1
|
van Meer NMME, van Leeuwen JL, Schipper H, Lankheet MJ. Axial muscle-fibre orientations in larval zebrafish. J Anat 2025; 246:517-533. [PMID: 39556060 PMCID: PMC11911140 DOI: 10.1111/joa.14161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/25/2024] [Accepted: 10/09/2024] [Indexed: 11/19/2024] Open
Abstract
Most teleost fish propel themselves with lateral body waves powered by their axial muscles. These muscles also power suction feeding through rapid expansion of the mouth cavity. They consist of muscle segments (myomeres), separated by connective tissue sheets (myosepts). In adult teleosts, the fast axial muscle fibres follow pseudo-helical trajectories, which are thought to distribute strain (relative fibre length change) approximately evenly across transverse sections during swimming, thereby optimizing power generation. To achieve strain equalization, a significant angle to the longitudinal axis on the frontal plane (azimuth) is necessary near the medial plane, increasing strain. Additionally, a deviation from longitudinal orientation on the sagittal plane (elevation) is required laterally to decrease strain. Despite several detailed morphological studies, our understanding of muscle-fibre orientations in the entire axial musculature of fish remains incomplete. Furthermore, most research has been done in post-larval stages, leaving a knowledge gap regarding the changing axial muscle architecture during larval development. Larval fish exhibit different body size, body shape and swimming kinematics compared to adults. They experience relatively high viscous forces, requiring higher tail-beat amplitudes to overcome increased drag. Additionally, larval fish swim with higher tail-beat frequencies. Histological studies have shown that in larval fish, muscle fibres in the anal region transition from an almost longitudinal orientation to a pseudo-helical pattern by 3 dpf (days post-fertilization). However, these studies were limited to a few sections of the body and were prone to shrinkage and tissue damage. Here, we introduce a novel methodology for quantifying muscle-fibre orientations along the entire axial muscles. We selected 4 dpf larval zebrafish for our analyses, a stage where larvae are actively swimming but not yet free-feeding. High-resolution confocal 3D scans were obtained from four genetically modified zebrafish expressing green fluorescent protein in fast muscle fibres. Fluorescence variation allowed segmentation of individual muscle fibres, which were then converted to fish-bound coordinates by correcting for the fish's position and orientation in the scan, and normalized to pool results across individuals. We show that at 4 dpf, muscle-fibre trajectories exhibit a helical pattern tapering towards the tail. Average fibre angles decrease from anterior to posterior, with azimuth varying over the dorsoventral axis and elevation varying over the mediolateral axis. Notably, only the anteriormost 20% of the body displayed higher azimuth angles near the medial plane. Angles between neighbouring fibres were substantial, particularly at the rim of the epaxial and hypaxial muscles. The revealed muscle-fibre architecture at this age presumably contributes to the swimming performance of these larvae, but that swimming performance is probably not the only driving factor for the fibre pattern. Our methodology offers a promising avenue for exploring muscle-fibre orientations across ontogenetic series and provides a foundation for in-depth functional studies on the role of muscle architecture in facilitating swimming performance of larval fish.
Collapse
Affiliation(s)
| | | | - Henk Schipper
- Experimental Zoology GroupWageningen UniversityWageningenThe Netherlands
| | - Martin J. Lankheet
- Experimental Zoology GroupWageningen UniversityWageningenThe Netherlands
| |
Collapse
|
2
|
Shimizu S, Katayama T, Nishiumi N, Tanimoto M, Kimura Y, Higashijima SI. Spatially ordered recruitment of fast muscles in accordance with movement strengths in larval zebrafish. ZOOLOGICAL LETTERS 2025; 11:1. [PMID: 39754210 PMCID: PMC11697752 DOI: 10.1186/s40851-024-00247-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 12/05/2024] [Indexed: 01/06/2025]
Abstract
In vertebrates, skeletal muscle comprises fast and slow fibers. Slow and fast muscle cells in fish are spatially segregated; slow muscle cells are located only in a superficial region, and comprise a small fraction of the total muscle cell mass. Slow muscles support low-speed, low-force movements, while fast muscles are responsible for high-speed, high-force movements. However, speed and strength of movement are not binary states, but rather fall on a continuum. This raises the question of whether any recruitment patterns exist within fast muscles, which constitute the majority of muscle cell mass. In the present study, we investigated activation patterns of trunk fast muscles during movements of varying speeds and strengths using larval zebrafish. We employed two complementary methods: calcium imaging and electrophysiology. The results obtained from both methods supported the conclusion that there are spatially-ordered recruitment patterns in fast muscle cells. During weaker/slower movements, only the lateral portion of fast muscle cells is recruited. As the speed or strength of the movements increases, more fast muscle cells are recruited in a spatially-ordered manner, progressively from lateral to medial. We also conducted anatomical studies to examine muscle fiber size. The results of those experiments indicated that muscle fiber size increases systematically from lateral to medial. Therefore, the spatially ordered recruitment of fast muscle fibers, progressing from lateral to medial, correlates with an increase in fiber size. These findings provide significant insights into the organization and function of fast muscles in larval zebrafish, illustrating how spatial recruitment and fiber size interact to optimize movement performance.
Collapse
Affiliation(s)
- Sayaka Shimizu
- National Institutes of Natural Sciences, Exploratory Research Center On Life and Living Systems (ExCELLS), National Institute for Basic Biology, Okazaki, Aichi, 444-8787, Japan
- Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, 444-8787, Japan
| | - Taisei Katayama
- National Institutes of Natural Sciences, Exploratory Research Center On Life and Living Systems (ExCELLS), National Institute for Basic Biology, Okazaki, Aichi, 444-8787, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Nozomi Nishiumi
- National Institutes of Natural Sciences, Exploratory Research Center On Life and Living Systems (ExCELLS), National Institute for Basic Biology, Okazaki, Aichi, 444-8787, Japan
| | - Masashi Tanimoto
- National Institutes of Natural Sciences, Exploratory Research Center On Life and Living Systems (ExCELLS), National Institute for Basic Biology, Okazaki, Aichi, 444-8787, Japan
- Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, 444-8787, Japan
| | - Yukiko Kimura
- National Institutes of Natural Sciences, Exploratory Research Center On Life and Living Systems (ExCELLS), National Institute for Basic Biology, Okazaki, Aichi, 444-8787, Japan
- Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, 444-8787, Japan
| | - Shin-Ichi Higashijima
- National Institutes of Natural Sciences, Exploratory Research Center On Life and Living Systems (ExCELLS), National Institute for Basic Biology, Okazaki, Aichi, 444-8787, Japan.
- Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
3
|
Widrick JJ, Lambert MR, de Souza Leite F, Jung YL, Park J, Conner JR, Lee EA, Beggs AH, Kunkel LM. High resolution kinematic approach for quantifying impaired mobility of dystrophic zebrafish larvae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.627004. [PMID: 39713379 PMCID: PMC11661059 DOI: 10.1101/2024.12.05.627004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Dystrophin-deficient zebrafish larvae are a small, genetically tractable vertebrate model of Duchenne muscular dystrophy well suited for early stage therapeutic development. However, current approaches for evaluating their impaired mobility, a physiologically relevant therapeutic target, are characterized by low resolution and high variability. To address this, we used high speed videography and deep learning-based markerless motion capture to develop linked-segment models of larval escape response (ER) swimming. Kinematic models provided repeatable, high precision estimates of larval ER performance. Effect sizes for ER peak instantaneous acceleration and speed, final displacement, and ER distance were 2 to 3.5 standard deviations less for dystrophin-deficient mutants vs. wild-types. Further analysis revealed that mutants swam slower because of a reduction in their tail stroke frequency with little change in tail stroke amplitude. Kinematic variables were highly predictive of the dystrophic phenotype with ≤ 3% of larvae misclassified by random forest and support vector machine models. Tail kinematics also performed as well as in vitro assessments of tail muscle contractility in classifying larvae as mutants or wild-type, suggesting that ER kinematics could serve as a non-lethal proxy for direct measurements of muscle function. In summary, ER kinematics can be used as precise, physiologically relevant, non-lethal biomarkers of the dystrophic phenotype. The open-source approach described here may have applications not only for studies of skeletal muscle disease but for other disciplines that use larval mobility as an experimental outcome.
Collapse
Affiliation(s)
- Jeffrey J. Widrick
- Division of Genetics and Genomics, Dept. of Pediatrics, Boston Children’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Matthias R. Lambert
- Division of Genetics and Genomics, Dept. of Pediatrics, Boston Children’s Hospital, Boston, MA
| | - Felipe de Souza Leite
- Division of Genetics and Genomics, Dept. of Pediatrics, Boston Children’s Hospital, Boston, MA
| | - Youngsook Lucy Jung
- Division of Genetics and Genomics, Dept. of Pediatrics, Boston Children’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA
| | - Junseok Park
- Division of Genetics and Genomics, Dept. of Pediatrics, Boston Children’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA
| | - James R. Conner
- Division of Genetics and Genomics, Dept. of Pediatrics, Boston Children’s Hospital, Boston, MA
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Dept. of Pediatrics, Boston Children’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA
| | - Alan H. Beggs
- Division of Genetics and Genomics, Dept. of Pediatrics, Boston Children’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA
| | - Louis M. Kunkel
- Division of Genetics and Genomics, Dept. of Pediatrics, Boston Children’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA
| |
Collapse
|
4
|
Slater CR. Neuromuscular Transmission in a Biological Context. Compr Physiol 2024; 14:5641-5702. [PMID: 39382166 DOI: 10.1002/cphy.c240001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Neuromuscular transmission is the process by which motor neurons activate muscle contraction and thus plays an essential role in generating the purposeful body movements that aid survival. While many features of this process are common throughout the Animal Kingdom, such as the release of transmitter in multimolecular "quanta," and the response to it by opening ligand-gated postsynaptic ion channels, there is also much diversity between and within species. Much of this diversity is associated with specialization for either slow, sustained movements such as maintain posture or fast but brief movements used during escape or prey capture. In invertebrates, with hydrostatic and exoskeletons, most motor neurons evoke graded depolarizations of the muscle which cause graded muscle contractions. By contrast, vertebrate motor neurons trigger action potentials in the muscle fibers which give rise to all-or-none contractions. The properties of neuromuscular transmission, in particular the intensity and persistence of transmitter release, reflect these differences. Neuromuscular transmission varies both between and within individual animals, which often have distinct tonic and phasic subsystems. Adaptive plasticity of neuromuscular transmission, on a range of time scales, occurs in many species. This article describes the main steps in neuromuscular transmission and how they vary in a number of "model" species, including C. elegans , Drosophila , zebrafish, mice, and humans. © 2024 American Physiological Society. Compr Physiol 14:5641-5702, 2024.
Collapse
|
5
|
Roussel Y, Gaudreau SF, Kacer ER, Sengupta M, Bui TV. Modeling spinal locomotor circuits for movements in developing zebrafish. eLife 2021; 10:e67453. [PMID: 34473059 PMCID: PMC8492062 DOI: 10.7554/elife.67453] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 09/01/2021] [Indexed: 01/16/2023] Open
Abstract
Many spinal circuits dedicated to locomotor control have been identified in the developing zebrafish. How these circuits operate together to generate the various swimming movements during development remains to be clarified. In this study, we iteratively built models of developing zebrafish spinal circuits coupled to simplified musculoskeletal models that reproduce coiling and swimming movements. The neurons of the models were based upon morphologically or genetically identified populations in the developing zebrafish spinal cord. We simulated intact spinal circuits as well as circuits with silenced neurons or altered synaptic transmission to better understand the role of specific spinal neurons. Analysis of firing patterns and phase relationships helped to identify possible mechanisms underlying the locomotor movements of developing zebrafish. Notably, our simulations demonstrated how the site and the operation of rhythm generation could transition between coiling and swimming. The simulations also underlined the importance of contralateral excitation to multiple tail beats. They allowed us to estimate the sensitivity of spinal locomotor networks to motor command amplitude, synaptic weights, length of ascending and descending axons, and firing behavior. These models will serve as valuable tools to test and further understand the operation of spinal circuits for locomotion.
Collapse
Affiliation(s)
- Yann Roussel
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Biology, University of OttawaOttawaCanada
- Blue Brain Project, École Polytechnique Fédérale de LausanneGenèveSwitzerland
| | - Stephanie F Gaudreau
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Biology, University of OttawaOttawaCanada
| | - Emily R Kacer
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Biology, University of OttawaOttawaCanada
| | - Mohini Sengupta
- Washington University School of Medicine, Department of NeuroscienceSt LouisUnited States
| | - Tuan V Bui
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Biology, University of OttawaOttawaCanada
| |
Collapse
|
6
|
Wang T, Ren Z, Hu W, Li M, Sitti M. Effect of body stiffness distribution on larval fish-like efficient undulatory swimming. SCIENCE ADVANCES 2021; 7:7/19/eabf7364. [PMID: 33952525 PMCID: PMC8099186 DOI: 10.1126/sciadv.abf7364] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/15/2021] [Indexed: 05/30/2023]
Abstract
Energy-efficient propulsion is a critical design target for robotic swimmers. Although previous studies have pointed out the importance of nonuniform body bending stiffness distribution (k) in improving the undulatory swimming efficiency of adult fish-like robots in the inertial flow regime, whether such an elastic mechanism is beneficial in the intermediate flow regime remains elusive. Hence, we develop a class of untethered soft milliswimmers consisting of a magnetic composite head and a passive elastic body with different k These robots realize larval zebrafish-like undulatory swimming at the same scale. Investigations reveal that uniform k and high swimming frequency (60 to 100 Hz) are favorable to improve their efficiency. A shape memory polymer-based milliswimmer with tunable k on the fly confirms such findings. Such acquired knowledge can guide the design of energy-efficient leading edge-driven soft undulatory milliswimmers for future environmental and biomedical applications in the same flow regime.
Collapse
Affiliation(s)
- Tianlu Wang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Ziyu Ren
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Wenqi Hu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Mingtong Li
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany.
- Institute for Biomedical Engineering, ETH Zurich, 8092 Zurich, Switzerland
- School of Medicine and College of Engineering, Koç University, 34450 Istanbul, Turkey
| |
Collapse
|
7
|
Diversity of neurons and circuits controlling the speed and coordination of locomotion. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
8
|
Voesenek CJ, Muijres FT, van Leeuwen JL. Biomechanics of swimming in developing larval fish. J Exp Biol 2018; 221:221/1/jeb149583. [DOI: 10.1242/jeb.149583] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Most larvae of bony fish are able to swim almost immediately after hatching. Their locomotory system supports several vital functions: fish larvae make fast manoeuvres to escape from predators, aim accurately during suction feeding and may migrate towards suitable future habitats. Owing to their small size and low swimming speed, larval fish operate in the intermediate hydrodynamic regime, which connects the viscous and inertial flow regimes. They experience relatively strong viscous effects at low swimming speeds, and relatively strong inertial effects at their highest speeds. As the larvae grow and increase swimming speed, a shift occurs towards the inertial flow regime. To compensate for size-related limitations on swimming speed, fish larvae exploit high tail beat frequencies at their highest speeds, made possible by their low body inertia and fast neuromuscular system. The shifts in flow regime and body inertia lead to changing functional demands on the locomotory system during larval growth. To reach the reproductive adult stage, the developing larvae need to adjust to and perform the functions necessary for survival. Just after hatching, many fish larvae rely on yolk and need to develop their feeding systems before the yolk is exhausted. Furthermore, the larvae need to develop and continuously adjust their sensory, neural and muscular systems to catch prey and avoid predation. This Review discusses the hydrodynamics of swimming in the intermediate flow regime, the changing functional demands on the locomotory system of the growing and developing larval fish, and the solutions that have evolved to accommodate these demands.
Collapse
Affiliation(s)
- Cees J. Voesenek
- Experimental Zoology Group, Wageningen University, PO Box 338, NL-6700 AH Wageningen, The Netherlands
| | - Florian T. Muijres
- Experimental Zoology Group, Wageningen University, PO Box 338, NL-6700 AH Wageningen, The Netherlands
| | - Johan L. van Leeuwen
- Experimental Zoology Group, Wageningen University, PO Box 338, NL-6700 AH Wageningen, The Netherlands
| |
Collapse
|
9
|
Augmented quantal release of acetylcholine at the vertebrate neuromuscular junction following tdp-43 depletion. PLoS One 2017; 12:e0177005. [PMID: 28472174 PMCID: PMC5417676 DOI: 10.1371/journal.pone.0177005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/20/2017] [Indexed: 01/13/2023] Open
Abstract
TAR DNA binding protein (TDP-43) is a 43 kD, predominately nuclear, protein involved in RNA metabolism. Of clinical significance is that the majority of amyotrophic lateral sclerosis (ALS) patients display abnormal accumulation of misfolded TDP-43 in the cytoplasm, which is coincident with a loss of nuclear localization in the afflicted regions of the central nervous system. Little is known about defects that arise in loss-of-function models, in particular synaptic defects that arise at the neuromuscular junction (NMJ). In this report, we examined abnormalities arising at the NMJ following depletion of tdp-43 using a previously characterized mutant tardbp (encoding tdp-43) zebrafish line containing a premature stop codon (Y220X) that results in an unstable and degraded protein. Homozygous tardbpY220X/Y220X zebrafish do not produce tdp-43 but develop normally due to expression of an alternative splice variant of tardbpl (tardbp paralog). Using an antisense morpholino oligonucleotide to knockdown expression of the tardbpl in tardbpY220X/Y220X embryos, we examined locomotor defects, NMJ structural abnormalities and release of quantal synaptic vesicles at the NMJ. As in previous reports, larvae depleted of tdp-43 display reduced survival, gross morphological defects and severely impaired locomotor activity. These larvae also displayed an increased number of orphaned pre- and postsynaptic NMJ markers but surprisingly, we observed a significant increase (3.5 times) in the frequency of quantal acetylcholine release at the NMJ in larvae depleted of tdp-43. These results indicate that reduced TDP-43 levels alter quantal vesicle release at the NMJ during vertebrate development and may be relevant for understanding synaptic dysfunction in ALS.
Collapse
|
10
|
Wang WC, Brehm P. A Gradient in Synaptic Strength and Plasticity among Motoneurons Provides a Peripheral Mechanism for Locomotor Control. Curr Biol 2017; 27:415-422. [PMID: 28111148 DOI: 10.1016/j.cub.2016.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 01/28/2023]
Abstract
The recruitment of motoneurons during force generation follows a general pattern that has been confirmed across diverse species [1-3]. Motoneurons are recruited systematically according to synaptic inputs and intrinsic cellular properties and corresponding to movements of different intensities. However, much less is known about the output properties of individual motoneurons and how they affect the translation of motoneuron recruitment to the strength of muscle contractions. In larval zebrafish, spinal motoneurons are recruited in a topographic gradient according to their input resistance (Rin) at different swimming strengths and speeds. Whereas dorsal, lower-Rin primary motoneurons (PMns) are only activated during behaviors that involve strong and fast body bends, more ventral, higher-Rin secondary motoneurons (SMns) are recruited during weaker and slower movements [4-6]. Here we perform in vivo paired recordings between identified spinal motoneurons and skeletal muscle cells in larval zebrafish. We characterize individual motoneuron outputs to single muscle cells and show that the strength and reliability of motoneuron outputs are inversely correlated with motoneuron Rin. During repetitive high-frequency motoneuron drive, PMn synapses undergo depression, whereas SMn synapses potentiate. We monitor muscle cell contractions elicited by single motoneurons and show that the pattern of motoneuron output strength and plasticity observed in electrophysiological recordings is reflected in muscle shortening. Our findings indicate a link between the recruitment pattern and output properties of spinal motoneurons that can together generate appropriate intensities for muscle contractions. We demonstrate that motoneuron output properties provide an additional peripheral mechanism for graded locomotor control at the neuromuscular junction.
Collapse
Affiliation(s)
- Wei-Chun Wang
- Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA.
| | - Paul Brehm
- Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| |
Collapse
|
11
|
Abstract
Skeletal muscle performs an essential function in human physiology with defects in genes encoding a variety of cellular components resulting in various types of inherited muscle disorders. Muscular dystrophies (MDs) are a severe and heterogeneous type of human muscle disease, manifested by progressive muscle wasting and degeneration. The disease pathogenesis and therapeutic options for MDs have been investigated for decades using rodent models, and considerable knowledge has been accumulated on the cause and pathogenetic mechanisms of this group of human disorders. However, due to some differences between disease severity and progression, what is learned in mammalian models does not always transfer to humans, prompting the desire for additional and alternative models. More recently, zebrafish have emerged as a novel and robust animal model for the study of human muscle disease. Zebrafish MD models possess a number of distinct advantages for modeling human muscle disorders, including the availability and ease of generating mutations in homologous disease-causing genes, the ability to image living muscle tissue in an intact animal, and the suitability of zebrafish larvae for large-scale chemical screens. In this chapter, we review the current understanding of molecular and cellular mechanisms involved in MDs, the process of myogenesis in zebrafish, and the structural and functional characteristics of zebrafish larval muscles. We further discuss the insights gained from the key zebrafish MD models that have been so far generated, and we summarize the attempts that have been made to screen for small molecules inhibitors of the dystrophic phenotypes using these models. Overall, these studies demonstrate that zebrafish is a useful in vivo system for modeling aspects of human skeletal muscle disorders. Studies using these models have contributed both to the understanding of the pathogenesis of muscle wasting disorders and demonstrated their utility as highly relevant models to implement therapeutic screening regimens.
Collapse
Affiliation(s)
- M Li
- Monash University, Clayton, VIC, Australia
| | - K J Hromowyk
- The Ohio State University, Columbus, OH, United States
| | - S L Amacher
- The Ohio State University, Columbus, OH, United States
| | - P D Currie
- Monash University, Clayton, VIC, Australia
| |
Collapse
|
12
|
Ahmed KT, Ali DW. Nicotinic acetylcholine receptors (nAChRs) at zebrafish red and white muscle show different properties during development. Dev Neurobiol 2015; 76:916-36. [DOI: 10.1002/dneu.22366] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/15/2015] [Accepted: 11/16/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Kazi T. Ahmed
- Department of Biological Sciences; University of Alberta, Edmonton; Alberta Canada
| | - Declan W. Ali
- Department of Biological Sciences; University of Alberta, Edmonton; Alberta Canada
- Department of Physiology; University of Alberta, Edmonton; Alberta Canada
- Centre for Neuroscience; University of Alberta, Edmonton; Alberta Canada
| |
Collapse
|
13
|
Lovato AK, Creton R, Colwill RM. Effects of embryonic exposure to polychlorinated biphenyls (PCBs) on larval zebrafish behavior. Neurotoxicol Teratol 2015; 53:1-10. [PMID: 26561944 DOI: 10.1016/j.ntt.2015.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 11/08/2015] [Accepted: 11/09/2015] [Indexed: 01/26/2023]
Abstract
Developmental disorders such as anxiety, autism, and attention deficit hyperactivity disorders have been linked to exposure to polychlorinated biphenyls (PCBs), a ubiquitous anthropogenic pollutant. The zebrafish is widely recognized as an excellent model system for assessing the effects of toxicant exposure on behavior and neurodevelopment. In the present study, we examined the effect of sub-chronic embryonic exposure to the PCB mixture, Aroclor (A) 1254 on anxiety-related behaviors in zebrafish larvae at 7 days post-fertilization (dpf). We found that exposure to low concentrations of A1254, from 2 to 26 h post-fertilization (hpf) induced specific behavioral defects in two assays. In one assay with intermittent presentations of a moving visual stimulus, 5 ppm and 10 ppm PCB-exposed larvae displayed decreased avoidance behavior but no significant differences in thigmotaxis or freezing relative to controls. In the other assay with intermittent presentations of a moving visual stimulus and a stationary visual stimulus, 5 ppm and 10 ppm PCB-exposed larvae had elevated baseline levels of thigmotaxis but no significant differences in avoidance behavior relative to controls. The 5 ppm larvae also displayed higher terminal levels of freezing relative to controls. Collectively, our results show that exposure to ecologically valid PCB concentrations during embryonic development can induce functional deficits and alter behavioral responses to a visual threat.
Collapse
Affiliation(s)
- Ava K Lovato
- Department of Cognitive, Linguistic & Psychological Sciences, Brown University, Providence, Rhode Island, United States
| | - Robbert Creton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States
| | - Ruth M Colwill
- Department of Cognitive, Linguistic & Psychological Sciences, Brown University, Providence, Rhode Island, United States.
| |
Collapse
|
14
|
Cho SJ, Nam TS, Byun D, Choi SY, Kim MK, Kim S. Zebrafish needle EMG: a new tool for high-throughput drug screens. J Neurophysiol 2015; 114:2065-70. [PMID: 26180124 DOI: 10.1152/jn.00538.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/15/2015] [Indexed: 01/18/2023] Open
Abstract
Zebrafish models have recently been highlighted as a valuable tool in studying the molecular basis of neuromuscular diseases and developing new pharmacological treatments. Needle electromyography (EMG) is needed not only for validating transgenic zebrafish models with muscular dystrophies (MD), but also for assessing the efficacy of therapeutics. However, performing needle EMG on larval zebrafish has not been feasible due to the lack of proper EMG sensors and systems for such small animals. We introduce a new type of EMG needle electrode to measure intramuscular activities of larval zebrafish, together with a method to hold the animal in position during EMG, without anesthetization. The silicon-based needle electrode was found to be sufficiently strong and sharp to penetrate the skin and muscles of zebrafish larvae, and its shape and performance did not change after multiple insertions. With the use of the proposed needle electrode and measurement system, EMG was successfully performed on zebrafish at 30 days postfertilization (dpf) and at 5 dpf. Burst patterns and spike morphology of the recorded EMG signals were analyzed. The measured single spikes were triphasic with an initial positive deflection, which is typical for motor unit action potentials, with durations of ∼10 ms, whereas the muscle activity was silent during the anesthetized condition. These findings confirmed the capability of this system of detecting EMG signals from very small animals such as 5 dpf zebrafish. The developed EMG sensor and system are expected to become a helpful tool in validating zebrafish MD models and further developing therapeutics.
Collapse
Affiliation(s)
- Sung-Joon Cho
- Department of Medical System Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Tai-Seung Nam
- Department of Neurology, Chonnam National University Medical School, Gwangju, Korea
| | - Donghak Byun
- School of Mechatronics, Gwangju Institute of Science and Technology, Gwangju, Korea; and
| | - Seok-Yong Choi
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, Korea
| | - Myeong-Kyu Kim
- Department of Neurology, Chonnam National University Medical School, Gwangju, Korea
| | - Sohee Kim
- Department of Medical System Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea; School of Mechatronics, Gwangju Institute of Science and Technology, Gwangju, Korea; and
| |
Collapse
|
15
|
Effects of Atrazine on the Development of Neural System of Zebrafish, Danio rerio. BIOMED RESEARCH INTERNATIONAL 2015; 2015:976068. [PMID: 26114119 PMCID: PMC4465686 DOI: 10.1155/2015/976068] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/10/2015] [Accepted: 04/15/2015] [Indexed: 12/31/2022]
Abstract
By comparative analysis of histomorphology and AChE activity, the changes of physiological and biochemical parameters were determined in zebrafish embryos and larvae dealt with atrazine (ATR) at different concentrations (0.0001, 0.001, 0.01, 0.1, and 1 mg/L). This study showed that the development of the sarcomere and the arrangement of white muscle myofibers were affected by ATR significantly and the length of sarcomere shortened. Further analysis of the results showed that the AChE activity in juvenile fish which was treated with ATR was downregulated, which can indicate that the innervation efficiency to the muscle was impaired. Conversely, the AChE activity in zebrafish embryos which was treated with ATR was upregulated. A parallel phenomenon showed that embryonic primary sensory neurons (Rohon-Beard cells), principally expressing AChE in embryos, survived the physiological apoptosis. These phenomena demonstrated that the motor integration ability of the zebrafish was damaged by ATR which can disturb the development of sensory neurons and sarcomere and the innervations of muscle.
Collapse
|
16
|
RING finger protein 121 facilitates the degradation and membrane localization of voltage-gated sodium channels. Proc Natl Acad Sci U S A 2015; 112:2859-64. [PMID: 25691753 DOI: 10.1073/pnas.1414002112] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Following their synthesis in the endoplasmic reticulum (ER), voltage-gated sodium channels (NaV) are transported to the membranes of excitable cells, where they often cluster, such as at the axon initial segment of neurons. Although the mechanisms by which NaV channels form and maintain clusters have been extensively examined, the processes that govern their transport and degradation have received less attention. Our entry into the study of these processes began with the isolation of a new allele of the zebrafish mutant alligator, which we found to be caused by mutations in the gene encoding really interesting new gene (RING) finger protein 121 (RNF121), an E3-ubiquitin ligase present in the ER and cis-Golgi compartments. Here we demonstrate that RNF121 facilitates two opposing fates of NaV channels: (i) ubiquitin-mediated proteasome degradation and (ii) membrane localization when coexpressed with auxiliary NaVβ subunits. Collectively, these results indicate that RNF121 participates in the quality control of NaV channels during their synthesis and subsequent transport to the membrane.
Collapse
|
17
|
A single mutation in the acetylcholine receptor δ-subunit causes distinct effects in two types of neuromuscular synapses. J Neurosci 2014; 34:10211-8. [PMID: 25080583 DOI: 10.1523/jneurosci.0426-14.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mutations in AChR subunits, expressed as pentamers in neuromuscular junctions (NMJs), cause various types of congenital myasthenic syndromes. In AChR pentamers, the adult ε subunit gradually replaces the embryonic γ subunit as the animal develops. Because of this switch in subunit composition, mutations in specific subunits result in synaptic phenotypes that change with developmental age. However, a mutation in any AChR subunit is considered to affect the NMJs of all muscle fibers equally. Here, we report a zebrafish mutant of the AChR δ subunit that exhibits two distinct NMJ phenotypes specific to two muscle fiber types: slow or fast. Homozygous fish harboring a point mutation in the δ subunit form functional AChRs in slow muscles, whereas receptors in fast muscles are nonfunctional. To test the hypothesis that different subunit compositions in slow and fast muscles underlie distinct phenotypes, we examined the presence of ε/γ subunits in NMJs using specific antibodies. Both wild-type and mutant larvae lacked ε/γ subunits in slow muscle synapses. These findings in zebrafish suggest that some mutations in human congenital myasthenic syndromes may affect slow and fast muscle fibers differently.
Collapse
|
18
|
Jay M, Bradley S, McDearmid JR. Effects of nitric oxide on neuromuscular properties of developing zebrafish embryos. PLoS One 2014; 9:e86930. [PMID: 24489806 PMCID: PMC3904980 DOI: 10.1371/journal.pone.0086930] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 12/20/2013] [Indexed: 11/19/2022] Open
Abstract
Nitric oxide is a bioactive signalling molecule that is known to affect a wide range of neurodevelopmental processes. However, its functional relevance to neuromuscular development is not fully understood. Here we have examined developmental roles of nitric oxide during formation and maturation of neuromuscular contacts in zebrafish. Using histochemical approaches we show that elevating nitric oxide levels reduces the number of neuromuscular synapses within the axial swimming muscles whilst inhibition of nitric oxide biosynthesis has the opposite effect. We further show that nitric oxide signalling does not change synapse density, suggesting that the observed effects are a consequence of previously reported changes in motor axon branch formation. Moreover, we have used in vivo patch clamp electrophysiology to examine the effects of nitric oxide on physiological maturation of zebrafish neuromuscular junctions. We show that developmental exposure to nitric oxide affects the kinetics of spontaneous miniature end plate currents and impacts the neuromuscular drive for locomotion. Taken together, our findings implicate nitrergic signalling in the regulation of zebrafish neuromuscular development and locomotor maturation.
Collapse
Affiliation(s)
- Michael Jay
- University of Leicester, Department of Biology, College of Medicine, Biological Sciences and Psychology, Leicester, United Kingdom
| | - Sophie Bradley
- University of Leicester, Department of Biology, College of Medicine, Biological Sciences and Psychology, Leicester, United Kingdom
| | - Jonathan Robert McDearmid
- University of Leicester, Department of Biology, College of Medicine, Biological Sciences and Psychology, Leicester, United Kingdom
- * E-mail:
| |
Collapse
|
19
|
Gibbs EM, Horstick EJ, Dowling JJ. Swimming into prominence: the zebrafish as a valuable tool for studying human myopathies and muscular dystrophies. FEBS J 2013; 280:4187-97. [PMID: 23809187 DOI: 10.1111/febs.12412] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 06/07/2013] [Accepted: 06/20/2013] [Indexed: 11/28/2022]
Abstract
A new and exciting phase of muscle disease research has recently been entered. The application of next generation sequencing technology has spurred an unprecedented era of gene discovery for both myopathies and muscular dystrophies. Gene-based therapies for Duchenne muscular dystrophy have entered clinical trial, and several pathway-based therapies are doing so as well for a handful of muscle diseases. While many factors have aided the extraordinary developments in gene discovery and therapy development, the zebrafish model system has emerged as a vital tool in these advancements. In this review, we will highlight how the zebrafish has greatly aided in the identification of new muscle disease genes and in the recognition of novel therapeutic strategies. We will start with a general introduction to the zebrafish as a model, discuss the ways in which muscle disease can be modeled and analyzed in the fish, and conclude with observations from recent studies that highlight the power of the fish as a research tool for muscle disease.
Collapse
Affiliation(s)
- Elizabeth M Gibbs
- Departments of Neuroscience, Neurology and Pediatrics, University of Michigan Medical Center, Ann Arbor, MI, USA
| | | | | |
Collapse
|
20
|
Armstrong GAB, Drapeau P. Loss and gain of FUS function impair neuromuscular synaptic transmission in a genetic model of ALS. Hum Mol Genet 2013; 22:4282-92. [PMID: 23771027 DOI: 10.1093/hmg/ddt278] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) presents clinically in adulthood and is characterized by the loss of motoneurons in the spinal cord and cerebral cortex. Animal models of the disease suggest that significant neuronal abnormalities exist during preclinical stages of the disease. Mutations in the gene fused in sarcoma (FUS) are associated with ALS and cause impairment in motor function in animal models. However, the mechanism of neuromuscular dysfunction underlying pathophysiological deficits causing impairment in locomotor function resulting from mutant FUS expression is unknown. To characterize the cellular pathophysiological defect, we expressed the wild-type human gene (wtFUS) or the ALS-associated mutation R521H (mutFUS) gene in zebrafish larvae and characterized their motor (swimming) activity and function of their neuromuscular junctions (NMJs). Additionally, we tested knockdown of zebrafish fus with an antisense morpholino oligonucleotide (fus AMO). Expression of either mutFUS or knockdown of fus resulted in impaired motor activity and reduced NMJ synaptic fidelity with reduced quantal transmission. Primary motoneurons expressing mutFUS were found to be more excitable. These impairments in neuronal function could be partially restored in fus AMO larvae also expressing wtFUS (fus AMO+wtFUS) but not mutFUS (fus AMO+mutFUS). These results show that both a loss and gain of FUS function result in defective presynaptic function at the NMJ.
Collapse
Affiliation(s)
- Gary A B Armstrong
- Department of Pathology and Cell Biology and Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montréal, QC, Canada H3C 3J7
| | | |
Collapse
|
21
|
Horstick EJ, Linsley JW, Dowling JJ, Hauser MA, McDonald KK, Ashley-Koch A, Saint-Amant L, Satish A, Cui WW, Zhou W, Sprague SM, Stamm DS, Powell CM, Speer MC, Franzini-Armstrong C, Hirata H, Kuwada JY. Stac3 is a component of the excitation-contraction coupling machinery and mutated in Native American myopathy. Nat Commun 2013; 4:1952. [PMID: 23736855 PMCID: PMC4056023 DOI: 10.1038/ncomms2952] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 04/30/2013] [Indexed: 11/09/2022] Open
Abstract
Excitation-contraction coupling, the process that regulates contractions by skeletal muscles, transduces changes in membrane voltage by activating release of Ca(2+) from internal stores to initiate muscle contraction. Defects in excitation-contraction coupling are associated with muscle diseases. Here we identify Stac3 as a novel component of the excitation-contraction coupling machinery. Using a zebrafish genetic screen, we generate a locomotor mutation that is mapped to stac3. We provide electrophysiological, Ca(2+) imaging, immunocytochemical and biochemical evidence that Stac3 participates in excitation-contraction coupling in muscles. Furthermore, we reveal that a mutation in human STAC3 is the genetic basis of the debilitating Native American myopathy (NAM). Analysis of NAM stac3 in zebrafish shows that the NAM mutation decreases excitation-contraction coupling. These findings enhance our understanding of both excitation-contraction coupling and the pathology of myopathies.
Collapse
Affiliation(s)
- Eric J. Horstick
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jeremy W. Linsley
- Cell and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - James J. Dowling
- Department of Pediatrics, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Michael A. Hauser
- Departments of Medicine and Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kristin K. McDonald
- Departments of Medicine and Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | - Allison Ashley-Koch
- Departments of Medicine and Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | - Louis Saint-Amant
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Departement de Pathologie et Biologie Cellulaire, Universite de Montreal, Montreal, Canada H3T 1J4
| | - Akhila Satish
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wilson W. Cui
- Cell and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Weibin Zhou
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Life Science Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shawn M. Sprague
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Demetra S. Stamm
- Department of Internal Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Cynthia M. Powell
- Departments of Pediatrics and Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marcy C. Speer
- Center for Human Genetics, Duke University, Durham, NC 27710, USA
| | - Clara Franzini-Armstrong
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Hiromi Hirata
- National Institute of Genetics, Mishima 411-8540, Japan
| | - John Y. Kuwada
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Cell and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
22
|
A gradient in endogenous rhythmicity and oscillatory drive matches recruitment order in an axial motor pool. J Neurosci 2012; 32:10925-39. [PMID: 22875927 DOI: 10.1523/jneurosci.1809-12.2012] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The rhythmic firing behavior of spinal motoneurons is a function of their electrical properties and synaptic inputs. However, the relative contribution of endogenous versus network-based rhythmogenic mechanisms to locomotion is unclear. To address this issue, we have recorded from identified motoneurons and compared their current-evoked firing patterns to network-driven ones in the larval zebrafish (Danio rerio). Zebrafish axial motoneurons are recruited topographically from the bottom of the spinal cord up. Here, we have explored differences in the morphology of axial motoneurons, their electrical properties, and their synaptic drive, to reveal how they match the topographic pattern of recruitment. More ventrally located "secondary" motoneurons generate bursts of action potentials in response to constant current steps, demonstrating a strong inherent rhythmogenesis. The membrane potential oscillations underlying bursting behavior occur in the normal frequency range of swimming. In contrast, more dorsal secondaries chatter in response to current, while the most dorsally distributed "primary" motoneurons all fire tonically. We find that systematic variations in excitability and endogenous rhythmicity are inversely related to the level of oscillatory synaptic drive within the entire axial motor pool. Specifically, bursting cells exhibit the least amount of drive, while tonic cells exhibit the most. Our data suggest that increases in swimming frequency are accomplished by the recruitment of axial motoneurons that progressively rely on instructive synaptic drive to shape their oscillatory activity appropriately. Thus, within the zebrafish spinal cord, there are differences in the relative contribution of endogenous versus network-based rhythms to locomotion and these vary predictably according to order of recruitment.
Collapse
|
23
|
Low SE, Woods IG, Lachance M, Ryan J, Schier AF, Saint-Amant L. Touch responsiveness in zebrafish requires voltage-gated calcium channel 2.1b. J Neurophysiol 2012; 108:148-59. [PMID: 22490555 DOI: 10.1152/jn.00839.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The molecular and physiological basis of the touch-unresponsive zebrafish mutant fakir has remained elusive. Here we report that the fakir phenotype is caused by a missense mutation in the gene encoding voltage-gated calcium channel 2.1b (CACNA1Ab). Injection of RNA encoding wild-type CaV2.1 restores touch responsiveness in fakir mutants, whereas knockdown of CACNA1Ab via morpholino oligonucleotides recapitulates the fakir mutant phenotype. Fakir mutants display normal current-evoked synaptic communication at the neuromuscular junction but have attenuated touch-evoked activation of motor neurons. NMDA-evoked fictive swimming is not affected by the loss of CaV2.1b, suggesting that this channel is not required for motor pattern generation. These results, coupled with the expression of CACNA1Ab by sensory neurons, suggest that CaV2.1b channel activity is necessary for touch-evoked activation of the locomotor network in zebrafish.
Collapse
Affiliation(s)
- Sean E Low
- Départment de Pathologie et Biologie Cellulaire, Groupe de Recherche sur le Système Nerveux Central et Centre d'Excellence en Neuromique de l'Université de Montéral, Université de Montréal, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
24
|
Hirata H, Wen H, Kawakami Y, Naganawa Y, Ogino K, Yamada K, Saint-Amant L, Low SE, Cui WW, Zhou W, Sprague SM, Asakawa K, Muto A, Kawakami K, Kuwada JY. Connexin 39.9 protein is necessary for coordinated activation of slow-twitch muscle and normal behavior in zebrafish. J Biol Chem 2011; 287:1080-9. [PMID: 22075003 DOI: 10.1074/jbc.m111.308205] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In many tissues and organs, connexin proteins assemble between neighboring cells to form gap junctions. These gap junctions facilitate direct intercellular communication between adjoining cells, allowing for the transmission of both chemical and electrical signals. In rodents, gap junctions are found in differentiating myoblasts and are important for myogenesis. Although gap junctions were once believed to be absent from differentiated skeletal muscle in mammals, recent studies in teleosts revealed that differentiated muscle does express connexins and is electrically coupled, at least at the larval stage. These findings raised questions regarding the functional significance of gap junctions in differentiated muscle. Our analysis of gap junctions in muscle began with the isolation of a zebrafish motor mutant that displayed weak coiling at day 1 of development, a behavior known to be driven by slow-twitch muscle (slow muscle). We identified a missense mutation in the gene encoding Connexin 39.9. In situ hybridization found connexin 39.9 to be expressed by slow muscle. Paired muscle recordings uncovered that wild-type slow muscles are electrically coupled, whereas mutant slow muscles are not. The further examination of cellular activity revealed aberrant, arrhythmic touch-evoked Ca(2+) transients in mutant slow muscle and a reduction in the number of muscle fibers contracting in response to touch in mutants. These results indicate that Connexin 39.9 facilitates the spreading of neuronal inputs, which is irregular during motor development, beyond the muscle cells and that gap junctions play an essential role in the efficient recruitment of slow muscle fibers.
Collapse
Affiliation(s)
- Hiromi Hirata
- Center for Frontier Research, National Institute of Genetics, Mishima 411-8540, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
TRPM7 is required within zebrafish sensory neurons for the activation of touch-evoked escape behaviors. J Neurosci 2011; 31:11633-44. [PMID: 21832193 DOI: 10.1523/jneurosci.4950-10.2011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mutations in the gene encoding TRPM7 (trpm7), a member of the Transient Receptor Potential (TRP) superfamily of cation channels that possesses an enzymatically active kinase at its C terminus, cause the touch-unresponsive zebrafish mutant touchdown. We identified and characterized a new allele of touchdown, as well as two previously reported alleles, and found that all three alleles harbor mutations that abolish channel activity. Through the selective restoration of TRPM7 expression in sensory neurons, we found that TRPM7's kinase activity and selectivity for divalent cations over monovalent cations were dispensable for touch-evoked activation of escape behaviors in zebrafish. Additional characterization revealed that sensory neurons were present and capable of responding to tactile stimuli in touchdown mutants, indicating that TRPM7 is not required for sensory neuron survival or mechanosensation. Finally, exposure to elevated concentrations of divalent cations was found to restore touch-evoked behaviors in touchdown mutants. Collectively, these findings are consistent with a role for zebrafish TRPM7 within sensory neurons in the modulation of neurotransmitter release at central synapses, similar to that proposed for mammalian TRPM7 at peripheral synapses.
Collapse
|
26
|
Mongeon R, Walogorsky M, Urban J, Mandel G, Ono F, Brehm P. An acetylcholine receptor lacking both γ and ε subunits mediates transmission in zebrafish slow muscle synapses. ACTA ACUST UNITED AC 2011; 138:353-66. [PMID: 21844221 PMCID: PMC3171075 DOI: 10.1085/jgp.201110649] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fast and slow skeletal muscle types in larval zebrafish can be distinguished by a fivefold difference in the time course of their synaptic decay. Single-channel recordings indicate that this difference is conferred through kinetically distinct nicotinic acetylcholine receptor (AChR) isoforms. The underlying basis for this distinction was explored by cloning zebrafish muscle AChR subunit cDNAs and expressing them in Xenopus laevis oocytes. Measurements of single-channel conductance and mean open burst duration assigned α2βδε to fast muscle synaptic current. Contrary to expectations, receptors composed of only αβδ subunits (presumed to be α2βδ2 receptors) recapitulated the kinetics and conductance of slow muscle single-channel currents. Additional evidence in support of γ/ε-less receptors as mediators of slow muscle synapses was reflected in the inward current rectification of heterologously expressed α2βδ2 receptors, a property normally associated with neuronal-type nicotinic receptors. Similar rectification was reflected in both single-channel and synaptic currents in slow muscle, distinguishing them from fast muscle. The final evidence for α2βδ2 receptors in slow muscle was provided by our ability to convert fast muscle synaptic currents to those of slow muscle by knocking down ε subunit expression in vivo. Thus, for the first time, muscle synaptic function can be ascribed to a receptor isoform that is composed of only three different subunits. The unique functional features offered by the α2βδ2 receptor likely play a central role in mediating the persistent contractions characteristic to this muscle type.
Collapse
Affiliation(s)
- Rebecca Mongeon
- Vollum Institute, Oregon Health and Science University, Portland, USA
| | | | | | | | | | | |
Collapse
|
27
|
Developmental transition of touch response from slow muscle-mediated coilings to fast muscle-mediated burst swimming in zebrafish. Dev Biol 2011; 355:194-204. [PMID: 21554867 DOI: 10.1016/j.ydbio.2011.04.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2010] [Revised: 04/06/2011] [Accepted: 04/13/2011] [Indexed: 11/21/2022]
Abstract
It is well known that slow and fast muscles are used for long-term sustained movement and short bursts of activity, respectively, in adult animal behaviors. However, the contribution of the slow and fast muscles in early animal movement has not been thoroughly explored. In wild-type zebrafish embryos, tactile stimulation induces coilings consisting of 1-3 alternating contractions of the trunk and tail at 24 hours postfertilization (hpf) and burst swimming at 48 hpf. But, embryos defective in flightless I homolog (flii), which encodes for an actin-regulating protein, exhibit normal coilings at 24 hpf that is followed by significantly slower burst swimming at 48 hpf. Interestingly, actin fibers are disorganized in mutant fast muscle but not in mutant slow muscle, suggesting that slower swimming at 48 hpf is attributable to defects of the fast muscle tissue. In fact, perturbation of the fast muscle contractions by eliminating Ca(2+) release only in fast muscle resulted in normal coilings at 24 hpf and slower burst swimming at 48 hpf, just as flii mutants exhibited. In contrast, specific inactivation of slow muscle by knockdown of the slow muscle myosin genes led to complete loss of coilings at 24 hpf, although normal burst swimming was retained by 48 hpf. These findings indicate that coilings at 24 hpf is mediated by slow muscle only, whereas burst swimming at 48 hpf is executed primarily by fast muscle. It is consistent with the fact that differentiation of fast muscle follows that of slow muscle. This is the first direct demonstration that slow and fast muscles have distinct physiologically relevant contribution in early motor development at different stages.
Collapse
|
28
|
Abstract
Nitric oxide (NO) is a signaling molecule that is synthesized in a range of tissues by the NO synthases (NOSs). In the immature nervous system, the neuronal isoform of NOS (NOS1) is often expressed during periods of axon outgrowth and elaboration. However, there is little direct molecular evidence to suggest that NOS1 influences these processes. Here we address the functional role of NOS1 during in vivo zebrafish locomotor circuit development. We show that NOS1 is expressed in a population of interneurons that lie close to nascent motoneurons of the spinal cord. To determine how this protein regulates spinal network assembly, we perturbed NOS1 expression in vivo with antisense morpholino oligonucleotides. This treatment dramatically increased the number of axon collaterals formed by motoneuron axons, an effect mimicked by pharmacological inhibition of the NO/cGMP signaling pathway. In contrast, exogenous elevation of NO/cGMP levels suppressed motor axon branching. These effects were not accompanied by a change in motoneuron number, suggesting that NOS1 does not regulate motoneuron differentiation. Finally we show that perturbation of NO signaling affects the ontogeny of locomotor performance. Our findings provide evidence that NOS1 is a key regulator of motor axon ontogeny in the developing vertebrate spinal cord.
Collapse
|
29
|
Low SE, Zhou W, Choong I, Saint-Amant L, Sprague SM, Hirata H, Cui WW, Hume RI, Kuwada JY. Na(v)1.6a is required for normal activation of motor circuits normally excited by tactile stimulation. Dev Neurobiol 2010; 70:508-22. [PMID: 20225246 DOI: 10.1002/dneu.20791] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A screen for zebrafish motor mutants identified two noncomplementing alleles of a recessive mutation that were named non-active (nav(mi89) and nav(mi130)). nav embryos displayed diminished spontaneous and touch-evoked escape behaviors during the first 3 days of development. Genetic mapping identified the gene encoding Na(V)1.6a (scn8aa) as a potential candidate for nav. Subsequent cloning of scn8aa from the two alleles of nav uncovered two missense mutations in Na(V)1.6a that eliminated channel activity when assayed heterologously. Furthermore, the injection of RNA encoding wild-type scn8aa rescued the nav mutant phenotype indicating that scn8aa was the causative gene of nav. In-vivo electrophysiological analysis of the touch-evoked escape circuit indicated that voltage-dependent inward current was decreased in mechanosensory neurons in mutants, but they were able to fire action potentials. Furthermore, tactile stimulation of mutants activated some neurons downstream of mechanosensory neurons but failed to activate the swim locomotor circuit in accord with the behavioral response of initial escape contractions but no swimming. Thus, mutant mechanosensory neurons appeared to respond to tactile stimulation but failed to initiate swimming. Interestingly fictive swimming could be initiated pharmacologically suggesting that a swim circuit was present in mutants. These results suggested that Na(V)1.6a was required for touch-induced activation of the swim locomotor network.
Collapse
Affiliation(s)
- Sean E Low
- Neuroscience Program, University of Michigan, Ann Arbor, Michigan 48109-1048, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Principles governing recruitment of motoneurons during swimming in zebrafish. Nat Neurosci 2010; 14:93-9. [PMID: 21113162 DOI: 10.1038/nn.2704] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 10/19/2010] [Indexed: 11/08/2022]
Abstract
Locomotor movements are coordinated by a network of neurons that produces sequential muscle activation. Different motoneurons need to be recruited in an orderly manner to generate movement with appropriate speed and force. However, the mechanisms governing recruitment order have not been fully clarified. Using an in vitro juvenile/adult zebrafish brainstem-spinal cord preparation, we found that motoneurons were organized into four pools with specific topographic locations and were incrementally recruited to produce swimming at different frequencies. The threshold of recruitment was not dictated by the input resistance of motoneurons, but was instead set by a combination of specific biophysical properties and the strength of the synaptic currents. Our results provide insights into the cellular and synaptic computations governing recruitment of motoneurons during locomotion.
Collapse
|
31
|
Abstract
Neurons respond homeostatically to chronic changes in network activity with compensatory changes such as a uniform alteration in the size of miniature postsynaptic current (mPSC) amplitudes termed synaptic scaling. However, little is known about the impact of synaptic scaling on the function of neural networks in vivo. We used the embryonic zebrafish to address the effect of synaptic scaling on the neural network underlying locomotion. Activity was decreased during development by TTX injection to block action potentials or CNQX injection to block glutamatergic transmission. Alternatively TNFalpha was chronically applied. Recordings from spinal neurons showed that glutamatergic mPSCs scaled up approximately 25% after activity reduction and fortuitously scaled down approximately 20% after TNFalpha treatment, and were unchanged following blockade of neuromuscular activity alone with alpha-bungarotoxin. Regardless of the direction of scaling, immediately following reversal of treatment no chronic effect was distinguishable in motoneuron activity patterns or in swimming behavior. We also acutely induced a similar increase of glutamatergic mPSC amplitudes using cyclothiazide to reduce AMPA receptor desensitization or decrease of glutamatergic mPSC amplitudes using a low concentration of CNQX to partially block AMPA receptors. Though the strength of the motor output was altered, neither chronic nor acute treatments disrupted the patterning of synaptic activity or swimming. Our results show, for the first time, that scaling of glutamatergic synapses can be induced in vivo in the zebrafish and that synaptic patterning is less plastic than synaptic strength during development.
Collapse
|
32
|
Dowling JJ, Low SE, Busta AS, Feldman EL. Zebrafish MTMR14 is required for excitation-contraction coupling, developmental motor function and the regulation of autophagy. Hum Mol Genet 2010; 19:2668-81. [PMID: 20400459 DOI: 10.1093/hmg/ddq153] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Myotubularins are a family of dual-specificity phosphatases that act to modify phosphoinositides and regulate membrane traffic. Mutations in several myotubularins are associated with human disease. Sequence changes in MTM1 and MTMR14 (also known as Jumpy) have been detected in patients with a severe skeletal myopathy called centronuclear myopathy. MTM1 has been characterized in vitro and in several model systems, while the function of MTMR14 and its specific role in muscle development and disease is much less well understood. We have previously reported that knockdown of zebrafish MTM1 results in significantly impaired motor function and severe histopathologic changes in skeletal muscle that are characteristic of human centronuclear myopathy. In the current study, we examine zebrafish MTMR14 using gene dosage manipulation. As with MTM1 knockdown, morpholino-mediated knockdown of MTMR14 results in morphologic abnormalities, a developmental motor phenotype characterized by diminished spontaneous contractions and abnormal escape response, and impaired excitation-contraction coupling. In contrast to MTM1 knockdown, however, muscle ultrastructure is unaffected. Double knockdown of both MTM1 and MTMR14 significantly impairs motor function and alters skeletal muscle ultrastructure. The combined effect of reducing levels of both MTMR14 and MTM1 is significantly more severe than either knockdown alone, an effect which is likely mediated, at least in part, by increased autophagy. In all, our results suggest that MTMR14 is required for motor function and, in combination with MTM1, is required for myocyte homeostasis and normal embryonic development.
Collapse
Affiliation(s)
- J J Dowling
- Department of Pediatrics, University of Michigan Medical Center, Ann Arbor, MI 48109-2200, USA.
| | | | | | | |
Collapse
|
33
|
Non-Ca2+-conducting Ca2+ channels in fish skeletal muscle excitation-contraction coupling. Proc Natl Acad Sci U S A 2010; 107:5658-63. [PMID: 20212109 DOI: 10.1073/pnas.0912153107] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During skeletal muscle excitation-contraction (EC) coupling, membrane depolarizations activate the sarcolemmal voltage-gated L-type Ca(2+) channel (Ca(V)1.1). Ca(V)1.1 in turn triggers opening of the sarcoplasmic Ca(2+) release channel (RyR1) via interchannel protein-protein interaction to release Ca(2+) for myofibril contraction. Simultaneously to this EC coupling process, a small and slowly activating Ca(2+) inward current through Ca(V)1.1 is found in mammalian skeletal myotubes. The role of this Ca(2+) influx, which is not immediately required for EC coupling, is still enigmatic. Interestingly, whole-cell patch clamp experiments on freshly dissociated skeletal muscle myotubes from zebrafish larvae revealed the lack of such Ca(2+) currents. We identified two distinct isoforms of the pore-forming Ca(V)1.1alpha(1S) subunit in zebrafish that are differentially expressed in superficial slow and deep fast musculature. Both do not conduct Ca(2+) but merely act as voltage sensors to trigger opening of two likewise tissue-specific isoforms of RyR1. We further show that non-Ca(2+) conductivity of both Ca(V)1.1alpha(1S) isoforms is a common trait of all higher teleosts. This non-Ca(2+) conductivity of Ca(V)1.1 positions teleosts at the most-derived position of an evolutionary trajectory. Though EC coupling in early chordate muscles is activated by the influx of extracellular Ca(2+), it evolved toward Ca(V)1.1-RyR1 protein-protein interaction with a relatively small and slow influx of external Ca(2+) in tetrapods. Finally, the Ca(V)1.1 Ca(2+) influx was completely eliminated in higher teleost fishes.
Collapse
|
34
|
Moreno RL, Ribera AB. Zebrafish motor neuron subtypes differ electrically prior to axonal outgrowth. J Neurophysiol 2009; 102:2477-84. [PMID: 19692510 PMCID: PMC2775388 DOI: 10.1152/jn.00446.2009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 08/13/2009] [Indexed: 11/22/2022] Open
Abstract
Different muscle targets and transcription factor expression patterns reveal the presence of motor neuron subtypes. However, it is not known whether these subtypes also differ with respect to electrical membrane properties. To address this question, we studied primary motor neurons (PMNs) in the spinal cord of zebrafish embryos. PMN genesis occurs during gastrulation and gives rise to a heterogeneous set of motor neurons that differ with respect to transcription factor expression, muscle targets, and soma location within each spinal cord segment. The unique subtype-specific soma locations and axonal trajectories of two PMNs-MiP (middle) and CaP (caudal)-allowed their identification in situ as early as 17 h postfertilization (hpf), prior to axon genesis. Between 17 and 48 hpf, CaPs and MiPs displayed subtype-specific electrical membrane properties. Voltage-dependent inward and outward currents differed significantly between MiPs and CaPs. Moreover, by 48 hpf, CaPs and MiPs displayed subtype-specific firing behaviors. Our results demonstrate that motor neurons that differ with respect to muscle targets and transcription factor expression acquire subtype-specific electrical membrane properties. Moreover, the differences are evident prior to axon genesis and persist to the latest stage studied, 2 days postfertilization.
Collapse
Affiliation(s)
- Rosa L Moreno
- Department of Physiology and Biophysics, University of Colorado Denver at Anschutz Medical Campus, Aurora, Colorado 80045, USA.
| | | |
Collapse
|
35
|
Dowling JJ, Vreede AP, Low SE, Gibbs EM, Kuwada JY, Bonnemann CG, Feldman EL. Loss of myotubularin function results in T-tubule disorganization in zebrafish and human myotubular myopathy. PLoS Genet 2009; 5:e1000372. [PMID: 19197364 PMCID: PMC2631153 DOI: 10.1371/journal.pgen.1000372] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 01/07/2009] [Indexed: 11/26/2022] Open
Abstract
Myotubularin is a lipid phosphatase implicated in endosomal trafficking in vitro, but with an unknown function in vivo. Mutations in myotubularin cause myotubular myopathy, a devastating congenital myopathy with unclear pathogenesis and no current therapies. Myotubular myopathy was the first described of a growing list of conditions caused by mutations in proteins implicated in membrane trafficking. To advance the understanding of myotubularin function and disease pathogenesis, we have created a zebrafish model of myotubular myopathy using morpholino antisense technology. Zebrafish with reduced levels of myotubularin have significantly impaired motor function and obvious histopathologic changes in their muscle. These changes include abnormally shaped and positioned nuclei and myofiber hypotrophy. These findings are consistent with those observed in the human disease. We demonstrate for the first time that myotubularin functions to regulate PI3P levels in a vertebrate in vivo, and that homologous myotubularin-related proteins can functionally compensate for the loss of myotubularin. Finally, we identify abnormalities in the tubulo-reticular network in muscle from myotubularin zebrafish morphants and correlate these changes with abnormalities in T-tubule organization in biopsies from patients with myotubular myopathy. In all, we have generated a new model of myotubular myopathy and employed this model to uncover a novel function for myotubularin and a new pathomechanism for the human disease that may explain the weakness associated with the condition (defective excitation–contraction coupling). In addition, our findings of tubuloreticular abnormalities and defective excitation-contraction coupling mechanistically link myotubular myopathy with several other inherited muscle diseases, most notably those due to ryanodine receptor mutations. Based on our findings, we speculate that congenital myopathies, usually considered entities with similar clinical features but very disparate pathomechanisms, may at their root be disorders of calcium homeostasis. Congenital myopathies are inherited muscle conditions typically presenting in early childhood. They are individually rare, but as a group are likely as common as conditions such as muscular dystrophy. The zebrafish is an emerging experimental system for the study of myopathies. We have utilized the zebrafish to develop a model of myotubular myopathy, one of the most severe childhood muscle diseases and a condition whose pathogenesis is poorly understood. We have generated fish that have the characteristic behavioral and histological features of human myotubular myopathy. Using this model, we then made novel insights into the pathogenesis of myotubular myopathy, including the identification of abnormalities in the muscle tubulo-reticular system. We subsequently identified similar changes in muscle from patients with myotubular myopathy, corroborating the importance of our zebrafish findings. Because a functional tubulo-reticular complex is required for normal muscle contraction, we speculate that the weakness observed in myotubular myopathy is caused by breakdown of this network. In all, our study is the first to identify a potential pathomechanism to explain the clinical features of myotubular myopathy. Furthermore, by revealing abnormalities in the tubulo-reticular system, we provide a novel link between myotubular myopathy and several other congenital myopathies.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Embryo, Nonmammalian/metabolism
- Fluorescent Antibody Technique
- Homeostasis
- Humans
- Muscle Fibers, Skeletal/pathology
- Muscle Fibers, Skeletal/ultrastructure
- Muscle, Skeletal/metabolism
- Mutation
- Myopathies, Structural, Congenital/etiology
- Myopathies, Structural, Congenital/metabolism
- Myopathies, Structural, Congenital/pathology
- Protein Tyrosine Phosphatases, Non-Receptor/genetics
- Protein Tyrosine Phosphatases, Non-Receptor/physiology
- Zebrafish/genetics
- Zebrafish/metabolism
Collapse
Affiliation(s)
- James J Dowling
- Department of Pediatrics, University of Michigan Medical Center, Ann Arbor, Michigan, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Low SE, Kuwada JY, Hume RI. Amino acid variations resulting in functional and nonfunctional zebrafish P2X(1) and P2X (5.1) receptors. Purinergic Signal 2008; 4:383-92. [PMID: 18850305 PMCID: PMC2583207 DOI: 10.1007/s11302-008-9124-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 09/11/2008] [Indexed: 11/24/2022] Open
Abstract
Several zebrafish P2X receptors (zP2X(1), zP2X(2), and zP2X(5.1)) have been reported to produce little or no current although their mammalian orthologs produce functional homomeric receptors. We isolated new cDNA clones for these P2X receptors that revealed sequence variations in each. The new variants of zP2X(1) and zP2X(5.1) produced substantial currents when expressed by Xenopus oocytes, however the new variant of zP2X(2) was still nonfunctional. zP2X(2) lacks two lysine residues essential for ATP responsiveness in other P2X receptors; however introduction of these two lysines was insufficient to allow this receptor to function as a homotrimer. We also tested whether P2X signaling is required for myogenesis or synaptic communication at the zebrafish neuromuscular junction. We found that embryonic skeletal muscle expressed only one P2X receptor, P2X(5.1). Antisense knockdown of P2X(5.1) eliminated skeletal muscle responsiveness to ATP but did not prevent myogenesis or behaviors that require functional transmission at the neuromuscular junction.
Collapse
Affiliation(s)
- Sean E. Low
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave, Ann Arbor, MI 48109-1048 USA
| | - John Y. Kuwada
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave, Ann Arbor, MI 48109-1048 USA
| | - Richard I. Hume
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave, Ann Arbor, MI 48109-1048 USA
| |
Collapse
|
37
|
Muscle fiber type distribution in climbing Hawaiian gobioid fishes: Ontogeny and correlations with locomotor performance. ZOOLOGY 2008; 111:114-22. [DOI: 10.1016/j.zool.2007.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2007] [Revised: 06/08/2007] [Accepted: 06/09/2007] [Indexed: 11/23/2022]
|
38
|
Physicochemical characterization of muscle proteins from different regions of mackerel (Rastrelliger kanagurta). Food Chem 2008. [DOI: 10.1016/j.foodchem.2007.05.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Danos N, Lauder GV. The ontogeny of fin function during routine turns in zebrafish Danio rerio. J Exp Biol 2007; 210:3374-86. [PMID: 17872991 DOI: 10.1242/jeb.007484] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Zebrafish Danio rerio exhibit spontaneous, routine turns as part of their normal foraging behavior from the early free-swimming stage to adulthood. Given the importance of this behavior and its pervasiveness during zebrafish life history, the functional requirements of routine turning should play an important role in development. Conversely, the ontogeny of turning performance should reflect morphological development. In this paper we analyze the kinematics of routine turning during ontogeny in zebrafish and compare the scaling of turning kinematics to predictions from two existing models. Twenty-nine fish ranging in size from 0.38 to 1.97 cm in fork length(FL) were filmed at 1000 frames s–1 while performing routine turns. Images were analyzed using image cross-correlation to calculate body and fin velocities. We performed piecewise linear regression to identify variables that do not have a constant rate of change across ontogeny and found that two variables, turn angle and angular velocity, have a transition in slope at a body size of approximately 1 cm. Other variables show a constant positive (pectoral and caudal fin velocity, turn duration), negative (body curvature) or zero (head velocity) rate of change across ontogeny. We interpret these trends in light of morphological changes over ontogeny as well as relevant hydrodynamic conditions. We also compare the slope of the log-transformed variables to predictions from two scaling models of change in function with increasing size. We find mixed support for both models with no single model being better at predicting a single type of variable such as linear velocities. We conclude that morphological development of the paired and median fins and of the skeleton, is an important factor in determining the performance of routine turning over ontogeny. Three-dimensional kinematics and ecological behavior information will further elucidate the ontogenetic patterns observed here.
Collapse
Affiliation(s)
- Nicole Danos
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.
| | | |
Collapse
|
40
|
Hirata H, Watanabe T, Hatakeyama J, Sprague SM, Saint-Amant L, Nagashima A, Cui WW, Zhou W, Kuwada JY. Zebrafish relatively relaxed mutants have a ryanodine receptor defect, show slow swimming and provide a model of multi-minicore disease. Development 2007; 134:2771-81. [PMID: 17596281 DOI: 10.1242/dev.004531] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Wild-type zebrafish embryos swim away in response to tactile stimulation. By contrast, relatively relaxed mutants swim slowly due to weak contractions of trunk muscles. Electrophysiological recordings from muscle showed that output from the CNS was normal in mutants, suggesting a defect in the muscle. Calcium imaging revealed that Ca2+ transients were reduced in mutant fast muscle. Immunostaining demonstrated that ryanodine and dihydropyridine receptors, which are responsible for Ca2+ release following membrane depolarization, were severely reduced at transverse-tubule/sarcoplasmic reticulum junctions in mutant fast muscle. Thus, slow swimming is caused by weak muscle contractions due to impaired excitation-contraction coupling. Indeed, most of the ryanodine receptor 1b(ryr1b) mRNA in mutants carried a nonsense mutation that was generated by aberrant splicing due to a DNA insertion in an intron of the ryr1b gene, leading to a hypomorphic condition in relatively relaxed mutants. RYR1 mutations in humans lead to a congenital myopathy,multi-minicore disease (MmD), which is defined by amorphous cores in muscle. Electron micrographs showed minicore structures in mutant fast muscles. Furthermore, following the introduction of antisense morpholino oligonucleotides that restored the normal splicing of ryr1b, swimming was recovered in mutants. These findings suggest that zebrafish relatively relaxed mutants may be useful for understanding the development and physiology of MmD.
Collapse
Affiliation(s)
- Hiromi Hirata
- Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Saint-Amant L, Sprague SM, Hirata H, Li Q, Cui WW, Zhou W, Poudou O, Hume RI, Kuwada JY. The zebrafishennui behavioral mutation disrupts acetylcholine receptor localization and motor axon stability. Dev Neurobiol 2007; 68:45-61. [DOI: 10.1002/dneu.20569] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Luna VM, Brehm P. An electrically coupled network of skeletal muscle in zebrafish distributes synaptic current. ACTA ACUST UNITED AC 2006; 128:89-102. [PMID: 16801383 PMCID: PMC2151551 DOI: 10.1085/jgp.200609501] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Fast and slow skeletal muscle types are readily distinguished in larval zebrafish on the basis of differences in location and orientation. Additionally, both muscle types are compact, rendering them amenable to in vivo patch clamp study of synaptic function. Slow muscle mediates rhythmic swimming, but it does so purely through synaptic drive, as these cells are unable to generate action potentials. Our patch clamp recordings from muscle pairs of zebrafish reveal a network of electrical coupling in slow muscle that allows sharing of synaptic current within and between segmental boundaries of the tail. The synaptic current exhibits slow kinetics (tau(decay) approximately 4 ms), which further facilitates passage through the low pass filter, a consequence of the electrically coupled network. In contrast to slow muscle, fast skeletal muscle generates action potentials to mediate the initial rapid component of the escape response. The combination of very weak electrical coupling and synaptic kinetics (tau(decay) <1 ms) too fast for the network low pass filter minimizes intercellular sharing of synaptic current in fast muscle. These differences between muscle types provide insights into the physiological role(s) of electrical coupling in skeletal muscle. First, intrasegmental coupling among slow muscle cells allows effective transfer of synaptic currents within tail segments, thereby minimizing differences in synaptic depolarization. Second, a fixed intersegmental delay in synaptic current transit, resulting from the low pass filter properties of the slow muscle network, helps coordinate the rostral-caudal wave of contraction.
Collapse
Affiliation(s)
- Victor M Luna
- Department of Neurobiology and Behavior, State University of New York at Stony Brook, 11794, USA
| | | |
Collapse
|
43
|
|
44
|
Wen H, Brehm P. Paired motor neuron-muscle recordings in zebrafish test the receptor blockade model for shaping synaptic current. J Neurosci 2006; 25:8104-11. [PMID: 16135768 PMCID: PMC6725451 DOI: 10.1523/jneurosci.2611-05.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The transparent spinal cord and electrically compact fast muscle of zebrafish offer the first opportunity to perform simultaneous whole-cell patch-clamp recordings from both motor neuron and target skeletal muscle in situ. Our paired recordings reveal the fastest reported kinetics for both spontaneous and evoked synaptic currents at any synapse and a large quantal size that facilitates the resolution of spontaneous synaptic currents. We used this preparation to test the recent proposal that open channel block of the acetylcholine receptor by acetylcholine modulates the kinetics and timing of transmission between nerve and muscle in larval zebrafish (Legendre et al., 2000). Contrary to the predictions of this model, we find similar delay and onset kinetics of synaptic current at positive and negative muscle membrane potentials, even after inhibition of acetylcholinesterase. In contrast, blockade of motor neuron K channels by 4-aminopyridine prolonged the action potential and introduced a significant delay and slowing of evoked synaptic currents, demonstrating our ability to measured altered transmitter release with this system. We conclude that the kinetics of neuromuscular synaptic currents in zebrafish is not governed by receptor block.
Collapse
Affiliation(s)
- Hua Wen
- Department of Neurobiology and Behavior, State University of New York, Stony Brook, New York 11794, USA.
| | | |
Collapse
|
45
|
Cui WW, Low SE, Hirata H, Saint-Amant L, Geisler R, Hume RI, Kuwada JY. The zebrafish shocked gene encodes a glycine transporter and is essential for the function of early neural circuits in the CNS. J Neurosci 2006; 25:6610-20. [PMID: 16014722 PMCID: PMC6725421 DOI: 10.1523/jneurosci.5009-04.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
shocked (sho) is a zebrafish mutation that causes motor deficits attributable to CNS defects during the first2dof development. Mutant embryos display reduced spontaneous coiling of the trunk, diminished escape responses when touched, and an absence of swimming. A missense mutation in the slc6a9 gene that encodes a glycine transporter (GlyT1) was identified as the cause of the sho phenotype. Antisense knock-down of GlyT1 in wild-type embryos phenocopies sho, and injection of wild-type GlyT1 mRNA into mutants rescues them. A comparison of glycine-evoked inward currents in Xenopus oocytes expressing either the wild-type or mutant protein found that the missense mutation results in a nonfunctional transporter. glyt1 and the related glyt2 mRNAs are expressed in the hindbrain and spinal cord in nonoverlapping patterns. The fact that these regions are known to be required for generation of early locomotory behaviors suggests that the regulation of extracellular glycine levels in the CNS is important for proper function of neural networks. Furthermore, physiological analysis after manipulation of glycinergic activity in wild-type and sho embryos suggests that the mutant phenotype is attributable to elevated extracellular glycine within the CNS.
Collapse
Affiliation(s)
- Wilson W Cui
- University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Coutts CA, Patten SA, Balt LN, Ali DW. Development of ionic currents of zebrafish slow and fast skeletal muscle fibers. ACTA ACUST UNITED AC 2006; 66:220-35. [PMID: 16329121 DOI: 10.1002/neu.20214] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Voltage-gated Na+ and K+ channels play key roles in the excitability of skeletal muscle fibers. In this study we investigated the steady-state and kinetic properties of voltage-gated Na+ and K+ currents of slow and fast skeletal muscle fibers in zebrafish ranging in age from 1 day postfertilization (dpf) to 4-6 dpf. The inner white (fast) fibers possess an A-type inactivating K+ current that increases in peak current density and accelerates its rise and decay times during development. As the muscle matured, the V50s of activation and inactivation of the A-type current became more depolarized, and then hyperpolarized again in older animals. The activation kinetics of the delayed outward K+ current in red (slow) fibers accelerated within the first week of development. The tail currents of the outward K+ currents were too small to allow an accurate determination of the V50s of activation. Red fibers did not show any evidence of inward Na+ currents; however, white fibers expressed Na+ currents that increased their peak current density, accelerated their inactivation kinetics, and hyperpolarized their V50 of inactivation during development. The action potentials of white fibers exhibited significant changes in the threshold voltage and the half width. These findings indicate that there are significant differences in the ionic current profiles between the red and white fibers and that a number of changes occur in the steady-state and kinetic properties of Na+ and K+ currents of developing zebrafish skeletal muscle fibers, with the most dramatic changes occurring around the end of the first day following egg fertilization.
Collapse
Affiliation(s)
- Christopher A Coutts
- Department of Biological Sciences, Biological Sciences Building, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| | | | | | | |
Collapse
|
47
|
Mölich A, Heisler N. Determination of pH by microfluorometry: intracellular and interstitial pH regulation in developing early-stage fish embryos (Danio rerio). J Exp Biol 2005; 208:4137-49. [PMID: 16244172 DOI: 10.1242/jeb.01878] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYMicrofluorometric techniques were applied in vivo for continuous monitoring of specific acid-base parameters in zebrafish (Danio rerio) embryos during early stages of ontogeny. Dextran-coupled pH-sensitive single-excitation/dual-emission dye SNARF-1 was pressure-injected into individual cells or the interstitial space of 16- to 256-cell embryos,and pH was continuously recorded during subsequent development for time periods of up to 8 h. A novel calibration technique was developed, essentially characterized by in vitro inorganic buffer calibration of the optical system and mathematical post-processing according to the effects of in vivo dye modifiers through a correlation established by direct comparison of optical techniques with pH microelectrodes. This approach results in high accuracy of microfluorometry, comparable with that of pH electrodes, and a recovery only limited by the physical stability of the utilized optical system.Intracellular pH (pHi) in Danio rerio embryos between 1k-cells stage and the end of epiboly was found to be well regulated to a mean value of 7.55±0.13 (± s.d.), a range distinctly more alkaline than typical values for adult fish but in accordance with embryonic pHi of a few non-fish species shortly after fertilization. Also, interstitial pH (pHint) was significantly higher (8.08±0.25) than values for extracellular pH in adult fish. Distributions of HCO3- across membranes and between interstitium and ambient fluid compared with respective potentials strongly suggest that pH in these early stages of ontogeny is already adjusted by active transfer processes. Non-respiratory changes in ambient pH between 7.7 and 8.5 did not significantly affect pHi, a result potentially attributable to low membrane leakage rate or to the potency of active transfer mechanisms. In order to assess the pH regulatory systems more quantitatively,embryos were exposed to ambient changes of carbon dioxide partial pressure(PCO2). The direct impact of PCO2 changes on cell pH was alleviated by cell non-bicarbonate buffering and subsequent rapid, almost complete, compensation by changes in cell[HCO3-] as an expression of transmembrane transfer of acid-base relevant ions. On the basis of these results, we conclude that the regulatory potency of embryonic cells is well developed, is active to resist extensive homoiostatic stress and is efficient to maintain critical metabolism in adverse conditions, even at early stages of ontogeny.
Collapse
Affiliation(s)
- Andreas Mölich
- Department of Animal Physiology, Humboldt-Universität zu Berlin, D-10115, Germany.
| | | |
Collapse
|
48
|
McDearmid JR, Drapeau P. Rhythmic motor activity evoked by NMDA in the spinal zebrafish larva. J Neurophysiol 2005; 95:401-17. [PMID: 16207779 DOI: 10.1152/jn.00844.2005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have examined the localization and activity of the neural circuitry that generates swimming behavior in developing zebrafish that were spinalized to isolate the spinal cord from descending brain inputs. We found that addition of the excitatory amino acid agonist N-methyl-d-aspartate (NMDA) to spinalized zebrafish at 3 days in development induced repeating episodes of rhythmic tail beating activity reminiscent of slow swimming behavior. The neural correlate of this activity, monitored by extracellular recording comprised repeating episodes of rhythmic, rostrocaudally progressing peripheral nerve discharges that alternated between the two sides of the body. Motoneuron recordings revealed an activity pattern comprising a slow oscillatory and a fast synaptic component that was consistent with fictive swimming behavior. Pharmacological and voltage-clamp analysis implicated glycine and glutamate in generation of motoneuron activity. Contralateral alternation of motor activity was disrupted with strychnine, indicating a role for glycine in coordinating left-right alternation during NMDA-induced locomotion. At embryonic stages, while rhythmic synaptic activity patterns could still be evoked in motoneurons, they were typically lower in frequency. Kinematic recordings revealed that prior to 3 days in development, NMDA was unable to reliably generate rhythmic tail beating behavior. We conclude that NMDA induces episodes of rhythmic motor activity in spinalized developing zebrafish that can be monitored physiologically in paralyzed preparations. Therefore as for other vertebrates, the zebrafish central pattern generator is intrinsic to the spinal cord and can operate in isolation provided a tonic source of excitation is given.
Collapse
Affiliation(s)
- Jonathan R McDearmid
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, MGH Neurology L7-132, 1650 Cedar Ave., Montreal, Qc, Canada H3G 1A4
| | | |
Collapse
|
49
|
Buckingham SD, Ali DW. Computer simulations of high-pass filtering in zebrafish larval muscle fibres. J Exp Biol 2005; 208:3055-63. [PMID: 16081604 DOI: 10.1242/jeb.01755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Larval somatic muscle of the zebrafish, Danio rerio, like that of some other organisms, responds to a sustained depolarization with one, and only one, action potential. Here, we report computer simulations, using the NEURON simulation programme, of sodium and potassium currents of somatic muscle of larval Danio rerio to investigate their possible contribution to once-only firing. Our computer model incorporated simulated sodium and potassium ion channels based on steady-state and kinetic parameters derived from a recent electrophysiological study. The model responded to sustained depolarizations with a single action potential at all levels of depolarization above threshold. By varying several parameters of the sodium and potassium currents systematically, the minimum changes necessary to produce repetitive firing were found to be a positive shift in the half-inactivation and a negative shift in the half-activation potentials for the sodium current, accompanied by a slowing of the rate of inactivation to half of the experimentally observed values. This suggests that once-only spiking can be attributed to the steady-state values of activation and inactivation of the sodium current, along with a slower rate of inactivation. Mapping of the resultant firing properties against steady-state and kinetic ion channel parameters revealed a high safety factor for once-only firing and showed that the time constant of inactivation of the sodium current was the key determinant of once-only or repetitive firing. The rapidly inactivating potassium current does not influence once-only firing or the maximum rate of firing in response to periodic excitation in these simulations. Although a contribution of other currents to produce once-only firing has not been excluded, this model suggests that the properties of the sodium current are sufficient to account for once-only firing.
Collapse
Affiliation(s)
- Steven D Buckingham
- MRC Functional Genetics Unit, Department of Human Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | | |
Collapse
|
50
|
Hirata H, Saint-Amant L, Waterbury J, Cui W, Zhou W, Li Q, Goldman D, Granato M, Kuwada JY. accordion, a zebrafish behavioral mutant, has a muscle relaxation defect due to a mutation in the ATPase Ca2+ pump SERCA1. Development 2004; 131:5457-68. [PMID: 15469975 DOI: 10.1242/dev.01410] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
When wild-type zebrafish embryos are touched at 24 hours post-fertilization (hpf), they typically perform two rapid alternating coils of the tail. By contrast, accordion (acc) mutants fail to coil their tails normally but contract the bilateral trunk muscles simultaneously to shorten the trunk, resulting in a pronounced dorsal bend. Electrophysiological recordings from muscles showed that the output from the central nervous system is normal in mutants, suggesting a defect in muscles is responsible. In fact, relaxation in acc muscle is significantly slower than normal. In vivo imaging of muscle Ca2+ transients revealed that cytosolic Ca2+ decay was significantly slower in acc muscle. Thus, it appears that the mutant behavior is caused by a muscle relaxation defect due to the impairment of Ca2+ re-uptake. Indeed, acc mutants carry a mutation in atp2a1 gene that encodes the sarco(endo)plasmic reticulum Ca2+-ATPase 1 (SERCA1), a Ca2+ pump found in the muscle sarcoplasmic reticulum (SR) that is responsible for pumping Ca2+ from the cytosol back to the SR. As SERCA1 mutations in humans lead to Brody disease, an exercise-induced muscle relaxation disorder, zebrafish accordion mutants could be a useful animal model for this condition.
Collapse
Affiliation(s)
- Hiromi Hirata
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-0720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|