Steven Deleye
- Molecular Imaging Center Antwerp, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Jagmeet S Kanwal
- Laboratory for Auditory Communication and Cognition, Georgetown University Medical Center, The Research Building, rm WP09, 3900 Reservoir Rd, NW, Washington, DC 20057, United States of America
| | - Geert De Groof
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Sayuan Liang
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Johan Van Audekerke
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Jeffrey J Wenstrup
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, United States of America
| | | | - Susanne Radtke-Schuller
- Division of Neurobiology, Biocenter of Ludwig Maximilians University, Grosshadernerstrasse 2, 82152, Planegg-Martinsried, Germany
| | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium.
| |
Collapse
|
15
|
Ito T, Furuyama T, Hase K, Kobayasi KI, Hiryu S. Organization of projection from brainstem auditory nuclei to the inferior colliculus of Japanese house bat (Pipistrellus abramus). Brain Behav 2018; 8:e01059. [PMID: 29999234 PMCID: PMC6085899 DOI: 10.1002/brb3.1059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/11/2018] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES Echolocating bats show remarkable specialization which is related to analysis of echoes of biosonars in subcortical auditory brainstem pathways. The inferior colliculus (IC) receives inputs from all lower brainstem auditory nuclei, i.e., cochlear nuclei, nuclei of the lateral lemniscus, and superior olivary complex, and create de novo responses to sound, which is considered crucial for echolocation. Inside the central nucleus of the IC (ICC), small domains which receive specific combination of extrinsic inputs are the basis of integration of sound information. In addition to extrinsic inputs, each domain is interconnected by local IC neurons but the cell types related to the interconnection are not well-understood. The primary objective of the current study is to examine whether the ascending inputs are reorganized and terminate in microdomains inside the ICC. METHODS We made injection of a retrograde tracer into different parts of the ICC, and analyzed distribution of retrogradely labeled cells in the auditory brainstem of Japanese house bat (Pipistrellus abramus). RESULTS Pattern of ascending projections from brainstem nuclei was similar to other bat species. Percentages of labeled cells in several nuclei were correlated each other. Furthermore, within the IC, we identified that large GABAergic (LG) and glutamatergic neurons made long-range connection. CONCLUSIONS Synaptic organization of IC of Japanese house bat shows specialization which is likely to relate for echolocation. Input nuclei to the IC make clusters which terminate in specific part of the ICC, implying the presence of microdomains. LG neurons have roles for binding IC microdomains.
Collapse
Affiliation(s)
- Tetsufumi Ito
- Department of Anatomy, Kanazawa Medical University, Uchinada, Japan.,Research and Education Program for Life Science, University of Fukui, Fukui, Japan
| | - Takafumi Furuyama
- Neuroethology and Bioengineering Laboratory, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Kazuma Hase
- Neuroethology and Bioengineering Laboratory, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Kohta I Kobayasi
- Neuroethology and Bioengineering Laboratory, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Shizuko Hiryu
- Neuroethology and Bioengineering Laboratory, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| |
Collapse
|
16
|
Macías S, Luo J, Moss CF. Natural echolocation sequences evoke echo-delay selectivity in the auditory midbrain of the FM bat, Eptesicus fuscus. J Neurophysiol 2018; 120:1323-1339. [PMID: 29924708 DOI: 10.1152/jn.00160.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Echolocating bats must process temporal streams of sonar sounds to represent objects along the range axis. Neuronal echo-delay tuning, the putative mechanism of sonar ranging, has been characterized in the inferior colliculus (IC) of the mustached bat, an insectivorous species that produces echolocation calls consisting of constant frequency and frequency modulated (FM) components, but not in species that use FM signals alone. This raises questions about the mechanisms that give rise to echo-delay tuning in insectivorous bats that use different signal designs. To investigate whether stimulus context may account for species differences in echo-delay selectivity, we characterized single-unit responses in the IC of awake passively listening FM bats, Eptesicus fuscus, to broadcasts of natural sonar call-echo sequences, which contained dynamic changes in signal duration, interval, spectrotemporal structure, and echo-delay. In E. fuscus, neural selectivity to call-echo delay emerges in a population of IC neurons when stimulated with call-echo pairs presented at intervals mimicking those in a natural sonar sequence. To determine whether echo-delay selectivity also depends on the spectrotemporal features of individual sounds within natural sonar sequences, we studied responses to computer-generated echolocation signals that controlled for call interval, duration, bandwidth, sweep rate, and echo-delay. A subpopulation of IC neurons responded selectively to the combination of the spectrotemporal structure of natural call-echo pairs and their temporal patterning within a dynamic sonar sequence. These new findings suggest that the FM bat's fine control over biosonar signal parameters may modulate IC neuronal selectivity to the dimension of echo-delay. NEW & NOTEWORTHY Echolocating bats perform precise auditory temporal computations to estimate their distance to objects. Here, we report that response selectivity of neurons in the inferior colliculus of a frequency modulated bat to call-echo delay, or target range tuning, depends on the temporal patterning and spectrotemporal features of sound elements in a natural echolocation sequence. We suggest that echo responses to objects at different distances are gated by the bat's active control over the spectrotemporal patterning of its sonar emissions.
Collapse
Affiliation(s)
- Silvio Macías
- Department of Psychological and Brain Sciences, Johns Hopkins University , Baltimore, Maryland
| | - Jinhong Luo
- Department of Psychological and Brain Sciences, Johns Hopkins University , Baltimore, Maryland
| | - Cynthia F Moss
- Department of Psychological and Brain Sciences, Johns Hopkins University , Baltimore, Maryland
| |
Collapse
|
17
|
Martin LM, García-Rosales F, Beetz MJ, Hechavarría JC. Processing of temporally patterned sounds in the auditory cortex of Seba's short-tailed bat,Carollia perspicillata. Eur J Neurosci 2018; 46:2365-2379. [PMID: 28921742 DOI: 10.1111/ejn.13702] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 11/29/2022]
Abstract
This article presents a characterization of cortical responses to artificial and natural temporally patterned sounds in the bat species Carollia perspicillata, a species that produces vocalizations at rates above 50 Hz. Multi-unit activity was recorded in three different experiments. In the first experiment, amplitude-modulated (AM) pure tones were used as stimuli to drive auditory cortex (AC) units. AC units of both ketamine-anesthetized and awake bats could lock their spikes to every cycle of the stimulus modulation envelope, but only if the modulation frequency was below 22 Hz. In the second experiment, two identical communication syllables were presented at variable intervals. Suppressed responses to the lagging syllable were observed, unless the second syllable followed the first one with a delay of at least 80 ms (i.e., 12.5 Hz repetition rate). In the third experiment, natural distress vocalization sequences were used as stimuli to drive AC units. Distress sequences produced by C. perspicillata contain bouts of syllables repeated at intervals of ~60 ms (16 Hz). Within each bout, syllables are repeated at intervals as short as 14 ms (~71 Hz). Cortical units could follow the slow temporal modulation flow produced by the occurrence of multisyllabic bouts, but not the fast acoustic flow created by rapid syllable repetition within the bouts. Taken together, our results indicate that even in fast vocalizing animals, such as bats, cortical neurons can only track the temporal structure of acoustic streams modulated at frequencies lower than 22 Hz.
Collapse
Affiliation(s)
- Lisa M Martin
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Max-von-Laue-Straße 13, 60438, Frankfurt/Main, Germany
| | - Francisco García-Rosales
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Max-von-Laue-Straße 13, 60438, Frankfurt/Main, Germany
| | - M Jerome Beetz
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Max-von-Laue-Straße 13, 60438, Frankfurt/Main, Germany
| | - Julio C Hechavarría
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Max-von-Laue-Straße 13, 60438, Frankfurt/Main, Germany
| |
Collapse
|
18
|
Specialization of the auditory system for the processing of bio-sonar information in the frequency domain: Mustached bats. Hear Res 2018; 361:1-22. [DOI: 10.1016/j.heares.2018.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 11/20/2022]
|
19
|
Kothari NB, Wohlgemuth MJ, Moss CF. Adaptive sonar call timing supports target tracking in echolocating bats. J Exp Biol 2018; 221:jeb.176537. [DOI: 10.1242/jeb.176537] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 07/02/2018] [Indexed: 11/20/2022]
Abstract
Echolocating bats dynamically adapt the features of their sonar calls as they approach obstacles and track targets. As insectivorous bats forage, they increase sonar call rate with decreasing prey distance, and often embedded in bat insect approach sequences are clusters of sonar sounds, termed sonar sound groups (SSGs). The bat's production of SSGs has been observed in both field and laboratory conditions, and is hypothesized to sharpen spatiotemporal sonar resolution. When insectivorous bats hunt insects, they may encounter erratically moving prey, which increases the demands on the bat's sonar imaging system. Here, we studied the bat's adaptive vocal behavior in an experimentally controlled insect tracking task, allowing us to manipulate the predictability of target trajectories and measure the prevalence of SSGs. With this system, we trained bats to remain stationary on a platform and track a moving prey item, whose trajectory was programmed either to approach the bat, or to move back and forth, before arriving at the bat. We manipulated target motion predictability by varying the order in which different target trajectories were presented to the bats. During all trials, we recorded the bat's sonar calls and later analyzed the incidence of SSG production during the different target tracking conditions. Our results demonstrate that bats increase the production of SSGs when target unpredictability increases, and decrease the production of SSGs when target motion predictability increases. Further, bats produce the same number of sonar vocalizations irrespective of the target motion predictability, indicating that the animal's temporal clustering of sonar call sequences to produce SSGs is purposeful, and therefore involves sensorimotor planning.
Collapse
Affiliation(s)
- Ninad B. Kothari
- Department of Psychological & Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Melville J. Wohlgemuth
- Department of Psychological & Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Cynthia F. Moss
- Department of Psychological & Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
- The Solomon H. Snyder Department of Neuroscience, School of Medicine. Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Mechanical Engineering, Whiting School of Engineering. Johns Hopkins University, Baltimore, MD 21218, USA
- Behavioral Biology Program Chair. Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
20
|
Ultrasonic Social Communication in Bats: Signal Complexity and Its Neural Management. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/b978-0-12-809600-0.00046-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
21
|
Beetz MJ, Kordes S, García-Rosales F, Kössl M, Hechavarría JC. Processing of Natural Echolocation Sequences in the Inferior Colliculus of Seba's Fruit Eating Bat, Carollia perspicillata. eNeuro 2017; 4:ENEURO.0314-17.2017. [PMID: 29242823 PMCID: PMC5729038 DOI: 10.1523/eneuro.0314-17.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/17/2017] [Accepted: 11/25/2017] [Indexed: 11/21/2022] Open
Abstract
For the purpose of orientation, echolocating bats emit highly repetitive and spatially directed sonar calls. Echoes arising from call reflections are used to create an acoustic image of the environment. The inferior colliculus (IC) represents an important auditory stage for initial processing of echolocation signals. The present study addresses the following questions: (1) how does the temporal context of an echolocation sequence mimicking an approach flight of an animal affect neuronal processing of distance information to echo delays? (2) how does the IC process complex echolocation sequences containing echo information from multiple objects (multiobject sequence)? Here, we conducted neurophysiological recordings from the IC of ketamine-anaesthetized bats of the species Carollia perspicillata and compared the results from the IC with the ones from the auditory cortex (AC). Neuronal responses to an echolocation sequence was suppressed when compared to the responses to temporally isolated and randomized segments of the sequence. The neuronal suppression was weaker in the IC than in the AC. In contrast to the cortex, the time course of the acoustic events is reflected by IC activity. In the IC, suppression sharpens the neuronal tuning to specific call-echo elements and increases the signal-to-noise ratio in the units' responses. When presenting multiple-object sequences, despite collicular suppression, the neurons responded to each object-specific echo. The latter allows parallel processing of multiple echolocation streams at the IC level. Altogether, our data suggests that temporally-precise neuronal responses in the IC could allow fast and parallel processing of multiple acoustic streams.
Collapse
Affiliation(s)
- M. Jerome Beetz
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt am Main 60438, Germany
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Sebastian Kordes
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt am Main 60438, Germany
| | - Francisco García-Rosales
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt am Main 60438, Germany
| | - Manfred Kössl
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt am Main 60438, Germany
| | - Julio C. Hechavarría
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt am Main 60438, Germany
| |
Collapse
|
22
|
Teng H, Suga N. Differences in velocity-information processing between two areas in the auditory cortex of mustached bats. Hear Res 2017; 350:68-81. [DOI: 10.1016/j.heares.2017.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/08/2017] [Accepted: 04/14/2017] [Indexed: 10/19/2022]
|
23
|
Suzuki M, Suga N. Acuity in ranging based on delay-tuned combination-sensitive neurons in the auditory cortex of mustached bats. Hear Res 2017; 350:189-204. [PMID: 28505528 DOI: 10.1016/j.heares.2017.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 04/07/2017] [Accepted: 04/28/2017] [Indexed: 11/29/2022]
Abstract
A 1.0-ms echo delay from an emitted bio-sonar pulse at 25 °C corresponds to a 17.3-cm target distance. In the auditory cortex of the mustached bat, Pteronotus parnellii, neurons tuned to a specific delay (best delay) of an echo from an emitted pulse are clustered in the FF, dorsal fringe and ventral fringe areas. ("FF" stands for the frequency-modulated components of a pulse and its echo.) Those delay-tuned neurons are systematically arranged in the FF area according to their best delays and form a 18-ms-long delay axis. Using the neurophysiological data, the theoretical acuity at a 75% correct level was computed as just-noticeable changes in (a) the location of maximally responding delay-tuned neurons, (b) the location of the center of all responses in the FF area, and (c) the weighted sum of responses of all delay-tuned neurons. The acuity is range-dependent: the shorter the target range, the higher the acuity is. The just-noticeable changes in target range are 7.57-46.2, 0.50-2.32 and 0.22-2.53 mm at the target ranges of up to 140 cm for (a), (b) and (c), respectively. When the dorsal and ventral fringe areas are included in the computation, the just-noticeable changes become smaller than those in the FF area alone. Those acuities computed are comparable to certain behavioral acuities.
Collapse
Affiliation(s)
- Masakiyo Suzuki
- Department of Biology, Washington University, One Brookings Drive, St. Louis, MO 63130, USA.
| | - Nobuo Suga
- Department of Biology, Washington University, One Brookings Drive, St. Louis, MO 63130, USA.
| |
Collapse
|
24
|
Valdizón-Rodríguez R, Faure PA. Frequency tuning of synaptic inhibition underlying duration-tuned neurons in the mammalian inferior colliculus. J Neurophysiol 2017; 117:1636-1656. [PMID: 28100657 PMCID: PMC5380776 DOI: 10.1152/jn.00807.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 11/22/2022] Open
Abstract
Inhibition plays an important role in creating the temporal response properties of duration-tuned neurons (DTNs) in the mammalian inferior colliculus (IC). Neurophysiological and computational studies indicate that duration selectivity in the IC is created through the convergence of excitatory and inhibitory synaptic inputs offset in time. We used paired-tone stimulation and extracellular recording to measure the frequency tuning of the inhibition acting on DTNs in the IC of the big brown bat (Eptesicus fuscus). We stimulated DTNs with pairs of tones differing in duration, onset time, and frequency. The onset time of a short, best-duration (BD), probe tone set to the best excitatory frequency (BEF) was varied relative to the onset of a longer-duration, nonexcitatory (NE) tone whose frequency was varied. When the NE tone frequency was near or within the cell's excitatory bandwidth (eBW), BD tone-evoked spikes were suppressed by an onset-evoked inhibition. The onset of the spike suppression was independent of stimulus frequency, but both the offset and duration of the suppression decreased as the NE tone frequency departed from the BEF. We measured the inhibitory frequency response area, best inhibitory frequency (BIF), and inhibitory bandwidth (iBW) of each cell. We found that the BIF closely matched the BEF, but the iBW was broader and usually overlapped the eBW measured from the same cell. These data suggest that temporal selectivity of midbrain DTNs is created and preserved by having cells receive an onset-evoked, constant-latency, broadband inhibition that largely overlaps the cell's excitatory receptive field. We conclude by discussing possible neural sources of the inhibition.NEW & NOTEWORTHY Duration-tuned neurons (DTNs) arise from temporally offset excitatory and inhibitory synaptic inputs. We used single-unit recording and paired-tone stimulation to measure the spectral tuning of the inhibitory inputs to DTNs. The onset of inhibition was independent of stimulus frequency; the offset and duration of inhibition systematically decreased as the stimulus departed from the cell's best excitatory frequency. Best inhibitory frequencies matched best excitatory frequencies; however, inhibitory bandwidths were more broadly tuned than excitatory bandwidths.
Collapse
Affiliation(s)
| | - Paul A Faure
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
25
|
Greiter W, Firzlaff U. Echo-acoustic flow shapes object representation in spatially complex acoustic scenes. J Neurophysiol 2017; 117:2113-2124. [PMID: 28275060 DOI: 10.1152/jn.00860.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 11/22/2022] Open
Abstract
Echolocating bats use echoes of their sonar emissions to determine the position and distance of objects or prey. Target distance is represented as a map of echo delay in the auditory cortex (AC) of bats. During a bat's flight through a natural complex environment, echo streams are reflected from multiple objects along its flight path. Separating such complex streams of echoes or other sounds is a challenge for the auditory system of bats as well as other animals. We investigated the representation of multiple echo streams in the AC of anesthetized bats (Phyllostomus discolor) and tested the hypothesis that neurons can lock on echoes from specific objects in a complex echo-acoustic pattern while the representation of surrounding objects is suppressed. We combined naturalistic pulse/echo sequences simulating a bat's flight through a virtual acoustic space with extracellular recordings. Neurons could selectively lock on echoes from one object in complex echo streams originating from two different objects along a virtual flight path. The objects were processed sequentially in the order in which they were approached. Object selection depended on sequential changes of echo delay and amplitude, but not on absolute values. Furthermore, the detailed representation of the object echo delays in the cortical target range map was not fixed but could be dynamically adapted depending on the temporal pattern of sonar emission during target approach within a simulated flight sequence.NEW & NOTEWORTHY Complex signal analysis is a challenging task in sensory processing for all animals, particularly for bats because they use echolocation for navigation in darkness. Recent studies proposed that the bat's perceptional system might organize complex echo-acoustic information into auditory streams, allowing it to track specific auditory objects during flight. We show that in the auditory cortex of bats, neurons can selectively respond to echo streams from specific objects.
Collapse
Affiliation(s)
- Wolfgang Greiter
- Chair of Zoology, Technical University of Munich, Freising, Germany
| | - Uwe Firzlaff
- Chair of Zoology, Technical University of Munich, Freising, Germany
| |
Collapse
|
26
|
Akimov AG, Egorova MA, Ehret G. Spectral summation and facilitation in on- and off-responses for optimized representation of communication calls in mouse inferior colliculus. Eur J Neurosci 2017; 45:440-459. [PMID: 27891665 DOI: 10.1111/ejn.13488] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/17/2016] [Accepted: 11/21/2016] [Indexed: 12/01/2022]
Abstract
Selectivity for processing of species-specific vocalizations and communication sounds has often been associated with the auditory cortex. The midbrain inferior colliculus, however, is the first center in the auditory pathways of mammals integrating acoustic information processed in separate nuclei and channels in the brainstem and, therefore, could significantly contribute to enhance the perception of species' communication sounds. Here, we used natural wriggling calls of mouse pups, which communicate need for maternal care to adult females, and further 15 synthesized sounds to test the hypothesis that neurons in the central nucleus of the inferior colliculus of adult females optimize their response rates for reproduction of the three main harmonics (formants) of wriggling calls. The results confirmed the hypothesis showing that average response rates, as recorded extracellularly from single units, were highest and spectral facilitation most effective for both onset and offset responses to the call and call models with three resolved frequencies according to critical bands in perception. In addition, the general on- and/or off-response enhancement in almost half the investigated 122 neurons favors not only perception of single calls but also of vocalization rhythm. In summary, our study provides strong evidence that critical-band resolved frequency components within a communication sound increase the probability of its perception by boosting the signal-to-noise ratio of neural response rates within the inferior colliculus for at least 20% (our criterion for facilitation). These mechanisms, including enhancement of rhythm coding, are generally favorable to processing of other animal and human vocalizations, including formants of speech sounds.
Collapse
Affiliation(s)
- Alexander G Akimov
- Sechnov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Marina A Egorova
- Sechnov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Günter Ehret
- Institute of Neurobiology, University of Ulm, D-89069, Ulm, Germany
| |
Collapse
|
27
|
Wohlgemuth MJ, Luo J, Moss CF. Three-dimensional auditory localization in the echolocating bat. Curr Opin Neurobiol 2016; 41:78-86. [DOI: 10.1016/j.conb.2016.08.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/11/2016] [Accepted: 08/13/2016] [Indexed: 11/25/2022]
|
28
|
Macías S, Hechavarría JC, Kössl M. Sharp temporal tuning in the bat auditory midbrain overcomes spectral-temporal trade-off imposed by cochlear mechanics. Sci Rep 2016; 6:29129. [PMID: 27374258 PMCID: PMC4931582 DOI: 10.1038/srep29129] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/15/2016] [Indexed: 11/23/2022] Open
Abstract
In the cochlea of the mustached bat, cochlear resonance produces extremely sharp frequency tuning to the dominant frequency of the echolocation calls, around 61 kHz. Such high frequency resolution in the cochlea is accomplished at the expense of losing temporal resolution because of cochlear ringing, an effect that is observable not only in the cochlea but also in the cochlear nucleus. In the midbrain, the duration of sounds is thought to be analyzed by duration-tuned neurons, which are selective to both stimulus duration and frequency. We recorded from 57 DTNs in the auditory midbrain of the mustached bat to assess if a spectral-temporal trade-off is present. Such spectral-temporal trade-off is known to occur as sharp tuning in the frequency domain which results in poorer resolution in the time domain, and vice versa. We found that a specialized sub-population of midbrain DTNs tuned to the bat's mechanical cochlear resonance frequency escape the cochlear spectral-temporal trade-off. We also show evidence that points towards an underlying neuronal inhibition that appears to be specific only at the resonance frequency.
Collapse
Affiliation(s)
- Silvio Macías
- Institut für Zellbiologie und Neurowissenschaft, Goethe Universität Frankfurt am Main, Germany
| | - Julio C. Hechavarría
- Institut für Zellbiologie und Neurowissenschaft, Goethe Universität Frankfurt am Main, Germany
| | - Manfred Kössl
- Institut für Zellbiologie und Neurowissenschaft, Goethe Universität Frankfurt am Main, Germany
| |
Collapse
|
29
|
Kugler K, Greiter W, Luksch H, Firzlaff U, Wiegrebe L. Echo-acoustic flow affects flight in bats. ACTA ACUST UNITED AC 2016; 219:1793-7. [PMID: 27045094 DOI: 10.1242/jeb.139345] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/21/2016] [Indexed: 11/20/2022]
Abstract
Flying animals need to react fast to rapid changes in their environment. Visually guided animals use optic flow, generated by their movement through structured environments. Nocturnal bats cannot make use of optic flow, but rely mostly on echolocation. Here, we show that bats exploit echo-acoustic flow to negotiate flight through narrow passages. Specifically, bats' flight between lateral structures is significantly affected by the echo-acoustic salience of those structures, independent of their physical distance. This is true even though echolocation, unlike vision, provides explicit distance cues. Moreover, the bats reduced the echolocation sound levels in stronger flow, probably to compensate for the increased summary target strength of the lateral reflectors. However, bats did not reduce flight velocity under stronger echo-acoustic flow. Our results demonstrate that sensory flow is a ubiquitous principle for flight guidance, independent of the fundamentally different peripheral representation of flow across the senses of vision and echolocation.
Collapse
Affiliation(s)
- Kathrin Kugler
- Division of Neurobiology, Department Biology II, LMU Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Wolfgang Greiter
- Lehrstuhl für Zoologie, Technische Universität München, Liesel-Beckmann-Str. 4, 85354 Freising, Germany
| | - Harald Luksch
- Lehrstuhl für Zoologie, Technische Universität München, Liesel-Beckmann-Str. 4, 85354 Freising, Germany
| | - Uwe Firzlaff
- Lehrstuhl für Zoologie, Technische Universität München, Liesel-Beckmann-Str. 4, 85354 Freising, Germany
| | - Lutz Wiegrebe
- Division of Neurobiology, Department Biology II, LMU Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
30
|
Macías S, Hechavarría JC, Kössl M. Temporal encoding precision of bat auditory neurons tuned to target distance deteriorates on the way to the cortex. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 202:195-202. [DOI: 10.1007/s00359-016-1067-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 01/04/2016] [Accepted: 01/06/2016] [Indexed: 12/01/2022]
|
31
|
Synaptic mechanisms shaping delay-tuned combination-sensitivity in the auditory thalamus of mustached bats. Hear Res 2016; 331:69-82. [DOI: 10.1016/j.heares.2015.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/24/2015] [Accepted: 10/20/2015] [Indexed: 11/21/2022]
|
32
|
Roberts PD, Portfors CV. Responses to Social Vocalizations in the Dorsal Cochlear Nucleus of Mice. Front Syst Neurosci 2015; 9:172. [PMID: 26733824 PMCID: PMC4680083 DOI: 10.3389/fnsys.2015.00172] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/26/2015] [Indexed: 11/18/2022] Open
Abstract
Identifying sounds is critical for an animal to make appropriate behavioral responses to environmental stimuli, including vocalizations from conspecifics. Identification of vocalizations may be supported by neuronal selectivity in the auditory pathway. The first place in the ascending auditory pathway where neuronal selectivity to vocalizations has been found is in the inferior colliculus (IC), but very few brainstem nuclei have been evaluated. Here, we tested whether selectivity to vocalizations is present in the dorsal cochlear nucleus (DCN). We recorded extracellular neural responses in the DCN of mice and found that fusiform cells responded in a heterogeneous and selective manner to mouse ultrasonic vocalizations. Most fusiform cells responded to vocalizations that contained spectral energy at much higher frequencies than the characteristic frequencies of the cells. To understand this mismatch of stimulus properties and frequency tuning of the cells, we developed a dynamic, nonlinear model of the cochlea that simulates cochlear distortion products on the basilar membrane. We preprocessed the vocalization stimuli through this model and compared responses to these distorted vocalizations with responses to the original vocalizations. We found that fusiform cells in the DCN respond in a heterogeneous manner to vocalizations, and that these neurons can use distortion products as a mechanism for encoding ultrasonic vocalizations. In addition, the selective neuronal responses were dependent on the presence of inhibitory sidebands that modulated the response depending on the temporal structure of the distortion product. These findings suggest that important processing of complex sounds occurs at a very early stage of central auditory processing and is not strictly a function of the cortex.
Collapse
Affiliation(s)
- Patrick D Roberts
- School of Biological Sciences and Integrative Physiology and Neuroscience, Washington State University Vancouver, WA, USA
| | - Christine V Portfors
- School of Biological Sciences and Integrative Physiology and Neuroscience, Washington State University Vancouver, WA, USA
| |
Collapse
|
33
|
Kössl M, Hechavarria J, Voss C, Schaefer M, Vater M. Bat auditory cortex – model for general mammalian auditory computation or special design solution for active time perception? Eur J Neurosci 2015; 41:518-32. [PMID: 25728173 DOI: 10.1111/ejn.12801] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/03/2014] [Accepted: 11/06/2014] [Indexed: 01/28/2023]
Abstract
Audition in bats serves passive orientation, alerting functions and communication as it does in other vertebrates. In addition, bats have evolved echolocation for orientation and prey detection and capture. This put a selective pressure on the auditory system in regard to echolocation-relevant temporal computation and frequency analysis. The present review attempts to evaluate in which respect the processing modules of bat auditory cortex (AC) are a model for typical mammalian AC function or are designed for echolocation-unique purposes. We conclude that, while cortical area arrangement and cortical frequency processing does not deviate greatly from that of other mammals, the echo delay time-sensitive dorsal cortex regions contain special designs for very powerful time perception. Different bat species have either a unique chronotopic cortex topography or a distributed salt-and-pepper representation of echo delay. The two designs seem to enable similar behavioural performance.
Collapse
Affiliation(s)
- Manfred Kössl
- Institute for Cell Biology and Neuroscience, University of Frankfurt, Max-von-Laue-Str.13, 60438, Frankfurt, Germany
| | | | | | | | | |
Collapse
|
34
|
Suga N. Neural processing of auditory signals in the time domain: Delay-tuned coincidence detectors in the mustached bat. Hear Res 2015; 324:19-36. [DOI: 10.1016/j.heares.2015.02.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 02/15/2015] [Accepted: 02/24/2015] [Indexed: 11/25/2022]
|
35
|
Genzel D, Hoffmann S, Prosch S, Firzlaff U, Wiegrebe L. Biosonar navigation above water II: exploiting mirror images. J Neurophysiol 2015; 113:1146-55. [DOI: 10.1152/jn.00264.2014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
As in vision, acoustic signals can be reflected by a smooth surface creating an acoustic mirror image. Water bodies represent the only naturally occurring horizontal and acoustically smooth surfaces. Echolocating bats flying over smooth water bodies encounter echo-acoustic mirror images of objects above the surface. Here, we combined an electrophysiological approach with a behavioral experimental paradigm to investigate whether bats can exploit echo-acoustic mirror images for navigation and how these mirrorlike echo-acoustic cues are encoded in their auditory cortex. In an obstacle-avoidance task where the obstacles could only be detected via their echo-acoustic mirror images, most bats spontaneously exploited these cues for navigation. Sonar ensonifications along the bats' flight path revealed conspicuous changes of the reflection patterns with slightly increased target strengths at relatively long echo delays corresponding to the longer acoustic paths from the mirrored obstacles. Recordings of cortical spatiotemporal response maps (STRMs) describe the tuning of a unit across the dimensions of elevation and time. The majority of cortical single and multiunits showed a special spatiotemporal pattern of excitatory areas in their STRM indicating a preference for echoes with (relative to the setup dimensions) long delays and, interestingly, from low elevations. This neural preference could effectively encode a reflection pattern as it would be perceived by an echolocating bat detecting an object mirrored from below. The current study provides both behavioral and neurophysiological evidence that echo-acoustic mirror images can be exploited by bats for obstacle avoidance. This capability effectively supports echo-acoustic navigation in highly cluttered natural habitats.
Collapse
Affiliation(s)
- Daria Genzel
- Department Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany; and
| | - Susanne Hoffmann
- Department Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany; and
- Chair of Zoology, Technische Universität München, Freising-Weihenstephan, Germany
| | - Selina Prosch
- Department Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany; and
| | - Uwe Firzlaff
- Chair of Zoology, Technische Universität München, Freising-Weihenstephan, Germany
| | - Lutz Wiegrebe
- Department Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany; and
| |
Collapse
|
36
|
Neuronal adaptation translates stimulus gaps into a population code. PLoS One 2014; 9:e95705. [PMID: 24759970 PMCID: PMC3997522 DOI: 10.1371/journal.pone.0095705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 03/29/2014] [Indexed: 11/19/2022] Open
Abstract
Neurons in sensory pathways exhibit a vast multitude of adaptation behaviors, which are assumed to aid the encoding of temporal stimulus features and provide the basis for a population code in higher brain areas. Here we study the transition to a population code for auditory gap stimuli both in neurophysiological recordings and in a computational network model. Independent component analysis (ICA) of experimental data from the inferior colliculus of Mongolian gerbils reveals that the network encodes different gap sizes primarily with its population firing rate within 30 ms after the presentation of the gap, where longer gap size evokes higher network activity. We then developed a computational model to investigate possible mechanisms of how to generate the population code for gaps. Phenomenological (ICA) and functional (discrimination performance) analyses of our simulated networks show that the experimentally observed patterns may result from heterogeneous adaptation, where adaptation provides gap detection at the single neuron level and neuronal heterogeneity ensures discriminable population codes for the whole range of gap sizes in the input. Furthermore, our work suggests that network recurrence additionally enhances the network's ability to provide discriminable population patterns.
Collapse
|
37
|
Hechavarría JC, Kössl M. Footprints of inhibition in the response of cortical delay-tuned neurons of bats. J Neurophysiol 2014; 111:1703-16. [PMID: 24478161 DOI: 10.1152/jn.00777.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Responses of echo-delay-tuned neurons that encode target distance were investigated in the dorsal auditory cortex of anesthetized short-tailed fruit bats (Carollia perspicillata). This species echolocates using short downward frequency-modulated (FM) biosonar signals. In response to FM sweeps of increasing level, 60 out of 131 studied neurons (47%) displayed a "paradoxical latency shift," i.e., longer response latency to loud sounds and shorter latency to faint sounds. In addition, a disproportionately large number of neurons (80%) displayed nonmonotonic responses, i.e., weaker responses to loud sounds and stronger responses to faint sounds. We speculate that the observed paradoxical latency shift and nonmonotonic responses are extracellular footprints of inhibitory processes evoked by loud sounds and that they could represent a specialization for the processing of the emitted loud biosonar pulse. Supporting this idea is the fact that all studied neurons displayed strong response suppression when an artificial loud pulse and a faint echo were presented together at a nonoptimal delay. In 24 neurons, iontophoresis of bicuculline (an antagonist of A-type γ-aminobutyric acid receptors) did not remove inhibitory footprints but did increase the overall spike output, and in some cases it also modified the response bandwidth and shifted the neuron's "best delay." We suggest that inhibition could play a dual role in shaping delay tuning in different auditory stations. Below the cortex it participates in delay-tuning implementation and leaves a footprint that is measurable in cortical responses, while in the cortex it provides a substrate for an in situ control of neuronal selectivity.
Collapse
Affiliation(s)
- Julio C Hechavarría
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt, Germany
| | | |
Collapse
|
38
|
Kössl M, Hechavarria JC, Voss C, Macias S, Mora EC, Vater M. Neural maps for target range in the auditory cortex of echolocating bats. Curr Opin Neurobiol 2013; 24:68-75. [PMID: 24492081 DOI: 10.1016/j.conb.2013.08.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/16/2013] [Accepted: 08/18/2013] [Indexed: 11/25/2022]
Abstract
Computational brain maps as opposed to maps of receptor surfaces strongly reflect functional neuronal design principles. In echolocating bats, computational maps are established that topographically represent the distance of objects. These target range maps are derived from the temporal delay between emitted call and returning echo and constitute a regular representation of time (chronotopy). Basic features of these maps are innate, and in different bat species the map size and precision varies. An inherent advantage of target range maps is the implementation of mechanisms for lateral inhibition and excitatory feedback. Both can help to focus target ranging depending on the actual echolocation situation. However, these maps are not absolutely necessary for bat echolocation since there are bat species without cortical target-distance maps, which use alternative ensemble computation mechanisms.
Collapse
Affiliation(s)
- M Kössl
- Institute for Cell Biology and Neuroscience, Goethe University, Frankfurt, Max-von-Laue-Str. 13, 60439 Frankfurt, Germany.
| | - J C Hechavarria
- Institute for Cell Biology and Neuroscience, Goethe University, Frankfurt, Max-von-Laue-Str. 13, 60439 Frankfurt, Germany
| | - C Voss
- Institute for Cell Biology and Neuroscience, Goethe University, Frankfurt, Max-von-Laue-Str. 13, 60439 Frankfurt, Germany
| | - S Macias
- Department of Animal and Human Biology, Faculty of Biology, Havana University, calle 25 No. 455 entre J e I, Vedado, CP 10400, Ciudad de La Habana, Cuba
| | - E C Mora
- Department of Animal and Human Biology, Faculty of Biology, Havana University, calle 25 No. 455 entre J e I, Vedado, CP 10400, Ciudad de La Habana, Cuba
| | - M Vater
- Institute for Biochemistry and Biology, University of Potsdam, Karl Liebknecht Str. 26, 14476 Golm, Germany
| |
Collapse
|
39
|
Understanding the neurophysiological basis of auditory abilities for social communication: a perspective on the value of ethological paradigms. Hear Res 2013; 305:3-9. [PMID: 23994815 DOI: 10.1016/j.heares.2013.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 08/11/2013] [Accepted: 08/19/2013] [Indexed: 11/21/2022]
Abstract
Acoustic communication between animals requires them to detect, discriminate, and categorize conspecific or heterospecific vocalizations in their natural environment. Laboratory studies of the auditory-processing abilities that facilitate these tasks have typically employed a broad range of acoustic stimuli, ranging from natural sounds like vocalizations to "artificial" sounds like pure tones and noise bursts. However, even when using vocalizations, laboratory studies often test abilities like categorization in relatively artificial contexts. Consequently, it is not clear whether neural and behavioral correlates of these tasks (1) reflect extensive operant training, which drives plastic changes in auditory pathways, or (2) the innate capacity of the animal and its auditory system. Here, we review a number of recent studies, which suggest that adopting more ethological paradigms utilizing natural communication contexts are scientifically important for elucidating how the auditory system normally processes and learns communication sounds. Additionally, since learning the meaning of communication sounds generally involves social interactions that engage neuromodulatory systems differently than laboratory-based conditioning paradigms, we argue that scientists need to pursue more ethological approaches to more fully inform our understanding of how the auditory system is engaged during acoustic communication. This article is part of a Special Issue entitled "Communication Sounds and the Brain: New Directions and Perspectives".
Collapse
|
40
|
Conserved mechanisms of vocalization coding in mammalian and songbird auditory midbrain. Hear Res 2013; 305:45-56. [PMID: 23726970 DOI: 10.1016/j.heares.2013.05.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 03/23/2013] [Accepted: 05/11/2013] [Indexed: 11/23/2022]
Abstract
The ubiquity of social vocalizations among animals provides the opportunity to identify conserved mechanisms of auditory processing that subserve communication. Identifying auditory coding properties that are shared across vocal communicators will provide insight into how human auditory processing leads to speech perception. Here, we compare auditory response properties and neural coding of social vocalizations in auditory midbrain neurons of mammalian and avian vocal communicators. The auditory midbrain is a nexus of auditory processing because it receives and integrates information from multiple parallel pathways and provides the ascending auditory input to the thalamus. The auditory midbrain is also the first region in the ascending auditory system where neurons show complex tuning properties that are correlated with the acoustics of social vocalizations. Single unit studies in mice, bats and zebra finches reveal shared principles of auditory coding including tonotopy, excitatory and inhibitory interactions that shape responses to vocal signals, nonlinear response properties that are important for auditory coding of social vocalizations and modulation tuning. Additionally, single neuron responses in the mouse and songbird midbrain are reliable, selective for specific syllables, and rely on spike timing for neural discrimination of distinct vocalizations. We propose that future research on auditory coding of vocalizations in mouse and songbird midbrain neurons adopt similar experimental and analytical approaches so that conserved principles of vocalization coding may be distinguished from those that are specialized for each species. This article is part of a Special Issue entitled "Communication Sounds and the Brain: New Directions and Perspectives".
Collapse
|
41
|
|
42
|
Hechavarría JC, Macías S, Vater M, Mora EC, Kössl M. Evolution of neuronal mechanisms for echolocation: specializations for target-range computation in bats of the genus Pteronotus. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 133:570-578. [PMID: 23297928 DOI: 10.1121/1.4768794] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Delay tuning was studied in the auditory cortex of Pteronotus quadridens. All the 136 delay-tuned units that were studied responded strongly to heteroharmonic pulse-echo pairs presented at specific delays. In the heteroharmonic pairs, the first sonar call harmonic marks the timing of pulse emission while one of the higher harmonics (second or third) indicates the timing of the echo. Delay-tuned units are organized chronotopically along a rostrocaudal axis according to their characteristic delay. There is no obvious indication of multiple cortical axes specialized in the processing of different harmonic combinations of pulse and echo. Results of this study serve for a straight comparison of cortical delay-tuning between P. quadridens and the well-studied mustached bat, Pteronotus parnellii. These two species stem from the most recent and most basal nodes in the Pteronotus lineage, respectively. P. quadridens and P. parnellii use comparable heteroharmonic target-range computation strategies even though they do not use biosonar calls of a similar design. P. quadridens uses short constant-frequency (CF)/frequency-modulated (FM) echolocation calls, while P. parnellii uses long CF/FM calls. The ability to perform "heteroharmonic" target-range computations might be an ancestral neuronal specialization of the genus Pteronotus that was subjected to positive Darwinian selection in the evolution.
Collapse
Affiliation(s)
- Julio C Hechavarría
- Institute for Cell Biology and Neuroscience, Goethe University, Frankfurt/Main, Germany.
| | | | | | | | | |
Collapse
|
43
|
Mayko ZM, Roberts PD, Portfors CV. Inhibition shapes selectivity to vocalizations in the inferior colliculus of awake mice. Front Neural Circuits 2012; 6:73. [PMID: 23087616 PMCID: PMC3468920 DOI: 10.3389/fncir.2012.00073] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 09/25/2012] [Indexed: 12/04/2022] Open
Abstract
The inferior colliculus (IC) is a major center for integration of auditory information as it receives ascending projections from a variety of brainstem nuclei as well as descending projections from the thalamus and auditory cortex. The ascending projections are both excitatory and inhibitory and their convergence at the IC results in a microcircuitry that is important for shaping responses to simple, binaural, and modulated sounds in the IC. Here, we examined the role inhibition plays in shaping selectivity to vocalizations in the IC of awake, normal-hearing adult mice (CBA/CaJ strain). Neurons in the IC of mice show selectivity in their responses to vocalizations, and we hypothesized that this selectivity is created by inhibitory microcircuitry in the IC. We compared single unit responses in the IC to pure tones and a variety of ultrasonic mouse vocalizations before and after iontophoretic application of GABA(A) receptor (GABA(A)R) and glycine receptor (GlyR) antagonists. The most pronounced effects of blocking GABA(A)R and GlyR on IC neurons were to increase spike rates and broaden excitatory frequency tuning curves in response to pure tone stimuli, and to decrease selectivity to vocalizations. Thus, inhibition plays an important role in creating selectivity to vocalizations in the IC.
Collapse
Affiliation(s)
- Zachary M. Mayko
- School of Biological Sciences, Washington State UniversityVancouver, WA, USA
| | - Patrick D. Roberts
- Department of Biomedical Engineering, Oregon Health and Science UniversityPortland, OR, USA
| | | |
Collapse
|
44
|
Fenton MB, Faure PA, Ratcliffe JM. Evolution of high duty cycle echolocation in bats. J Exp Biol 2012; 215:2935-44. [DOI: 10.1242/jeb.073171] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Duty cycle describes the relative ‘on time’ of a periodic signal. In bats, we argue that high duty cycle (HDC) echolocation was selected for and evolved from low duty cycle (LDC) echolocation because increasing call duty cycle enhanced the ability of echolocating bats to detect, lock onto and track fluttering insects. Most echolocators (most bats and all birds and odontocete cetaceans) use LDC echolocation, separating pulse and echo in time to avoid forward masking. They emit short duration, broadband, downward frequency modulated (FM) signals separated by relatively long periods of silence. In contrast, bats using HDC echolocation emit long duration, narrowband calls dominated by a single constant frequency (CF) separated by relatively short periods of silence. HDC bats separate pulse and echo in frequency by exploiting information contained in Doppler-shifted echoes arising from their movements relative to background objects and their prey. HDC echolocators are particularly sensitive to amplitude and frequency glints generated by the wings of fluttering insects. We hypothesize that narrowband/CF calls produced at high duty cycle, and combined with neurobiological specializations for processing Doppler-shifted echoes, were essential to the evolution of HDC echolocation because they allowed bats to detect, lock onto and track fluttering targets. This advantage was especially important in habitats with dense vegetation that produce overlapping, time-smeared echoes (i.e. background acoustic clutter). We make four specific, testable predictions arising from this hypothesis.
Collapse
Affiliation(s)
- M. Brock Fenton
- Department of Biology, Western University, London, ON, Canada N6A 5B7
| | - Paul A. Faure
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada L8S 4K1
| | - John M. Ratcliffe
- Institute of Biology, University of Southern Denmark, 5230 Odense M, Denmark
| |
Collapse
|
45
|
Macías S, Mora EC, Hechavarría JC, Kössl M. Properties of echo delay-tuning receptive fields in the inferior colliculus of the mustached bat. Hear Res 2012; 286:1-8. [DOI: 10.1016/j.heares.2012.02.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/23/2012] [Accepted: 02/27/2012] [Indexed: 10/28/2022]
|
46
|
Abstract
Combination sensitivity in central auditory neurons is a form of spectrotemporal integration in which excitatory responses to sounds at one frequency are facilitated by sounds within a distinctly different frequency band. Combination-sensitive neurons respond selectively to acoustic elements of sonar echoes or social vocalizations. In mustached bats, this response property originates in high-frequency representations of the inferior colliculus (IC) and depends on low and high frequency-tuned glycinergic inputs. To identify the source of these inputs, we combined glycine immunohistochemistry with retrograde tract tracing. Tracers were deposited at high-frequency (>56 kHz), combination-sensitive recording sites in IC. Most glycine-immunopositive, retrogradely labeled cells were in ipsilateral ventral and intermediate nuclei of the lateral lemniscus (VNLL and INLL), with some double labeling in ipsilateral lateral and medial superior olivary nuclei (LSO and MSO). Generally, double-labeled cells were in expected high-frequency tonotopic areas, but some VNLL and INLL labeling appeared to be in low-frequency representations. To test whether these nuclei provide low frequency-tuned input to the high-frequency IC, we combined retrograde tracing from IC combination-sensitive sites with anterograde tracing from low frequency-tuned sites in the anteroventral cochlear nucleus (AVCN). Only VNLL and INLL contained retrogradely labeled cells near (≤50 μm) anterogradely labeled boutons. These cells likely receive excitatory low-frequency input from AVCN. Results suggest that combination-sensitive facilitation arises through convergence of high-frequency glycinergic inputs from VNLL, INLL, or MSO and low-frequency glycinergic inputs from VNLL or INLL. This work establishes an anatomical basis for spectrotemporal integration in the auditory midbrain and a functional role for monaural nuclei of the lateral lemniscus.
Collapse
|
47
|
Wenstrup JJ, Portfors CV. Neural processing of target distance by echolocating bats: functional roles of the auditory midbrain. Neurosci Biobehav Rev 2011; 35:2073-83. [PMID: 21238485 PMCID: PMC3100454 DOI: 10.1016/j.neubiorev.2010.12.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 11/29/2010] [Accepted: 12/08/2010] [Indexed: 11/25/2022]
Abstract
Using their biological sonar, bats estimate distance to avoid obstacles and capture moving prey. The primary distance cue is the delay between the bat's emitted echolocation pulse and the return of an echo. The mustached bat's auditory midbrain (inferior colliculus, IC) is crucial to the analysis of pulse-echo delay. IC neurons are selective for certain delays between frequency modulated (FM) elements of the pulse and echo. One role of the IC is to create these "delay-tuned", "FM-FM" response properties through a series of spectro-temporal integrative interactions. A second major role of the midbrain is to project target distance information to many parts of the brain. Pathways through auditory thalamus undergo radical reorganization to create highly ordered maps of pulse-echo delay in auditory cortex, likely contributing to perceptual features of target distance analysis. FM-FM neurons in IC also project strongly to pre-motor centers including the pretectum and the pontine nuclei. These pathways may contribute to rapid adjustments in flight, body position, and sonar vocalizations that occur as a bat closes in on a target.
Collapse
Affiliation(s)
- Jeffrey J Wenstrup
- Department of Anatomy and Neurobiology, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, 4209 State Route 44, Rootstown, OH 44272, United States.
| | | |
Collapse
|
48
|
Hechavarría JC, Cobo AT, Fernández Y, Macías S, Kössl M, Mora EC. Sound-evoked oscillation and paradoxical latency shift in the inferior colliculus neurons of the big fruit-eating bat, Artibeus jamaicensis. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2011; 197:1159-72. [PMID: 21912875 DOI: 10.1007/s00359-011-0678-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 08/23/2011] [Accepted: 08/24/2011] [Indexed: 12/23/2022]
Abstract
Frequency tuning, temporal response pattern and latency properties of inferior colliculus neurons were investigated in the big fruit-eating bat, Artibeus jamaicensis. Neurons having best frequencies between 48-72 kHz and between 24-32 kHz are overrepresented. The inferior colliculus neurons had either phasic (consisting in only one response cycle at all stimulus intensities) or long-lasting oscillatory responses (consisting of multiple response cycles). Seventeen percent of neurons displayed paradoxical latency shift, i.e. their response latency increased with increasing sound level. Three types of paradoxical latency shift were found: (1) stable, that does not depend on sound duration, (2) duration-dependent, that grows with increasing sound duration, and (3) progressive, whose magnitude increases with increasing sound level. The temporal properties of paradoxical latency shift neurons compare well with those of neurons having long-lasting oscillatory responses, i.e. median inter-spike intervals and paradoxical latency shift below 6 ms are overrepresented. In addition, oscillatory and paradoxical latency shift neurons behave similarly when tested with tones of different durations. Temporal properties of oscillation and PLS found in the IC of fruit-eating bats are similar to those found in the IC of insectivorous bats using downward frequency-modulated echolocation calls.
Collapse
|
49
|
Williams AJ, Fuzessery ZM. Differential roles of GABAergic and glycinergic input on FM selectivity in the inferior colliculus of the pallid bat. J Neurophysiol 2011; 106:2523-35. [PMID: 21775712 DOI: 10.1152/jn.00569.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Multiple mechanisms have been shown to shape frequency-modulated (FM) selectivity within the central nucleus of the inferior colliculus (IC) in the pallid bat. In this study we focus on the mechanisms associated with sideband inhibition. The relative arrival time of inhibition compared with excitation can be used to predict FM responses as measured with a two-tone inhibition paradigm. An early-arriving low-frequency inhibition (LFI) prevents responses to upward sweeps and thus shapes direction selectivity. A late-arriving high-frequency inhibition (HFI) suppresses slow FM sweeps and thus shapes rate selectivity for downward sweeps. Iontophoretic application of gabazine (GBZ) to block GABA(A) receptors or strychnine (Strych) to block glycine receptors was used to assess the effects of removal of inhibition on each form of FM selectivity. GBZ and Strych had a similar effect on FM direction selectivity, reducing selectivity in up to 86% of neurons when both drugs were coapplied. FM rate selectivity was more resistant to drug application with less than 38% of neurons affected. In addition, only Strych could eliminate FM rate selectivity, whereas GBZ alone was ineffective. The loss of FM selectivity was directly correlated to a loss of the respective inhibitory sideband that shapes that form of selectivity. The elimination of LFI correlated to a loss of FM direction selectivity, whereas elimination of HFI correlated to a loss of FM rate selectivity. Results indicate that 1) although the majority of FM direction selectivity is created within the IC, the majority of rate selectivity is inherited from lower levels of the auditory system, 2) a loss of LFI corresponds to a loss of FM direction selectivity and is created through either GABAergic or glycinergic input, and 3) a loss of HFI corresponds to a loss of FM rate selectivity and is created mainly through glycinergic input.
Collapse
Affiliation(s)
- Anthony J Williams
- Dept. of Zoology and Physiology, Univ. of Wyoming, 1000 E. Univ. Ave., Laramie, WY 82071, USA
| | | |
Collapse
|
50
|
Recovery cycles of single-on and double-on neurons in the inferior colliculus of the leaf-nosed bat, Hipposideros armiger. Brain Res 2011; 1385:114-26. [DOI: 10.1016/j.brainres.2011.02.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 02/11/2011] [Accepted: 02/14/2011] [Indexed: 11/19/2022]
|