1
|
Hewitt LT, Marron AM, Brager DH. Higher hyperpolarization-activated current in a subpopulation of interneurons in stratum oriens of area CA1 in the hippocampus of fragile X mice. J Neurophysiol 2025; 133:1558-1571. [PMID: 40247608 DOI: 10.1152/jn.00510.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/17/2024] [Accepted: 04/04/2025] [Indexed: 04/19/2025] Open
Abstract
Fragile X syndrome is the most common inherited form of intellectual disability and the leading monogenetic cause of autism. Studies in mouse models of autism spectrum disorders, including the Fmr1 knockout (FX) mouse, suggest that abnormal inhibition in hippocampal circuits contributes to behavioral phenotypes. In FX mice, changes in multiple voltage-gated ion channels occur in excitatory pyramidal neurons of the hippocampus. Whether there are also changes in the intrinsic properties of hippocampal inhibitory interneurons, however, remains largely unknown. We made whole cell current clamp recordings from both fast-spiking (FS) and low threshold spiking (LTS) interneurons in the stratum oriens region of the hippocampus. We found that LTS, but not FS, interneurons in FX mice had lower input resistance and action potential firing compared with the wild type. When we subdivided LTS interneurons into low-threshold high hyperpolarization-activated current (Ih) (LTH) and putative oreins-lacunosum moleculare (OLM) cells (Hewitt et al. Physiol Rep 9: e14848, 2021), we found that it was the LTH subgroup that had significantly lower input resistance in FX mice. The difference in input resistance between wild-type and FX LTH interneurons was absent in the presence of the h-channel blocker ZD7288, suggesting a greater contribution of Ih in FX LTH interneurons. Voltage clamp recordings found that indeed, Ih was significantly higher in FX LTH interneurons compared with wild type. Our results suggest that altered inhibition in the hippocampus of FX mice may be due in part to changes in the intrinsic excitability of LTH inhibitory interneurons.NEW & NOTEWORTHY In this paper, we use physiological and biochemical approaches to investigate the intrinsic excitability of inhibitory interneurons in hippocampal area CA1 of the fragile X mouse. We found that higher Ih lowers the intrinsic excitability of one specific type of interneuron. This study highlights how changes to voltage-gated ion channels in specific neuronal populations may contribute to the altered excitatory/inhibitory balance in fragile X syndrome.
Collapse
Affiliation(s)
- Lauren T Hewitt
- Department of Neuroscience, Institute for Neuroscience, University of Texas at Austin, Austin, Texas, United States
| | - Alyssa M Marron
- Department of Neuroscience, Institute for Neuroscience, University of Texas at Austin, Austin, Texas, United States
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, Nevada, United States
| | - Darrin H Brager
- Department of Neuroscience, Institute for Neuroscience, University of Texas at Austin, Austin, Texas, United States
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, Nevada, United States
- Interdisciplinary Neuroscience Program, University of Nevada at Las Vegas, Las Vegas, Nevada, United States
| |
Collapse
|
2
|
Herstel LJ, Wierenga CJ. Distinct Modulation of I h by Synaptic Potentiation in Excitatory and Inhibitory Neurons. eNeuro 2024; 11:ENEURO.0185-24.2024. [PMID: 39406481 PMCID: PMC11574699 DOI: 10.1523/eneuro.0185-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 11/15/2024] Open
Abstract
Selective modifications in the expression or function of dendritic ion channels regulate the propagation of synaptic inputs and determine the intrinsic excitability of a neuron. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels open upon membrane hyperpolarization and conduct a depolarizing inward current (I h). HCN channels are enriched in the dendrites of hippocampal pyramidal neurons where they regulate the integration of synaptic inputs. Synaptic plasticity can bidirectionally modify dendritic HCN channels in excitatory neurons depending on the strength of synaptic potentiation. In inhibitory neurons, however, the dendritic expression and modulation of HCN channels are largely unknown. In this study, we systematically compared the modulation of I h by synaptic potentiation in hippocampal CA1 pyramidal neurons and stratum radiatum (sRad) interneurons in mouse organotypic cultures. I h properties were similar in inhibitory and excitatory neurons and contributed to resting membrane potential and action potential firing. We found that in sRad interneurons, HCN channels were downregulated after synaptic plasticity, irrespective of the strength of synaptic potentiation. This suggests differential regulation of I h in excitatory and inhibitory neurons, possibly signifying their distinct role in network activity.
Collapse
Affiliation(s)
- Lotte J Herstel
- Biology Department, Faculty of Science, Utrecht University, Utrecht 3584 CH, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6525 AJ, the Netherlands
| | - Corette J Wierenga
- Biology Department, Faculty of Science, Utrecht University, Utrecht 3584 CH, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6525 AJ, the Netherlands
| |
Collapse
|
3
|
Buss EW, Lofaro OM, Barnett A, Leroy F, Santoro B, Siegelbaum SA, Bock T. HCN1 hyperpolarization-activated cyclic nucleotide-gated channels enhance evoked GABA release from parvalbumin-positive interneurons. Proc Natl Acad Sci U S A 2024; 121:e2319246121. [PMID: 39378096 PMCID: PMC11494348 DOI: 10.1073/pnas.2319246121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 08/27/2024] [Indexed: 10/10/2024] Open
Abstract
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels generate the cationic Ih current in neurons and regulate the excitability of neuronal networks. The function of HCN channels depends, in part, on their subcellular localization. Of the four HCN isoforms (HCN1-4), HCN1 is strongly expressed in the dendrites of pyramidal neurons (PNs) in hippocampal area CA1 but also in presynaptic terminals of parvalbumin-positive interneurons (PV+ INs), which provide strong inhibitory control over hippocampal activity. Yet, little is known about how HCN1 channels in these cells regulate the evoked release of the inhibitory transmitter GABA from their axon terminals. Here, we used genetic, optogenetic, electrophysiological, and imaging techniques to investigate how the electrophysiological properties of PV+ INs are regulated by HCN1, including how HCN1 activity at presynaptic terminals regulates the release of GABA onto PNs in CA1. We found that application of HCN1 pharmacological blockers reduced the amplitude of the inhibitory postsynaptic potential recorded from CA1 PNs in response to selective optogenetic stimulation of PV+ INs. Homozygous HCN1 knockout mice also show reduced IPSCs in postsynaptic cells. Finally, two-photon imaging using genetically encoded fluorescent calcium indicators revealed that HCN1 blockers reduced the probability that an extracellular electrical stimulating pulse evoked a Ca2+ response in individual PV+ IN presynaptic boutons. Taken together, our results show that HCN1 channels in the axon terminals of PV+ interneurons facilitate GABAergic transmission in the hippocampal CA1 region.
Collapse
Affiliation(s)
- Eric W. Buss
- Departments of Neuroscience and Pharmacology, Kavli Institute for Brain Science, Zuckerman Mind Brain Behavior Institute, Columbia University Medical Center, New York, NY10027
| | - Olivia M. Lofaro
- Departments of Neuroscience and Pharmacology, Kavli Institute for Brain Science, Zuckerman Mind Brain Behavior Institute, Columbia University Medical Center, New York, NY10027
| | - Anastasia Barnett
- Departments of Neuroscience and Pharmacology, Kavli Institute for Brain Science, Zuckerman Mind Brain Behavior Institute, Columbia University Medical Center, New York, NY10027
| | - Felix Leroy
- Departments of Neuroscience and Pharmacology, Kavli Institute for Brain Science, Zuckerman Mind Brain Behavior Institute, Columbia University Medical Center, New York, NY10027
| | - Bina Santoro
- Departments of Neuroscience and Pharmacology, Kavli Institute for Brain Science, Zuckerman Mind Brain Behavior Institute, Columbia University Medical Center, New York, NY10027
| | - Steven A. Siegelbaum
- Departments of Neuroscience and Pharmacology, Kavli Institute for Brain Science, Zuckerman Mind Brain Behavior Institute, Columbia University Medical Center, New York, NY10027
| | - Tobias Bock
- Departments of Neuroscience and Pharmacology, Kavli Institute for Brain Science, Zuckerman Mind Brain Behavior Institute, Columbia University Medical Center, New York, NY10027
- Department of Systems Neurophysiology, Institute for Zoology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen52074, Germany
| |
Collapse
|
4
|
Tiryaki ES, Arslan G, Günaydın C, Ayyıldız M, Ağar E. The role of HCN channels on the effects of T-type calcium channels and GABA A receptors in the absence epilepsy model of WAG/Rij rats. Pflugers Arch 2024; 476:337-350. [PMID: 38159130 DOI: 10.1007/s00424-023-02900-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
In this study we used ivabradine (IVA), a hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blocker, to identify its effect on spike-wave discharges (SWDs); and aimed to determine the role of IVA on the effects of T-type calcium channel blocker NNC 55-0396, GABAA receptor agonist muscimol and antagonist bicuculline in male WAG/Rij rats. After tripolar electrodes for electrocorticogram (ECoG) recordings were placed on the WAG/Rij rats' skulls, 5, 10, and 20 mg/kg IVA were intraperitoneally administered for 7 consecutive days and ECoG recordings were obtained on days 0th, 3rd, 6th, and 7th for three hours before and after injections. While acute injection of 5, 10, and 20 mg/kg IVA did not affect the total number and the mean duration of SWDs, subacute administration (7 days) of IVA decreased the SWDs parameters 24 hours after the 7th injection. Interestingly, when IVA was administered again 24 hours after the 6th IVA injection, it increased the SWDs parameters. Western-blot analyses showed that HCN1 and HCN2 expressions decreased and HCN4 increased in the 5-month-old WAG/Rij rats compared to the 1-month-old WAG/Rij and 5-month-old native Wistar rats, while subacute IVA administration increased the levels of HCN1 and HCN2 channels, except HCN4. Subacute administration of IVA reduced the antiepileptic activity of NNC, while the proepileptic activity of muscimol and the antiepileptic activity of bicuculline were abolished. It might be suggested that subacute IVA administration reduces absence seizures by changing the HCN channel expressions in WAG/Rij rats, and this affects the T-type calcium channels and GABAA receptors.
Collapse
Affiliation(s)
- Emre Soner Tiryaki
- Department of Physiology, Faculty of Medicine, University of Ondokuz Mayıs, Samsun, Türkiye
| | - Gökhan Arslan
- Department of Physiology, Faculty of Medicine, University of Ondokuz Mayıs, Samsun, Türkiye.
| | - Caner Günaydın
- Department of Pharmacology, Faculty of Medicine, University of Samsun, Samsun, Türkiye
| | - Mustafa Ayyıldız
- Department of Physiology, Faculty of Medicine, University of Ondokuz Mayıs, Samsun, Türkiye
| | - Erdal Ağar
- Department of Physiology, Faculty of Medicine, University of Ondokuz Mayıs, Samsun, Türkiye
| |
Collapse
|
5
|
Nguyen LH, Xu Y, Nair M, Bordey A. The mTOR pathway genes MTOR, Rheb, Depdc5, Pten, and Tsc1 have convergent and divergent impacts on cortical neuron development and function. eLife 2024; 12:RP91010. [PMID: 38411613 PMCID: PMC10942629 DOI: 10.7554/elife.91010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Brain somatic mutations in various components of the mTOR complex 1 (mTORC1) pathway have emerged as major causes of focal malformations of cortical development and intractable epilepsy. While these distinct gene mutations converge on excessive mTORC1 signaling and lead to common clinical manifestations, it remains unclear whether they cause similar cellular and synaptic disruptions underlying cortical network hyperexcitability. Here, we show that in utero activation of the mTORC1 activator genes, Rheb or MTOR, or biallelic inactivation of the mTORC1 repressor genes, Depdc5, Tsc1, or Pten in the mouse medial prefrontal cortex leads to shared alterations in pyramidal neuron morphology, positioning, and membrane excitability but different changes in excitatory synaptic transmission. Our findings suggest that, despite converging on mTORC1 signaling, mutations in different mTORC1 pathway genes differentially impact cortical excitatory synaptic activity, which may confer gene-specific mechanisms of hyperexcitability and responses to therapeutic intervention.
Collapse
Affiliation(s)
- Lena H Nguyen
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at DallasRichardsonUnited States
- Departments of Neurosurgery and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of MedicineNew HavenUnited States
| | - Youfen Xu
- Departments of Neurosurgery and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of MedicineNew HavenUnited States
| | - Maanasi Nair
- Departments of Neurosurgery and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of MedicineNew HavenUnited States
| | - Angelique Bordey
- Departments of Neurosurgery and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of MedicineNew HavenUnited States
| |
Collapse
|
6
|
Kazmierska-Grebowska P, Jankowski MM, MacIver MB. Missing Puzzle Pieces in Dementia Research: HCN Channels and Theta Oscillations. Aging Dis 2024; 15:22-42. [PMID: 37450922 PMCID: PMC10796085 DOI: 10.14336/ad.2023.0607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/07/2023] [Indexed: 07/18/2023] Open
Abstract
Increasing evidence indicates a role of hyperpolarization activated cation (HCN) channels in controlling the resting membrane potential, pacemaker activity, memory formation, sleep, and arousal. Their disfunction may be associated with the development of epilepsy and age-related memory decline. Neuronal hyperexcitability involved in epileptogenesis and EEG desynchronization occur in the course of dementia in human Alzheimer's Disease (AD) and animal models, nevertheless the underlying ionic and cellular mechanisms of these effects are not well understood. Some suggest that theta rhythms involved in memory formation could be used as a marker of memory disturbances in the course of neurogenerative diseases, including AD. This review focusses on the interplay between hyperpolarization HCN channels, theta oscillations, memory formation and their role(s) in dementias, including AD. While individually, each of these factors have been linked to each other with strong supportive evidence, we hope here to expand this linkage to a more inclusive picture. Thus, HCN channels could provide a molecular target for developing new therapeutic agents for preventing and/or treating dementia.
Collapse
Affiliation(s)
| | - Maciej M. Jankowski
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
- BioTechMed Center, Multimedia Systems Department, Faculty of Electronics, Telecommunications, and Informatics, Gdansk University of Technology, Gdansk, Poland.Telecommunications and Informatics, Gdansk University of Technology, Gdansk, Poland.
| | - M. Bruce MacIver
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of of Medicine, Stanford University, CA, USA.
| |
Collapse
|
7
|
Nguyen LH, Xu Y, Nair M, Bordey A. The mTOR pathway genes mTOR, Rheb, Depdc5, Pten, and Tsc1 have convergent and divergent impacts on cortical neuron development and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.11.553034. [PMID: 37609221 PMCID: PMC10441381 DOI: 10.1101/2023.08.11.553034] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Brain somatic mutations in various components of the mTOR complex 1 (mTORC1) pathway have emerged as major causes of focal malformations of cortical development and intractable epilepsy. While these distinct gene mutations converge on excessive mTORC1 signaling and lead to common clinical manifestations, it remains unclear whether they cause similar cellular and synaptic disruptions underlying cortical network hyperexcitability. Here, we show that in utero activation of the mTORC1 activators, Rheb or mTOR, or biallelic inactivation of the mTORC1 repressors, Depdc5, Tsc1, or Pten in mouse medial prefrontal cortex leads to shared alterations in pyramidal neuron morphology, positioning, and membrane excitability but different changes in excitatory synaptic transmission. Our findings suggest that, despite converging on mTORC1 signaling, mutations in different mTORC1 pathway genes differentially impact cortical excitatory synaptic activity, which may confer gene-specific mechanisms of hyperexcitability and responses to therapeutic intervention.
Collapse
Affiliation(s)
- Lena H. Nguyen
- Department Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
- Departments of Neurosurgery and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Youfen Xu
- Departments of Neurosurgery and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Maanasi Nair
- Departments of Neurosurgery and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Angelique Bordey
- Departments of Neurosurgery and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
8
|
Carzoli KL, Kogias G, Fawcett-Patel J, Liu SJ. Cerebellar interneurons control fear memory consolidation via learning-induced HCN plasticity. Cell Rep 2023; 42:113057. [PMID: 37656617 PMCID: PMC10616818 DOI: 10.1016/j.celrep.2023.113057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/30/2023] [Accepted: 08/15/2023] [Indexed: 09/03/2023] Open
Abstract
While synaptic plasticity is considered the basis of learning and memory, modifications of the intrinsic excitability of neurons can amplify the output of neuronal circuits and consequently change behavior. However, the mechanisms that underlie learning-induced changes in intrinsic excitability during memory formation are poorly understood. In the cerebellum, we find that silencing molecular layer interneurons completely abolishes fear memory, revealing their critical role in memory consolidation. The fear conditioning paradigm produces a lasting reduction in hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in these interneurons. This change increases intrinsic membrane excitability and enhances the response to synaptic stimuli. HCN loss is driven by a decrease in endocannabinoid levels via altered cGMP signaling. In contrast, an increase in release of cerebellar endocannabinoids during memory consolidation abolishes HCN plasticity. Thus, activity in cerebellar interneurons drives fear memory formation via a learning-specific increase in intrinsic excitability, and this process requires the loss of endocannabinoid-HCN signaling.
Collapse
Affiliation(s)
- Kathryn Lynn Carzoli
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; Southeast Louisiana VA Healthcare System, New Orleans, LA 70119, USA
| | - Georgios Kogias
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; Southeast Louisiana VA Healthcare System, New Orleans, LA 70119, USA
| | - Jessica Fawcett-Patel
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; Southeast Louisiana VA Healthcare System, New Orleans, LA 70119, USA
| | - Siqiong June Liu
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; Southeast Louisiana VA Healthcare System, New Orleans, LA 70119, USA.
| |
Collapse
|
9
|
Ma X, Miraucourt LS, Qiu H, Sharif-Naeini R, Khadra A. Modulation of SK Channels via Calcium Buffering Tunes Intrinsic Excitability of Parvalbumin Interneurons in Neuropathic Pain: A Computational and Experimental Investigation. J Neurosci 2023; 43:5608-5622. [PMID: 37451982 PMCID: PMC10401647 DOI: 10.1523/jneurosci.0426-23.2023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/11/2023] [Accepted: 05/18/2023] [Indexed: 07/18/2023] Open
Abstract
Parvalbumin-expressing interneurons (PVINs) play a crucial role within the dorsal horn of the spinal cord by preventing touch inputs from activating pain circuits. In both male and female mice, nerve injury decreases PVINs' output via mechanisms that are not fully understood. In this study, we show that PVINs from nerve-injured male mice change their firing pattern from tonic to adaptive. To examine the ionic mechanisms responsible for this decreased output, we used a reparametrized Hodgkin-Huxley type model of PVINs, which predicted (1) the firing pattern transition is because of an increased contribution of small conductance calcium-activated potassium (SK) channels, enabled by (2) impairment in intracellular calcium buffering systems. Analyzing the dynamics of the Hodgkin-Huxley type model further demonstrated that a generalized Hopf bifurcation differentiates the two types of state transitions observed in the transient firing of PVINs. Importantly, this predicted mechanism holds true when we embed the PVIN model within the neuronal circuit model of the spinal dorsal horn. To experimentally validate this hypothesized mechanism, we used pharmacological modulators of SK channels and demonstrated that (1) tonic firing PVINs from naive male mice become adaptive when exposed to an SK channel activator, and (2) adapting PVINs from nerve-injured male mice return to tonic firing on SK channel blockade. Our work provides important insights into the cellular mechanism underlying the decreased output of PVINs in the spinal dorsal horn after nerve injury and highlights potential pharmacological targets for new and effective treatment approaches to neuropathic pain.SIGNIFICANCE STATEMENT Parvalbumin-expressing interneurons (PVINs) exert crucial inhibitory control over Aβ fiber-mediated nociceptive pathways at the spinal dorsal horn. The loss of their inhibitory tone leads to neuropathic symptoms, such as mechanical allodynia, via mechanisms that are not fully understood. This study identifies the reduced intrinsic excitability of PVINs as a potential cause for their decreased inhibitory output in nerve-injured condition. Combining computational and experimental approaches, we predict a calcium-dependent mechanism that modulates PVINs' electrical activity following nerve injury: a depletion of cytosolic calcium buffer allows for the rapid accumulation of intracellular calcium through the active membranes, which in turn potentiates SK channels and impedes spike generation. Our results therefore pinpoint SK channels as potential therapeutic targets for treating neuropathic symptoms.
Collapse
Affiliation(s)
- Xinyue Ma
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3G 1Y6, Canada
- Alan Edwards Center for Research on Pain, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Loïs S Miraucourt
- Alan Edwards Center for Research on Pain, McGill University, Montreal, Quebec H3G 1Y6, Canada
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Haoyi Qiu
- Alan Edwards Center for Research on Pain, McGill University, Montreal, Quebec H3G 1Y6, Canada
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Reza Sharif-Naeini
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3G 1Y6, Canada
- Alan Edwards Center for Research on Pain, McGill University, Montreal, Quebec H3G 1Y6, Canada
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Anmar Khadra
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3G 1Y6, Canada
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
- Department of Quantitative Life Sciences, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
10
|
Bi-directional modulation of hyperpolarization-activated cation currents (I h) by ethanol in rat hippocampal CA3 pyramidal neurons. Neuropharmacology 2023; 227:109423. [PMID: 36690323 DOI: 10.1016/j.neuropharm.2023.109423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/22/2023]
Abstract
It is widely acknowledged that ethanol (EtOH) can alter many neuronal functions, including synaptic signaling, firing discharge, and membrane excitability, through its interaction with multiple membrane proteins and intracellular pathways. Previous work has demonstrated that EtOH enhances the firing rate of hippocampal GABAergic interneurons and thus the presynaptic GABA release at CA1 and CA3 inhibitory synapses through a positive modulation of the hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels. Activation of HCN channels produce an inward current, commonly called Ih, which plays an essential role in generating/regulating specific neuronal activities in GABAergic interneurons and principal glutamatergic pyramidal neurons such as those in the CA3 subregion. Since the direct effect of EtOH on HCN channels expressed in CA3 pyramidal neurons was not thoroughly elucidated, we investigated the possible interaction between EtOH and HCN channels and the impact on excitability and postsynaptic integration of these neurons. Patch-clamp recordings were performed in single CA3 pyramidal neurons from acute male rat coronal hippocampal slices. Our results show that EtOH modulates HCN-mediated Ih in a concentration-dependent and bi-directional manner, with a positive modulation at lower (20 mM) and an inhibitory action at higher (60-80 mM) concentrations. The modulation of Ih by EtOH was mimicked by forskolin, antagonized by different drugs that selectively interfere with the AC/cAMP/PKA intracellular pathway, as well as by the selective HCN inhibitor ZD7288. Altogether, these data further support the evidence that HCN channels may represent an important molecular target through which EtOH may regulate neuronal activity.
Collapse
|
11
|
Zhao K, Li Y, Yang X, Zhou L. The Impact of Altered HCN1 Expression on Brain Function and Its Relationship with Epileptogenesis. Curr Neuropharmacol 2023; 21:2070-2078. [PMID: 37366350 PMCID: PMC10556362 DOI: 10.2174/1570159x21666230214110333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/13/2022] [Accepted: 12/06/2022] [Indexed: 03/08/2023] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated cation channel 1 (HCN1) is predominantly expressed in neurons from the neocortex and hippocampus, two important regions related to epilepsy. Both animal models for epilepsy and epileptic patients show decreased HCN1 expression and HCN1-mediated Ih current. It has been shown in neuroelectrophysiological experiments that a decreased Ih current can increase neuronal excitability. However, some studies have shown that blocking the Ih current in vivo can exert antiepileptic effects. This paradox raises an important question regarding the causal relationship between HCN1 alteration and epileptogenesis, which to date has not been elucidated. In this review, we summarize the literature related to HCN1 and epilepsy, aiming to find a possible explanation for this paradox, and explore the correlation between HCN1 and the mechanism of epileptogenesis. We analyze the alterations in the expression and distribution of HCN1 and the corresponding impact on brain function in epilepsy. In addition, we also discuss the effect of blocking Ih on epilepsy symptoms. Addressing these issues will help to inspire new strategies to explore the relationship between HCN1 and epileptogenesis, and ultimately promote the development of new targets for epilepsy therapy.
Collapse
Affiliation(s)
- Ke Zhao
- Department of Neurology, The Seventh Affliated Hospital of Sun Yet-sen University, No. 628, Zhenyuan Road, Xinhu Street, Guangming District, Shenzhen, China
| | - Yinchao Li
- Department of Neurology, The Seventh Affliated Hospital of Sun Yet-sen University, No. 628, Zhenyuan Road, Xinhu Street, Guangming District, Shenzhen, China
| | - Xiaofeng Yang
- Guangzhou Laboratory, Guangzhou, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
| | - Liemin Zhou
- Department of Neurology, The Seventh Affliated Hospital of Sun Yet-sen University, No. 628, Zhenyuan Road, Xinhu Street, Guangming District, Shenzhen, China
| |
Collapse
|
12
|
Nguyen LH, Xu Y, Mahadeo T, Zhang L, Lin TV, Born HA, Anderson AE, Bordey A. Expression of 4E-BP1 in juvenile mice alleviates mTOR-induced neuronal dysfunction and epilepsy. Brain 2022; 145:1310-1325. [PMID: 34849602 PMCID: PMC9128821 DOI: 10.1093/brain/awab390] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/01/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
Hyperactivation of the mTOR pathway during foetal neurodevelopment alters neuron structure and function, leading to focal malformation of cortical development and intractable epilepsy. Recent evidence suggests a role for dysregulated cap-dependent translation downstream of mTOR signalling in the formation of focal malformation of cortical development and seizures. However, it is unknown whether modifying translation once the developmental pathologies are established can reverse neuronal abnormalities and seizures. Addressing these issues is crucial with regards to therapeutics because these neurodevelopmental disorders are predominantly diagnosed during childhood, when patients present with symptoms. Here, we report increased phosphorylation of the mTOR effector and translational repressor, 4E-BP1, in patient focal malformation of cortical development tissue and in a mouse model of focal malformation of cortical development. Using temporally regulated conditional gene expression systems, we found that expression of a constitutively active form of 4E-BP1 that resists phosphorylation by focal malformation of cortical development in juvenile mice reduced neuronal cytomegaly and corrected several neuronal electrophysiological alterations, including depolarized resting membrane potential, irregular firing pattern and aberrant expression of HCN4 ion channels. Further, 4E-BP1 expression in juvenile focal malformation of cortical development mice after epilepsy onset resulted in improved cortical spectral activity and decreased spontaneous seizure frequency in adults. Overall, our study uncovered a remarkable plasticity of the juvenile brain that facilitates novel therapeutic opportunities to treat focal malformation of cortical development-related epilepsy during childhood with potentially long-lasting effects in adults.
Collapse
Affiliation(s)
- Lena H Nguyen
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Youfen Xu
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Travorn Mahadeo
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Longbo Zhang
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Tiffany V Lin
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Heather A Born
- Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anne E Anderson
- Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Angélique Bordey
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
13
|
Bogacheva PO, Molchanova AI, Pravdivceva ES, Miteva AS, Balezina OP, Gaydukov AE. ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses. Front Cell Neurosci 2022; 16:866802. [PMID: 35591942 PMCID: PMC9110780 DOI: 10.3389/fncel.2022.866802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/18/2022] [Indexed: 11/30/2022] Open
Abstract
The effects of brain-derived neurotrophic factor (BDNF) processing by-products (proBDNF and BDNF prodomain) on the activity of mouse neuromuscular junctions (NMJs) were studied in synapses formed during the reinnervation of extensor digitorum longus muscle (m. EDL) and mature synapses of the diaphragm. The parameters of spontaneous miniature endplate potentials (MEPPs) and evoked endplate potentials (EPPs) were analyzed in presence of each of the BDNF maturation products (both – 1 nM). In newly formed NMJs, proBDNF caused an increase in the resting membrane potential of muscle fibers and a decrease in the frequency of MEPPs, which was prevented by tertiapin-Q, a G-protein-coupled inwardly rectifying potassium channels (GIRK) blocker but not by p75 receptor signaling inhibitor TAT-Pep5. proBDNF had no effect on the parameters of EPPs. BDNF prodomain in newly formed synapses had effects different from those of proBDNF: it increased the amplitude of MEPPs, which was prevented by vesamicol, an inhibitor of vesicular acetylcholine (ACh) transporter; and reduced the quantal content of EPPs. In mature NMJs, proBDNF did not influence MEPPs parameters, but BDNF prodomain suppressed both spontaneous and evoked ACh release: decreased the frequency and amplitude of MEPPs, and the amplitude and quantal content of EPPs. This effect of the BDNF prodomain was prevented by blocking GIRK channels, by TAT-Pep5 or by Rho-associated protein kinase (ROCK) inhibitor Y-27632. At the same time, the BDNF prodomain did not show any inhibitory effects in diaphragm motor synapses of pannexin 1 knockout mice, which have impaired purinergic regulation of neuromuscular transmission. The data obtained suggest that there is a previously unknown mechanism for the acute suppression of spontaneous and evoked ACh release in mature motor synapses, which involves the activation of p75 receptors, ROCK and GIRK channels by BDNF prodomain and requires interaction with metabotropic purinoreceptors. In general, our results show that both the precursor of BDNF and the product of its maturation have predominantly inhibitory effects on spontaneous and evoked ACh release in newly formed or functionally mature neuromuscular junctions, which are mainly opposite to the effects of BDNF. The inhibitory influences of both proteins related to brain neurotrophin are mediated via GIRK channels of mouse NMJs.
Collapse
|
14
|
Lamotrigine Attenuates Neuronal Excitability, Depresses GABA Synaptic Inhibition, and Modulates Theta Rhythms in Rat Hippocampus. Int J Mol Sci 2021; 22:ijms222413604. [PMID: 34948401 PMCID: PMC8705017 DOI: 10.3390/ijms222413604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 12/03/2022] Open
Abstract
Theta oscillations generated in hippocampal (HPC) and cortical neuronal networks are involved in various aspects of brain function, including sensorimotor integration, movement planning, memory formation and attention. Disruptions of theta rhythms are present in individuals with brain disorders, including epilepsy and Alzheimer’s disease. Theta rhythm generation involves a specific interplay between cellular (ion channel) and network (synaptic) mechanisms. HCN channels are theta modulators, and several medications are known to enhance their activity. We investigated how different doses of lamotrigine (LTG), an HCN channel modulator, and antiepileptic and neuroprotective agent, would affect HPC theta rhythms in acute HPC slices (in vitro) and anaesthetized rats (in vivo). Whole-cell patch clamp recordings revealed that LTG decreased GABAA-fast transmission in CA3 cells, in vitro. In addition, LTG directly depressed CA3 and CA1 pyramidal neuron excitability. These effects were partially blocked by ZD 7288, a selective HCN blocker, and are consistent with decreased excitability associated with antiepileptic actions. Lamotrigine depressed HPC theta oscillations in vitro, also consistent with its neuronal depressant effects. In contrast, it exerted an opposite, enhancing effect, on theta recorded in vivo. The contradictory in vivo and in vitro results indicate that LTG increases ascending theta activating medial septum/entorhinal synaptic inputs that over-power the depressant effects seen in HPC neurons. These results provide new insights into LTG actions and indicate an opportunity to develop more precise therapeutics for the treatment of dementias, memory disorders and epilepsy.
Collapse
|
15
|
Cai W, Liu SS, Li BM, Zhang XH. Presynaptic HCN channels constrain GABAergic synaptic transmission in pyramidal cells of the medial prefrontal cortex. Biol Open 2021; 11:272636. [PMID: 34709375 PMCID: PMC8966777 DOI: 10.1242/bio.058840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/26/2021] [Indexed: 11/20/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are widely expressed in neurons in the central nervous system. It has been documented that HCN channels regulate the intrinsic excitability of pyramidal cells in the medial prefrontal cortex (mPFC) of rodents. Here, we report that HCN channels limited GABAergic transmission onto pyramidal cells in rat mPFC. The pharmacological blockade of HCN channels resulted in a significant increase in the frequency of both spontaneous and miniature inhibitory postsynaptic currents (IPSCs) in mPFC pyramidal cells, whereas potentiation of HCN channels reversely decreases the frequency of mIPSCs. Furthermore, such facilitation effect on mIPSC frequency required presynaptic Ca2+ influx. Immunofluorescence staining showed that HCN channels expressed in presynaptic GABAergic terminals, as well as in both soma and neurite of parvalbumin-expressing (PV-expressing) basket cells in mPFC. The present results indicate that HCN channels in GABAergic interneurons, most likely PV-expressing basket cells, constrain inhibitory control over layer 5-6 pyramidal cells by restricting presynaptic Ca2+ entry.
Collapse
Affiliation(s)
- Wei Cai
- Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Shu-Su Liu
- Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Bao-Ming Li
- Center for Neuropsychiatric Diseases, Institute of Life Science, Nanchang University, Nanchang 330031, China
| | - Xue-Han Zhang
- Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| |
Collapse
|
16
|
Huang Z, Tatti R, Loeven AM, Landi Conde DR, Fadool DA. Modulation of Neural Microcircuits That Control Complex Dynamics in Olfactory Networks. Front Cell Neurosci 2021; 15:662184. [PMID: 34239417 PMCID: PMC8259627 DOI: 10.3389/fncel.2021.662184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Neuromodulation influences neuronal processing, conferring neuronal circuits the flexibility to integrate sensory inputs with behavioral states and the ability to adapt to a continuously changing environment. In this original research report, we broadly discuss the basis of neuromodulation that is known to regulate intrinsic firing activity, synaptic communication, and voltage-dependent channels in the olfactory bulb. Because the olfactory system is positioned to integrate sensory inputs with information regarding the internal chemical and behavioral state of an animal, how olfactory information is modulated provides flexibility in coding and behavioral output. Herein we discuss how neuronal microcircuits control complex dynamics of the olfactory networks by homing in on a special class of local interneurons as an example. While receptors for neuromodulation and metabolic peptides are widely expressed in the olfactory circuitry, centrifugal serotonergic and cholinergic inputs modulate glomerular activity and are involved in odor investigation and odor-dependent learning. Little is known about how metabolic peptides and neuromodulators control specific neuronal subpopulations. There is a microcircuit between mitral cells and interneurons that is comprised of deep-short-axon cells in the granule cell layer. These local interneurons express pre-pro-glucagon (PPG) and regulate mitral cell activity, but it is unknown what initiates this type of regulation. Our study investigates the means by which PPG neurons could be recruited by classical neuromodulators and hormonal peptides. We found that two gut hormones, leptin and cholecystokinin, differentially modulate PPG neurons. Cholecystokinin reduces or increases spike frequency, suggesting a heterogeneous signaling pathway in different PPG neurons, while leptin does not affect PPG neuronal firing. Acetylcholine modulates PPG neurons by increasing the spike frequency and eliciting bursts of action potentials, while serotonin does not affect PPG neuron excitability. The mechanisms behind this diverse modulation are not known, however, these results clearly indicate a complex interplay of metabolic signaling molecules and neuromodulators that may fine-tune neuronal microcircuits.
Collapse
Affiliation(s)
- Zhenbo Huang
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Roberta Tatti
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Ashley M Loeven
- Cell and Molecular Biology Program, Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Daniel R Landi Conde
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Debra Ann Fadool
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States.,Cell and Molecular Biology Program, Department of Biological Science, Florida State University, Tallahassee, FL, United States.,Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
17
|
Dwivedi D, Bhalla US. Physiology and Therapeutic Potential of SK, H, and M Medium AfterHyperPolarization Ion Channels. Front Mol Neurosci 2021; 14:658435. [PMID: 34149352 PMCID: PMC8209339 DOI: 10.3389/fnmol.2021.658435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022] Open
Abstract
SK, HCN, and M channels are medium afterhyperpolarization (mAHP)-mediating ion channels. The three channels co-express in various brain regions, and their collective action strongly influences cellular excitability. However, significant diversity exists in the expression of channel isoforms in distinct brain regions and various subcellular compartments, which contributes to an equally diverse set of specific neuronal functions. The current review emphasizes the collective behavior of the three classes of mAHP channels and discusses how these channels function together although they play specialized roles. We discuss the biophysical properties of these channels, signaling pathways that influence the activity of the three mAHP channels, various chemical modulators that alter channel activity and their therapeutic potential in treating various neurological anomalies. Additionally, we discuss the role of mAHP channels in the pathophysiology of various neurological diseases and how their modulation can alleviate some of the symptoms.
Collapse
Affiliation(s)
- Deepanjali Dwivedi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, India.,Department of Neurobiology, Harvard Medical School, Boston, MA, United States.,Stanley Center at the Broad, Cambridge, MA, United States
| | - Upinder S Bhalla
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, India
| |
Collapse
|
18
|
Hewitt LT, Ordemann GJ, Brager DH. High and low expression of the hyperpolarization activated current (I h ) in mouse CA1 stratum oriens interneurons. Physiol Rep 2021; 9:e14848. [PMID: 33991454 PMCID: PMC8123538 DOI: 10.14814/phy2.14848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 11/24/2022] Open
Abstract
Inhibitory interneurons are among the most diverse cell types in the brain; the hippocampus itself contains more than 28 different inhibitory interneurons. Interneurons are typically classified using a combination of physiological, morphological, and biochemical observations. One broad separator is action potential firing: low threshold, regular spiking versus higher threshold, fast spiking. We found that spike frequency adaptation (SFA) was highly heterogeneous in low threshold interneurons in the mouse stratum oriens region of area CA1. Analysis with a k-means clustering algorithm parsed the data set into two distinct clusters based on a constellation of physiological parameters and reliably sorted strong and weak SFA cells into different groups. Interneurons with strong SFA fired fewer action potentials across a range of current inputs and had lower input resistance compared to cells with weak SFA. Strong SFA cells also had higher sag and rebound in response to hyperpolarizing current injections. Morphological analysis shows no difference between the two cell types and the cell types did not segregate along the dorsal-ventral axis of the hippocampus. Strong and weak SFA cells were labeled in hippocampal slices from SST:cre Ai14 mice suggesting both cells express somatostatin. Voltage-clamp recordings showed hyperpolarization activated current Ih was significantly larger in strong SFA cells compared to weak SFA cells. We suggest that the strong SFA cell represents a previously uncharacterized type of CA1 stratum oriens interneuron. Due to the combination of physiological parameters of these cells, we will refer to them as Low Threshold High Ih (LTH) cells.
Collapse
Affiliation(s)
- Lauren T. Hewitt
- Department of NeuroscienceInstitute for NeuroscienceUniversity of Texas at AustinAustinTXUSA
| | - Gregory J. Ordemann
- Department of NeuroscienceInstitute for NeuroscienceUniversity of Texas at AustinAustinTXUSA
| | - Darrin H. Brager
- Department of NeuroscienceInstitute for NeuroscienceUniversity of Texas at AustinAustinTXUSA
| |
Collapse
|
19
|
Borgini M, Mondal P, Liu R, Wipf P. Chemical modulation of Kv7 potassium channels. RSC Med Chem 2021; 12:483-537. [PMID: 34046626 PMCID: PMC8128042 DOI: 10.1039/d0md00328j] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/01/2020] [Indexed: 01/10/2023] Open
Abstract
The rising interest in Kv7 modulators originates from their ability to evoke fundamental electrophysiological perturbations in a tissue-specific manner. A large number of therapeutic applications are, in part, based on the clinical experience with two broad-spectrum Kv7 agonists, flupirtine and retigabine. Since precise molecular structures of human Kv7 channel subtypes in closed and open states have only very recently started to emerge, computational studies have traditionally been used to analyze binding modes and direct the development of more potent and selective Kv7 modulators with improved safety profiles. Herein, the synthetic and medicinal chemistry of small molecule modulators and the representative biological properties are summarized. Furthermore, new therapeutic applications supported by in vitro and in vivo assay data are suggested.
Collapse
Affiliation(s)
- Matteo Borgini
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - Pravat Mondal
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - Ruiting Liu
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| |
Collapse
|
20
|
Han Y, Lyman KA, Foote KM, Chetkovich DM. The structure and function of TRIP8b, an auxiliary subunit of hyperpolarization-activated cyclic-nucleotide gated channels. Channels (Austin) 2020; 14:110-122. [PMID: 32189562 PMCID: PMC7153792 DOI: 10.1080/19336950.2020.1740501] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 02/08/2023] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are expressed throughout the mammalian central nervous system (CNS). These channels have been implicated in a wide range of diseases, including Major Depressive Disorder and multiple subtypes of epilepsy. The diversity of functions that HCN channels perform is in part attributable to differences in their subcellular localization. To facilitate a broad range of subcellular distributions, HCN channels are bound by auxiliary subunits that regulate surface trafficking and channel function. One of the best studied auxiliary subunits is tetratricopeptide-repeat containing, Rab8b-interacting protein (TRIP8b). TRIP8b is an extensively alternatively spliced protein whose only known function is to regulate HCN channels. TRIP8b binds to HCN pore-forming subunits at multiple interaction sites that differentially regulate HCN channel function and subcellular distribution. In this review, we summarize what is currently known about the structure and function of TRIP8b isoforms with an emphasis on the role of this auxiliary subunit in health and disease.
Collapse
Affiliation(s)
- Ye Han
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kyle A. Lyman
- Department of Neurology, Stanford University, Palo Alto, CA, USA
| | - Kendall M. Foote
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Dane M. Chetkovich
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
21
|
Del Pino I, Tocco C, Magrinelli E, Marcantoni A, Ferraguto C, Tomagra G, Bertacchi M, Alfano C, Leinekugel X, Frick A, Studer M. COUP-TFI/Nr2f1 Orchestrates Intrinsic Neuronal Activity during Development of the Somatosensory Cortex. Cereb Cortex 2020; 30:5667-5685. [DOI: 10.1093/cercor/bhaa137] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/17/2020] [Accepted: 04/29/2020] [Indexed: 01/19/2023] Open
Abstract
Abstract
The formation of functional cortical maps in the cerebral cortex results from a timely regulated interaction between intrinsic genetic mechanisms and electrical activity. To understand how transcriptional regulation influences network activity and neuronal excitability within the neocortex, we used mice deficient for Nr2f1 (also known as COUP-TFI), a key determinant of primary somatosensory (S1) area specification during development. We found that the cortical loss of Nr2f1 impacts on spontaneous network activity and synchronization of S1 cortex at perinatal stages. In addition, we observed alterations in the intrinsic excitability and morphological features of layer V pyramidal neurons. Accordingly, we identified distinct voltage-gated ion channels regulated by Nr2f1 that might directly influence intrinsic bioelectrical properties during critical time windows of S1 cortex specification. Altogether, our data suggest a tight link between Nr2f1 and neuronal excitability in the developmental sequence that ultimately sculpts the emergence of cortical network activity within the immature neocortex.
Collapse
Affiliation(s)
- Isabel Del Pino
- Université de Bordeaux, Inserm U1215, Neurocentre Magendie, 33077 Bordeaux, France
- Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Chiara Tocco
- Université Côte d’Azur, CNRS, Inserm, iBV, 06108 Nice, France
| | - Elia Magrinelli
- Université Côte d’Azur, CNRS, Inserm, iBV, 06108 Nice, France
- Département des Neurosciences Fondamentales, Université de Lausanne, CH-1005 Lausanne, Switzerland
| | - Andrea Marcantoni
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, 10125 Torino, Italy
| | | | - Giulia Tomagra
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, 10125 Torino, Italy
| | | | | | - Xavier Leinekugel
- Université de Bordeaux, Inserm U1215, Neurocentre Magendie, 33077 Bordeaux, France
| | - Andreas Frick
- Université de Bordeaux, Inserm U1215, Neurocentre Magendie, 33077 Bordeaux, France
| | - Michèle Studer
- Université Côte d’Azur, CNRS, Inserm, iBV, 06108 Nice, France
| |
Collapse
|
22
|
Lee SY, Vuong TA, So HK, Kim HJ, Kim YB, Kang JS, Kwon I, Cho H. PRMT7 deficiency causes dysregulation of the HCN channels in the CA1 pyramidal cells and impairment of social behaviors. Exp Mol Med 2020; 52:604-614. [PMID: 32269286 PMCID: PMC7210990 DOI: 10.1038/s12276-020-0417-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/14/2020] [Accepted: 03/05/2020] [Indexed: 12/21/2022] Open
Abstract
HCN channels regulate excitability and rhythmicity in the hippocampal CA1 pyramidal cells. Perturbation in the HCN channel current (Ih) is associated with neuropsychiatric disorders, such as autism spectrum disorders. Recently, protein arginine methyltransferase 7 (PRMT7) was shown to be highly expressed in the hippocampus, including the CA1 region. However, the physiological function of PRMT7 in the CA1 neurons and the relationship to psychiatric disorders are unclear. Here we showed that PRMT7 knockout (KO) mice exhibit hyperactivity and deficits in social interaction. The firing frequency of the CA1 neurons in the PRMT7 KO mice was significantly higher than that in the wild-type (WT) mice. Compared with the WT CA1 neurons, the PRMT7 KO CA1 neurons showed a more hyperpolarized resting potential and a higher input resistance, which were occluded by the Ih-current inhibitor ZD7288; these findings were consistent with the decreased Ih and suggested the contribution of Ih-channel dysfunction to the PRMT7 KO phenotypes. The HCN1 protein level was decreased in the CA1 region of the PRMT7 KO mice in conjunction with a decrease in the expression of Shank3, which encodes a core scaffolding protein for HCN channel proteins. A brief application of the PRMT7 inhibitor DS437 did not reproduce the phenotype of the PRMT7 KO neurons, further indicating that PRMT7 regulates Ih by controlling the channel number rather than the open probability. Moreover, shRNA-mediated PRMT7 suppression reduced both the mRNA and protein levels of SHANK3, implying that PRMT7 deficiency might be responsible for the decrease in the HCN protein levels by altering Shank3 expression. These findings reveal a key role for PRMT7 in the regulation of HCN channel density in the CA1 pyramidal cells that may be amenable to pharmacological intervention for neuropsychiatric disorders. Disrupted expression of an ion channel that helps stabilize brain cell activity contributes to behavioral symptoms in mice resembling those seen in autism spectrum disorders (ASDs). Nerve cell firing depends on the right balance of ions inside and outside cells, and a channel protein called HCN helps establish ionic conditions that prevent excessive activity. Researchers led by Hana Cho and Ilmin Kwon of the Sungkyunkwan University School of Medicine, Suwon, South Korea have demonstrated that mice lacking another protein called PRMT7 exhibit reduced numbers of HCN channels in brain structures known to be affected in animal models of ASDs. These mice exhibit hyperactivity and social anxiety, presumably as a consequence of poor regulation of nerve cell firing. The authors propose that this PRMT7-HCN pathway may offer a fruitful target for the development of neuropsychiatric therapies.
Collapse
Affiliation(s)
- Seul-Yi Lee
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Tuan Anh Vuong
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Hyun-Kyung So
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Hyun-Ji Kim
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Yoo Bin Kim
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Jong-Sun Kang
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Ilmin Kwon
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea.
| | - Hana Cho
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea. .,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea.
| |
Collapse
|
23
|
Lee CH, Park JH, Won MH. Protein expression changes of HCN1 and HCN2 in hippocampal subregions of gerbils during the normal aging process. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:1308-1313. [PMID: 32128096 PMCID: PMC7038419 DOI: 10.22038/ijbms.2019.35760.8520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 05/14/2019] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels play essential roles in various hippocampal functions, including regulation of long-term potentiation, synaptic plasticity, and hippocampal-dependent cognitive process. The objective of this study was to investigate age-related changes in HCN1 and HCN2 protein expressions in gerbil hippocampus at various ages. MATERIALS AND METHODS In this study, the protein expressions of HCN1 and HCN2 were compared in the hippocampus at the ages of 1, 3, 12, and 24 months using Western blot analysis and immunohistochemistry. RESULTS Immunoreactivity of both HCN1 and HCN2 was shown primarily in cells of the pyramidal cell layer in the hippocampus proper and in cells of the granule cell layer in the dentate gyrus. HCN1 and HCN2 protein expression levels and immunoreactivity were significantly increased at three months (3 M) of age compared with those at 1 M of age. After that, both HCN1 and HCN2 expression levels in the hippocampus were gradually decreased with age. CONCLUSION Our results show that the normal aging process affects the expression levels of HCN1 and HCN2 in hippocampal cells in gerbils. There are marked reductions in HCN1 and HCN2 expressions in the aged hippocampus compared to the young hippocampus. Such reductions might be related to aging in the hippocampus.
Collapse
Affiliation(s)
- Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, Chungnam 31116, Republic of Korea
| | - Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju, Gyeongbuk 38066, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| |
Collapse
|
24
|
Park JH, Kim DW, Lee TK, Park CW, Park YE, Ahn JH, Lee HA, Won MH, Lee CH. Improved HCN channels in pyramidal neurons and their new expression levels in pericytes and astrocytes in the gerbil hippocampal CA1 subfield following transient ischemia. Int J Mol Med 2019; 44:1801-1810. [PMID: 31573045 PMCID: PMC6777693 DOI: 10.3892/ijmm.2019.4353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/04/2019] [Indexed: 11/30/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels have been known to participate in the regulation of neuronal excitability, synaptic transmission and long-term potentiation in the hippocampus. The present study investigated transient ischemia-induced changes of HCN1 and HCN2 expressions in the Cornu Ammonis 1 (CA1) subfield of the hippocampus in gerbils subjected to 5 min transient global cerebral ischemia (tgCI). Neuronal death was exhibited in pyramidal neurons of the striatum pyramidale in the CA1 subfield 4 days after tgCI. HCN1 and HCN2 immunoreactivities were demonstrated in intact CA1 pyramidal neurons, and were transiently and markedly increased in the CA pyramidal neurons at 6 h after ischemia. Thereafter, they gradually decreased in a time-dependent manner. A total of 4 days after ischemia, HCN1 and HCN2 immunoreactivities were barely detected in the CA1 pyramidal neurons; however, HCN1 and HCN2 were began to be expressed in pericytes and astrocytes at 4 days after ischemia. The results indicated that HCN1 and HCN2 expression levels were apparently changed in the gerbil hippocampal CA1 subfield following tgCI and suggested that ischemia-induced alterations in HCN1 and HCN2 expression levels may be closely associated with the death of CA1 pyramidal neurons following 5 min of tgCI.
Collapse
Affiliation(s)
- Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju, Gyeongbuk 38066, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung‑Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Cheol Woo Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Young Eun Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Hyang-Ah Lee
- Department of Obstetrics and Gynecology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, Chungcheongnam 31116, Republic of Korea
| |
Collapse
|
25
|
Hilscher MM, Nogueira I, Mikulovic S, Kullander K, Leão RN, Leão KE. Chrna2‐OLM interneurons display different membrane properties and h‐current magnitude depending on dorsoventral location. Hippocampus 2019; 29:1224-1237. [DOI: 10.1002/hipo.23134] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 06/03/2019] [Accepted: 06/08/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Markus M. Hilscher
- Brain InstituteFederal University of Rio Grande do Norte Natal Rio Grande do Norte Brazil
- Institute for Analysis and Scientific ComputingVienna University of Technology Vienna Austria
- Unit of Developmental Genetics, Department of NeuroscienceUppsala University Uppsala Sweden
| | - Ingrid Nogueira
- Brain InstituteFederal University of Rio Grande do Norte Natal Rio Grande do Norte Brazil
| | - Sanja Mikulovic
- Unit of Developmental Genetics, Department of NeuroscienceUppsala University Uppsala Sweden
| | - Klas Kullander
- Unit of Developmental Genetics, Department of NeuroscienceUppsala University Uppsala Sweden
| | - Richardson N. Leão
- Brain InstituteFederal University of Rio Grande do Norte Natal Rio Grande do Norte Brazil
- Unit of Developmental Genetics, Department of NeuroscienceUppsala University Uppsala Sweden
| | - Katarina E. Leão
- Brain InstituteFederal University of Rio Grande do Norte Natal Rio Grande do Norte Brazil
| |
Collapse
|
26
|
Abstract
Over the past 15 years, postmortem studies of the corticolimbic system in subjects with bipolar disorder (BPD) have demonstrated a variety of abnormalities affecting the gamma aminobutyric acid (GABA)ergic system. Although some of the changes are similar to those seen in individuals with schizophrenia, there are pronounced differences in the regulation of complex networks of genes involved in the expression of GAD67, a key marker for functionally differentiated GABAergic interneurons. Overall, these changes vary not only according to diagnosis, but also subregion and layer, suggesting that the activity of GABA cells in complex neural circuits are differentially affected by the unique extrinsic and intrinsic inputs that they receive at different points along a circuit like the trisynaptic pathway. Our ability to understand the functional implications in terms of complex molecular changes will ultimately influence our ability to develop novel treatments for BPD.
Collapse
|
27
|
Holst GL, Stoy W, Yang B, Kolb I, Kodandaramaiah SB, Li L, Knoblich U, Zeng H, Haider B, Boyden ES, Forest CR. Autonomous patch-clamp robot for functional characterization of neurons in vivo: development and application to mouse visual cortex. J Neurophysiol 2019; 121:2341-2357. [PMID: 30969898 DOI: 10.1152/jn.00738.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Patch clamping is the gold standard measurement technique for cell-type characterization in vivo, but it has low throughput, is difficult to scale, and requires highly skilled operation. We developed an autonomous robot that can acquire multiple consecutive patch-clamp recordings in vivo. In practice, 40 pipettes loaded into a carousel are sequentially filled and inserted into the brain, localized to a cell, used for patch clamping, and disposed. Automated visual stimulation and electrophysiology software enables functional cell-type classification of whole cell-patched cells, as we show for 37 cells in the anesthetized mouse in visual cortex (V1) layer 5. We achieved 9% yield, with 5.3 min per attempt over hundreds of trials. The highly variable and low-yield nature of in vivo patch-clamp recordings will benefit from such a standardized, automated, quantitative approach, allowing development of optimal algorithms and enabling scaling required for large-scale studies and integration with complementary techniques. NEW & NOTEWORTHY In vivo patch-clamp is the gold standard for intracellular recordings, but it is a very manual and highly skilled technique. The robot in this work demonstrates the most automated in vivo patch-clamp experiment to date, by enabling production of multiple, serial intracellular recordings without human intervention. The robot automates pipette filling, wire threading, pipette positioning, neuron hunting, break-in, delivering sensory stimulus, and recording quality control, enabling in vivo cell-type characterization.
Collapse
Affiliation(s)
- Gregory L Holst
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology , Atlanta, Georgia
| | - William Stoy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology , Atlanta, Georgia
| | - Bo Yang
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology , Atlanta, Georgia
| | - Ilya Kolb
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology , Atlanta, Georgia
| | | | - Lu Li
- Allen Institute for Brain Science , Seattle, Washington
| | - Ulf Knoblich
- Allen Institute for Brain Science , Seattle, Washington
| | - Hongkui Zeng
- Allen Institute for Brain Science , Seattle, Washington
| | - Bilal Haider
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology , Atlanta, Georgia
| | - Edward S Boyden
- Media Arts and Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts.,McGovern Institute, Massachusetts Institute of Technology , Cambridge, Massachusetts.,Koch Institute, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Craig R Forest
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology , Atlanta, Georgia
| |
Collapse
|
28
|
Hajisoltani R, Karimi SA, Rahdar M, Davoudi S, Borjkhani M, Hosseinmardi N, Behzadi G, Janahmadi M. Hyperexcitability of hippocampal CA1 pyramidal neurons in male offspring of a rat model of autism spectrum disorder (ASD) induced by prenatal exposure to valproic acid: A possible involvement of Ih channel current. Brain Res 2019; 1708:188-199. [DOI: 10.1016/j.brainres.2018.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/30/2018] [Accepted: 12/07/2018] [Indexed: 11/25/2022]
|
29
|
Campostrini G, DiFrancesco JC, Castellotti B, Milanesi R, Gnecchi-Ruscone T, Bonzanni M, Bucchi A, Baruscotti M, Ferrarese C, Franceschetti S, Canafoglia L, Ragona F, Freri E, Labate A, Gambardella A, Costa C, Gellera C, Granata T, Barbuti A, DiFrancesco D. A Loss-of-Function HCN4 Mutation Associated With Familial Benign Myoclonic Epilepsy in Infancy Causes Increased Neuronal Excitability. Front Mol Neurosci 2018; 11:269. [PMID: 30127718 PMCID: PMC6089338 DOI: 10.3389/fnmol.2018.00269] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/16/2018] [Indexed: 01/03/2023] Open
Abstract
HCN channels are highly expressed and functionally relevant in neurons and increasing evidence demonstrates their involvement in the etiology of human epilepsies. Among HCN isoforms, HCN4 is important in cardiac tissue, where it underlies pacemaker activity. Despite being expressed also in deep structures of the brain, mutations of this channel functionally shown to be associated with epilepsy have not been reported yet. Using Next Generation Sequencing for the screening of patients with idiopathic epilepsy, we identified the p.Arg550Cys (c.1648C>T) heterozygous mutation on HCN4 in two brothers affected by benign myoclonic epilepsy of infancy. Functional characterization in heterologous expression system and in neurons showed that the mutation determines a loss of function of HCN4 contribution to activity and an increase of neuronal discharge, potentially predisposing to epilepsy. Expressed in cardiomyocytes, mutant channels activate at slightly more negative voltages than wild-type (WT), in accordance with borderline bradycardia. While HCN4 variants have been frequently associated with cardiac arrhythmias, these data represent the first experimental evidence that functional alteration of HCN4 can also be involved in human epilepsy through a loss-of-function effect and associated increased neuronal excitability. Since HCN4 appears to be highly expressed in deep brain structures only early during development, our data provide a potential explanation for a link between dysfunctional HCN4 and infantile epilepsy. These findings suggest that it may be useful to include HCN4 screening to extend the knowledge of the genetic causes of infantile epilepsies, potentially paving the way for the identification of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Giulia Campostrini
- Molecular Physiology and Neurobiology, The PaceLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Jacopo C DiFrancesco
- Clinical Neurophysiology and Epilepsy Center, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Laboratory of Neurobiology, Department of Neurology, Milan Center for Neuroscience, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Barbara Castellotti
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Raffaella Milanesi
- Molecular Physiology and Neurobiology, The PaceLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | | | - Mattia Bonzanni
- Molecular Physiology and Neurobiology, The PaceLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Annalisa Bucchi
- Molecular Physiology and Neurobiology, The PaceLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Mirko Baruscotti
- Molecular Physiology and Neurobiology, The PaceLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Carlo Ferrarese
- Laboratory of Neurobiology, Department of Neurology, Milan Center for Neuroscience, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Silvana Franceschetti
- Clinical Neurophysiology and Epilepsy Center, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Laura Canafoglia
- Clinical Neurophysiology and Epilepsy Center, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesca Ragona
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elena Freri
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Angelo Labate
- Institute of Neurology, Università degli Studi Magna Græcia di Catanzaro, Catanzaro, Italy
| | - Antonio Gambardella
- Institute of Neurology, Università degli Studi Magna Græcia di Catanzaro, Catanzaro, Italy
| | - Cinzia Costa
- Neurology Unit, Ospedale S. Maria della Misericordia, Department of Medicine, University of Perugia, Perugia, Italy
| | - Cinzia Gellera
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Tiziana Granata
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Andrea Barbuti
- Molecular Physiology and Neurobiology, The PaceLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Dario DiFrancesco
- Molecular Physiology and Neurobiology, The PaceLab, Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
30
|
Store depletion-induced h-channel plasticity rescues a channelopathy linked to Alzheimer's disease. Neurobiol Learn Mem 2018; 154:141-157. [PMID: 29906573 DOI: 10.1016/j.nlm.2018.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/25/2018] [Accepted: 06/11/2018] [Indexed: 12/20/2022]
Abstract
Voltage-gated ion channels are critical for neuronal integration. Some of these channels, however, are misregulated in several neurological disorders, causing both gain- and loss-of-function channelopathies in neurons. Using several transgenic mouse models of Alzheimer's disease (AD), we find that sub-threshold voltage signals strongly influenced by hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels progressively deteriorate over chronological aging in hippocampal CA1 pyramidal neurons. The degraded signaling via HCN channels in the transgenic mice is accompanied by an age-related global loss of their non-uniform dendritic expression. Both the aberrant signaling via HCN channels and their mislocalization could be restored using a variety of pharmacological agents that target the endoplasmic reticulum (ER). Our rescue of the HCN channelopathy helps provide molecular details into the favorable outcomes of ER-targeting drugs on the pathogenesis and synaptic/cognitive deficits in AD mouse models, and implies that they might have beneficial effects on neurological disorders linked to HCN channelopathies.
Collapse
|
31
|
Cunha AOS, Ceballos CC, de Deus JL, Leão RM. Long-term high-intensity sound stimulation inhibits h current (I h ) in CA1 pyramidal neurons. Eur J Neurosci 2018; 47:1401-1413. [PMID: 29779233 DOI: 10.1111/ejn.13954] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/05/2018] [Accepted: 04/12/2018] [Indexed: 12/25/2022]
Abstract
Afferent neurotransmission to hippocampal pyramidal cells can lead to long-term changes to their intrinsic membrane properties and affect many ion currents. One of the most plastic neuronal currents is the hyperpolarization-activated cationic current (Ih ), which changes in CA1 pyramidal cells in response to many types of physiological and pathological processes, including auditory stimulation. Recently, we demonstrated that long-term potentiation (LTP) in rat hippocampal Schaffer-CA1 synapses is depressed by high-intensity sound stimulation. Here, we investigated whether a long-term high-intensity sound stimulation could affect intrinsic membrane properties of rat CA1 pyramidal neurons. Our results showed that Ih is depressed by long-term high-intensity sound exposure (1 min of 110 dB sound, applied two times per day for 10 days). This resulted in a decreased resting membrane potential, increased membrane input resistance and time constant, and decreased action potential threshold. In addition, CA1 pyramidal neurons from sound-exposed animals fired more action potentials than neurons from control animals; however, this effect was not caused by a decreased Ih . On the other hand, a single episode (1 min) of 110 dB sound stimulation which also inhibits hippocampal LTP did not affect Ih and firing in pyramidal neurons, suggesting that effects on Ih are long-term responses to high-intensity sound exposure. Our results show that prolonged exposure to high-intensity sound affects intrinsic membrane properties of hippocampal pyramidal neurons, mainly by decreasing the amplitude of Ih .
Collapse
Affiliation(s)
| | - Cesar Celis Ceballos
- Department of Physiology, FMRP, University of São Paulo, Ribeirão Preto, SP, Brazil.,Department of Physics, FFCLRP, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Junia Lara de Deus
- Department of Physiology, FMRP, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | |
Collapse
|
32
|
Hu W, Bean BP. Differential Control of Axonal and Somatic Resting Potential by Voltage-Dependent Conductances in Cortical Layer 5 Pyramidal Neurons. Neuron 2018. [PMID: 29526554 DOI: 10.1016/j.neuron.2018.02.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Voltage-dependent conductances not only drive action potentials but also help regulate neuronal resting potential. We found differential regulation of resting potential in the proximal axon of layer 5 pyramidal neurons compared to the soma. Axonal resting potential was more negative than the soma, reflecting differential control by multiple voltage-dependent channels, including sodium channels, Cav3 channels, Kv7 channels, and HCN channels. Kv7 current is highly localized to the axon and HCN current to the soma and dendrite. Because of impedance asymmetry between the soma and axon, axonal Kv7 current has little effect on somatic resting potential, while somatodendritic HCN current strongly influences the proximal axon. In fact, depolarizing somatodendritic HCN current is critical for resting activation of all the other voltage-dependent conductances, including Kv7 in the axon. These experiments reveal complex interactions among voltage-dependent conductances to control region-specific resting potential, with somatodendritic HCN channels playing a critical enabling role.
Collapse
Affiliation(s)
- Wenqin Hu
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Bruce P Bean
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
33
|
Bohannon AS, Hablitz JJ. Developmental Changes in HCN Channel Modulation of Neocortical Layer 1 Interneurons. Front Cell Neurosci 2018; 12:20. [PMID: 29440994 PMCID: PMC5797556 DOI: 10.3389/fncel.2018.00020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 01/15/2018] [Indexed: 01/31/2023] Open
Abstract
Layer 1 (L1) interneurons (INs) play a key role in modulating the integration of inputs to pyramidal neurons (PNs) and controlling cortical network activity. Hyperpolarization-activated, cyclic nucleotide-gated, non-specific cation (HCN) channels are known to alter the intrinsic and synaptic excitability of principal components (PCs) as well as select populations of GABAergic INs. However, the developmental profile and functional role of HCN channels in diverse L1 IN populations is not completely understood. In the present study, we used electrophysiological characterization, in conjunction with unbiased hierarchical cluster analysis, to examine developmental modulation of L1 INs by HCN channels in the rat medial agranular cortex (AGm). We identified three physiologically discrete IN populations which were classified as regular spiking (RS), burst accommodating (BA) and non-accommodating (NA). A distinct developmental pattern of excitability modulation by HCN channels was observed for each group. RS and NA cells displayed distinct morphologies with modulation of EPSPs increasing in RS cells and decreasing in NA cells across development. The results indicate a possible role of HCN channels in the formation and maintenance of cortical circuits through alteration of the excitability of distinct AGm L1 INs.
Collapse
Affiliation(s)
- Andrew S Bohannon
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - John J Hablitz
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
34
|
Transcriptomic correlates of neuron electrophysiological diversity. PLoS Comput Biol 2017; 13:e1005814. [PMID: 29069078 PMCID: PMC5673240 DOI: 10.1371/journal.pcbi.1005814] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/06/2017] [Accepted: 10/09/2017] [Indexed: 12/19/2022] Open
Abstract
How neuronal diversity emerges from complex patterns of gene expression remains poorly understood. Here we present an approach to understand electrophysiological diversity through gene expression by integrating pooled- and single-cell transcriptomics with intracellular electrophysiology. Using neuroinformatics methods, we compiled a brain-wide dataset of 34 neuron types with paired gene expression and intrinsic electrophysiological features from publically accessible sources, the largest such collection to date. We identified 420 genes whose expression levels significantly correlated with variability in one or more of 11 physiological parameters. We next trained statistical models to infer cellular features from multivariate gene expression patterns. Such models were predictive of gene-electrophysiological relationships in an independent collection of 12 visual cortex cell types from the Allen Institute, suggesting that these correlations might reflect general principles relating expression patterns to phenotypic diversity across very different cell types. Many associations reported here have the potential to provide new insights into how neurons generate functional diversity, and correlations of ion channel genes like Gabrd and Scn1a (Nav1.1) with resting potential and spiking frequency are consistent with known causal mechanisms. Our work highlights the promise and inherent challenges in using cell type-specific transcriptomics to understand the mechanistic origins of neuronal diversity.
Collapse
|
35
|
Oginsky MF, Cui N, Zhong W, Johnson CM, Jiang C. Hyperexcitability of Mesencephalic Trigeminal Neurons and Reorganization of Ion Channel Expression in a Rett Syndrome Model. J Cell Physiol 2016; 232:1151-1164. [PMID: 27670841 DOI: 10.1002/jcp.25589] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 09/06/2016] [Indexed: 12/30/2022]
Abstract
People with Rett syndrome (RTT) have defects in motor function also seen in Mecp2-null mice. Motor function depends on not only central motor commands but also sensory feedback that is vulnerable to changes in excitability of propriosensory neurons. Here we report evidence for hyperexcitability of mesencephalic trigeminal (Me5) neurons in Mecp2-null mice and a novel cellular mechanism for lowering its impact. In in vitro brain slices, the Me5 neurons in both Mecp2-/Y male and symptomatic Mecp2+/- female mice were overly excitable showing increased firing activity in comparison to their wild-type (WT) male and asymptomatic counterparts. In Mecp2-/Y males, Me5 neurons showed a reduced firing threshold. Consistently, the steady-state activation of voltage-gated Na+ currents (INa ) displayed a hyperpolarizing shift in the Mecp2-null neurons with no change in the INa density. This seems to be due to NaV1.1, SCN1B and SCN4B overexpression and NaV1.2 and SCN3B under-expression. In contrast to the hyperexcitability, the sag potential and postinhibitory rebound (PIR) were reduced in Mecp2-null mice. In voltage-clamp, the IH density was deficient by ∼33%, and the steady-state half-activation had a depolarizing shift of ∼10 mV in the Mecp2-null mice. Quantitative PCR analysis indicated that HCN2 was decreased, HCN1 was upregulated with no change in HCN4 in Mecp2-/Y mice compared to WT. Lastly, blocking IH reduced the firing rate much more in WT than in Mecp2-null neurons. These data suggest that the Mecp2 defect causes an increase in Me5 neuronal excitability likely attributable to alterations in INa , meanwhile IH is reduced likely altering neuronal excitability as well. J. Cell. Physiol. 232: 1151-1164, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Max F Oginsky
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Ningren Cui
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - Weiwei Zhong
- Department of Biology, Georgia State University, Atlanta, Georgia
| | | | - Chun Jiang
- Department of Biology, Georgia State University, Atlanta, Georgia
| |
Collapse
|
36
|
Revisiting the Lamotrigine-Mediated Effect on Hippocampal GABAergic Transmission. Int J Mol Sci 2016; 17:ijms17071191. [PMID: 27455251 PMCID: PMC4964560 DOI: 10.3390/ijms17071191] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 07/19/2016] [Indexed: 01/07/2023] Open
Abstract
Lamotrigine (LTG) is generally considered as a voltage-gated sodium (Nav) channel blocker. However, recent studies suggest that LTG can also serve as a hyperpolarization-activated cyclic nucleotide-gated (HCN) channel enhancer and can increase the excitability of GABAergic interneurons (INs). Perisomatic inhibitory INs, predominantly fast-spiking basket cells (BCs), powerfully inhibit granule cells (GCs) in the hippocampal dentate gyrus. Notably, BCs express abundant Nav channels and HCN channels, both of which are able to support sustained action potential generation. Using whole-cell recording in rat hippocampal slices, we investigated the net LTG effect on BC output. We showed that bath application of LTG significantly decreased the amplitude of evoked compound inhibitory postsynaptic currents (IPSCs) in GCs. In contrast, simultaneous paired recordings from BCs to GCs showed that LTG had no effect on both the amplitude and the paired-pulse ratio of the unitary IPSCs, suggesting that LTG did not affect GABA release, though it suppressed cell excitability. In line with this, LTG decreased spontaneous IPSC (sIPSC) frequency, but not miniature IPSC frequency. When re-examining the LTG effect on GABAergic transmission in the cornus ammonis region 1 (CA1) area, we found that LTG markedly inhibits both the excitability of dendrite-targeting INs in the stratum oriens and the concurrent sIPSCs recorded on their targeting pyramidal cells (PCs) without significant hyperpolarization-activated current (Ih) enhancement. In summary, LTG has no effect on augmenting Ih in GABAergic INs and does not promote GABAergic inhibitory output. The antiepileptic effect of LTG is likely through Nav channel inhibition and the suppression of global neuronal network activity.
Collapse
|
37
|
Fan J, Stemkowski PL, Gandini MA, Black SA, Zhang Z, Souza IA, Chen L, Zamponi GW. Reduced Hyperpolarization-Activated Current Contributes to Enhanced Intrinsic Excitability in Cultured Hippocampal Neurons from PrP(-/-) Mice. Front Cell Neurosci 2016; 10:74. [PMID: 27047338 PMCID: PMC4805597 DOI: 10.3389/fncel.2016.00074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/10/2016] [Indexed: 01/03/2023] Open
Abstract
Genetic ablation of cellular prion protein (PrPC) has been linked to increased neuronal excitability and synaptic activity in the hippocampus. We have previously shown that synaptic activity in hippocampi of PrP-null mice is increased due to enhanced N-methyl-D-aspartate receptor (NMDAR) function. Here, we focused on the effect of PRNP gene knock-out (KO) on intrinsic neuronal excitability, and in particular, the underlying ionic mechanism in hippocampal neurons cultured from P0 mouse pups. We found that the absence of PrPC profoundly affected the firing properties of cultured hippocampal neurons in the presence of synaptic blockers. The membrane impedance was greater in PrP-null neurons, and this difference was abolished by the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blocker ZD7288 (100 μM). HCN channel activity appeared to be functionally regulated by PrPC. The amplitude of voltage sag, a characteristic of activating HCN channel current (Ih), was decreased in null mice. Moreover, Ih peak current was reduced, along with a hyperpolarizing shift in activation gating and slower kinetics. However, neither HCN1 nor HCN2 formed a biochemical complex with PrPC. These results suggest that the absence of PrP downregulates the activity of HCN channels through activation of a cell signaling pathway rather than through direct interactions. This in turn contributes to an increase in membrane impedance to potentiate neuronal excitability.
Collapse
Affiliation(s)
- Jing Fan
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary Calgary, AB, Canada
| | - Patrick L Stemkowski
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary Calgary, AB, Canada
| | - Maria A Gandini
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary Calgary, AB, Canada
| | - Stefanie A Black
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary Calgary, AB, Canada
| | - Zizhen Zhang
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary Calgary, AB, Canada
| | - Ivana A Souza
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary Calgary, AB, Canada
| | - Lina Chen
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary Calgary, AB, Canada
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary Calgary, AB, Canada
| |
Collapse
|
38
|
Brennan GP, Baram TZ, Poolos NP. Hyperpolarization-Activated Cyclic Nucleotide-Gated (HCN) Channels in Epilepsy. Cold Spring Harb Perspect Med 2016; 6:a022384. [PMID: 26931806 DOI: 10.1101/cshperspect.a022384] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Epilepsy is a common brain disorder characterized by the occurrence of spontaneous seizures. These bursts of synchronous firing arise from abnormalities of neuronal networks. Excitability of individual neurons and neuronal networks is largely governed by ion channels and, indeed, abnormalities of a number of ion channels resulting from mutations or aberrant expression and trafficking underlie several types of epilepsy. Here, we focus on the hyperpolarization-activated cyclic nucleotide-gated ion (HCN) channels that conduct Ih current. This conductance plays complex and diverse roles in the regulation of neuronal and network excitability. We describe the normal function of HCN channels and discuss how aberrant expression, assembly, trafficking, and posttranslational modifications contribute to experimental and human epilepsy.
Collapse
Affiliation(s)
- Gary P Brennan
- Department of Pediatrics, University of California-Irvine, Irvine, California 92697-4475
| | - Tallie Z Baram
- Department of Pediatrics, University of California-Irvine, Irvine, California 92697-4475 Departments of Anatomy/Neurobiology and Neurology, University of California-Irvine, Irvine, California 92697-4475
| | - Nicholas P Poolos
- Department of Neurology and Regional Epilepsy Center, University of Washington, Seattle, Washington 98104
| |
Collapse
|
39
|
Zhu L, Selverston AI, Ayers J. Role of Ih in differentiating the dynamics of the gastric and pyloric neurons in the stomatogastric ganglion of the lobster, Homarus americanus. J Neurophysiol 2016; 115:2434-45. [PMID: 26912595 DOI: 10.1152/jn.00737.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 02/18/2016] [Indexed: 11/22/2022] Open
Abstract
The hyperpolarization-activated inward cationic current (Ih) is known to regulate the rhythmicity, excitability, and synaptic transmission in heart cells and many types of neurons across a variety of species, including some pyloric and gastric mill neurons in the stomatogastric ganglion (STG) in Cancer borealis and Panulirus interruptus However, little is known about the role of Ih in regulating the gastric mill dynamics and its contribution to the dynamical bifurcation of the gastric mill and pyloric networks. We investigated the role of Ih in the rhythmic activity and cellular excitability of both the gastric mill neurons (medial gastric, gastric mill) and pyloric neurons (pyloric dilator, lateral pyloric) in Homarus americanus Through testing the burst period between 5 and 50 mM CsCl, and elimination of postinhibitory rebound and voltage sag, we found that 30 mM CsCl can sufficiently block Ih in both the pyloric and gastric mill neurons. Our results show that Ih maintains the excitability of both the pyloric and gastric mill neurons. However, Ih regulates slow oscillations of the pyloric and gastric mill neurons differently. Specifically, blocking Ih diminishes the difference between the pyloric and gastric mill burst periods by increasing the pyloric burst period and decreasing the gastric mill burst period. Moreover, the phase-plane analysis shows that blocking Ih causes the trajectory of slow oscillations of the gastric mill neurons to change toward the pyloric sinusoidal-like trajectories. In addition to regulating the pyloric rhythm, we found that Ih is also essential for the gastric mill rhythms and differentially regulates these two dynamics.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Biology, Northeastern University, Boston, Massachusetts; and
| | - Allen I Selverston
- Department of Marine and Environmental Sciences, Marine Science Center, Northeastern University, Nahant, Massachusetts
| | - Joseph Ayers
- Department of Biology, Northeastern University, Boston, Massachusetts; and Department of Marine and Environmental Sciences, Marine Science Center, Northeastern University, Nahant, Massachusetts
| |
Collapse
|
40
|
Fluoxetine ameliorates cognitive impairments induced by chronic cerebral hypoperfusion via down-regulation of HCN2 surface expression in the hippocampal CA1 area in rats. Pharmacol Biochem Behav 2016; 140:1-7. [DOI: 10.1016/j.pbb.2015.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 12/29/2022]
|
41
|
Upregulation of Ih expressed in IB4-negative Aδ nociceptive DRG neurons contributes to mechanical hypersensitivity associated with cervical radiculopathic pain. Sci Rep 2015; 5:16713. [PMID: 26577374 PMCID: PMC4649360 DOI: 10.1038/srep16713] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 10/19/2015] [Indexed: 11/30/2022] Open
Abstract
Cervical radiculopathy represents aberrant mechanical hypersensitivity. Primary sensory neuron’s ability to sense mechanical force forms mechanotransduction. However, whether this property undergoes activity-dependent plastic changes and underlies mechanical hypersensitivity associated with cervical radiculopathic pain (CRP) is not clear. Here we show a new CRP model producing stable mechanical compression of dorsal root ganglion (DRG), which induces dramatic behavioral mechanical hypersensitivity. Amongst nociceptive DRG neurons, a mechanically sensitive neuron, isolectin B4 negative Aδ-type (IB4− Aδ) DRG neuron displays spontaneous activity with hyperexcitability after chronic compression of cervical DRGs. Focal mechanical stimulation on somata of IB4- Aδ neuron induces abnormal hypersensitivity. Upregulated HCN1 and HCN3 channels and increased Ih current on this subset of primary nociceptors underlies the spontaneous activity together with neuronal mechanical hypersensitivity, which further contributes to the behavioral mechanical hypersensitivity associated with CRP. This study sheds new light on the functional plasticity of a specific subset of nociceptive DRG neurons to mechanical stimulation and reveals a novel mechanism that could underlie the mechanical hypersensitivity associated with cervical radiculopathy.
Collapse
|
42
|
Omrani A, van der Vaart T, Mientjes E, van Woerden GM, Hojjati MR, Li KW, Gutmann DH, Levelt CN, Smit AB, Silva AJ, Kushner SA, Elgersma Y. HCN channels are a novel therapeutic target for cognitive dysfunction in Neurofibromatosis type 1. Mol Psychiatry 2015; 20:1311-21. [PMID: 25917366 PMCID: PMC5603719 DOI: 10.1038/mp.2015.48] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/19/2015] [Accepted: 03/09/2015] [Indexed: 12/27/2022]
Abstract
Cognitive impairments are a major clinical feature of the common neurogenetic disease neurofibromatosis type 1 (NF1). Previous studies have demonstrated that increased neuronal inhibition underlies the learning deficits in NF1, however, the molecular mechanism underlying this cell-type specificity has remained unknown. Here, we identify an interneuron-specific attenuation of hyperpolarization-activated cyclic nucleotide-gated (HCN) current as the cause for increased inhibition in Nf1 mutants. Mechanistically, we demonstrate that HCN1 is a novel NF1-interacting protein for which loss of NF1 results in a concomitant increase of interneuron excitability. Furthermore, the HCN channel agonist lamotrigine rescued the electrophysiological and cognitive deficits in two independent Nf1 mouse models, thereby establishing the importance of HCN channel dysfunction in NF1. Together, our results provide detailed mechanistic insights into the pathophysiology of NF1-associated cognitive defects, and identify a novel target for clinical drug development.
Collapse
Affiliation(s)
- A Omrani
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
- ENCORE Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, The Netherlands
| | - T van der Vaart
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
- ENCORE Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus Medical Center, Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - E Mientjes
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
- ENCORE Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, The Netherlands
| | - GM van Woerden
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
- ENCORE Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, The Netherlands
| | - MR Hojjati
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Physiology, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - KW Li
- Department of Molecular and Cellular Neurobiology, CNCR, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - DH Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - CN Levelt
- Department of Molecular Visual Plasticity, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
| | - AB Smit
- Department of Molecular and Cellular Neurobiology, CNCR, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - AJ Silva
- Department of Neurobiology, Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - SA Kushner
- ENCORE Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Y Elgersma
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
- ENCORE Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
43
|
Benes FM. Building models for postmortem abnormalities in hippocampus of schizophrenics. Schizophr Res 2015; 167:73-83. [PMID: 25749020 DOI: 10.1016/j.schres.2015.01.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/06/2015] [Accepted: 01/07/2015] [Indexed: 01/17/2023]
Abstract
Postmortem studies have suggested that there is abnormal GABAergic activity in the hippocampus in schizophrenia (SZ). In micro-dissected human hippocampal slices, a loss of interneurons and a compensatory upregulation of GABAA receptor binding activity on interneurons, but not PNs, has suggested that disinhibitory GABA-to-GABA connections are abnormal in stratum oriens (SO) of CA3/2, but not CA1, in schizophrenia. Abnormal expression changes in the expression of kainate receptor (KAR) subunits 5, 6 and 7, as well as an inwardly-rectifying hyperpolarization-activated cationic channel (Ih3; HCN3) may play important roles in regulating GABA cell activity at the SO CA3/2 locus. The exclusive neurons at this site are GABAergic interneurons; these cells also receive direct projections from the basolateral amygdala (BLA). When the BLA is stimulated by stereotaxic infusion of picrotoxin in rats, KARs influence axodendritic and presynaptic inhibitory mechanisms that regulate both inhibitory and disinhibitory interneurons in the SO-CA3/2 locus. The rat model described here was specifically developed to extend our understanding of these and other postmortem findings and has suggested that GABAergic abnormalities and possible disturbances in oscillatory rhythms may be related to a dysfunction of disinhibitory interneurons at the SO-CA3/2 site of schizophrenics.
Collapse
Affiliation(s)
- Francine M Benes
- Program in Structural and Molecular Neuroscience and Harvard Brain Tissue Resource Center, McLean Hospital, Belmont, MA, USA; Department of Psychiatry and Program in Neuroscience, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
44
|
Long-lasting spatial learning and memory impairments caused by chronic cerebral hypoperfusion associate with a dynamic change of HCN1/HCN2 expression in hippocampal CA1 region. Neurobiol Learn Mem 2015; 123:72-83. [DOI: 10.1016/j.nlm.2015.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 05/15/2015] [Accepted: 05/17/2015] [Indexed: 01/17/2023]
|
45
|
Alterations in CA1 pyramidal neuronal intrinsic excitability mediated by Ih channel currents in a rat model of amyloid beta pathology. Neuroscience 2015; 305:279-92. [PMID: 26254243 DOI: 10.1016/j.neuroscience.2015.07.087] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 07/28/2015] [Accepted: 07/31/2015] [Indexed: 01/05/2023]
Abstract
Amyloid beta (Aβ) accumulation plays an important role in the pathogenesis of Alzheimer's disease (AD) by changing the neuronal excitability. However, the cellular mechanisms by which accumulation of Aβ affects intrinsic neuronal properties are not well understood. The effect of bilateral intra-frontal cortex Aβ (1-42) peptide injection on the intrinsic excitability of hippocampal CA1 pyramidal neurons with particular focus on the contribution of hyperpolarization-activated (Ih) channel currents was examined using whole-cell patch-clamp recording. Passive avoidance memory impairment and morphological changes in rats receiving intra-frontal Aβ treatment were observed, which was associated with significant changes both in passive and active intrinsic electrical membrane properties of CA1 pyramidal neurons. Electrophysiological recording showed a significant decrease in neuronal excitability associated with an augmentation in the first spike after-hyperpolarization (AHP) amplitude. In addition, the depolarizing sag voltage was altered in neurons recorded from Aβ-treated group. In voltage-clamp condition, a hyperpolarizing activated inward current sensitive to ZD7288 and capsaicin was significantly increased in neurons from Aβ-treated rats. The Ih current density was increased and the activation curve was shifted toward less negative potential in the Aβ-treated group as compared to control group. The enhancing effect of Aβ treatment on Ih current was confirmed by showing upregulation of the mRNA of HCN1 channel in the CA1 pyramidal layer of hippocampi. These findings suggest the contribution of Ih and possibly TRPV1 channel currents to the changes induced by Aβ treatment in the intrinsic membrane properties, which, in turn, may provide therapeutic targets for treatment of AD.
Collapse
|
46
|
Chen L, Xu R, Sun FJ, Xue Y, Hao XM, Liu HX, Wang H, Chen XY, Liu ZR, Deng WS, Han XH, Xie JX, Yung WH. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels regulate firing of globus pallidus neurons in vivo. Mol Cell Neurosci 2015; 68:46-55. [PMID: 25858108 DOI: 10.1016/j.mcn.2015.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 03/26/2015] [Accepted: 04/03/2015] [Indexed: 01/27/2023] Open
Abstract
The globus pallidus plays a significant role in motor control under both health and pathological states. Recent studies have revealed that hyperpolarization-activated cyclic nucleotide-gated (HCN) channels occupy a critical position in globus pallidus pacemaking activity. Morphological studies have shown the expression of HCN channels in the globus pallidus. To investigate the in vivo effects of HCN channels in the globus pallidus, extracellular recordings and behavioral tests were performed in the present study. In normal rats, micro-pressure ejection of 0.05mM ZD7288, the selective HCN channel blocker, decreased the frequency of spontaneous firing in 21 out of the 40 pallidal neurons. The average decrease was 50.4±5.4%. Interestingly, in another 18 out of the 40 pallidal neurons, ZD7288 increased the firing rate by 137.1±27.6%. Similar bidirectional modulation on the firing rate was observed by a higher concentration of ZD7288 (0.5mM) as well as another HCN channel blocker, CsCl. Furthermore, activation of HCN channels by 8-Br-cAMP increased the firing rate by 63.0±9.3% in 15 out of the 25 pallidal neurons and decreased the firing rate by 46.9±9.4% in another 8 out of the 25 pallidal neurons. Further experiments revealed that modulation of glutamatergic but not GABAergic transmission may be involved in ZD7288-induced increase in firing rate. Consistent with electrophysiological results, further studies revealed that modulation of HCN channels also had bidirectional effects on behavior. Taken together, the present studies suggest that HCN channels may modulate the activity of pallidal neurons by different pathways in vivo.
Collapse
Affiliation(s)
- Lei Chen
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China.
| | - Rong Xu
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Feng-Jiao Sun
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Yan Xue
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Xiao-Meng Hao
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Hong-Xia Liu
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Hua Wang
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Xin-Yi Chen
- Department of Neurology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Zi-Ran Liu
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Wen-Shuai Deng
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Xiao-Hua Han
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Jun-Xia Xie
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao 266071, China
| | - Wing-Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
47
|
Williams SB, Hablitz JJ. Differential modulation of repetitive firing and synchronous network activity in neocortical interneurons by inhibition of A-type K(+) channels and Ih. Front Cell Neurosci 2015; 9:89. [PMID: 25852481 PMCID: PMC4364302 DOI: 10.3389/fncel.2015.00089] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/26/2015] [Indexed: 12/04/2022] Open
Abstract
GABAergic interneurons provide the main source of inhibition in the neocortex and are important in regulating neocortical network activity. In the presence 4-aminopyridine (4-AP), CNQX, and D-APV, large amplitude GABAA-receptor mediated depolarizing responses were observed in the neocortex. GABAergic networks are comprised of several types of interneurons, each with its own protein expression pattern, firing properties, and inhibitory role in network activity. Voltage-gated ion channels, especially A-type K(+) channels, differentially regulate passive membrane properties, action potential (AP) waveform, and repetitive firing properties in interneurons depending on their composition and localization. HCN channels are known modulators of pyramidal cell intrinsic excitability and excitatory network activity. Little information is available regarding how HCN channels functionally modulate excitability of individual interneurons and inhibitory networks. In this study, we examined the effect of 4-AP on intrinsic excitability of fast-spiking basket cells (FS-BCs) and Martinotti cells (MCs). 4-AP increased the duration of APs in both FS-BCs and MCs. The repetitive firing properties of MCs were differentially affected compared to FS-BCs. We also examined the effect of Ih inhibition on synchronous GABAergic depolarizations and synaptic integration of depolarizing IPSPs. ZD 7288 enhanced the amplitude and area of evoked GABAergic responses in both cell types. Similarly, the frequency and area of spontaneous GABAergic depolarizations in both FS-BCs and MCs were increased in presence of ZD 7288. Synaptic integration of IPSPs in MCs was significantly enhanced, but remained unaltered in FS-BCs. These results indicate that 4-AP differentially alters the firing properties of interneurons, suggesting MCs and FS-BCs may have unique roles in GABAergic network synchronization. Enhancement of GABAergic network synchronization by ZD 7288 suggests that HCN channels attenuate inhibitory network activity.
Collapse
Affiliation(s)
| | - John J. Hablitz
- Department of Neurobiology, Civitan International Research Center and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, ALUSA
| |
Collapse
|
48
|
Liu N, Zhang D, Zhu M, Luo S, Liu T. Minocycline inhibits hyperpolarization-activated currents in rat substantia gelatinosa neurons. Neuropharmacology 2015; 95:110-20. [PMID: 25777286 DOI: 10.1016/j.neuropharm.2015.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 03/04/2015] [Accepted: 03/05/2015] [Indexed: 12/30/2022]
Abstract
Minocycline is a widely used glial activation inhibitor that could suppress pain-related behaviors in a number of different pain animal models, yet, its analgesic mechanisms are not fully understood. Hyperpolarization-activated cation channel-induced Ih current plays an important role in neuronal excitability and pathological pain. In this study, we investigated the possible effect of minocycline on Ih of substantia gelatinosa neuron in superficial spinal dorsal horn by using whole-cell patch-clamp recording. We found that extracellular minocycline rapidly decreases Ih amplitude in a reversible and concentration-dependent manner (IC50 = 41 μM). By contrast, intracellular minocycline had no effect. Minocycline-induced inhibition of Ih was not affected by Na(+) channel blocker tetrodotoxin, glutamate-receptor antagonists (CNQX and D-APV), GABAA receptor antagonist (bicuculine methiodide), or glycine receptor antagonist (strychnine). Minocycline also caused a negative shift in the activation curve of Ih, but did not alter the reversal potential. Moreover, minocycline slowed down the inter-spike depolarizing slope and produced a robust decrease in the rate of action potential firing. Together, these results illustrate a novel cellular mechanism underlying minocycline's analgesic effect by inhibiting Ih currents of spinal dorsal horn neurons.
Collapse
Affiliation(s)
- Nana Liu
- Department of Pediatrics, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Daying Zhang
- Department of Pain Clinic, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Mengye Zhu
- Department of Pain Clinic, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Shiwen Luo
- Center for Laboratory Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Tao Liu
- Department of Pediatrics, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, China; Center for Laboratory Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
49
|
Alkondon M, Pereira EFR, Todd SW, Randall WR, Lane MV, Albuquerque EX. Functional G-protein-coupled receptor 35 is expressed by neurons in the CA1 field of the hippocampus. Biochem Pharmacol 2014; 93:506-18. [PMID: 25542997 DOI: 10.1016/j.bcp.2014.12.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 12/17/2014] [Accepted: 12/17/2014] [Indexed: 12/17/2022]
Abstract
The G-protein-coupled receptor 35 (GPR35) was de-orphanized after the discovery that kynurenic acid (KYNA), an endogenous tryptophan metabolite, acts as an agonist of this receptor. Abundant evidence supports that GPR35 exists primarily in peripheral tissues. Here, we tested the hypothesis that GPR35 exists in the hippocampus and influences the neuronal activity. Fluorescence immunohistochemical staining using an antibody anti-NeuN (a neuronal marker), an antibody anti-GFAP (a glial marker), and an antibody anti-GPR35 revealed that neurons in the stratum oriens, stratum pyramidale, and stratum radiatum of the CA1 field of the hippocampus express GPR35. To determine the presence of functional GPR35 in the neurocircuitry, we tested the effects of various GPR35 agonists on the frequency of spontaneous action potentials recorded as fast current transients (CTs) from stratum radiatum interneurons (SRIs) under cell-attached configuration in rat hippocampal slices. Bath application of the GPR35 agonists zaprinast (1-10 μM), dicumarol (50-100 μM), pamoic acid (500-1000 μM), and amlexanox (3 μM) produced a concentration- and time-dependent reduction in the frequency of CTs. Superfusion of the hippocampal slices with the GPR35 antagonist ML145 (1 μM) increased the frequency of CTs and reduced the inhibitory effect of zaprinast. Bath application of phosphodiesterase 5 inhibitor sildenafil (1 or 5 μM) was ineffective, whereas a subsequent application of zaprinast was effective in reducing the CT frequency. The present results demonstrate for the first time that functional GPR35s are expressed by CA1 neurons and suggest that these receptors can be molecular targets for controlling neuronal activity in the hippocampus.
Collapse
Affiliation(s)
- Manickavasagom Alkondon
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, 10 S. Pine Street, Suite 900, Baltimore, MD 21201, USA
| | - Edna F R Pereira
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, 10 S. Pine Street, Suite 900, Baltimore, MD 21201, USA
| | - Spencer W Todd
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, 10 S. Pine Street, Suite 900, Baltimore, MD 21201, USA
| | - William R Randall
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Malcolm V Lane
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, 10 S. Pine Street, Suite 900, Baltimore, MD 21201, USA
| | - Edson X Albuquerque
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, 10 S. Pine Street, Suite 900, Baltimore, MD 21201, USA.
| |
Collapse
|
50
|
He C, Chen F, Li B, Hu Z. Neurophysiology of HCN channels: From cellular functions to multiple regulations. Prog Neurobiol 2014; 112:1-23. [DOI: 10.1016/j.pneurobio.2013.10.001] [Citation(s) in RCA: 230] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 10/01/2013] [Accepted: 10/07/2013] [Indexed: 12/18/2022]
|