1
|
Koesters AG, Rich MM, Engisch KL. Homeostatic Synaptic Plasticity of Miniature Excitatory Postsynaptic Currents in Mouse Cortical Cultures Requires Neuronal Rab3A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.06.14.544980. [PMID: 39071374 PMCID: PMC11275788 DOI: 10.1101/2023.06.14.544980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Following prolonged activity blockade, amplitudes of miniature excitatory postsynaptic currents (mEPSCs) increase, a form of plasticity termed "homeostatic synaptic plasticity." We previously showed that a presynaptic protein, the small GTPase Rab3A, is required for full expression of the increase in miniature endplate current amplitudes following prolonged blockade of action potential activity at the mouse neuromuscular junction in vivo, where an increase in postsynaptic receptors does not contribute (Wang et al., 2005; Wang et al., 2011). It is unknown whether this form of Rab3A-dependent homeostatic plasticity at the neuromuscular junction shares any characteristics with central synapses. We show here that homeostatic synaptic plasticity of mEPSCs is impaired in mouse cortical neuron cultures prepared from Rab3A-/- and mutant mice expressing a single point mutation of Rab3A, Rab3A Earlybird mice. To determine if Rab3A is involved in the well-established homeostatic increase in postsynaptic AMPA-type receptors (AMPARs), we performed a series of experiments in which electrophysiological recordings of mEPSCs and confocal imaging of synaptic AMPAR immunofluorescence were assessed within the same cultures. We found that the increase in postsynaptic AMPAR levels in wild type cultures was more variable than that of mEPSC amplitudes, which might be explained by a presynaptic contribution, but we cannot rule out variability in the measurement. Finally, we demonstrate that Rab3A is acting in neurons because only selective loss of Rab3A in neurons, not glia, disrupted the homeostatic increase in mEPSC amplitudes. This is the first demonstration that a protein thought to function presynaptically is required for homeostatic synaptic plasticity of quantal size in central neurons.
Collapse
Affiliation(s)
- Andrew G. Koesters
- Department of Pharmacology, Physiology, and Neurobiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Mark M. Rich
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45345
| | - Kathrin L. Engisch
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and the College of Science and Mathematics, Wright State University, Dayton, OH 45435
| |
Collapse
|
2
|
Marshall AH, Boyle DJ, Hanson MA, Nagarajan D, Bibi N, Safa A, Johantges AC, Wester JC. Arid1b haploinsufficiency in cortical inhibitory interneurons causes cell-type-dependent changes in cellular and synaptic development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597984. [PMID: 38895260 PMCID: PMC11185764 DOI: 10.1101/2024.06.07.597984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Autism spectrum disorder (ASD) presents with diverse cognitive and behavioral abnormalities beginning during early development. Although the neural circuit mechanisms remain unclear, recent work suggests pathology in cortical inhibitory interneurons (INs) plays a crucial role. However, we lack fundamental information regarding changes in the physiology of synapses to and from INs in ASD. Here, we used transgenic mice to conditionally knockout one copy of the high confidence ASD risk gene Arid1b from the progenitors of parvalbumin-expressing fast-spiking (PV-FS) INs and somatostatin-expressing non-fast-spiking (SST-NFS) INs. In brain slices, we performed paired whole-cell recordings between INs and excitatory projection neurons (PNs) to investigate changes in synaptic physiology. In neonates, we found reduced synaptic input to INs but not PNs, with a concomitant reduction in the frequency of spontaneous network events, which are driven by INs in immature circuits. In mature mice, we found a reduction in the number of PV-FS INs in cortical layers 2/3 and 5. However, changes in PV-FS IN synaptic physiology were cortical layer and PN cell-type dependent. In layer 5, synapses from PV-FS INs to subcortical-projecting PNs were weakened. In contrast, in layer 2/3, synapses to and from PV-FS INs and corticocortical-projecting PNs were strengthened, leading to enhanced feedforward inhibition of input from layer 4. Finally, we found a novel synaptic deficit among SST-NFS INs, in which excitatory synapses from layer 2/3 PNs failed to facilitate. Our data highlight that changes in unitary synaptic dynamics among INs in ASD depend on neuronal cell-type.
Collapse
|
3
|
Zinchenko VP, Dolgacheva LP, Tuleukhanov ST. Calcium-permeable AMPA and kainate receptors of GABAergic neurons. Biophys Rev 2024; 16:165-171. [PMID: 38737208 PMCID: PMC11078900 DOI: 10.1007/s12551-024-01184-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/16/2024] [Indexed: 05/14/2024] Open
Abstract
This Commentary presents a brief discussion of the action of glutamate calcium permeable receptors present with neurons on the release of the neurotransmitter gamma-aminobutyric acid (GABA). In particular, Glutamate sensitive Kainic Acid Receptors (KARs) and α-Amino-3-hydroxy-5-Methyl-4-isoxazole Propionic Acid Receptor (AMPARs) are Na+ channels that typically cause neuronal cells to depolarize and release GABA. Some of these receptors are also permeable to Ca2+ and are hence involved in the calcium-dependent release of GABA neurotransmitters. Calcium-permeable kainate and AMPA receptors (CP-KARs and CP-AMPARs) are predominantly located in GABAergic neurons in the mature brain and their primary role is to regulate GABA release. AMPARs which do not contain the GluA2 subunit are mainly localized in the postsynaptic membrane. CP-KAR receptors are located mainly in the presynapse. GABAergic neurons expressing CP-KARs and CP-AMPARs respond to excitation earlier and faster, suppressing hyperexcitation of other neurons by the advanced GABA release due to an early rapid [Ca2+]i increase. CP-AMPARs have demonstrated a more pronounced impact on plasticity compared to NMDARs because of their capacity to elevate intracellular Ca2+ levels independently of voltage. GABAergic neurons that express CP-AMPARs contribute to the disinhibition of glutamatergic neurons by suppressing GABAergic neurons that express CP-KARs. Hence, the presence of glutamate CP-KARs and CP-AMPARs is crucial in governing hyperexcitation and synaptic plasticity in GABAergic neurons.
Collapse
Affiliation(s)
- V. P. Zinchenko
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, Institutskaya 3, Pushchino, Russia 142290
| | - L. P. Dolgacheva
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, Institutskaya 3, Pushchino, Russia 142290
| | - S. T. Tuleukhanov
- Al-Farabi Kazakh National University, 050040 Al-Farabi Avenue 71, Almaty, Republic of Kazakhstan
| |
Collapse
|
4
|
Friedenberger Z, Harkin E, Tóth K, Naud R. Silences, spikes and bursts: Three-part knot of the neural code. J Physiol 2023; 601:5165-5193. [PMID: 37889516 DOI: 10.1113/jp281510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
When a neuron breaks silence, it can emit action potentials in a number of patterns. Some responses are so sudden and intense that electrophysiologists felt the need to single them out, labelling action potentials emitted at a particularly high frequency with a metonym - bursts. Is there more to bursts than a figure of speech? After all, sudden bouts of high-frequency firing are expected to occur whenever inputs surge. The burst coding hypothesis advances that the neural code has three syllables: silences, spikes and bursts. We review evidence supporting this ternary code in terms of devoted mechanisms for burst generation, synaptic transmission and synaptic plasticity. We also review the learning and attention theories for which such a triad is beneficial.
Collapse
Affiliation(s)
- Zachary Friedenberger
- Brain and Mind Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Neural Dynamics and Artifical Intelligence, Department of Physics, University of Ottawa, Ottawa, Ontario, Ottawa
| | - Emerson Harkin
- Brain and Mind Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Katalin Tóth
- Brain and Mind Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Richard Naud
- Brain and Mind Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Neural Dynamics and Artifical Intelligence, Department of Physics, University of Ottawa, Ottawa, Ontario, Ottawa
| |
Collapse
|
5
|
Gaidin SG, Maiorov SA, Laryushkin DP, Zinchenko VP, Kosenkov AM. A novel approach for vital visualization and studying of neurons containing Ca 2+ -permeable AMPA receptors. J Neurochem 2023; 164:583-597. [PMID: 36415923 DOI: 10.1111/jnc.15729] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 10/19/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
Calcium-permeable AMPA receptors (CP-AMPARs) play a pivotal role in brain functioning in health and disease. They are involved in synaptic plasticity, synaptogenesis, and neuronal circuits development. However, the functions of neurons expressing CP-AMPARs and their role in the modulation of network activity remain elusive since reliable and accurate visualization methods are absent. Here we developed an approach allowing the vital identification of neurons containing CP-AMPARs. The proposed method relies on evaluating Ca2+ influx in neurons during activation of AMPARs in the presence of NMDAR and KAR antagonists, and blockers of voltage-gated Ca2+ channels. Using this method, we studied the properties of CP-AMPARs-containing neurons. We showed that the overwhelming majority of neurons containing CP-AMPARs are GABAergic, and they are distinguished by higher amplitudes of the calcium responses to applications of the agonists. Furthermore, about 30% of CP-AMPARs-containing neurons demonstrate the presence of GluK1-containing KARs. Although CP-AMPARs-containing neurons are characterized by more significant Ca2+ influx during the activation of AMPARs than other neurons, AMPAR-mediated Na+ influx is similar in these two groups. We revealed that neurons containing CP-AMPARs demonstrate weak GABA(A)R-mediated inhibition because of the low percentage of GABAergic synapses on the soma of these cells. However, our data show that weak GABA(A)R-mediated inhibition is inherent to all GABAergic neurons in the culture and cannot be considered a unique feature of CP-AMPARs-containing neurons. We believe that the suggested approach will help to understand the role of CP-AMPARs in the mammalian nervous system in more detail.
Collapse
Affiliation(s)
- Sergei G Gaidin
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino, Russia
| | - Sergei A Maiorov
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino, Russia
| | - Denis P Laryushkin
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino, Russia
| | - Valery P Zinchenko
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino, Russia
| | - Artem M Kosenkov
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
6
|
Bhattacharya D, Bartley AF, Li Q, Dobrunz LE. Bicuculline restores frequency-dependent hippocampal I/E ratio and circuit function in PGC-1ɑ null mice. Neurosci Res 2022; 184:9-18. [PMID: 35842011 PMCID: PMC10865982 DOI: 10.1016/j.neures.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/22/2022] [Accepted: 07/12/2022] [Indexed: 10/31/2022]
Abstract
Altered inhibition/excitation (I/E) balance contributes to various brain disorders. Dysfunctional GABAergic interneurons enhance or reduce inhibition, resulting in I/E imbalances. Differences in short-term plasticity between excitation and inhibition cause frequency-dependence of the I/E ratio, which can be altered by GABAergic dysfunction. However, it is unknown whether I/E imbalances can be rescued pharmacologically using a single dose when the imbalance magnitude is frequency-dependent. Loss of PGC-1α (peroxisome proliferator activated receptor γ coactivator 1α) causes transcriptional dysregulation in hippocampal GABAergic interneurons. PGC-1α-/- slices have enhanced baseline inhibition onto CA1 pyramidal cells, causing increased I/E ratio and impaired circuit function. High frequency stimulation reduces the I/E ratio and recovers circuit function in PGC-1α-/- slices. Here we tested if using a low dose of bicuculline that can restore baseline I/E ratio can also rescue the frequency-dependent I/E imbalances in these mice. Remarkably, bicuculline did not reduce the I/E ratio below that of wild type during high frequency stimulation. Interestingly, bicuculline enhanced the paired-pulse ratio (PPR) of disynaptic inhibition without changing the monosynaptic inhibition PPR, suggesting that bicuculline modifies interneuron recruitment and not GABA release. Bicuculline improved CA1 output in PGC-1α-/- slices, enhancing EPSP-spike coupling to wild type levels at high and low frequencies. Our results show that it is possible to rescue frequency-dependent I/E imbalances in an animal model of transcriptional dysregulation with a single treatment.
Collapse
Affiliation(s)
- Dwipayan Bhattacharya
- Department of Neurobiology, Civitan International Research Center, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, United States
| | - Aundrea F Bartley
- Department of Neurobiology, Civitan International Research Center, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, United States
| | - Qin Li
- Department of Neurobiology, Civitan International Research Center, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, United States
| | - Lynn E Dobrunz
- Department of Neurobiology, Civitan International Research Center, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, United States.
| |
Collapse
|
7
|
Gaidin SG, Kosenkov AM. mRNA editing of kainate receptor subunits: what do we know so far? Rev Neurosci 2022; 33:641-655. [DOI: 10.1515/revneuro-2021-0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/18/2022] [Indexed: 11/15/2022]
Abstract
Abstract
Kainate receptors (KARs) are considered one of the key modulators of synaptic activity in the mammalian central nervous system. These receptors were discovered more than 30 years ago, but their role in brain functioning remains unclear due to some peculiarities. One such feature of these receptors is the editing of pre-mRNAs encoding GluK1 and GluK2 subunits. Despite the long history of studying this phenomenon, numerous questions remain unanswered. This review summarizes the current data about the mechanism and role of pre-mRNA editing of KAR subunits in the mammalian brain and proposes a perspective of future investigations.
Collapse
Affiliation(s)
- Sergei G. Gaidin
- Institute of Cell Biophysics of the Russian Academy of Sciences , 142290 , Pushchino , Russia
| | - Artem M. Kosenkov
- Institute of Cell Biophysics of the Russian Academy of Sciences , 142290 , Pushchino , Russia
| |
Collapse
|
8
|
Zinchenko VP, Kosenkov AM, Gaidin SG, Sergeev AI, Dolgacheva LP, Tuleukhanov ST. Properties of GABAergic Neurons Containing Calcium-Permeable Kainate and AMPA-Receptors. Life (Basel) 2021; 11:life11121309. [PMID: 34947840 PMCID: PMC8705177 DOI: 10.3390/life11121309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
Calcium-permeable kainate and AMPA receptors (CP-KARs and CP-AMPARs), as well as NMDARs, play a pivotal role in plasticity and in regulating neurotransmitter release. Here we visualized in the mature hippocampal neuroglial cultures the neurons expressing CP-AMPARs and CP-KARs. These neurons were visualized by a characteristic fast sustained [Ca2+]i increase in response to the agonist of these receptors, domoic acid (DoA), and a selective agonist of GluK1-containing KARs, ATPA. Neurons from both subpopulations are GABAergic. The subpopulation of neurons expressing CP-AMPARs includes a larger percentage of calbindin-positive neurons (39.4 ± 6.0%) than the subpopulation of neurons expressing CP-KARs (14.2 ± 7.5% of CB+ neurons). In addition, we have shown for the first time that NH4Cl-induced depolarization faster induces an [Ca2+]i elevation in GABAergic neurons expressing CP-KARs and CP-AMPARs than in most glutamatergic neurons. CP-AMPARs antagonist, NASPM, increased the amplitude of the DoA-induced Ca2+ response in GABAergic neurons expressing CP-KARs, indicating that neurons expressing CP-AMPARs innervate GABAergic neurons expressing CP-KARs. We assume that CP-KARs in inhibitory neurons are involved in the mechanism of outstripping GABA release upon hyperexcitation.
Collapse
Affiliation(s)
- Valery Petrovich Zinchenko
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia; (A.M.K.); (S.G.G.); (A.I.S.); (L.P.D.)
- Correspondence:
| | - Artem Mikhailovich Kosenkov
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia; (A.M.K.); (S.G.G.); (A.I.S.); (L.P.D.)
| | - Sergei Gennadevich Gaidin
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia; (A.M.K.); (S.G.G.); (A.I.S.); (L.P.D.)
| | - Alexander Igorevich Sergeev
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia; (A.M.K.); (S.G.G.); (A.I.S.); (L.P.D.)
| | - Ludmila Petrovna Dolgacheva
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia; (A.M.K.); (S.G.G.); (A.I.S.); (L.P.D.)
| | - Sultan Tuleukhanovich Tuleukhanov
- Laboratory of Biophysics, Chronobiology and Biomedicine, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
| |
Collapse
|
9
|
Metabotropic actions of kainate receptors modulating glutamate release. Neuropharmacology 2021; 197:108696. [PMID: 34274351 DOI: 10.1016/j.neuropharm.2021.108696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 12/06/2022]
Abstract
Presynaptic kainate (KA) receptors (KARs) modulate GABA and glutamate release in the central nervous system of mammals. While some of the actions of KARs are ionotropic, metabotropic actions for these receptors have also been seen to modulate both GABA and glutamate release. In general, presynaptic KARs modulate glutamate release through their metabotropic actions in a biphasic manner, with low KA concentrations producing an increase in glutamate release and higher concentrations of KA driving weaker release of this neurotransmitter. Different molecular mechanisms are involved in this modulation of glutamate release, with a G-protein independent, Ca2+-calmodulin adenylate cyclase (AC) and protein kinase A (PKA) dependent mechanism facilitating glutamate release, and a G-protein, AC and PKA dependent mechanism mediating the decrease in neurotransmitter release. Here, we describe the events underlying the KAR modulation of glutamatergic transmission in different brain regions, addressing the possible functions of this modulation and proposing future research lines in this field.
Collapse
|
10
|
Mulle C, Crépel V. Regulation and dysregulation of neuronal circuits by KARs. Neuropharmacology 2021; 197:108699. [PMID: 34246686 DOI: 10.1016/j.neuropharm.2021.108699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/03/2021] [Accepted: 07/04/2021] [Indexed: 10/20/2022]
Abstract
Kainate receptors (KARs) constitute a family of ionotropic glutamate receptors (iGluRs) with distinct physiological roles in synapses and neuronal circuits. Despite structural and biophysical commonalities with the other iGluRs, AMPA receptors and NMDA receptors, their role as post-synaptic receptors involved in shaping EPSCs to transmit signals across synapses is limited to a small number of synapses. On the other hand KARs regulate presynaptic release mechanisms and control ion channels and signaling pathways through non-canonical metabotropic actions. We review how these different KAR-dependent mechanisms concur to regulate the activity and plasticity of neuronal circuits in physiological conditions of activation of KARs by endogenous glutamate (as opposed to pharmacological activation by exogenous agonists). KARs have been implicated in neurological disorders, based on genetic association and on physiopathological studies. A well described example relates to temporal lobe epilepsy for which the aberrant recruitment of KARs at recurrent mossy fiber synapses takes part in epileptogenic neuronal activity. In conclusion, KARs certainly represent an underestimated actor in the regulation of neuronal circuits, and a potential therapeutic target awaiting more selective and efficient genetic tools and/or ligands.
Collapse
Affiliation(s)
- Christophe Mulle
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000, Bordeaux, France.
| | - Valérie Crépel
- INMED, INSERM UMR1249, Aix-Marseille Université, Marseille, France
| |
Collapse
|
11
|
Somatostatin, a Presynaptic Modulator of Glutamatergic Signal in the Central Nervous System. Int J Mol Sci 2021; 22:ijms22115864. [PMID: 34070785 PMCID: PMC8198526 DOI: 10.3390/ijms22115864] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 01/07/2023] Open
Abstract
Somatostatin is widely diffused in the central nervous system, where it participates to control the efficiency of synaptic transmission. This peptide mainly colocalizes with GABA, in inhibitory, GABA-containing interneurons from which it is actively released in a Ca2+ dependent manner upon application of depolarizing stimuli. Once released in the synaptic cleft, somatostatin acts locally, or it diffuses in the extracellular space through "volume diffusion", a mechanism(s) of distribution which mainly operates in the cerebrospinal fluid and that assures the progression of neuronal signalling from signal-secreting sender structures towards receptor-expressing targeted neurons located extrasynaptically, in a non-synaptic, inter-neuronal form of communication. Somatostatin controls the efficiency of central glutamate transmission by either modulating presynaptically the glutamate exocytosis or by metamodulating the activity of glutamate receptors colocalized and functionally coupled with somatostatin receptors in selected subpopulations of nerve terminals. Deciphering the role of somatostatin in the mechanisms of "volume diffusion" and in the "receptor-receptor interaction" unveils new perspectives in the central role of this fine tuner of synaptic strength, paving the road to new therapeutic approaches for the cure of central disorders.
Collapse
|
12
|
Maiorov SA, Zinchenko VP, Gaidin SG, Kosenkov AM. Potential mechanism of GABA secretion in response to the activation of GluK1-containing kainate receptors. Neurosci Res 2021; 171:27-33. [PMID: 33785410 DOI: 10.1016/j.neures.2021.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/08/2021] [Accepted: 03/17/2021] [Indexed: 11/26/2022]
Abstract
Hippocampal GABAergic neurons are subdivided into more than 20 subtypes that are distinguished by features and functions. We have previously described the subpopulation of GABAergic neurons, which can be identified in hippocampal cell culture by the calcium response to the application of domoic acid (DoA), an agonist of kainate receptors (KARs). Here, we investigate the features of DoA-sensitive neurons and their GABA release mechanism in response to KARs activation. We demonstrate that DoA-sensitive GABAergic neurons express GluK1-containing KARs because ATPA, a selective agonist of GluK1-containing receptors, induces the calcium response exclusively in these GABAergic neurons. Our experiments also show that NASPM, previously considered a selective antagonist of calcium-permeable AMPARs, blocks calcium-permeable KARs. We established using NASPM that GluK1-containing receptors of the studied population of GABAergic neurons are calcium-permeable, and their activation is required for GABA release, at least in particular synapses. Notably, GABA release occurs even in the presence of tetrodotoxin, indicating that propagation of the depolarizing stimulus is not required for GABA release in this case. Thus, our data demonstrate that the activation of GluK1-containing calcium-permeable KARs mediates the GABA release by the studied subpopulation of GABAergic neurons.
Collapse
Affiliation(s)
- S A Maiorov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290, Pushchino, Russia
| | - V P Zinchenko
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290, Pushchino, Russia
| | - S G Gaidin
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290, Pushchino, Russia.
| | - A M Kosenkov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290, Pushchino, Russia.
| |
Collapse
|
13
|
Choi DW. Excitotoxicity: Still Hammering the Ischemic Brain in 2020. Front Neurosci 2020; 14:579953. [PMID: 33192266 PMCID: PMC7649323 DOI: 10.3389/fnins.2020.579953] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Interest in excitotoxicity expanded following its implication in the pathogenesis of ischemic brain injury in the 1980s, but waned subsequent to the failure of N-methyl-D-aspartate (NMDA) antagonists in high profile clinical stroke trials. Nonetheless there has been steady progress in elucidating underlying mechanisms. This review will outline the historical path to current understandings of excitotoxicity in the ischemic brain, and suggest that this knowledge should be leveraged now to develop neuroprotective treatments for stroke.
Collapse
Affiliation(s)
- Dennis W Choi
- Department of Neurology, SUNY Stony Brook, Stony Brook, NY, United States
| |
Collapse
|
14
|
Stachniak TJ, Sylwestrak EL, Scheiffele P, Hall BJ, Ghosh A. Elfn1-Induced Constitutive Activation of mGluR7 Determines Frequency-Dependent Recruitment of Somatostatin Interneurons. J Neurosci 2019; 39:4461-4474. [PMID: 30940718 PMCID: PMC6554623 DOI: 10.1523/jneurosci.2276-18.2019] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 02/14/2019] [Accepted: 03/22/2019] [Indexed: 11/21/2022] Open
Abstract
Excitatory synapses onto somatostatin (SOM) interneurons show robust short-term facilitation. This hallmark feature of SOM interneurons arises from a low initial release probability that regulates the recruitment of interneurons in response to trains of action potentials. Previous work has shown that Elfn1 (extracellular leucine rich repeat and fibronectin Type III domain containing 1) is necessary to generate facilitating synapses onto SOM neurons by recruitment of two separate presynaptic components: mGluR7 (metabotropic glutamate receptor 7) and GluK2-KARs (kainate receptors containing glutamate receptor, ionotropic, kainate 2). Here, we identify how a transsynaptic interaction between Elfn1 and mGluR7 constitutively reduces initial release probability onto mouse cortical SOM neurons. Elfn1 produces glutamate-independent activation of mGluR7 via presynaptic clustering, resulting in a divergence from the canonical "autoreceptor" role of Type III mGluRs, and substantially altering synaptic pharmacology. This structurally induced determination of initial release probability is present at both layer 2/3 and layer 5 synapses. In layer 2/3 SOM neurons, synaptic facilitation in response to spike trains is also dependent on presynaptic GluK2-KARs. In contrast, layer 5 SOM neurons do not exhibit presynaptic GluK2-KAR activity at baseline and show reduced facilitation. GluK2-KAR engagement at synapses onto layer 5 SOM neurons can be induced by calmodulin activation, suggesting that synaptic function can be dynamically regulated. Thus, synaptic facilitation onto SOM interneurons is mediated both by constitutive mGluR7 recruitment by Elfn1 and regulated GluK2-KAR recruitment, which determines the extent of interneuron recruitment in different cortical layers.SIGNIFICANCE STATEMENT This study identifies a novel mechanism for generating constitutive GPCR activity through a transsynaptic Elfn1/mGluR7 structural interaction. The resulting tonic suppression of synaptic release probability deviates from canonical autoreceptor function. Constitutive suppression delays the activation of somatostatin interneurons in circuits, necessitating high-frequency activity for somatostatin interneuron recruitment. Furthermore, variations in the synaptic proteome generate layer-specific differences in facilitation at pyr → SOM synapses. The presence of GluK2 kainate receptors in L2/3 enhances synaptic transmission during prolonged activity. Thus, layer-specific synaptic properties onto somatostatin interneurons are mediated by both constitutive mGluR7 recruitment and regulated GluK2 kainate receptor recruitment, revealing a mechanism that generates diversity in physiological responses of interneurons.
Collapse
Affiliation(s)
- Tevye Jason Stachniak
- F. Hoffmann-La Roche Ltd, Roche Innovation Center Basel, Basel 4051, Switzerland
- University of Basel, Departement Biozentrum, Basel 4056, Switzerland, and
- Biogen, Cambridge, Massachusetts 02142
| | - Emily Lauren Sylwestrak
- F. Hoffmann-La Roche Ltd, Roche Innovation Center Basel, Basel 4051, Switzerland
- Stanford University, Department of Bioengineering, Stanford, California 94305
- University of Basel, Departement Biozentrum, Basel 4056, Switzerland, and
| | - Peter Scheiffele
- University of Basel, Departement Biozentrum, Basel 4056, Switzerland, and
| | - Benjamin J Hall
- F. Hoffmann-La Roche Ltd, Roche Innovation Center Basel, Basel 4051, Switzerland
| | - Anirvan Ghosh
- F. Hoffmann-La Roche Ltd, Roche Innovation Center Basel, Basel 4051, Switzerland,
- Biogen, Cambridge, Massachusetts 02142
| |
Collapse
|
15
|
Therapeutic Effect of Agmatine on Neurological Disease: Focus on Ion Channels and Receptors. Neurochem Res 2019; 44:735-750. [PMID: 30610652 DOI: 10.1007/s11064-018-02712-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/19/2018] [Accepted: 12/24/2018] [Indexed: 02/08/2023]
Abstract
The central nervous system (CNS) is the most injury-prone part of the mammalian body. Any acute or chronic, central or peripheral neurological disorder is related to abnormal biochemical and electrical signals in the brain cells. As a result, ion channels and receptors that are abundant in the nervous system and control the electrical and biochemical environment of the CNS play a vital role in neurological disease. The N-methyl-D-aspartate receptor, 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl) propanoic acid receptor, kainate receptor, acetylcholine receptor, serotonin receptor, α2-adrenoreceptor, and acid-sensing ion channels are among the major channels and receptors known to be key components of pathophysiological events in the CNS. The primary amine agmatine, a neuromodulator synthesized in the brain by decarboxylation of L-arginine, can regulate ion channel cascades and receptors that are related to the major CNS disorders. In our previous studies, we established that agmatine was related to the regulation of cell differentiation, nitric oxide synthesis, and murine brain endothelial cell migration, relief of chronic pain, cerebral edema, and apoptotic cell death in experimental CNS disorders. In this review, we will focus on the pathophysiological aspects of the neurological disorders regulated by these ion channels and receptors, and their interaction with agmatine in CNS injury.
Collapse
|
16
|
Sun HY, Li Q, Bartley AF, Dobrunz LE. Target-cell-specific Short-term Plasticity Reduces the Excitatory Drive onto CA1 Interneurons Relative to Pyramidal Cells During Physiologically-derived Spike Trains. Neuroscience 2018; 388:430-447. [PMID: 30099117 PMCID: PMC6201261 DOI: 10.1016/j.neuroscience.2018.07.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 06/27/2018] [Accepted: 07/30/2018] [Indexed: 11/25/2022]
Abstract
Short-term plasticity enables synaptic strength to be dynamically regulated by input timing. Excitatory synapses arising from the same axon can have profoundly different presynaptic forms of short-term plasticity onto inhibitory and excitatory neurons. We previously showed that Schaffer collateral synapses onto most hippocampal CA1 stratum radiatum interneurons have less paired-pulse facilitation than synapses onto CA1 pyramidal cells, but little difference in steady-state short-term depression. However, less is known about how synapses onto interneurons respond to temporally complex patterns that occur in vivo. Here we compared Schaffer collateral synapses onto stratum radiatum interneurons and pyramidal cells in acute hippocampal slices in response to physiologically-derived spike trains. We find that synapses onto interneurons have less short-term facilitation than synapses onto pyramidal cells, and a subset expresses only short-term depression. Mathematical modeling predicts this target cell-specific short-term plasticity occurs through differences in initial release probability. All three groups have more short-term facilitation during physiologically-derived train stimulation than during constant-frequency stimulation at the same frequency, indicating that variability in stimulus timing is important. These target-cell specific differences in short-term plasticity reduce the strength of excitatory input onto interneurons relative to pyramidal cells, and of depression interneurons relative to facilitation interneurons, during high frequency portions of the train. This occurs to a similar extent at 25 °C and at 33 °C, and is even greater at physiological extracellular calcium. Target-cell specific differences in short-term plasticity enable synapses to have different temporal filtering characteristics, which may help to dynamically regulate the balance of inhibition and excitation in CA1.
Collapse
Affiliation(s)
- Hua Yu Sun
- Department of Neurobiology, Civitan International Research Center, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Qin Li
- Department of Neurobiology, Civitan International Research Center, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Aundrea F Bartley
- Department of Neurobiology, Civitan International Research Center, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lynn E Dobrunz
- Department of Neurobiology, Civitan International Research Center, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
17
|
Prefrontal cortex-dependent innate behaviors are altered by selective knockdown of Gad1 in neuropeptide Y interneurons. PLoS One 2018; 13:e0200809. [PMID: 30024942 PMCID: PMC6053188 DOI: 10.1371/journal.pone.0200809] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 06/09/2018] [Indexed: 12/23/2022] Open
Abstract
GABAergic dysfunction has been implicated in a variety of neurological and psychiatric disorders, including anxiety disorders. Anxiety disorders are the most common type of psychiatric disorder during adolescence. There is a deficiency of GABAergic transmission in anxiety, and enhancement of GABA transmission through pharmacological means reduces anxiety behaviors. GAD67—the enzyme responsible for GABA production–has been linked to anxiety disorders. One class of GABAergic interneurons, Neuropeptide Y (NPY) expressing cells, is abundantly found in brain regions associated with anxiety and fear learning, including prefrontal cortex, hippocampus and amygdala. Additionally, NPY itself has been shown to have anxiolytic effects, and loss of NPY+ interneurons enhances anxiety behaviors. A previous study showed that knockdown of Gad1 from NPY+ cells led to reduced anxiety behaviors in adult mice. However, the role of GABA release from NPY+ interneurons in adolescent anxiety is unclear. Here we used a transgenic mouse that reduces GAD67 in NPY+ cells (NPYGAD1-TG) through Gad1 knockdown and tested for effects on behavior in adolescent mice. Adolescent NPYGAD1-TG mice showed enhanced anxiety-like behavior and sex-dependent changes in locomotor activity. We also found enhancement in two other innate behavioral tasks, nesting construction and social dominance. In contrast, fear learning was unchanged. Because we saw changes in behavioral tasks dependent upon prefrontal cortex and hippocampus, we investigated the extent of GAD67 knockdown in these regions. Immunohistochemistry revealed a 40% decrease in GAD67 in NPY+ cells in prefrontal cortex, indicating a significant but incomplete knockdown of GAD67. In contrast, there was no decrease in GAD67 in NPY+ cells in hippocampus. Consistent with this, there was no change in inhibitory synaptic transmission in hippocampus. Our results show the behavioral impact of cell-specific interneuron dysfunction and suggest that GABA release by NPY+ cells is important for regulating innate prefrontal cortex-dependent behavior in adolescents.
Collapse
|
18
|
Urban-Ciecko J, Jouhanneau JS, Myal SE, Poulet JFA, Barth AL. Precisely Timed Nicotinic Activation Drives SST Inhibition in Neocortical Circuits. Neuron 2018; 97:611-625.e5. [PMID: 29420933 PMCID: PMC6588401 DOI: 10.1016/j.neuron.2018.01.037] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 10/30/2017] [Accepted: 01/12/2018] [Indexed: 11/13/2022]
Abstract
Sleep, waking, locomotion, and attention are associated with cell-type-specific changes in neocortical activity. The effect of brain state on circuit output requires understanding of how neuromodulators influence specific neuronal classes and their synapses, with normal patterns of neuromodulator release from endogenous sources. We investigated the state-dependent modulation of a ubiquitous feedforward inhibitory motif in mouse sensory cortex, local pyramidal (Pyr) inputs onto somatostatin (SST)-expressing interneurons. Paired whole-cell recordings in acute brain slices and in vivo showed that Pyr-to-SST synapses are remarkably weak, with failure rates approaching 80%. Pharmacological screening revealed that cholinergic agonists uniquely enhance synaptic efficacy. Brief, optogenetically gated acetylcholine release dramatically enhanced Pyr-to-SST input, via nicotinic receptors and presynaptic PKA signaling. Importantly, endogenous acetylcholine release preferentially activated nicotinic, not muscarinic, receptors, thus differentiating drug effects from endogenous neurotransmission. Brain state- and synapse-specific unmasking of synapses may be a powerful way to functionally rewire cortical circuits dependent on behavioral demands.
Collapse
Affiliation(s)
- Joanna Urban-Ciecko
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Pasteur str. 3, 02-093 Warsaw, Poland
| | - Jean-Sebastien Jouhanneau
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine (MDC), Berlin-Buch, Robert-Rössle-Str. 10, 13092 Berlin, Germany; Cluster of Excellence NeuroCure, Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Stephanie E Myal
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - James F A Poulet
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine (MDC), Berlin-Buch, Robert-Rössle-Str. 10, 13092 Berlin, Germany; Cluster of Excellence NeuroCure, Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Alison L Barth
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
19
|
Zinchenko VP, Gaidin SG, Teplov IY, Kosenkov AM. Inhibition of spontaneous synchronous activity of hippocampal neurons by excitation of GABAergic neurons. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2017. [DOI: 10.1134/s1990747817040110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Endogenously Released Neuropeptide Y Suppresses Hippocampal Short-Term Facilitation and Is Impaired by Stress-Induced Anxiety. J Neurosci 2017; 37:23-37. [PMID: 28053027 DOI: 10.1523/jneurosci.2599-16.2016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/30/2016] [Accepted: 10/18/2016] [Indexed: 12/15/2022] Open
Abstract
Neuropeptide Y (NPY) has robust anxiolytic properties and is reduced in patients with anxiety disorders. However, the mechanisms by which NPY modulates circuit function to reduce anxiety behavior are not known. Anxiolytic effects of NPY are mediated in the CA1 region of hippocampus, and NPY injection into hippocampus alleviates anxiety symptoms in the predator scent stress model of stress-induced anxiety. The mechanisms that regulate NPY release, and its effects on CA1 synaptic function, are not fully understood. Here we show in acute hippocampal slices from mice that endogenous NPY, released in response to optogenetic stimulation or synaptically evoked spiking of NPY+ cells, suppresses both of the feedforward pathways to CA1. Stimulation of temporoammonic synapses with a physiologically derived spike train causes NPY release that reduces short-term facilitation, whereas the release of NPY that modulates Schaffer collateral synapses requires integration of both the Schaffer collateral and temporoammonic pathways. Pathway specificity of NPY release is conferred by three functionally distinct NPY+ cell types, with differences in intrinsic excitability and short-term plasticity of their inputs. Predator scent stress abolishes the release of endogenous NPY onto temporoammonic synapses, a stress-sensitive pathway, thereby causing enhanced short-term facilitation. Our results demonstrate how stress alters CA1 circuit function through the impairment of endogenous NPY release, potentially contributing to heightened anxiety. SIGNIFICANCE STATEMENT Neuropeptide Y (NPY) has robust anxiolytic properties, and its levels are reduced in patients with post-traumatic stress disorder. The effects of endogenously released NPY during physiologically relevant stimulation, and the impact of stress-induced reductions in NPY on circuit function, are unknown. By demonstrating that NPY release modulates hippocampal synaptic plasticity and is impaired by predator scent stress, our results provide a novel mechanism by which stress-induced anxiety alters circuit function. These studies fill an important gap in knowledge between the molecular and behavioral effects of NPY. This article also advances the understanding of NPY+ cells and the factors that regulate their spiking, which could pave the way for new therapeutic targets to increase endogenous NPY release in patients in a spatially and temporally appropriate manner.
Collapse
|
21
|
Barroso-Flores J, Herrera-Valdez MA, Galarraga E, Bargas J. Models of Short-Term Synaptic Plasticity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1015:41-57. [PMID: 29080020 DOI: 10.1007/978-3-319-62817-2_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We focus on dynamical descriptions of short-term synaptic plasticity. Instead of focusing on the molecular machinery that has been reviewed recently by several authors, we concentrate on the dynamics and functional significance of synaptic plasticity, and review some mathematical models that reproduce different properties of the dynamics of short term synaptic plasticity that have been observed experimentally. The complexity and shortcomings of these models point to the need of simple, yet physiologically meaningful models. We propose a simplified model to be tested in synapses displaying different types of short-term plasticity.
Collapse
Affiliation(s)
- Janet Barroso-Flores
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, DF, 04510, Mexico.
| | - Marco A Herrera-Valdez
- Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, DF, 04510, Mexico.
| | - Elvira Galarraga
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, DF, 04510, Mexico
| | - José Bargas
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, DF, 04510, Mexico
| |
Collapse
|
22
|
Interneuron Transcriptional Dysregulation Causes Frequency-Dependent Alterations in the Balance of Inhibition and Excitation in Hippocampus. J Neurosci 2016; 35:15276-90. [PMID: 26586816 DOI: 10.1523/jneurosci.1834-15.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Circuit dysfunction in complex brain disorders such as schizophrenia and autism is caused by imbalances between inhibitory and excitatory synaptic transmission (I/E). Short-term plasticity differentially alters responses from excitatory and inhibitory synapses, causing the I/E ratio to change as a function of frequency. However, little is known about I/E ratio dynamics in complex brain disorders. Transcriptional dysregulation in interneurons, particularly parvalbumin interneurons, is a consistent pathophysiological feature of schizophrenia. Peroxisome proliferator activated receptor γ coactivator 1α (PGC-1α) is a transcriptional coactivator that in hippocampus is highly concentrated in inhibitory interneurons and regulates parvalbumin transcription. Here, we used PGC-1α(-/-) mice to investigate effects of interneuron transcriptional dysregulation on the dynamics of the I/E ratio at the synaptic and circuit level in hippocampus. We find that loss of PGC-1α increases the I/E ratio onto CA1 pyramidal cells in response to Schaffer collateral stimulation in slices from young adult mice. The underlying mechanism is enhanced basal inhibition, including increased inhibition from parvalbumin interneurons. This decreases the spread of activation in CA1 and dramatically limits pyramidal cell spiking, reducing hippocampal output. The I/E ratio and CA1 output are partially restored by paired-pulse stimulation at short intervals, indicating frequency-dependent effects. However, circuit dysfunction persists, indicated by alterations in kainate-induced gamma oscillations and impaired nest building. Together, these results show that transcriptional dysregulation in hippocampal interneurons causes frequency-dependent alterations in I/E ratio and circuit function, suggesting that PGC-1α deficiency in psychiatric and neurological disorders contributes to disease by causing functionally relevant alterations in I/E balance. SIGNIFICANCE STATEMENT Alteration in the inhibitory and excitatory synaptic transmission (I/E) balance is a fundamental principle underlying the circuit dysfunction observed in many neuropsychiatric and neurodevelopmental disorders. The I/E ratio is dynamic, continuously changing because of synaptic short-term plasticity. We show here that transcriptional dysregulation in interneurons, particularly parvalbumin interneurons, causes frequency-dependent alterations in the I/E ratio and in circuit function in hippocampus. Peroxisome proliferator activated receptor γ coactivator 1α (PGC-1α-deficient) mice have enhanced inhibition in CA1, the opposite of what is seen in cortex. This study fills an important gap in current understanding of how changes in inhibition in complex brain disorders affect I/E dynamics, leading to region-specific circuit dysfunction and behavioral impairment. This study also provides a conceptual framework for analyzing the effects of short-term plasticity on the I/E balance in disease models.
Collapse
|
23
|
Ahn J, MacLeod KM. Target-specific regulation of presynaptic release properties at auditory nerve terminals in the avian cochlear nucleus. J Neurophysiol 2016; 115:1679-90. [PMID: 26719087 DOI: 10.1152/jn.00752.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/23/2015] [Indexed: 02/04/2023] Open
Abstract
Short-term synaptic plasticity (STP) acts as a time- and firing rate-dependent filter that mediates the transmission of information across synapses. In the auditory brain stem, the divergent pathways that encode acoustic timing and intensity information express differential STP. To investigate what factors determine the plasticity expressed at different terminals, we tested whether presynaptic release probability differed in the auditory nerve projections to the two divisions of the avian cochlear nucleus, nucleus angularis (NA) and nucleus magnocellularis (NM). Estimates of release probability were made with an open-channel blocker ofN-methyl-d-aspartate (NMDA) receptors. Activity-dependent blockade of NMDA receptor-mediated excitatory postsynaptic currents (EPSCs) with application of 20 μM (+)-MK801 maleate was more rapid in NM than in NA, indicating that release probability was significantly higher at terminals in NM. Paired-pulse ratio (PPR) was tightly correlated with the blockade rate at terminals in NA, suggesting that PPR was a reasonable proxy for relative release probability at these synapses. To test whether release probability was similar across convergent inputs onto NA neurons, PPRs of different nerve inputs onto the same postsynaptic NA target neuron were measured. The PPRs, as well as the plasticity during short trains, were tightly correlated across multiple inputs, further suggesting that release probability is coordinated at auditory nerve terminals in a target-specific manner. This highly specific regulation of STP in the auditory brain stem provides evidence that the synaptic dynamics are tuned to differentially transmit the auditory information in nerve activity into parallel ascending pathways.
Collapse
Affiliation(s)
- J Ahn
- Department of Biology, University of Maryland, College Park, Maryland
| | - K M MacLeod
- Department of Biology, University of Maryland, College Park, Maryland; Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland; and Center for the Comparative and Evolutionary Biology of Hearing, University of Maryland, College Park, Maryland
| |
Collapse
|
24
|
Lalanne T, Oyrer J, Mancino A, Gregor E, Chung A, Huynh L, Burwell S, Maheux J, Farrant M, Sjöström PJ. Synapse-specific expression of calcium-permeable AMPA receptors in neocortical layer 5. J Physiol 2015; 594:837-61. [PMID: 26537662 PMCID: PMC4753277 DOI: 10.1113/jp271394] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/01/2015] [Indexed: 01/26/2023] Open
Abstract
Key points In the hippocampus, calcium‐permeable AMPA receptors have been found in a restricted subset of neuronal types that inhibit other neurons, although their localization in the neocortex is less well understood. In the present study, we looked for calcium‐permeable AMPA receptors in two distinct populations of neocortical inhibitory neurons: basket cells and Martinotti cells. We found them in the former but not in the latter. Furthermore, in basket cells, these receptors were associated with particularly fast responses. Computer modelling predicted (and experiments verified) that fast calcium‐permeable AMPA receptors enable basket cells to respond rapidly, such that they promptly inhibit neighbouring cells and shut down activity. The results obtained in the present study help our understanding of pathologies such as stroke and epilepsy that have been associated with disordered regulation of calcium‐permeable AMPA receptors.
Abstract AMPA‐type glutamate receptors (AMPARs) lacking an edited GluA2 subunit are calcium‐permeable (CP) and contribute to synaptic plasticity in several hippocampal interneuron types, although their precise role in the neocortex is not well described. We explored the presence of CP‐AMPARs at pyramidal cell (PC) inputs to Martinotti cells (MCs) and basket cells (BCs) in layer 5 of the developing mouse visual cortex (postnatal days 12–21). GluA2 immunolabelling was stronger in MCs than in BCs. A differential presence of CP‐AMPARs at PC‐BC and PC‐MC synapses was confirmed electrophysiologically, based on measures of spermine‐dependent rectification and CP‐AMPAR blockade by 1‐naphtyl acetyl spermine using recordings from synaptically connected cell pairs, NPEC‐AMPA uncaging and miniature current recordings. In addition, CP‐AMPAR expression in BCs was correlated with rapidly decaying synaptic currents. Computer modelling predicted that this reduces spike latencies and sharpens suprathreshold responses in BCs, which we verified experimentally using the dynamic clamp technique. Thus, the synapse‐specific expression of CP‐AMPARs may critically influence both plasticity and information processing in neocortical microcircuits. In the hippocampus, calcium‐permeable AMPA receptors have been found in a restricted subset of neuronal types that inhibit other neurons, although their localization in the neocortex is less well understood. In the present study, we looked for calcium‐permeable AMPA receptors in two distinct populations of neocortical inhibitory neurons: basket cells and Martinotti cells. We found them in the former but not in the latter. Furthermore, in basket cells, these receptors were associated with particularly fast responses. Computer modelling predicted (and experiments verified) that fast calcium‐permeable AMPA receptors enable basket cells to respond rapidly, such that they promptly inhibit neighbouring cells and shut down activity. The results obtained in the present study help our understanding of pathologies such as stroke and epilepsy that have been associated with disordered regulation of calcium‐permeable AMPA receptors.
Collapse
Affiliation(s)
- Txomin Lalanne
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Julia Oyrer
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Adamo Mancino
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | - Erica Gregor
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | - Andrew Chung
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | - Louis Huynh
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | - Sasha Burwell
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | - Jérôme Maheux
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | - Mark Farrant
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - P Jesper Sjöström
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada.,Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
25
|
Bartley AF, Dobrunz LE. Short-term plasticity regulates the excitation/inhibition ratio and the temporal window for spike integration in CA1 pyramidal cells. Eur J Neurosci 2015; 41:1402-15. [PMID: 25903384 DOI: 10.1111/ejn.12898] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/27/2015] [Accepted: 03/16/2015] [Indexed: 12/21/2022]
Abstract
Many neurodevelopmental and neuropsychiatric disorders involve an imbalance between excitation and inhibition caused by synaptic alterations. The proper excitation/inhibition (E/I) balance is especially critical in CA1 pyramidal cells, because they control hippocampal output. Activation of Schaffer collateral axons causes direct excitation of CA1 pyramidal cells, quickly followed by disynaptic feedforward inhibition, stemming from synaptically induced firing of GABAergic interneurons. Both excitatory and inhibitory synapses are modulated by short-term plasticity, potentially causing dynamic tuning of the E/I ratio. However, the effects of short-term plasticity on the E/I ratio in CA1 pyramidal cells are not yet known. To determine this, we recorded disynaptic inhibitory postsynaptic currents and the E/I ratio in CA1 pyramidal cells in acute hippocampal slices from juvenile mice. We found that, whereas inhibitory synapses had paired-pulse depression, disynaptic inhibition instead had paired-pulse facilitation (≤ 200-ms intervals), caused by increased recruitment of feedforward interneurons. Although enhanced disynaptic inhibition helped to constrain paired-pulse facilitation of excitation, the E/I ratio was still larger on the second pulse, increasing pyramidal cell spiking. Surprisingly, this occurred without compromising the precision of spike timing. The E/I balance regulates the temporal spike integration window from multiple inputs; here, we showed that paired-pulse stimulation can broaden the spike integration window. Together, our findings show that the combined effects of short-term plasticity of disynaptic inhibition and monosynaptic excitation alter the E/I balance in CA1 pyramidal cells, leading to dynamic modulation of spike probability and the spike integration window. Short-term plasticity is therefore an important mechanism for modulating signal processing of hippocampal output.
Collapse
Affiliation(s)
- Aundrea F Bartley
- Department of Neurobiology, Civitan International Research Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd, SHEL 902, Birmingham, AL, 35294, USA
| | - Lynn E Dobrunz
- Department of Neurobiology, Civitan International Research Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd, SHEL 902, Birmingham, AL, 35294, USA
| |
Collapse
|
26
|
Brande-Eilat N, Golumbic YN, Zaidan H, Gaisler-Salomon I. Acquisition of conditioned fear is followed by region-specific changes in RNA editing of glutamate receptors. Stress 2015; 18:309-18. [PMID: 26383032 DOI: 10.3109/10253890.2015.1073254] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Adenosine (A) to inosine (I) RNA editing is a post-transcriptional modification process that can affect synaptic function. Transcripts encoding the kainate GRIK1 and AMPA GluA2 glutamate receptor subunits undergo editing that leads to a glycine/arginine (Q/R) exchange and reduced Ca(2+) permeability. We hypothesized that editing at these sites could be experience-dependent, temporally dynamic and region-specific. We trained C57/Bl6 mice in trace and contextual fear conditioning protocols, and examined editing levels at GRIK1 and GluA2 Q/R sites in the amygdala (CeA) and hippocampus (CA1 and CA3), at two time points after training. We also examined experience-dependent changes in the expression of RNA editing enzymes and editing targets. Animals trained in the trace fear conditioning protocol exhibited a transient increase in unedited GRIK1 RNA in the amygdala, and their learning efficiency correlated with unedited RNA levels in CA1. In line with previous reports, GluA2 RNA editing levels were nearly 100%. Additionally, we observed experience-dependent changes in mRNA expression of the RNA editing enzymes ADAR2 and ADAR1 in amygdala and hippocampus, and a learning-dependent increase in the alternatively spliced inactive form of ADAR2 in the amygdala. Since unedited transcripts code for Ca(2+)-permeable receptor subunits, these findings suggest that RNA editing at Q/R sites of glutamate receptors plays an important role in experience-dependent synaptic modification processes.
Collapse
Affiliation(s)
- Noa Brande-Eilat
- a Psychology Department , University of Haifa , Haifa , Israel and
| | - Yaela N Golumbic
- a Psychology Department , University of Haifa , Haifa , Israel and
| | - Hiba Zaidan
- a Psychology Department , University of Haifa , Haifa , Israel and
| | - Inna Gaisler-Salomon
- a Psychology Department , University of Haifa , Haifa , Israel and
- b Department of Psychiatry , Columbia University , New York , NY , USA
| |
Collapse
|
27
|
Carta M, Fièvre S, Gorlewicz A, Mulle C. Kainate receptors in the hippocampus. Eur J Neurosci 2014; 39:1835-44. [PMID: 24738709 DOI: 10.1111/ejn.12590] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/12/2014] [Accepted: 03/14/2014] [Indexed: 01/23/2023]
Abstract
Kainate receptors (KARs) consist of a family of ionotropic glutamate receptors composed of the combinations of five subunits, GluK1-GluK5. Although KARs display close structural homology with AMPA receptors, they serve quite distinct functions. A great deal of our knowledge of the molecular and functional properties of KARs comes from their study in the hippocampus. This review aims at summarising the functions of KARs in the regulation of the activity of hippocampal synaptic circuits at the adult stage and throughout development. We focus on the variety of roles played by KARs in physiological conditions of activation, at pre- and postsynaptic sites, in different cell types and through either metabotropic or ionotropic actions. Finally, we present some of the few attempts to link the role of KARs in the regulation of local hippocampal circuits to the behavioural functions of the hippocampus in health and diseases.
Collapse
Affiliation(s)
- Mario Carta
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, University of Bordeaux, F-33000, Bordeaux, France
| | | | | | | |
Collapse
|
28
|
Koncz I, Szász BK, Szabó SI, Kiss JP, Mike A, Lendvai B, Sylvester Vizi E, Zelles T. The tricyclic antidepressant desipramine inhibited the neurotoxic, kainate-induced [Ca(2+)]i increases in CA1 pyramidal cells in acute hippocampal slices. Brain Res Bull 2014; 104:42-51. [PMID: 24742525 DOI: 10.1016/j.brainresbull.2014.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/24/2014] [Accepted: 04/01/2014] [Indexed: 12/18/2022]
Abstract
Kainate (KA), used for modelling neurodegenerative diseases, evokes excitotoxicity. However, the precise mechanism of KA-evoked [Ca(2+)]i increase is unexplored, especially in acute brain slice preparations. We used [Ca(2+)]i imaging and patch clamp electrophysiology to decipher the mechanism of KA-evoked [Ca(2+)]i rise and its inhibition by the tricyclic antidepressant desipramine (DMI) in CA1 pyramidal cells in rat hippocampal slices and in cultured hippocampal cells. The effect of KA was dose-dependent and relied totally on extracellular Ca(2+). The lack of effect of dl-2-amino-5-phosphonopentanoic acid (AP-5) and abolishment of the response by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) suggested the involvement of non-N-methyl-d-aspartate receptors (non-NMDARs). The predominant role of the Ca(2+)-impermeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPARs) in the initiation of the Ca(2+) response was supported by the inhibitory effect of the selective AMPAR antagonist GYKI 53655 and the ineffectiveness of 1-naphthyl acetylspermine (NASPM), an inhibitor of the Ca(2+)-permeable AMPARs. The voltage-gated Ca(2+) channels (VGCC), blocked by ω-Conotoxin MVIIC+nifedipine+NiCl2, contributed to the [Ca(2+)]i rise. VGCCs were also involved, similarly to AMPAR current, in the KA-evoked depolarisation. Inhibition of voltage-gated Na(+) channels (VGSCs; tetrodotoxin, TTX) did not affect the depolarisation of pyramidal cells but blocked the depolarisation-evoked action potential bursts and reduced the Ca(2+) response. The tricyclic antidepressant DMI inhibited the KA-evoked [Ca(2+)]i rise in a dose-dependent manner. It directly attenuated the AMPA-/KAR current, but its more potent inhibition on the Ca(2+) response supports additional effect on VGCCs, VGSCs and Na(+)/Ca(2+) exchangers. The multitarget action on decisive players of excitotoxicity holds out more promise in clinical therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- István Koncz
- Department of Pharmacology & Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Bernadett K Szász
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Szilárd I Szabó
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - Arpád Mike
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Balázs Lendvai
- Gedeon Richter Plc., Pharmacology and Drug Safety Department, Budapest, Hungary
| | - E Sylvester Vizi
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Tibor Zelles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
29
|
Walters BJ, Hallengren JJ, Theile CS, Ploegh HL, Wilson SM, Dobrunz LE. A catalytic independent function of the deubiquitinating enzyme USP14 regulates hippocampal synaptic short-term plasticity and vesicle number. J Physiol 2013; 592:571-86. [PMID: 24218545 DOI: 10.1113/jphysiol.2013.266015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The ubiquitin proteasome system is required for the rapid and precise control of protein abundance that is essential for synaptic function. USP14 is a proteasome-bound deubiquitinating enzyme that recycles ubiquitin and regulates synaptic short-term synaptic plasticity. We previously reported that loss of USP14 in ax(J) mice causes a deficit in paired pulse facilitation (PPF) at hippocampal synapses. Here we report that USP14 regulates synaptic function through a novel, deubiquitination-independent mechanism. Although PPF is usually inversely related to release probability, USP14 deficiency impairs PPF without altering basal release probability. Instead, the loss of USP14 causes a large reduction in the number of synaptic vesicles. Over-expression of a catalytically inactive form of USP14 rescues the PPF deficit and restores synaptic vesicle number, indicating that USP14 regulates presynaptic structure and function independently of its role in deubiquitination. Finally, the PPF deficit caused by loss of USP14 can be rescued by pharmacological inhibition of proteasome activity, suggesting that inappropriate protein degradation underlies the PPF impairment. Overall, we demonstrate a novel, deubiquitination-independent function for USP14 in influencing synaptic architecture and plasticity.
Collapse
Affiliation(s)
- Brandon J Walters
- 1825 University Blvd, SHEL 902, Birmingham, AL 35210, USA. ; S. M. Wilson: 1825 University Blvd, SHEL 914, Birmingham, AL 35294, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Sylwestrak EL, Ghosh A. Elfn1 regulates target-specific release probability at CA1-interneuron synapses. Science 2012; 338:536-40. [PMID: 23042292 DOI: 10.1126/science.1222482] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Although synaptic transmission may be unidirectional, the establishment of synaptic connections with specific properties can involve bidirectional signaling. Pyramidal neurons in the hippocampus form functionally distinct synapses onto two types of interneurons. Excitatory synapses onto oriens-lacunosum moleculare (O-LM) interneurons are facilitating and have a low release probability, whereas synapses onto parvalbumin interneurons are depressing and have a high release probability. Here, we show that the extracellular leucine-rich repeat fibronectin containing 1 (Elfn1) protein is selectively expressed by O-LM interneurons and regulates presynaptic release probability to direct the formation of highly facilitating pyramidal-O-LM synapses. Thus, postsynaptic expression of Elfn1 in O-LM interneurons regulates presynaptic release probability, which confers target-specific synaptic properties to pyramidal cell axons.
Collapse
Affiliation(s)
- Emily L Sylwestrak
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0366, USA
| | | |
Collapse
|
31
|
Aroniadou-Anderjaska V, Pidoplichko VI, Figueiredo TH, Almeida-Suhett CP, Prager EM, Braga MFM. Presynaptic facilitation of glutamate release in the basolateral amygdala: a mechanism for the anxiogenic and seizurogenic function of GluK1 receptors. Neuroscience 2012; 221:157-69. [PMID: 22796081 DOI: 10.1016/j.neuroscience.2012.07.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 06/14/2012] [Accepted: 07/03/2012] [Indexed: 11/29/2022]
Abstract
Kainate receptors containing the GluK1 subunit (GluK1Rs; previously known as GluR5 kainate receptors) are concentrated in certain brain regions, where they play a prominent role in the regulation of neuronal excitability, by modulating GABAergic and/or glutamatergic synaptic transmission. In the basolateral nucleus of the amygdala (BLA), which plays a central role in anxiety as well as in seizure generation, GluK1Rs modulate GABAergic inhibition via postsynaptic and presynaptic mechanisms. However, the role of these receptors in the regulation of glutamate release, and the net effect of their activation on the excitability of the BLA network are not well understood. Here, we show that in amygdala slices from 35- to 50-day-old rats, the GluK1 agonist (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl) propanoic acid (ATPA) (300 nM) increased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) and miniature EPSCs (mEPSCs) recorded from BLA principal neurons, and decreased the rate of failures of evoked EPSCs. The GluK1 antagonist (S)-1-(2-amino-2-carboxyethyl)-3-(2-carboxybenzyl) pyrimidine-2,4-dione (UBP302) (25 or 30 μM) decreased the frequency of mEPSCs, reduced evoked field potentials, and increased the "paired-pulse ratio" of the field potential amplitudes. Taken together, these results suggest that GluK1Rs in the rat BLA are present on presynaptic terminals of principal neurons, where they mediate facilitation of glutamate release. In vivo bilateral microinjections of ATPA (250 pmol) into the rat BLA increased anxiety-like behavior in the open field test, while 2 nmol ATPA induced seizures. Similar intra-BLA injections of UBP302 (20 nmol) had anxiolytic effects in the open field and the acoustic startle response tests, without affecting pre-pulse inhibition. These results suggest that although GluK1Rs in the rat BLA facilitate both GABA and glutamate release, the facilitation of glutamate release prevails, and these receptors can have an anxiogenic and seizurogenic net function. Presynaptic facilitation of glutamate release may, in part, underlie the hyperexcitability-promoting effects of GluK1R activation in the rat BLA.
Collapse
Affiliation(s)
- V Aroniadou-Anderjaska
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | | | | | | |
Collapse
|
32
|
Kononov AV, Bal’ NV, Zinchenko VP. Control of spontaneous synchronous Ca2+ oscillations in hippocampal neurons by GABAergic neurons containing kainate receptors without desensitization. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2012. [DOI: 10.1134/s1990747812010072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Wright A, Vissel B. The essential role of AMPA receptor GluR2 subunit RNA editing in the normal and diseased brain. Front Mol Neurosci 2012; 5:34. [PMID: 22514516 PMCID: PMC3324117 DOI: 10.3389/fnmol.2012.00034] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Accepted: 02/29/2012] [Indexed: 11/13/2022] Open
Abstract
α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are comprised of different combinations of GluA1–GluA4 (also known asGluR1–GluR4 and GluR-A to GluR-D) subunits. The GluA2 subunit is subject to RNA editing by the ADAR2 enzyme, which converts a codon for glutamine (Gln; Q), present in the GluA2 gene, to a codon for arginine (Arg; R) found in the mRNA. AMPA receptors are calcium (Ca2+)-permeable if they contain the unedited GluA2(Q) subunit or if they lack the GluA2 subunit. While most AMPA receptors in the brain contain the edited GluA2(R) subunit and are therefore Ca2+-impermeable, recent evidence suggests that Ca2+-permeable AMPA receptors are important in synaptic plasticity, learning, and disease. Strong evidence supports the notion that Ca2+-permeable AMPA receptors are usually GluA2-lacking AMPA receptors, with little evidence to date for a significant role of unedited GluA2 in normal brain function. However, recent detailed studies suggest that Ca2+-permeable AMPA receptors containing unedited GluA2 do in fact occur in neurons and can contribute to excitotoxic cell loss, even where it was previously thought that there was no unedited GluA2.This review provides an update on the role of GluA2 RNA editing in the healthy and diseased brain and summarizes recent insights into the mechanisms that control this process. We suggest that further studies of the role of unedited GluA2 in normal brain function and disease are warranted, and that GluA2 editing should be considered as a possible contributing factor when Ca2+-permeable AMPA receptors are observed.
Collapse
Affiliation(s)
- Amanda Wright
- Neurodegenerative Disorders Laboratory, Neuroscience Department, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | | |
Collapse
|
34
|
Kainate receptor-induced retrograde inhibition of glutamatergic transmission in vasopressin neurons. J Neurosci 2012; 32:1301-10. [PMID: 22279215 DOI: 10.1523/jneurosci.3017-11.2012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Presynaptic kainate receptors (KARs) exert a modulatory action on transmitter release. We here report that applications of agonists of GluK1-containing KARs in the rat supraoptic nucleus has an opposite action on glutamatergic transmission according to the phenotype of the postsynaptic neuron. Whereas glutamate release was facilitated in oxytocin (OT) neurons, it was inhibited in vasopressin (VP) cells. Interestingly, an antagonist of GluK1-containing KARs caused an inhibition of glutamate release in both OT and VP neurons, revealing the existence of tonically activated presynaptic KARs that are positively coupled to transmitter release. We thus postulated that the inhibition of glutamate release observed with exogenous applications of GluK1 agonists on VP neurons could be indirect. In agreement with this hypothesis, we first showed that functional GluK1-containing KARs were present postsynaptically on VP neurons but not on OT cells. We next showed that the inhibitory effect induced by exogenous GluK1 receptor agonist was compromised when BAPTA was added in the recording pipette to buffer intracellular Ca2+ and block the release of a putative retrograde messenger. Under these conditions, GluK1-containing KAR agonist facilitates glutamatergic transmission in VP neurons in a manner similar to that observed for OT neurons and that resulted from the activation of presynaptic GluK1 receptors. GluK1-mediated inhibition of glutamate release in VP neurons was also blocked by a κ-opioid receptor antagonist. These findings suggest that activation of postsynaptic GluK1-containing KARs on VP neurons leads to the release of dynorphin, which in turn acts on presynaptic κ-opioid receptors to inhibit glutamate release.
Collapse
|
35
|
Wen JA, Barth AL. Synaptic lability after experience-dependent plasticity is not mediated by calcium-permeable AMPARs. Front Mol Neurosci 2012; 5:15. [PMID: 22393315 PMCID: PMC3289945 DOI: 10.3389/fnmol.2012.00015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 02/01/2012] [Indexed: 01/04/2023] Open
Abstract
Activity- or experience-dependent plasticity has been associated with the trafficking of calcium-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (CP-AMPARs) in a number of experimental systems. In some cases it has been shown that CP-AMPARs are only transiently present and can be removed in an activity-dependent manner. Here we test the hypothesis that the presence of CP-AMPARs confers instability onto recently potentiated synapses. Previously we have shown that altered sensory input (single-whisker experience; SWE) strengthens layer 4-2/3 excitatory synapses in mouse primary somatosensory cortex, in part by the trafficking of CP-AMPARs. Both in vivo and in vitro, this potentiation is labile, and can be depressed by N-Methyl-D-aspartate receptor (NMDAR)-activation. In the present study, the role of CP-AMPARs in conferring this synaptic instability after in vivo potentiation was evaluated. We develop an assay to depress the strength of individual layer 4-2/3 excitatory synapses after SWE, using a strontium (Sr++)-replaced artificial cerebrospinal fluid (ACSF) solution (Sr-depression). This method allows disambiguation of changes in quantal amplitude (a post-synaptic measure) from changes in event frequency (typically a presynaptic phenomenon). Presynaptic stimulation paired with post-synaptic depolarization in Sr++ lead to a rapid and significant reduction in EPSC amplitude with no change in event frequency. Sr-depression at recently potentiated synapses required NMDARs, but could still occur when CP-AMPARs were not present. As a further dissociation between the presence of CP-AMPARs and Sr-depression, CP-AMPARs could be detected in some cells from control, whisker-intact animals, although Sr-depression was never observed. Taken together, our findings suggest that CP-AMPARs are neither sufficient nor necessary for synaptic depression after in vivo plasticity in somatosensory cortex. This article is part of a Special Issue entitled “Calcium permeable AMPARs in synaptic plasticity and disease.”
Collapse
Affiliation(s)
- Jing A Wen
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh PA, USA
| | | |
Collapse
|
36
|
Peng L, Li B, Du T, Wang F, Hertz L. Does conventional anti-bipolar and antidepressant drug therapy reduce NMDA-mediated neuronal excitation by downregulating astrocytic GluK2 function? Pharmacol Biochem Behav 2012; 100:712-25. [PMID: 21463649 DOI: 10.1016/j.pbb.2011.03.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 03/16/2011] [Accepted: 03/28/2011] [Indexed: 01/25/2023]
Abstract
Chronic treatment with anti-bipolar drugs (lithium, carbamazepine, and valproic acid) down-regulates mRNA and protein expression of kainate receptor GluK2 in mouse brain and cultured astrocytes. It also abolishes glutamate-mediated, Ca(2+)-dependent ERK(1/2) phosphorylation in the astrocytes. Chronic treatment with the SSRI fluoxetine enhances astrocytic GluK2 expression, but increases mRNA editing, abolishing glutamate-mediated ERK(1/2) phosphorylation and [Ca(2+)](i) increase, which are shown to be GluK2-mediated. Neither drug group affects Glu4/Glu5 expression necessary for GluK2's ionotropic effect. Consistent with a metabotropic effect, the PKC inhibitor GF 109203X and the IP(3) inhibitor xestospongin C abolish glutamate stimulation in cultured astrocytes. In CA1/CA3 pyramidal cells in hippocampal slices, activation of extrasynaptic GluK2 receptors, presumably including astrocytic, metabotropic GluK2 receptors, causes long-lasting inhibition of slow neuronal afterhyperpolarization mediated by Ca(2+)-dependent K(+) flux. This may be secondary to the induced astrocytic [Ca(2+)](i) increase, causing release of 'gliotransmitter' glutamate. Neuronal NMDA receptors respond to astrocytic glutamate release with enhancement of excitatory glutamatergic activity. Since reduction of NMDA receptor activity is known to have antidepressant effect in bipolar depression and major depression, these observations suggest that the inactivation of astrocytic GluK2 activity by antidepressant/anti-bipolar therapy ameliorates depression by inhibiting astrocytic glutamate release. A resultant strengthening of neuronal afterhyperpolarization may cause reduced NMDA-mediated activity.
Collapse
Affiliation(s)
- Liang Peng
- Department of Clinical Pharmacology, China Medical University, Shenyang, PR China.
| | | | | | | | | |
Collapse
|
37
|
Miller P, Wingfield A. Distinct effects of perceptual quality on auditory word recognition, memory formation and recall in a neural model of sequential memory. Front Syst Neurosci 2010; 4:14. [PMID: 20631822 PMCID: PMC2901090 DOI: 10.3389/fnsys.2010.00014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 05/07/2010] [Indexed: 11/13/2022] Open
Abstract
Adults with sensory impairment, such as reduced hearing acuity, have impaired ability to recall identifiable words, even when their memory is otherwise normal. We hypothesize that poorer stimulus quality causes weaker activity in neurons responsive to the stimulus and more time to elapse between stimulus onset and identification. The weaker activity and increased delay to stimulus identification reduce the necessary strengthening of connections between neurons active before stimulus presentation and neurons active at the time of stimulus identification. We test our hypothesis through a biologically motivated computational model, which performs item recognition, memory formation and memory retrieval. In our simulations, spiking neurons are distributed into pools representing either items or context, in two separate, but connected winner-takes-all (WTA) networks. We include associative, Hebbian learning, by comparing multiple forms of spike-timing-dependent plasticity (STDP), which strengthen synapses between coactive neurons during stimulus identification. Synaptic strengthening by STDP can be sufficient to reactivate neurons during recall if their activity during a prior stimulus rose strongly and rapidly. We find that a single poor quality stimulus impairs recall of neighboring stimuli as well as the weak stimulus itself. We demonstrate that within the WTA paradigm of word recognition, reactivation of separate, connected sets of non-word, context cells permits reverse recall. Also, only with such coactive context cells, does slowing the rate of stimulus presentation increase recall probability. We conclude that significant temporal overlap of neural activity patterns, absent from individual WTA networks, is necessary to match behavioral data for word recall.
Collapse
Affiliation(s)
- Paul Miller
- Department of Biology, Volen National Center for Complex Systems, Brandeis University Waltham, MA, USA
| | | |
Collapse
|
38
|
Abstract
Presynaptic kainate receptors (KARs) exert a modulatory action on transmitter release. This effect can be switched from facilitation to inhibition by an increased concentration of KAR agonists. We here report that activation of presynaptic GluK1-containing KARs facilitates GABA release on oxytocin and vasopressin neurons in the supraoptic nucleus of the hypothalamus. Increase in ambient levels of glutamate associated with the physiological reduction of astrocytic coverage of oxytocin neurons in lactating rats switches this KAR-mediated facilitation to inhibition of GABAergic transmission. This effect was reproduced in both oxytocin and vasopressin neurons of virgin rats when glutamate transporters were blocked pharmacologically, thereby establishing that enhanced levels of extracellular glutamate induce the switch in KAR-mediated action. The facilitation of GABA release was inhibited with philanthotoxin, a Ca(2+)-permeable KAR antagonist, suggesting that this effect was associated with an ionotropic mode of action. Conversely, KAR-mediated inhibition was compromised in the presence of U73122, a phospholipase C inhibitor, in agreement with the involvement of a metabotropic pathway. We thus reveal that physiological astrocytic plasticity modifies the mode of action of presynaptic KARs, thereby inversing their coupling with GABA release.
Collapse
|
39
|
Synaptic activation of kainate receptors gates presynaptic CB(1) signaling at GABAergic synapses. Nat Neurosci 2010; 13:197-204. [PMID: 20081851 DOI: 10.1038/nn.2481] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 12/08/2009] [Indexed: 12/11/2022]
Abstract
Glutamate can control inhibitory synaptic transmission through activation of presynaptic kainate receptors. We found that glutamate released by train stimulation of Schaffer collaterals could lead to either short-term depression or short-term facilitation of inhibitory synaptic transmission in mouse CA1 pyramidal neurons, depending on the presence of cannabinoid type 1 (CB(1)) receptors on GABAergic afferents. The train-induced depression of inhibition (t-Di) required the mobilization of 2-arachidonoylglycerol through postsynaptic activation of metabotropic glutamate receptors and [Ca(2+)] rise. GluK1 (GluR5)-dependent depolarization of GABAergic terminals enabled t-Di by facilitating presynaptic CB(1) signaling. Thus, concerted activation of presynaptic CB(1) receptors and kainate receptors mediates short-term depression of inhibitory synaptic transmission. In contrast, in inhibitory connections expressing GluK1, but not CB(1), receptors, train stimulation of Schaffer collaterals led to short-term facilitation. Thus, activation of kainate receptors by synaptically released glutamate gates presynaptic CB(1) signaling, which in turn controls the direction of short-term heterosynaptic plasticity.
Collapse
|