1
|
Yan J, Luo Q, Chen Z, Wang Z, Guo X, Xie Q, Oetomo D, Tan Y, Niu CM. Spike-Based Neuromorphic Model of Spasticity for Generation of Affected Neural Activity. IEEE Trans Neural Syst Rehabil Eng 2025; 33:1360-1371. [PMID: 40173059 DOI: 10.1109/tnsre.2025.3557044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Spasticity is a common motor symptom that disrupt muscle contraction and hence movements. Proper management of spasticity requires identification of its origins and reasoning of the therapeutic plans. Challenges arise because spasticity might originate from elevated activity in both the cortical and sub-cortical pathways. No existing models (animal or computational) could cover all possibilities leading to spasticity, especially the peripheral causes such as hyperreflexia. To bridge this gap, this work develops a novel computational, spike-based neuromorphic model of spasticity, named NEUSPA. Rather than relying solely on a monosynaptic spinal loop comprising alpha motoneurons, sensory afferents, synapses, skeletal muscles, and muscle spindles, the NEUSPA model introduces two additional inputs: additive (ADD) and multiplicative (MUL). These inputs generate velocity-dependent EMG responses. The effectiveness of the NEUSPA model is validated using classic experiments from the literature and data collected from two post-stroke patients with affected upper-limb movements. The model is also applied to simulate two real-world scenarios that patients may encounter. Simulation results suggest that hyperreflexia due to extra inputs was sufficient to produce spastic EMG responses. However, EMG onsets were more sensitive to ADD inputs (slope =0.628, p <0.0001, r ${}^{{2}} =0.96$ ) compared to MUL inputs (slope =0.471, p <0.0001, r ${}^{{2}} =0.92$ ). Additionally, simulation of finger-pressing on a deformable object indicated that spasticity could increase the duration from 1.03s to 1.20s compared to a non-impaired condition. These results demonstrate that NEUSPA effectively synthesizes abnormal physiological data, facilitating decision-making and machine learning in neurorehabilitation.
Collapse
|
2
|
Kopke JV, Ellis MD, Hargrove LJ. Human-in-the-Loop Myoelectric Pattern Recognition Control of an Arm-Support Robot to Improve Reaching in Stroke Survivors. IEEE Trans Neural Syst Rehabil Eng 2025; 33:1108-1117. [PMID: 40053619 PMCID: PMC12013382 DOI: 10.1109/tnsre.2025.3549376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
The objective of this study was to assess the feasibility and efficacy of using real-time human-in-the-loop pattern recognition-based myoelectric control to control vertical support force or vertical position to improve reach in individuals with chronic stroke. This work attempts to move proven lab-based static arm support paradigms towards a controllable wearable device. A machine learning (linear discriminant analysis)-based myoelectric pattern recognition system based on movement intent as determined by real-time muscle activation was used to control incremental changes in either vertical position or vertical support force during a reach and retrieve task, with the goal of improving reaching function. Performance under real-time control of both options was compared to two unchanging static-support conditions (current gold standard) and a no-support condition. Both real-time control paradigms were successfully implemented and resulted in greater forward-reaching performance as demonstrated by increased elbow extension and horizontal shoulder adduction compared to no-support and was not different from the current gold standard static support paradigms. Muscle activation levels with real-time support were lower than the no-support condition and similar to those observed during the static support paradigms. Real-time detection of user intent was successful in controlling both vertical position and vertical support force and enabled greater reaching distance than without it demonstrating both its feasibility and efficacy albeit with some limitations.
Collapse
|
3
|
Chen B, Yang T, Liao Z, Sun F, Mei Z, Zhang W. Pathophysiology and Management Strategies for Post-Stroke Spasticity: An Update Review. Int J Mol Sci 2025; 26:406. [PMID: 39796261 PMCID: PMC11721500 DOI: 10.3390/ijms26010406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/22/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Post-stroke spasticity (PSS), characterized by a velocity-dependent increase in muscle tone and exaggerated reflexes, affects a significant portion of stroke patients and presents a substantial obstacle to post-stroke rehabilitation. Effective management and treatment for PSS remains a significant clinical challenge in the interdisciplinary aspect depending on the understanding of its etiologies and pathophysiology. We systematically review the relevant literature and provide the main pathogenic hypotheses: alterations in the balance of excitatory and inhibitory inputs to the descending pathway or the spinal circuit, which are secondary to cortical and subcortical ischemic or hemorrhagic injury, lead to disinhibition of the stretch reflex and increased muscle tone. Prolongation of motoneuron responses to synaptic excitation by persistent inward currents and secondary changes in muscle contribute to hypertonia. The guidelines for PSS treatment advocate for a variety of therapeutic approaches, yet they are hindered by constraints such as dose-dependent adverse effects, high cost, and limited therapeutic efficacy. Taken together, we highlight key processes of PSS pathophysiology and summarize many interventions, including neuroprotective agents, gene therapy, targeted therapy, physiotherapy, NexTGen therapy and complementary and alternative medicine. We aim to confer additional clinical benefits to patients and lay the foundation for the development of new potential therapies against PSS.
Collapse
Affiliation(s)
- Bei Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (B.C.); (T.Y.); (Z.L.); (F.S.)
| | - Tong Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (B.C.); (T.Y.); (Z.L.); (F.S.)
| | - Zi Liao
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (B.C.); (T.Y.); (Z.L.); (F.S.)
| | - Feiyue Sun
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (B.C.); (T.Y.); (Z.L.); (F.S.)
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (B.C.); (T.Y.); (Z.L.); (F.S.)
| | - Wenli Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
4
|
Mesquita RNO, Taylor JL, Heckman CJ, Trajano GS, Blazevich AJ. Persistent inward currents in human motoneurons: emerging evidence and future directions. J Neurophysiol 2024; 132:1278-1301. [PMID: 39196985 DOI: 10.1152/jn.00204.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/30/2024] Open
Abstract
The manner in which motoneurons respond to excitatory and inhibitory inputs depends strongly on how their intrinsic properties are influenced by the neuromodulators serotonin and noradrenaline. These neuromodulators enhance the activation of voltage-gated channels that generate persistent (long-lasting) inward sodium and calcium currents (PICs) into the motoneurons. PICs are crucial for initiating, accelerating, and maintaining motoneuron firing. A greater accessibility to state-of-the-art techniques that allows both the estimation and examination of PIC modulation in tens of motoneurons in vivo has rapidly evolved our knowledge of how motoneurons amplify and prolong the effects of synaptic input. We are now in a position to gain substantial mechanistic insight into the role of PICs in motor control at an unprecedented pace. The present review briefly describes the effects of PICs on motoneuron firing and the methods available for estimating them before presenting the emerging evidence of how PICs can be modulated in health and disease. Our rapidly developing knowledge of the potent effects of PICs on motoneuron firing has the potential to improve our understanding of how we move, and points to new approaches to improve motor control. Finally, gaps in our understanding are highlighted and methodological advancements are suggested to encourage readers to explore outstanding questions to further elucidate PIC physiology.
Collapse
Affiliation(s)
- Ricardo N O Mesquita
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Discipline of Exercise and Sports Science, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
- Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Janet L Taylor
- Discipline of Exercise and Sports Science, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
- Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - C J Heckman
- Departments of Neuroscience, Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Anthony J Blazevich
- Discipline of Exercise and Sports Science, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| |
Collapse
|
5
|
Sinha N, Dewald JPA, Yang Y. Perturbation-induced electromyographic activity is predictive of flexion synergy expression and a sensitive measure of post-stroke motor impairment. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039166 PMCID: PMC11883170 DOI: 10.1109/embc53108.2024.10781597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The goal of this study was to explore whether the stretch reflex-induced muscle activity is correlated with the expression of the flexion synergy and, therefore, can serve as a quantitative indicator of post-stroke motor impairment. Eleven stroke participants stroke were recruited for this study. Their forearm was connected to a robotic device that applied continuous position perturbations to the paretic elbow joint. The magnitude of EMG activity of the spastic biceps brachii was measured. The expression of the flexion synergy was determined using the increase of synergistic elbow flexion torque when subjects were gradually lifting their paretic arm with two derived measures: normalized flexion synergy area (NFSA) and the mean slope of the expression of flexion synergy (ΔFS). Significant positive correlations were found between spastic biceps EMG (predictor variable) and the flexion synergy expression (response variables), i.e., NFSA (ρ = 0.89, p < 0.001) and ΔFS (ρ = 0.73, p = 0.01). This result indicates that the perturbation-induced EMG activity can serve as a sensitive indicator of post-stroke motor impairments related to the expression of spasticity and flexion synergy and demonstrates that these motor impairments may be mechanistically linked.
Collapse
|
6
|
Cai NM, Dewald JPA, Gurari N. Individuals with hemiparetic stroke abnormally perceive their elbow torques when abducting their paretic shoulder. Clin Neurophysiol 2023; 156:38-46. [PMID: 37862726 PMCID: PMC10842013 DOI: 10.1016/j.clinph.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 08/15/2023] [Accepted: 09/11/2023] [Indexed: 10/22/2023]
Abstract
OBJECTIVE Individuals with hemiparetic stroke exhibit an abnormal coupling between shoulder abduction and elbow flexion, or flexion synergy, due to an increased reliance on cortico-bulbospinal pathways. While this motor impairment is well documented, its impact on how movements are perceived remains unexplored. This study investigates whether individuals with hemiparetic stroke accurately perceive torques at their paretic elbow while abducting at their shoulder. METHODS Ten individuals with hemiparetic stroke participated. We recorded the extent of their abnormal joint coupling as the torque at their elbow, with respect to the maximum voluntary torque in elbow flexion, when abducting at their shoulder. Next, we estimated the perception of their elbow torque by reporting their errors on our torque-matching task. RESULTS When abducting at the shoulder, the participants with stroke generated a greater non-volitional torque at their paretic elbow (13.2 ± 8.7%) than their non-paretic elbow (1.2 ± 11.2%) (p = 0.003). Regarding the perception of our torque-matching task, participants overestimated their torques to a lesser extent at their paretic elbow (1.8 ± 6.6%) than at their non-paretic elbow (6.2 ± 5.4%) (p = 0.004). CONCLUSIONS Torque perception at the paretic elbow differed from the non-paretic elbow when abducting at the shoulder. SIGNIFICANCE This work advances our understanding of the i) somatosensory deficits occurring post hemiparetic stroke and ii) neural basis of torque perception.
Collapse
Affiliation(s)
- Ninghe M Cai
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL 60611, USA
| | - Julius P A Dewald
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL 60611, USA; Department of Biomedical Engineering, Northwestern University, Chicago, IL 60611, USA
| | - Netta Gurari
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL 60611, USA; Department of Biomedical Engineering & Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
7
|
Beauchamp JA, Hassan AS, McPherson LM, Negro F, Pearcey GEP, Cummings M, Heckman CJ, Dewald JPA. Motor unit firing rate modulation is more impaired during flexion synergy-driven contractions of the biceps brachii in chronic stroke. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.22.23298905. [PMID: 38045404 PMCID: PMC10690344 DOI: 10.1101/2023.11.22.23298905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Following a hemiparetic stroke, individuals exhibit altered motor unit firing patterns during voluntary muscle contractions, including impairments in firing rate modulation and recruitment. These individuals also exhibit abnormal muscle coactivation through multi-joint synergies (e.g., flexion synergy). Here, we investigate whether motor unit firing activity during flexion synergy-driven contractions of the paretic biceps brachii differs from that of voluntary contractions and use these differences to predict changes in descending motor commands. To accomplish this, we characterized motor unit firing patterns of the biceps brachii in individuals with chronic hemiparetic stroke during voluntary isometric elbow flexion contractions in the paretic and non-paretic limbs, as well as during contractions driven by voluntary effort and by flexion synergy expression in the paretic limb. We observed significant reductions in motor unit firing rate modulation from the non-paretic to paretic limb (non-paretic - paretic: 0.14 pps/%MVT, 95% CI: [0.09 0.19]) that were further reduced during synergy-driven contractions (voluntary paretic - synergy driven: 0.19 pps/%MVT, 95% CI: [0.14 0.25]). Moreover, using recently developed metrics, we evaluated how a stroke-induced reliance on indirect motor pathways alters the inputs that motor units receive and revealed progressive increases in neuromodulatory and inhibitory drive to the motor pool in the paretic limb, with the changes greatest during synergy-driven contractions. These findings suggest that an interplay between heightened neuromodulatory drive and alterations in inhibitory command structure may account for the observed motor unit impairments, further illuminating underlying neural mechanisms involved in the flexion synergy and its impact on motor unit firing patterns post-stroke.
Collapse
|
8
|
Chen Z, Liu Y, Yan J, Wang J, Oetomo D, Tan Y, Niu CM. Differentiation in additive and multiplicative inputs to motoneuron pool as origins of spasticity - a neuromorphic modeling study . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083678 DOI: 10.1109/embc40787.2023.10340479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Spasticity is characterized by a velocity-dependent increase in the tonic stretch reflex. Evidence suggests that spasticity originates from hyperactivity in the descending tract or reflex loop. To pinpoint the source of hyperactivity, however, is difficult due to lack of human data in-vivo. Thus, we implemented a neuromorphic model to revive the neurodynamics with spiking neuronal activity. Two types of input were modeled: (1) the additive condition (ADD) to apply tonic synaptic inputs directly into the reflex loop; (2) the multiplicative (MUL) condition to adjust the loop gains within the reflex loop. Results show that both conditions produced antagonist EMG responses resembling patient data. The timing of spasticity is more sensitive to the ADD condition, whereas the amplitude of spastic EMG is more sensitive to the MUL condition. In conclusion, our model shows that both additive and multiplicative hyperactivities suffice to elicit velocity-dependent spastic electromyographic signals (EMG), but with different sensitivities. This simulation study suggests that spasticity caused by different origins may be discernable by the progression of severity, which may help individualized goalsetting and parameter-selection in rehabilitation.Clinical Relevance-Potential application of neuromorphic modeling on spasticity includes selection of parameters for therapeutic plans, such as movement range, repetition, and load.
Collapse
|
9
|
Klein C, Liu H, Zhao C, Huang W. Altered flexor carpi radialis motor axon excitability properties after cerebrovascular stroke. Front Neurol 2023; 14:1172960. [PMID: 37284180 PMCID: PMC10240235 DOI: 10.3389/fneur.2023.1172960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/12/2023] [Indexed: 06/08/2023] Open
Abstract
Background Spinal motoneurons may become hyperexcitable after a stroke. Knowledge about motoneuron hyperexcitability remains clinically important as it may contribute to a number of phenomena including spasticity, flexion synergies, and abnormal limb postures. Hyperexcitability seems to occur more often in muscles that flex the wrist and fingers (forearm flexors) compared to other upper limb muscles. The cause of hyperexcitability remains uncertain but may involve plastic changes in motoneurons and their axons. Aim To characterize intrinsic membrane properties of flexor carpi radialis (FCR) motor axons after stroke using nerve excitability testing. Methods Nerve excitability testing using threshold tracking techniques was applied to characterize FCR motor axon properties in persons who suffered a first-time unilateral cortical/subcortical stroke 23 to 308 days earlier. The median nerve was stimulated at the elbow bilaterally in 16 male stroke subjects (51.4 ± 2.9 y) with compound muscle action potentials recorded from the FCR. Nineteen age-matched males (52.7 ± 2.4 y) were also tested to serve as controls. Results Axon parameters after stroke were consistent with bilateral hyperpolarization of the resting potential. Nonparetic and paretic side axons were modeled by a 2.6-fold increase in pump currents (IPumpNI) together with an increase (38%-33%) in internodal leak conductance (GLkI) and a decrease (23%-29%) in internodal H conductance (Ih) relative to control axons. A decrease (14%) in Na+ channel inactivation rate (Aah) was also needed to fit the paretic axon recovery cycle. "Fanning out" of threshold electrotonus and the resting I/V slope (stroke limbs combined) correlated with blood potassium [K+] (R = -0.61 to 0.62, p< 0.01) and disability (R = -0.58 to 0.55, p < 0.05), but not with spasticity, grip strength, or maximal FCR activity. Conclusion In contrast to our expectations, FCR axons were not hyperexcitable after stroke. Rather, FCR axons were found to be hyperpolarized bilaterally post stroke, and this was associated with disability and [K+]. Reduced FCR axon excitability may represent a kind of bilateral trans-synaptic homeostatic mechanism that acts to minimize motoneuron hyperexcitability.
Collapse
|
10
|
Cai NM, Gurari N. Perception of Torque is Impacted by a Subset of Features Related to the Motor Command. IEEE TRANSACTIONS ON HAPTICS 2023; 16:194-203. [PMID: 37027580 PMCID: PMC11412301 DOI: 10.1109/toh.2023.3249473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Accurate perception of one's self-generated torques is integral to sensorimotor control. Here, we examined how features of the motor control task, specifically the variability, duration, muscle activation pattern, and magnitude of torque generation, relate to one's perception of torque. Nineteen participants generated and perceived 25% of their maximum voluntary torque (MVT) in elbow flexion while simultaneously abducting at their shoulder to 10%, 30%, or 50% of their MVT in shoulder abduction (MVT[Formula: see text]). Subsequently, participants matched the elbow torque without feedback and without activating their shoulder. The shoulder abduction magnitude affected the time to stabilize the elbow torque (p 0.001), but did not significantly impact the variability of generating the elbow torque (p = 0.120) or the co-contraction between the elbow flexor and extensor muscles (p = 0.265). The shoulder abduction magnitude influenced perception (p = 0.001) in that the error in matching the elbow torque increased with an increased shoulder abduction torque. However, the torque matching errors neither correlated with the time to stabilize and variability in generating the elbow torque, nor the co-contraction of the elbow muscles. These findings suggest that the total torque generated during a multi-joint task impacts the perception of a torque about a single joint; yet, effective and efficient generation of the torque about a single joint does not impact the torque percept.
Collapse
|
11
|
Kamper D, Barry A, Bansal N, Stoykov ME, Triandafilou K, Vidakovic L, Seo N, Roth E. Use of cyproheptadine hydrochloride (HCl) to reduce neuromuscular hypertonicity in stroke survivors: A Randomized Trial: Reducing Hypertonicity in Stroke. J Stroke Cerebrovasc Dis 2022; 31:106724. [PMID: 36054974 PMCID: PMC9533231 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 10/14/2022] Open
Abstract
OBJECTIVES The goal of this study was to examine how the administration and dosing of the anti-serotonergic medication cyproheptadine hydrochloride (HCl) affects involuntary muscle hypertonicity of the spastic and paretic hands of stroke survivors. MATERIALS AND METHODS A randomized, double-blinded, placebo-controlled longitudinal intervention study was performed as a component of a larger clinical trial. 94 stroke survivors with chronic, severe hand impairment, rated as levels 2 or 3 on the Chedoke-McMaster Stroke Assessment Stage of Hand (CMSA-H), were block randomized to groups receiving doses of cyproheptadine HCl or matched doses of placebo. Doses were increased from 4 mg BID to 8 mg TID over 3 weeks. Outcomes were assessed at baseline and after each of the three weeks of intervention. Primary outcome measure was grip termination time; other measures included muscle strength, spasticity, coactivation of the long finger flexors, and recording of potential adverse effects such as sleepiness and depression. RESULTS 89 participants (receiving cyproheptadine HCl: 44, receiving placebo: 45) completed the study. The Cyproheptadine group displayed significant reduction in grip termination time, in comparison with the Placebo group (p<0.05). Significant change in the Cyproheptadine group (45% time reduction) was observed after only one week at the 4mg BID dosage. The effect was pronounced for those participants in the Cyproheptadine group with more severe hand impairment (CMSA-H level 2) at baseline. Conversely, no significant effect of Group * Session interaction was observed for spasticity (p=0.6) or coactivation (p=0.53). There were no significant changes in strength (p=0.234) or depression (p=0.441) during the trial. CONCLUSIONS Use of cyproheptadine HCl was associated with a significant reduction in relaxation time of finger flexor muscles, without adversely affecting voluntary strength, although spasticity and coactivation were unchanged. Decreasing the duration of involuntary flexor activity can facilitate object release and repeated prehensile task performance. REGISTRATION Clinical Trial number: NCT02418949.
Collapse
Affiliation(s)
- Derek Kamper
- UNC/NC State Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina, USA, Closed-Loop Engineering for Advanced Rehabilitation Research Core, North Carolina State University, Raleigh, North Carolina, USA, Department of Physical Medicine & Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alexander Barry
- Shirley Ryan AbilityLab, Arms + Hands Lab, Chicago, IL, USA.
| | - Naveen Bansal
- Marquette University, Department of Mathematical and Statistical Sciences, Milwaukee, WI, USA
| | - Mary Ellen Stoykov
- Shirley Ryan AbilityLab, Arms + Hands Lab, Chicago, IL, USA, Department of Physical Medicine & Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Lynn Vidakovic
- Shirley Ryan AbilityLab, Chicago, IL, USA, Department of Physical Medicine & Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - NaJin Seo
- Medical University of South Carolina, Rehabilitation Sciences, Charleston, SC, USA
| | - Elliot Roth
- Medical University of South Carolina, Rehabilitation Sciences, Charleston, SC, USA
| |
Collapse
|
12
|
Patterson JR, Dewald JPA, Drogos JM, Gurari N. Impact of Voluntary Muscle Activation on Stretch Reflex Excitability in Individuals With Hemiparetic Stroke. Front Neurol 2022; 13:764650. [PMID: 35359658 PMCID: PMC8964046 DOI: 10.3389/fneur.2022.764650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/07/2022] [Indexed: 11/21/2022] Open
Abstract
Objective To characterize how, following a stretch-induced attenuation, volitional muscle activation impacts stretch reflex activity in individuals with stroke. Methods A robotic device rotated the paretic elbow of individuals with hemiparetic stroke from 70° to 150°, and then back to 70° elbow flexion at an angular speed of 120°/s. This stretching sequence was repeated 20 times. Subsequently, participants volitionally activated their elbow musculature or rested. Finally, the stretching sequence was repeated another 20 times. The flexors' stretch reflex activity was quantified as the net torque measured at 135°. Results Data from 15 participants indicated that the stretching sequence attenuated the flexion torque (p < 0.001) and resting sustained the attenuation (p = 1.000). Contrastingly, based on data from 14 participants, voluntary muscle activation increased the flexion torque (p < 0.001) to an initial pre-stretch torque magnitude (p = 1.000). Conclusions Stretch reflex attenuation induced by repeated fast stretches may be nullified when individuals post-stroke volitionally activate their muscles. In contrast, resting may enable a sustained reflex attenuation if the individual remains relaxed. Significance Stretching is commonly implemented to reduce hyperactive stretch reflexes following a stroke. These findings suggest that stretch reflex accommodation arising from repeated fast stretching may be reversed once an individual volitionally moves their paretic arm.
Collapse
Affiliation(s)
- Jacqueline R. Patterson
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
- Northwestern University Interdepartmental Neuroscience, Northwestern University, Chicago, IL, United States
- Department of Physiology, Northwestern University, Chicago, IL, United States
| | - Julius P. A. Dewald
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
- Northwestern University Interdepartmental Neuroscience, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| | - Justin M. Drogos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
| | - Netta Gurari
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
- Northwestern University Interdepartmental Neuroscience, Northwestern University, Chicago, IL, United States
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, United States
| |
Collapse
|
13
|
Mu JD, Ma LX, Zhang Z, Yu WY, Sun TY, Qian X, Tian Y, Wang JX. Acupuncture alleviates spinal hyperreflexia and motor dysfunction in post-ischemic stroke rats with spastic hypertonia via KCC2-mediated spinal GABA A activation. Exp Neurol 2022; 354:114027. [PMID: 35245503 DOI: 10.1016/j.expneurol.2022.114027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/18/2022] [Accepted: 02/24/2022] [Indexed: 11/17/2022]
Abstract
The majority of patients simultaneously develop motor dysfunction and spastic hypertonia after ischemic strokes, which can be associated with an increasing trend in motor impairments, seriously impeding the rehabilitation process. Evidence suggests that some deficits in the KCC2 expression in the spinal cord along with maladaptive endogenous plasticity via GABAA receptors are often involved in the pathology of spastic hypertonia after a stroke. In this respect, acupuncture has been commonly used in clinical settings for post-stroke patients' rehabilitation. Nevertheless, the mechanism of the modulating activity of this alternative medicine in the spinal pathways to relieve spasticity and improve functional recovery after a stroke has still remained unclear. Utilizing laser speckle imaging, functional assessments (viz. neurologic function scale, muscular tension scale, foot balance test, and gait analysis), H-reflex recording, TTC, Western blotting, RT-qPCR, ELISA, and immunofluorescence molecular assay, the study results illustrated that acupuncture could significantly alleviate the spinal hyperreflexia, decrease muscle tone, and enhance locomotor function by elevating the GABA, KCC2, and GABAAγ2 expressions in the lumbar spine of a rat model of post-ischemic stroke with spastic hypertonia. Furthermore, the KCC2 antagonist DIOA abolished the benefits induced by this practice. Overall, the data revealed that acupuncture is a promising therapeutic approach for spastic hypertonia after a stroke, and the positive outcomes in this sense could be achieved via activating the KCC2-mediated spinal GABAA signaling pathway.
Collapse
Affiliation(s)
- Jie-Dan Mu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Liang-Xiao Ma
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China; The Key Unit of State Administration of Traditional Chinese Medicine, Evaluation of Characteristic Acupuncture Therapy, Beijing 100029, China.
| | - Zhou Zhang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wen-Yan Yu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Tian-Yi Sun
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xu Qian
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuan Tian
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jun-Xiang Wang
- School of Nursing, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
14
|
Kopke JV, Hargrove LJ, Ellis MD. Coupling of shoulder joint torques in individuals with chronic stroke mirrors controls, with additional non-load-dependent negative effects in a combined-torque task. J Neuroeng Rehabil 2021; 18:134. [PMID: 34496876 PMCID: PMC8425046 DOI: 10.1186/s12984-021-00924-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 08/23/2021] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND After stroke, motor control is often negatively affected, leaving survivors with less muscle strength and coordination, increased tone, and abnormal synergies (coupled joint movements) in their affected upper extremity. Humeral internal and external rotation have been included in definitions of abnormal synergy but have yet to be studied in-depth. OBJECTIVE Determine the ability to generate internal and external rotation torque under different shoulder abduction and adduction loads in persons with chronic stroke (paretic and non-paretic arm) and uninjured controls. METHODS 24 participants, 12 with impairments after stroke and 12 controls, completed this study. A robotic device controlled abduction and adduction loading to 0, 25, and 50% of maximum strength in each direction. Once established against the vertical load, each participant generated maximum internal and external rotation torque in a dual-task paradigm. Four linear mixed-effects models tested the effect of group (control, non-paretic, and paretic), load (0, 25, 50% adduction or abduction), and their interaction on task performance; one model was created for each combination of dual-task directions (external or internal rotation during abduction or adduction). The protocol was then modeled using OpenSim to understand and explain the role of biomechanical (muscle action) constraints on task performance. RESULTS Group was significant in all task combinations. Paretic arms were less able to generate internal and external rotation during abduction and adduction, respectively. There was a significant effect of load in three of four load/task combinations for all groups. Load-level and group interactions were not significant, indicating that abduction and adduction loading affected each group in a similar manner. OpenSim musculoskeletal modeling mirrored the experimental results of control and non-paretic arms and also, when adjusted for weakness, paretic arm performance. Simulations incorporating increased co-activation mirrored the drop in performance observed across all dual-tasks in paretic arms. CONCLUSION Common biomechanical constraints (muscle actions) explain limitations in external and internal rotation strength during adduction and abduction dual-tasks, respectively. Additional non-load-dependent effects such as increased antagonist co-activation (hypertonia) may cause the observed decreased performance in individuals with stroke. The inclusion of external rotation in flexion synergy and of internal rotation in extension synergy may be over-simplifications.
Collapse
Affiliation(s)
- Joseph V. Kopke
- grid.16753.360000 0001 2299 3507Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, 2145 N Sheridan Rd, Evanston, IL 60208 USA
| | - Levi J. Hargrove
- grid.280535.90000 0004 0388 0584Center for Bionic Medicine, Shirley Ryan AbilityLab, 355 East Erie, Chicago, IL 60611 USA
| | - Michael D. Ellis
- grid.16753.360000 0001 2299 3507Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL 60611 USA
| |
Collapse
|
15
|
Binder-Markey BI, Murray WM, Dewald JPA. Passive Properties of the Wrist and Fingers Following Chronic Hemiparetic Stroke: Interlimb Comparisons in Persons With and Without a Clinical Treatment History That Includes Botulinum Neurotoxin. Front Neurol 2021; 12:687624. [PMID: 34447346 PMCID: PMC8383209 DOI: 10.3389/fneur.2021.687624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/02/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Neural impairments that follow hemiparetic stroke may negatively affect passive muscle properties, further limiting recovery. However, factors such as hypertonia, spasticity, and botulinum neurotoxin (BoNT), a common clinical intervention, confound our understanding of muscle properties in chronic stroke. Objective: To determine if muscle passive biomechanical properties are different following prolonged, stroke-induced, altered muscle activation and disuse. Methods: Torques about the metacarpophalangeal and wrist joints were measured in different joint postures in both limbs of participants with hemiparetic stroke. First, we evaluated 27 participants with no history of BoNT; hand impairments ranged from mild to severe. Subsequently, seven participants with a history of BoNT injections were evaluated. To mitigate muscle hypertonia, torques were quantified after an extensive stretching protocol and under conditions that encouraged participants to sleep. EMGs were monitored throughout data collection. Results: Among participants who never received BoNT, no significant differences in passive torques between limbs were observed. Among participants who previously received BoNT injections, passive flexion torques about their paretic wrist and finger joints were larger than their non-paretic limb (average interlimb differences = +42.0 ± 7.6SEM Ncm, +26.9 ± 3.9SEM Ncm, respectively), and the range of motion for passive finger extension was significantly smaller (average interlimb difference = -36.3° ± 4.5°SEM; degrees). Conclusion: Our results suggest that neural impairments that follow chronic, hemiparetic stroke do not lead to passive mechanical changes within the wrist and finger muscles. Rather, consistent with animal studies, the data points to potential adverse effects of BoNT on passive muscle properties post-stroke, which warrant further consideration.
Collapse
Affiliation(s)
- Benjamin I Binder-Markey
- Department of Physical Therapy and Rehabilitation Sciences, Drexel University, Philadelphia, PA, United States.,School of Biomedical Engineering Science and Health Systems, Drexel University, Philadelphia, PA, United States.,Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States.,Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States.,Department of Physical Medicine and Rehabilitation Science, Northwestern University, Chicago, IL, United States.,Shirley Ryan Ability Lab, Chicago, IL, United States
| | - Wendy M Murray
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States.,Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States.,Department of Physical Medicine and Rehabilitation Science, Northwestern University, Chicago, IL, United States.,Shirley Ryan Ability Lab, Chicago, IL, United States.,Research Service, Edward Hines Jr., VA Hospital, Hines, IL, United States
| | - Julius P A Dewald
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States.,Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States.,Department of Physical Medicine and Rehabilitation Science, Northwestern University, Chicago, IL, United States
| |
Collapse
|
16
|
Geed S, Grainger M, Harris-Love ML, Lum PS, Dromerick AW. Shoulder position and handedness differentially affect excitability and intracortical inhibition of hand muscles. Exp Brain Res 2021; 239:1517-1530. [PMID: 33751158 PMCID: PMC8317198 DOI: 10.1007/s00221-021-06077-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2021] [Indexed: 10/22/2022]
Abstract
Individuals with stroke show distinct differences in hand function impairment when the shoulder is in adduction, within the workspace compared to when the shoulder is abducted, away from the body. To better understand how shoulder position affects hand control, we tested the corticomotor excitability and intracortical control of intrinsic and extrinsic hand muscles important for grasp in twelve healthy individuals. Motor evoked potentials (MEP) using single and paired-pulse transcranial magnetic stimulation were elicited in extensor digitorum communis (EDC), flexor digitorum superficialis (FDS), first dorsal interosseous (FDI), and abductor pollicis brevis (APB). The shoulder was fully supported in horizontal adduction (ADD) or abduction (ABD). Separate mixed-effect models were fit to the MEP parameters using shoulder position (or upper-extremity [UE] side) as fixed and participants as random effects. In the non-dominant UE, EDC showed significantly greater MEPs in shoulder ABD than ADD. In contrast, the dominant side EDC showed significantly greater MEPs in ADD compared to ABD; %facilitation of EDC on dominant side showed significant stimulus intensity x position interaction, EDC excitability was significantly greater in ADD at 150% of the resting threshold. Intrinsic hand muscles of the dominant UE received significantly more intracortical inhibition (SICI) when the shoulder was in ADD compared to ABD; there was no position-dependent modulation of SICI on the non-dominant side. Our findings suggest that these resting-state changes in hand muscle excitabilities reflect the natural statistics of UE movements, which in turn may arise from as well as shape the nature of shoulder-hand coupling underlying UE behaviors.
Collapse
Affiliation(s)
- Shashwati Geed
- Center for Brain Plasticity and Recovery, Department of Rehabilitation Medicine, Georgetown University Medical Center, Washington, DC, USA.
- Neuroscience Research Center, MedStar National Rehabilitation Hospital, 102 Irving St. NW, 1060, Washington, DC, 0010, USA.
| | - Megan Grainger
- Neuroscience Research Center, MedStar National Rehabilitation Hospital, 102 Irving St. NW, 1060, Washington, DC, 0010, USA
| | - Michelle L Harris-Love
- Neuroscience Research Center, MedStar National Rehabilitation Hospital, 102 Irving St. NW, 1060, Washington, DC, 0010, USA
| | - Peter S Lum
- Neuroscience Research Center, MedStar National Rehabilitation Hospital, 102 Irving St. NW, 1060, Washington, DC, 0010, USA
- Department of Bioengineering, The Catholic University of America, Washington, DC, USA
| | - Alexander W Dromerick
- Center for Brain Plasticity and Recovery, Department of Rehabilitation Medicine, Georgetown University Medical Center, Washington, DC, USA
- Neuroscience Research Center, MedStar National Rehabilitation Hospital, 102 Irving St. NW, 1060, Washington, DC, 0010, USA
| |
Collapse
|
17
|
Deficits in corticospinal control of stretch reflex thresholds in stroke: Implications for motor impairment. Clin Neurophysiol 2020; 131:2067-2078. [DOI: 10.1016/j.clinph.2020.05.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/24/2020] [Accepted: 05/18/2020] [Indexed: 11/22/2022]
|
18
|
Accuracy of older adults in judging self-generated elbow torques during multi-joint isometric tasks. Sci Rep 2020; 10:13011. [PMID: 32747667 PMCID: PMC7400576 DOI: 10.1038/s41598-020-69470-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 07/08/2020] [Indexed: 11/16/2022] Open
Abstract
Successful execution of daily activities requires accurate perception of the torques one generates about multiple joints. Even so, previous studies are mostly limited to an individual’s perception when torques are generated about a single joint. Consequently, this study investigates how accurately individuals judge torques at their arm during a multi-joint task. The accuracy of fifteen right-hand dominant participants (age: 60 ± 10 years) in matching isometric elbow torques, within the same arm, was quantified during single- and/or multi-joint tasks. Participants generated and matched elbow torques when the shoulder was: (1) not abducted (single-to-single-joint), (2) abducted (multi-to-multi-joint), and (3) abducted and then not abducted (multi-to-single-joint). The constant error for the multi-to-single-joint condition (dominant: 6.9 ± 5.9 Nm, non-dominant: 6.0 ± 5.5 Nm) was greater than that for the single-to-single-joint condition (dominant: 2.7 ± 3.1 Nm, non-dominant: 3.4 ± 2.8 Nm) (p < 0.001) and multi-to-multi-joint condition (dominant: 3.0 ± 2.8 Nm, non-dominant: 3.9 ± 2.7 Nm) (p < 0.001). The constant error for the multi-to-multi-joint condition did not significantly differ from that of the single-to-single-joint condition (p \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$=$$\end{document}= 0.780). Findings indicate that in older adults the perception of a self-generated torque during a 2-degree-of-freedom (DOF), multi-joint task is largely influenced by the motor commands associated with the 2-DOF task and is not specific to the DOF at each joint.
Collapse
|
19
|
Monjo F, Shemmell J. Probing the neuromodulatory gain control system in sports and exercise sciences. J Electromyogr Kinesiol 2020; 53:102442. [DOI: 10.1016/j.jelekin.2020.102442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 01/22/2023] Open
|
20
|
Wilson JM, Thompson CK, McPherson LM, Zadikoff C, Heckman C, MacKinnon CD. Motor Unit Discharge Variability Is Increased in Mild-To-Moderate Parkinson's Disease. Front Neurol 2020; 11:477. [PMID: 32547482 PMCID: PMC7272659 DOI: 10.3389/fneur.2020.00477] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/01/2020] [Indexed: 11/13/2022] Open
Abstract
Individuals with Parkinson's disease (PD) demonstrate deficits in muscle activation such as decreased amplitude and inappropriate bursting. There is evidence that some of these disturbances are more pronounced in extensor vs. flexor muscles. Surface EMG has been used widely to quantify muscle activation deficits in PD, but analysis of discharge of the underlying motor units may provide greater insight and be more sensitive to changes early in the disease. Of the few studies that have examined motor unit discharge in PD, the majority were conducted in the first dorsal interosseous, and no studies have measured motor units from extensor and flexor muscles within the same cohort. The objective of this study was to characterize the firing behavior of single motor units in the elbow flexor and extensor muscles during isometric contractions in people with mild-to-moderate PD. Ten individuals with PD (off-medication) and nine healthy controls were tested. Motor unit spike times were recorded via intramuscular EMG from the biceps and triceps brachii muscles during 30-s isometric contractions at 10% maximum voluntary elbow flexion and elbow extension torque, respectively. We selected variables of mean motor unit discharge rate, discharge variability, and torque variability to evaluate motor abnormalities in the PD group. The effects of group, muscle, and group-by-muscle on each variable were determined using separate linear mixed models. Discharge rate and torque variability were not different between groups, but discharge variability was significantly higher in the PD group for both muscles combined (p < 0.0001). We also evaluated the asymmetry in these motor variables between the triceps and biceps for each individual participant with PD to evaluate whether there was an association with disease severity. The difference in torque variability between elbow flexion and extension was significantly correlated with both the Hoehn and Yahr scale (rho = 0.71) and UPDRS (rho = 0.62). Our findings demonstrate that variability in motor output, rather than decreased discharge rates, may contribute to motor dysfunction in people with mild-to-moderate PD. Our findings provide insight into altered neural control of movement in PD and demonstrate the importance of measuring from multiple muscles within the same cohort.
Collapse
Affiliation(s)
- Jessica M. Wilson
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
| | - Christopher K. Thompson
- Department of Health and Rehabilitation Sciences, Temple University, Philadelphia, PA, United States
| | - Laura Miller McPherson
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO, United States
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Cindy Zadikoff
- Department of Neurology, Northwestern University, Chicago, IL, United States
| | - C.J. Heckman
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
- Department of Physiology, Northwestern University, Chicago, IL, United States
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, United States
| | - Colum D. MacKinnon
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
21
|
Yang Y, Sinha N, Tian R, Gurari N, Drogos JM, Dewald JPA. Quantifying Altered Neural Connectivity of the Stretch Reflex in Chronic Hemiparetic Stroke. IEEE Trans Neural Syst Rehabil Eng 2020; 28:1436-1441. [PMID: 32275603 DOI: 10.1109/tnsre.2020.2986304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Post-stroke flexion synergy limits arm/hand function and is also linked to hyperactive stretch reflexes or spasticity. It is implicated in the increased role of indirect motor pathways following damage to direct corticospinal projections. We hypothesized that this maladaptive neuroplasticity also affects stretch reflexes. Specifically, multi-synaptic interactions in indirect motor pathways may increase nonlinear neural connectivity and time lag between stretch and reflex muscle response. Continuous position perturbations were applied to the elbow joint when eleven participants with stroke generated two levels of shoulder abduction (SABD) torques with their paretic arm to induce synergy-related spasticity. Likewise, the perturbations were applied to eleven control subjects while performing SABD and elbow flexion levels matching the synergy torques in stroke. We quantified linear and non-linear connectivity and the corresponding time lags between perturbations and muscle activity. Enhanced nonlinear connectivity with a prolonged time lag was found in stroke as compared to controls. Non-linear connectivity and time lag also increased with the expression of the flexion synergy, as induced by greater SABD load levels, in stroke. This study provides new evidence of changes in neural connectivity and long-latency time lag in the stretch reflex response post-stroke. The results suggest the contribution of indirect motor pathways to synergy-related spasticity.
Collapse
|
22
|
Hassan A, Thompson CK, Negro F, Cummings M, Powers RK, Heckman CJ, Dewald JPA, McPherson LM. Impact of parameter selection on estimates of motoneuron excitability using paired motor unit analysis. J Neural Eng 2020; 17:016063. [PMID: 31801123 DOI: 10.1088/1741-2552/ab5eda] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Noninvasive estimation of motoneuron excitability in human motoneurons is achieved through a paired motor unit analysis (ΔF) that quantifies hysteresis in the instantaneous firing rates at motor unit recruitment and de-recruitment. The ΔF technique provides insight into the magnitude of neuromodulatory synaptic input and persistent inward currents (PICs). While the ΔF technique is commonly used for estimating motoneuron excitability during voluntary contractions, computational parameters used for the technique vary across studies. A systematic investigation into the relationship between these parameters and ΔF values is necessary. APPROACH We assessed the sensitivity of the ΔF technique with several criteria commonly used in selecting motor unit pairs for analysis and methods used for smoothing the instantaneous motor unit firing rates. Using high-density surface EMG and convolutive blind source separation, we obtained a large number of motor unit pairs (5409) from the triceps brachii of ten healthy individuals during triangular isometric contractions. MAIN RESULTS We found an exponential plateau relationship between ΔF and the recruitment time difference between the motor unit pairs and an exponential decay relationship between ΔF and the de-recruitment time difference between the motor unit pairs, with the plateaus occurring at approximately 1 s and 1.5 s, respectively. Reduction or removal of the minimum threshold for rate-rate correlation of the two units did not affect ΔF values or variance. Removing motor unit pairs in which the firing rate of the control unit was saturated had no significant effect on ΔF. Smoothing the filter selection had no substantial effect on ΔF values and ΔF variance; however, filter selection affected the minimum recruitment and de-recruitment time differences. SIGNIFICANCE Our results offer recommendations for standardized parameters for the ΔF approach and facilitate the interpretation of findings from studies that implement the ΔF analysis but use different computational parameters.
Collapse
Affiliation(s)
- Altamash Hassan
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States of America. Department of Biomedical Engineering, Northwestern University, Chicago, IL, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Beauchamp JA, Patterson JR, Heckman CJ, Dewald JPA. Experimentally Modifiable Parameters and Their Relation to the Tonic Vibration Reflex in Chronic Hemiparetic Stroke. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:2302-2306. [PMID: 31946360 DOI: 10.1109/embc.2019.8857014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The tonic vibration reflex (TVR), a reflexive muscle contraction resulting from muscle or tendon vibration, is a useful tool in assessing spinal motoneuron excitability, particularly in hyperexcitable conditions, such as in chronic hemiparetic stroke. The influence of experimental parameters, for example the type of vibratory stimulus and limb configuration, and their interactions on the TVR response in chronic stroke is unknown, yet this knowledge is crucial for designing experiments with reliable TVR responses. Therefore, we conducted a screening experiment of six potential driving factors affecting the TVR response, with a D-optimal split plot fractional design matrix consisting of thirty-two combinations for each of the four participants with chronic hemiparetic stroke. Our results suggest that pre-vibration muscle activation level, vibration frequency, and stimulus application force, are all significant contributors to the TVR response in chronic hemiparetic stroke, along with an interaction between elbow flexion angle and muscle activity level. This investigation highlights the sensitivity of the TVR response in chronic hemiparetic stroke and motivates future designed experiments in understanding this reflex as it relates to motoneuron excitability.
Collapse
|
24
|
Cai NM, Drogos JM, Dewald JPA, Gurari N. Individuals With Hemiparetic Stroke Accurately Match Torques They Generate About Each Elbow Joint. Front Neurosci 2019; 13:1293. [PMID: 31849597 PMCID: PMC6892973 DOI: 10.3389/fnins.2019.01293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/14/2019] [Indexed: 01/25/2023] Open
Abstract
Background: Successful execution of a task as simple as drinking from a cup and as complicated as cutting food with a fork and knife requires accurate perception of the torques that one generates in each arm. Prior studies have shown that individuals with hemiparetic stroke inaccurately judge their self-generated torques during bimanual tasks; yet, it remains unclear whether these individuals inaccurately judge their self-generated torques during unimanual tasks. Objective: The goal of this work was to determine whether stroke affected how accurately individuals with stroke perceive their self-generated torques during a single-arm task. Methods: Fifteen individuals with hemiparetic stroke and fifteen individuals without neurological impairments partook in this study. Participants generated a target torque about their testing elbow while receiving visual feedback, relaxed, and then matched the target torque about the same elbow without receiving feedback. This task was performed for two target torques (5 Nm, 25% of maximum voluntary torque), two movement directions (flexion, extension), and two arms (left, right). Results: Clinical assessments indicate that eleven participants with stroke had kinaesthetic deficits and two had altered pressure sense; their motor impairments spanned from mild to severe. These participants matched torques at each elbow, for each target torque and movement direction, with a similar accuracy and precision to controls, regardless of the arm tested (p > 0.050). Conclusions: These results indicate that an individual with sensorimotor deficits post-hemiparetic stroke may accurately judge the torques that they generate within each arm. Therefore, while survivors of a hemiparetic stroke may have deficits in accurately judging the torques they generate during bimanual tasks, such deficits do not appear to occur during unimanual tasks.
Collapse
Affiliation(s)
- Ninghe M. Cai
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
| | - Justin M. Drogos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
| | - Julius P. A. Dewald
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, United States
| | - Netta Gurari
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
| |
Collapse
|
25
|
Marchand‐Pauvert V, Peyre I, Lackmy‐Vallee A, Querin G, Bede P, Lacomblez L, Debs R, Pradat P. Absence of hyperexcitability of spinal motoneurons in patients with amyotrophic lateral sclerosis. J Physiol 2019; 597:5445-5467. [DOI: 10.1113/jp278117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/06/2019] [Indexed: 12/18/2022] Open
Affiliation(s)
| | - Iseline Peyre
- Sorbonne Université Inserm, CNRS, Laboratoire d'Imagerie Biomédicale LIB Paris France
| | | | - Giorgia Querin
- Sorbonne Université Inserm, CNRS, Laboratoire d'Imagerie Biomédicale LIB Paris France
- Neurologie, AP‐HP Hôpital Pitié‐Salpêtrière Paris France
| | - Peter Bede
- Sorbonne Université Inserm, CNRS, Laboratoire d'Imagerie Biomédicale LIB Paris France
- Neurologie, AP‐HP Hôpital Pitié‐Salpêtrière Paris France
- Computational Neuroimaging Group Trinity College Dublin Dublin Ireland
| | | | - Rabab Debs
- Neurologie, AP‐HP Hôpital Pitié‐Salpêtrière Paris France
| | - Pierre‐François Pradat
- Sorbonne Université Inserm, CNRS, Laboratoire d'Imagerie Biomédicale LIB Paris France
- Neurologie, AP‐HP Hôpital Pitié‐Salpêtrière Paris France
| |
Collapse
|
26
|
Gurari N, van der Helm NA, Drogos JM, Dewald JPA. Accuracy of Individuals Post-hemiparetic Stroke in Matching Torques Between Arms Depends on the Arm Referenced. Front Neurol 2019; 10:921. [PMID: 31507523 PMCID: PMC6714296 DOI: 10.3389/fneur.2019.00921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/08/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Prior work indicates that 50–75% of individuals post-hemiparetic stroke have upper-extremity weakness and, in turn, inaccurately judge the relative torques that their arms generate during a bimanual task. Recent findings also reveal that these individuals judge the relative torques their arms generate differently depending on whether they reference their paretic vs. non-paretic arm. Objective: Our goal was to determine whether individuals with hemiparetic stroke inaccurately matched torques between arms, regardless of the arm that they referenced. Methods: Fifteen participants with hemiparetic stroke and 10 right-hand dominant controls matched torques between arms. Participants performed this task with their right arm referencing their left arm, and vice versa. Participants generated (1) 5 Nm and (2) 25% of their reference elbow's maximum voluntary torque (MVT) in flexion and extension using their reference arm while receiving audiovisual feedback. Then, participants matched the reference torque using their opposite arm without receiving feedback on their matching performance. Results: Participants with stroke had greater magnitudes of error in matching torques than controls when referencing their paretic arm (p < 0.050), yet not when referencing their non-paretic arm (p > 0.050). The mean magnitude of error when participants with stroke referenced their paretic and non-paretic arm and controls referenced their dominant and non-dominant arm to generate 5 Nm in flexion was 9.4, 2.6, 4.2, and 2.5 Nm, respectively, and in extension was 5.3, 2.8, 2.5, and 2.3 Nm, respectively. However, when the torques generated at each arm were normalized by the corresponding MVT, no differences were found in matching errors regardless of the arm participants referenced (p > 0.050). Conclusions: Results demonstrate the importance of the arm referenced, i.e., paretic vs. non-paretic, on how accurately individuals post-hemiparetic stroke judge their torques during a bimanual task. Results also indicate that individuals with hemiparetic stroke judge torques primarily based on their perceived effort. Finally, findings support the notion that training individuals post-hemiparetic stroke to accurately perceive their self-generated torques, with a focus of their non-paretic arm in relation to their paretic arm, may lead to an improved ability to perform bimanual activities of daily living.
Collapse
Affiliation(s)
- Netta Gurari
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
| | - Nina A van der Helm
- Department of Biomechanical Engineering, Delft University of Technology, Delft, Netherlands
| | - Justin M Drogos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
| | - Julius P A Dewald
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States.,Department of Biomedical Engineering, Northwestern University, Chicago, IL, United States
| |
Collapse
|
27
|
Phan TQ, Nguyen H, Vermillion B, Lee SW. Passive Elbow Movement Assistant (PEMA): A portable exoskeleton to compensate angle-dependent tone profile of the elbow joint post-stroke. IEEE Int Conf Rehabil Robot 2019; 2019:1209-1214. [PMID: 31374794 DOI: 10.1109/icorr.2019.8779365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Significant impairments in upper extremity function are commonly observed after neurological injuries such as stroke. While the efficacy of robotic training has been demonstrated, the use of these devices is confined to the laboratory setting due to its complexity and power requirements. In this study, we developed a passive, portable device (Portable Elbow Movement Assistant; PEMA) that can provide assistance during elbow movements of stroke survivors. The geometric properties of the device were designed to allow morphological changes in the elastic components during movements, so that the assistance produced by the elastic component counteract the angle-dependent flexor hypertonia commonly observed in stroke survivors. A mathematical model for the proposed design was first developed to characterize the assistance provided by the device. The capacity of the device was then tested in a pilot testing with four healthy subjects, for whom a custom device to simulate elbow flexor hypertonia (providing an increased resistance for the extended posture) was implemented. The proposed device was found to effectively counteract the angle-dependent flexion moment, produced by the hypertonia simulator, as a significant decrease was observed in the slope of the angle-activation relationship (movement phase) and activation level (hold phase) of the triceps brachii muscle. The assistance did not affect the activation of the antagonist muscle (biceps brachii), indicating an independent modulation of the agonist and antagonist muscles resulted from the assistance.
Collapse
|
28
|
Murphy S, Durand M, Negro F, Farina D, Hunter S, Schmit B, Gutterman D, Hyngstrom A. The Relationship Between Blood Flow and Motor Unit Firing Rates in Response to Fatiguing Exercise Post-stroke. Front Physiol 2019; 10:545. [PMID: 31133877 PMCID: PMC6524339 DOI: 10.3389/fphys.2019.00545] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/17/2019] [Indexed: 11/22/2022] Open
Abstract
We quantified the relationship between the change in post-contraction blood flow with motor unit firing rates and metrics of fatigue during intermittent, sub-maximal fatiguing contractions of the knee extensor muscles after stroke. Ten chronic stroke survivors (>1-year post-stroke) and nine controls participated. Throughout fatiguing contractions, the discharge timings of individual motor units were identified by decomposition of high-density surface EMG signals. After five consecutive contractions, a blood flow measurement through the femoral artery was obtained using an ultrasound machine and probe designed for vascular measurements. There was a greater increase of motor unit firing rates from the beginning of the fatigue protocol to the end of the fatigue protocol for the control group compared to the stroke group (14.97 ± 3.78% vs. 1.99 ± 11.90%, p = 0.023). While blood flow increased with fatigue for both groups (p = 0.003), the magnitude of post-contraction blood flow was significantly greater for the control group compared to the stroke group (p = 0.004). We found that despite the lower magnitude of muscle perfusion through the femoral artery in the stroke group, blood flow has a greater impact on peripheral fatigue for the control group; however, we observed a significant correlation between change in blood flow and motor unit firing rate modulation (r2 = 0.654, p = 0.004) during fatigue in the stroke group and not the control group (r2 = 0.024, p < 0.768). Taken together, this data showed a disruption between motor unit firing rates and post-contraction blood flow in the stroke group, suggesting that there may be a disruption to common inputs to both the reticular system and the corticospinal tract. This study provides novel insights in the relationship between the hyperemic response to exercise and motor unit firing behavior for post-stroke force production and may provide new approaches for recovery by improving both blood flow and muscle activation simultaneously.
Collapse
Affiliation(s)
- Spencer Murphy
- Integrative Neural Engineering and Rehabilitation Laboratory, Department of Biomedical Engineering, Marquette University, Milwaukee, WI, United States
| | - Matthew Durand
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, Università degli studi di Brescia, Brescia, Italy
| | - Dario Farina
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Sandra Hunter
- Department of Physical Therapy, Marquette University, Milwaukee, WI, United States
| | - Brian Schmit
- Integrative Neural Engineering and Rehabilitation Laboratory, Department of Biomedical Engineering, Marquette University, Milwaukee, WI, United States
| | - David Gutterman
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Allison Hyngstrom
- Integrative Neural Engineering and Rehabilitation Laboratory, Department of Biomedical Engineering, Marquette University, Milwaukee, WI, United States.,Department of Physical Therapy, Marquette University, Milwaukee, WI, United States
| |
Collapse
|
29
|
Li S, Chen YT, Francisco GE, Zhou P, Rymer WZ. A Unifying Pathophysiological Account for Post-stroke Spasticity and Disordered Motor Control. Front Neurol 2019; 10:468. [PMID: 31133971 PMCID: PMC6524557 DOI: 10.3389/fneur.2019.00468] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/17/2019] [Indexed: 11/18/2022] Open
Abstract
Cortical and subcortical plastic reorganization occurs in the course of motor recovery after stroke. It is largely accepted that plasticity of ipsilesional motor cortex primarily contributes to recovery of motor function, while the contributions of contralesional motor cortex are not completely understood. As a result of damages to motor cortex and its descending pathways and subsequent unmasking of inhibition, there is evidence of upregulation of reticulospinal tract (RST) excitability in the contralesional side. Both animal studies and human studies with stroke survivors suggest and support the role of RST hyperexcitability in post-stroke spasticity. Findings from animal studies demonstrate the compensatory role of RST hyperexcitability in recovery of motor function. In contrast, RST hyperexcitability appears to be related more to abnormal motor synergy and disordered motor control in stroke survivors. It does not contribute to recovery of normal motor function. Recent animal studies highlight laterality dominance of corticoreticular projections. In particular, there exists upregulation of ipsilateral corticoreticular projections from contralesional premotor cortex (PM) and supplementary motor area (SMA) to medial reticular nuclei. We revisit and revise the previous theoretical framework and propose a unifying account. This account highlights the importance of ipsilateral PM/SMA-cortico-reticulospinal tract hyperexcitability from the contralesional motor cortex as a result of disinhibition after stroke. This account provides a pathophysiological basis for post-stroke spasticity and related movement impairments, such as abnormal motor synergy and disordered motor control. However, further research is needed to examine this pathway in stroke survivors to better understand its potential roles, especially in muscle strength and motor recovery. This account could provide a pathophysiological target for developing neuromodulatory interventions to manage spasticity and thus possibly to facilitate motor recovery.
Collapse
Affiliation(s)
- Sheng Li
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center – Houston and TIRR Memorial Hermann Hospital, Houston, TX, United States
| | - Yen-Ting Chen
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center – Houston and TIRR Memorial Hermann Hospital, Houston, TX, United States
| | - Gerard E. Francisco
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center – Houston and TIRR Memorial Hermann Hospital, Houston, TX, United States
| | - Ping Zhou
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center – Houston and TIRR Memorial Hermann Hospital, Houston, TX, United States
| | | |
Collapse
|
30
|
McPherson JG, Ellis MD, Harden RN, Carmona C, Drogos JM, Heckman CJ, Dewald JPA. Neuromodulatory Inputs to Motoneurons Contribute to the Loss of Independent Joint Control in Chronic Moderate to Severe Hemiparetic Stroke. Front Neurol 2018; 9:470. [PMID: 29977224 PMCID: PMC6021513 DOI: 10.3389/fneur.2018.00470] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 05/31/2018] [Indexed: 01/01/2023] Open
Abstract
In chronic hemiparetic stroke, increased shoulder abductor activity causes involuntary increases in elbow, wrist, and finger flexor activation, an abnormal muscle coactivation pattern known as the flexion synergy. Recent evidence suggests that flexion synergy expression may reflect recruitment of contralesional cortico-reticulospinal motor pathways following damage to the ipsilesional corticospinal tract. However, because reticulospinal motor pathways produce relatively weak post-synaptic potentials in motoneurons, it is unknown how preferential use of these pathways could lead to robust muscle activation. Here, we hypothesize that the descending neuromodulatory component of the ponto-medullary reticular formation, which uses the monoaminergic neurotransmitters norepinephrine and serotonin, serves as a gain control mechanism to facilitate motoneuron responses to reticulospinal motor commands. Thus, inhibition of the neuromodulatory component would reduce flexion synergy expression by disfacilitating spinal motoneurons. To test this hypothesis, we conducted a pre-clinical study utilizing two targeted neuropharmacological probes and inert placebo in a cohort of 16 individuals with chronic hemiparetic stroke. Test compounds included Tizanidine (TIZ), a noradrenergic α2 agonist and imidazoline ligand selected for its ability to reduce descending noradrenergic drive, and Isradipine, a dihyropyridine calcium-channel antagonist selected for its ability to post-synaptically mitigate a portion of the excitatory effects of monoamines on motoneurons. We used a previously validated robotic measure to quantify flexion synergy expression. We found that Tizanidine significantly reduced expression of the flexion synergy. A predominantly spinal action for this effect is unlikely because Tizanidine is an agonist acting on a baseline of spinal noradrenergic drive that is likely to be pathologically enhanced post-stroke due to increased reliance on cortico-reticulospinal motor pathways. Although spinal actions of TIZ cannot be excluded, particularly from Group II pathways, our finding is consistent with a supraspinal action of Tizanidine to reduce descending noradrenergic drive and disfacilitate motoneurons. The effects of Isradipine were not different from placebo, likely related to poor central bioavailability. These results support the hypothesis that the descending monoaminergic component of the ponto-medullary reticular formation plays a key role in flexion synergy expression in chronic hemiparetic stroke. These results may provide the basis for new therapeutic strategies to complement physical rehabilitation.
Collapse
Affiliation(s)
- Jacob G McPherson
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Michael D Ellis
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - R Norman Harden
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Carolina Carmona
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Justin M Drogos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Charles J Heckman
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Julius P A Dewald
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| |
Collapse
|
31
|
McPherson JG, McPherson LM, Thompson CK, Ellis MD, Heckman CJ, Dewald JPA. Altered Neuromodulatory Drive May Contribute to Exaggerated Tonic Vibration Reflexes in Chronic Hemiparetic Stroke. Front Hum Neurosci 2018; 12:131. [PMID: 29686611 PMCID: PMC5900019 DOI: 10.3389/fnhum.2018.00131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 03/22/2018] [Indexed: 12/05/2022] Open
Abstract
Exaggerated stretch-sensitive reflexes are a common finding in elbow flexors of the contralesional arm in chronic hemiparetic stroke, particularly when muscles are not voluntarily activated prior to stretch. Previous investigations have suggested that this exaggeration could arise either from an abnormal tonic ionotropic drive to motoneuron pools innervating the paretic limbs, which could bring additional motor units near firing threshold, or from an increased influence of descending monoaminergic neuromodulatory pathways, which could depolarize motoneurons and amplify their responses to synaptic inputs. However, previous investigations have been unable to differentiate between these explanations, leaving the source(s) of this excitability increase unclear. Here, we used tonic vibration reflexes (TVRs) during voluntary muscle contractions of increasing magnitude to infer the sources of spinal motor excitability in individuals with chronic hemiparetic stroke. We show that when the paretic and non-paretic elbow flexors are preactivated to the same percentage of maximum prior to vibration, TVRs remain significantly elevated in the paretic arm. We also show that the rate of vibration-induced torque development increases as a function of increasing preactivation in the paretic limb, even though the amplitude of vibration-induced torque remains conspicuously unchanged as preactivation increases. It is highly unlikely that these findings could be explained by a source that is either purely ionotropic or purely neuromodulatory, because matching preactivation should control for the effects of a potential ionotropic drive (and lead to comparable tonic vibration reflex responses between limbs), while a purely monoaminergic mechanism would increase reflex magnitude as a function of preactivation. Thus, our results suggest that increased excitability of motor pools innervating the paretic limb post-stroke is likely to arise from both ionotropic and neuromodulatory mechanisms.
Collapse
Affiliation(s)
- Jacob G McPherson
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States.,Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Laura M McPherson
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States.,Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Physical Therapy, Florida International University, Miami, FL, United States
| | - Christopher K Thompson
- Department of Physical Therapy, Temple University, Philadelphia, PA, United States.,Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Michael D Ellis
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Charles J Heckman
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Julius P A Dewald
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| |
Collapse
|
32
|
Murphy SA, Berrios R, Nelson PA, Negro F, Farina D, Schmit B, Hyngstrom A. Impaired regulation post-stroke of motor unit firing behavior during volitional relaxation of knee extensor torque assessed using high density surface EMG decomposition. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2015:4606-9. [PMID: 26737320 DOI: 10.1109/embc.2015.7319420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The purpose of this study was to use high density surface EMG recordings to quantify stroke-related abnormalities in motor unit firing behavior during repeated sub-maximal knee extensor contractions. A high density surface EMG system (sEMG) was used to record and extract single motor unit firing behavior in the vastus lateralis muscle of 6 individuals with chronic stroke and 8 controls during repeated sub-maximal isometric knee extension contractions. Paretic motor unit firing rates were increased with subsequent contractions (6.19±0.35 pps vs 7.89±0.66 pps, P <; 0.05) during task phases of torque decline as compared to controls (6.95±0.40 pps vs 6.68±0.41 pps). In addition, corresponding rates of torque decline were decreased for the paretic leg as compared to the non-paretic leg. These results suggest that regulation of declining forces may be impaired post stroke due to prolonged firing of paretic motor units.
Collapse
|
33
|
McPherson JG, Chen A, Ellis MD, Yao J, Heckman CJ, Dewald JPA. Progressive recruitment of contralesional cortico-reticulospinal pathways drives motor impairment post stroke. J Physiol 2018; 596:1211-1225. [PMID: 29457651 DOI: 10.1113/jp274968] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 01/16/2018] [Indexed: 12/24/2022] Open
Abstract
KEY POINTS Activation of the shoulder abductor muscles in the arm opposite a unilateral brain injury causes involuntary increases in elbow, wrist and finger flexion in the same arm, a phenomenon referred to as the flexion synergy. It has been proposed that flexion synergy expression is related to reduced output from ipsilesional motor cortex and corticospinal pathways. In this human subjects study, we provide evidence that the magnitude of flexion synergy expression is instead related to a progressive, task-dependent recruitment of contralesional cortex. We also provide evidence that recruitment of contralesional cortex may induce excessive activation of ipsilateral reticulospinal descending motor pathways that cannot produce discrete movements, leading to flexion synergy expression. We interpret these findings as an adaptive strategy that preserves low-level motor control at the cost of fine motor control. ABSTRACT A hallmark of hemiparetic stroke is the loss of fine motor control in the contralesional arm and hand and the constraint to a grouped movement pattern known as the flexion synergy. In the flexion synergy, increasing shoulder abductor activation drives progressive, involuntary increases in elbow, wrist and finger flexion. The neural mechanisms underlying this phenomenon remain unclear. Here, across 25 adults with moderate to severe hemiparesis following chronic stroke and 18 adults without neurological injury, we test the overall hypothesis that two inter-related mechanisms are necessary for flexion synergy expression: increased task-dependent activation of the intact, contralesional cortex and recruitment of contralesional motor pathways via ipsilateral reticulospinal projections. First, we imaged brain activation in real time during reaching motions progressively constrained by flexion synergy expression. Using this approach, we found that cortical activity indeed shifts towards the contralesional hemisphere in direct proportion to the degree of shoulder abduction loading in the contralesional arm. We then leveraged the post-stroke reemergence of a developmental brainstem reflex to show that anatomically diffuse reticulospinal motor pathways are active during synergy expression. We interpret this progressive recruitment of contralesional cortico-reticulospinal pathways as an adaptive strategy that preserves low-level motor control at the cost of fine motor control.
Collapse
Affiliation(s)
- Jacob G McPherson
- Feinberg School of Medicine, Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, 60611, USA.,Department of Biomedical Engineering, Florida International University, 10555 West Flagler Street, EC 2600, Miami, FL, 33174, USA
| | - Albert Chen
- Feinberg School of Medicine, Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, 60611, USA.,McCormick School of Engineering, Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Michael D Ellis
- Feinberg School of Medicine, Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, 60611, USA
| | - Jun Yao
- Feinberg School of Medicine, Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, 60611, USA
| | - C J Heckman
- Feinberg School of Medicine, Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, 60611, USA.,Feinberg School of Medicine, Department of Physical Medicine and Rehabilitation, Northwestern University, 345 East Superior Street, Chicago, IL, 60611, USA.,Feinberg School of Medicine, Department of Physiology, Northwestern University, 303 East Chicago Ave, M211, Chicago, IL, 60611, USA
| | - Julius P A Dewald
- Feinberg School of Medicine, Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, 60611, USA.,Feinberg School of Medicine, Department of Physical Medicine and Rehabilitation, Northwestern University, 345 East Superior Street, Chicago, IL, 60611, USA.,McCormick School of Engineering, Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| |
Collapse
|
34
|
McPherson JG, Stienen AH, Drogos JM, Dewald JP. Modification of Spastic Stretch Reflexes at the Elbow by Flexion Synergy Expression in Individuals With Chronic Hemiparetic Stroke. Arch Phys Med Rehabil 2017; 99:491-500. [PMID: 28751255 DOI: 10.1016/j.apmr.2017.06.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/15/2017] [Accepted: 06/19/2017] [Indexed: 01/27/2023]
Abstract
OBJECTIVE To systematically characterize the effect of flexion synergy expression on the manifestation of elbow flexor stretch reflexes poststroke, and to relate these findings to elbow flexor stretch reflexes in individuals without neurologic injury. DESIGN Controlled cohort study. SETTING Academic medical center. PARTICIPANTS Participants (N=20) included individuals with chronic hemiparetic stroke (n=10) and a convenience sample of individuals without neurologic or musculoskeletal injury (n=10). INTERVENTIONS Participants with stroke were interfaced with a robotic device that precisely manipulated flexion synergy expression (by regulating shoulder abduction loading) while delivering controlled elbow extension perturbations over a wide range of velocities. This device was also used to elicit elbow flexor stretch reflexes during volitional elbow flexor activation, both in the cohort of individuals with stroke and in a control cohort. In both cases, the amplitude of volitional elbow flexor preactivation was matched to that generated involuntarily during flexion synergy expression. MAIN OUTCOME MEASURES The amplitude of short- and long-latency stretch reflexes in the biceps brachii, assessed by electromyography, and expressed as a function of background muscle activation and stretch velocity. RESULTS Increased shoulder abduction loading potentiated elbow flexor stretch reflexes via flexion synergy expression in the paretic arm. Compared with stretch reflexes in individuals without neurologic injury, paretic reflexes were larger at rest but were approximately equal to control muscles at matched levels of preactivation. CONCLUSIONS Because flexion synergy expression modifies stretch reflexes in involved muscles, interventions that reduce flexion synergy expression may confer the added benefit of reducing spasticity during functional use of the arm.
Collapse
Affiliation(s)
- Jacob G McPherson
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Arno H Stienen
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Justin M Drogos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Julius P Dewald
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL; Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL; Department of Biomedical Engineering, Northwestern University McCormick School of Engineering, Chicago, IL.
| |
Collapse
|
35
|
van der Helm NA, Gurari N, Drogos JM, Dewald JPA. Task directionality impacts the ability of individuals with chronic hemiparetic stroke to match torques between arms: Preliminary findings. IEEE Int Conf Rehabil Robot 2017; 2017:714-719. [PMID: 28813904 DOI: 10.1109/icorr.2017.8009332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Post hemiparetic stroke an individual may face difficulty performing bimanual tasks due to an asymmetry in their arms' strengths. Here, we determined whether participants with a strength asymmetry were impaired bi-directionally when matching torques between arms (i.e., paretic arm matches non-paretic arm, non-paretic arm matches paretic arm). Six participants with chronic hemiparetic stroke and four participants without neurological impairments partook in this study. First, we identified the maximum voluntary torque that participants could generate about each elbow joint (τmvt). Then, we determined how accurately and precisely participants could match, bidirectionally, submaximal isometric flexion torques (0.25 · τMVT:Reference) between arms. Results demonstrate that task directionality impacted the ability of our participants with stroke who had a strength asymmetry to match torques between arms; specifically, participants were unimpaired matching to a referenced non-paretic arm yet impaired in the opposite direction. Additionally, results reveal that the degree to which participants overshot the target torque when matching with their non-paretic arm could be predicted based on their strength asymmetry (R2Adjusted = 0.67). We propose that individuals with stroke may avoid torque matching impairments during bimanual tasks by matching their paretic arm to their non-paretic arm.
Collapse
|
36
|
Jian C, Wei M, Luo J, Lin J, Zeng W, Huang W, Song R. Multiparameter Electromyography Analysis of the Masticatory Muscle Activities in Patients with Brainstem Stroke at Different Head Positions. Front Neurol 2017; 8:221. [PMID: 28611725 PMCID: PMC5447052 DOI: 10.3389/fneur.2017.00221] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/08/2017] [Indexed: 12/02/2022] Open
Abstract
The performance of the masticatory muscle is frequently affected and presents high heterogeneity poststroke. Surface electromyography (EMG) is widely used to quantify muscle movement patterns. However, only a few studies applied EMG analysis on the research of masticatory muscle activities poststroke, and most of which used single parameter—root mean squares (RMS). The aim of this study was to fully investigate the performance of masticatory muscle at different head positions in healthy subjects and brainstem stroke patients with multiparameter EMG analysis. In this study, 15 healthy subjects and six brainstem stroke patients were recruited to conduct maximum voluntary clenching at five different head positions: upright position, left rotation, right rotation, dorsal flexion, and ventral flexion. The EMG signals of bilateral temporalis anterior and masseter muscles were recorded, and parameters including RMS, median frequency, and fuzzy approximate entropy of the EMG signals were calculated. Two-way analysis of variance (ANOVA) with repeated measures and Bonferroni post hoc test were used to evaluate the effects of muscle and head position on EMG parameters in the healthy group, and the non-parametric Wilcoxon signed rank test was conducted in the patient group. The Welch–Satterthwaite t-test was used to compare the between-subject difference. We found a significant effect of subject and muscles but no significant effect of head positions, and the masticatory muscles of patients after brainstem stroke performed significantly different from healthy subjects. Multiparameter EMG analysis might be an informative tool to investigate the neural activity related movement patterns of the deficient masticatory muscles poststroke.
Collapse
Affiliation(s)
- Chuyao Jian
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guang Dong Province, Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, Sun Yat-sen University, Guangzhou, China
| | - Miaoluan Wei
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guang Dong Province, Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, Sun Yat-sen University, Guangzhou, China
| | - Jie Luo
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guang Dong Province, Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, Sun Yat-sen University, Guangzhou, China
| | - Jiayin Lin
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guang Dong Province, Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, Sun Yat-sen University, Guangzhou, China
| | - Wen Zeng
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guang Dong Province, Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, Sun Yat-sen University, Guangzhou, China
| | - Weitian Huang
- Department of Stroke Rehabilitation, Guangdong Work Injury Rehabilitation Center, Guangzhou, China
| | - Rong Song
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guang Dong Province, Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
37
|
Lan Y, Yao J, Dewald JP. The Impact of Shoulder Abduction Loading on Volitional Hand Opening and Grasping in Chronic Hemiparetic Stroke. Neurorehabil Neural Repair 2017; 31:521-529. [PMID: 28506146 PMCID: PMC5505320 DOI: 10.1177/1545968317697033] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Up to 60% of individuals with moderate to severe chronic hemiparetic stroke experience excessive involuntary wrist/finger flexion that constrains functional hand movements including hand opening. It's not known how stroke-induced brain injury impacts volitional hand opening and grasping forces as a result of the expression of abnormal coupling between shoulder abduction and wrist/finger flexion or the flexion synergy. OBJECTIVE The goal of this study is to understand how shoulder abduction loading affects volitional hand opening and grasping forces in individuals with moderate to severe chronic hemiparetic stroke. METHODS Thirty-six individuals (stroke, 26; control, 10) were recruited for this study. Each participant was instructed to perform maximal hand opening and grasping forces while the arm was either fully supported or lifted with a weight equal to 25% or 50% of the participant's maximal shoulder abduction torque. Hand pentagon area, defined as the area formed by the tips of thumb and fingers, was calculated during hand opening. Forces were recorded during grasping. RESULTS In individuals with moderate stroke, increasing shoulder abduction loading reduced the ability to maximally open the hand. In individuals with severe stroke, who were not able to open the hand, grasping forces were generated and increased with shoulder abduction loading. Stroke individuals also showed a reduced ability to control volitional grasping forces due to the enhanced expression of flexion synergy. CONCLUSIONS Shoulder abduction loading reduced the ability to volitionally open the hand and control grasping forces after stroke. Neural mechanisms and clinical implications of these findings are discussed.
Collapse
Affiliation(s)
- Yiyun Lan
- Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL, 60611
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, 60611
| | - Jun Yao
- Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL, 60611
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, 60611
| | - Julius P.A. Dewald
- Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL, 60611
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, 60611
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, 60611
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, 60611
| |
Collapse
|
38
|
Bochkezanian V, Newton RU, Trajano GS, Vieira A, Pulverenti TS, Blazevich AJ. Effect of tendon vibration during wide-pulse neuromuscular electrical stimulation (NMES) on the decline and recovery of muscle force. BMC Neurol 2017; 17:82. [PMID: 28464800 PMCID: PMC5414318 DOI: 10.1186/s12883-017-0862-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/22/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Neuromuscular electrical stimulation (NMES) is commonly used to activate skeletal muscles and reverse muscle atrophy in clinical populations. Clinical recommendations for NMES suggest the use of short pulse widths (100-200 μs) and low-to-moderate pulse frequencies (30-50 Hz). However, this type of NMES causes rapid muscle fatigue due to the (non-physiological) high stimulation intensities and non-orderly recruitment of motor units. The use of both wide pulse widths (1000 μs) and tendon vibration might optimize motor unit activation through spinal reflex pathways and thus delay the onset of muscle fatigue, increasing muscle force and mass. Thus, the objective of this study was to examine the acute effects of patellar tendon vibration superimposed onto wide-pulse width (1000 μs) knee extensor electrical stimulation (NMES, 30 Hz) on peak muscle force, total impulse before "muscle fatigue", and the post-exercise recovery of muscle function. METHODS Tendon vibration (Vib), NMES (STIM) or NMES superimposed onto vibration (STIM + Vib) were applied in separate sessions to 16 healthy adults. Total torque-time integral (TTI), maximal voluntary contraction torque (MVIC) and indirect measures of muscle damage were tested before, immediately after, 1 h and 48 h after each stimulus. RESULTS TTI increased (145.0 ± 127.7%) in STIM only for "positive responders" to the tendon vibration (8/16 subjects), but decreased in "negative responders" (-43.5 ± 25.7%). MVIC (-8.7%) and rectus femoris electromyography (RF EMG) (-16.7%) decreased after STIM (group effect) for at least 1 h, but not after STIM + Vib. No changes were detected in indirect markers of muscle damage in any condition. CONCLUSIONS Tendon vibration superimposed onto wide-pulse width NMES increased TTI only in 8 of 16 subjects, but reduced voluntary force loss (fatigue) ubiquitously. Negative responders to tendon vibration may derive greater benefit from wide-pulse width NMES alone.
Collapse
Affiliation(s)
- Vanesa Bochkezanian
- Exercise Medicine Research Institute, Edith Cowan University, Perth, Australia. .,Centre for Sports and Exercise Science, School of Medical and Health Sciences, Edith Cowan University, Joondalup 270 Joondalup Drive, Joondalup, WA, 6027, Australia.
| | - Robert U Newton
- Exercise Medicine Research Institute, Edith Cowan University, Perth, Australia.,Centre for Sports and Exercise Science, School of Medical and Health Sciences, Edith Cowan University, Joondalup 270 Joondalup Drive, Joondalup, WA, 6027, Australia.,UQ Centre for Clinical Research, University of Queensland, Brisbane, Australia
| | - Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, Australia
| | | | - Timothy S Pulverenti
- Centre for Sports and Exercise Science, School of Medical and Health Sciences, Edith Cowan University, Joondalup 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Anthony J Blazevich
- Centre for Sports and Exercise Science, School of Medical and Health Sciences, Edith Cowan University, Joondalup 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| |
Collapse
|
39
|
Gurari N, Drogos JM, Dewald JPA. Individuals with chronic hemiparetic stroke can correctly match forearm positions within a single arm. Clin Neurophysiol 2016; 128:18-30. [PMID: 27866116 DOI: 10.1016/j.clinph.2016.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 10/03/2016] [Accepted: 10/09/2016] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Previous studies determined, using between arms position matching assessments, that at least one-half of individuals with stroke have an impaired position sense. We investigated whether individuals with chronic stroke who have impairments mirroring arm positions also have impairments identifying the location of each arm in space. METHODS Participants with chronic hemiparetic stroke and age-matched participants without neurological impairments (controls) performed a between forearms position matching task based on a clinical assessment and a single forearm position matching task, using passive and active movements, based on a robotic assessment. RESULTS 12 out of our 14 participants with stroke who had clinically determined between forearms position matching impairments had greater errors than the controls in both their paretic and non-paretic arm when matching positions during passive movements; yet stroke participants performed comparable to the controls during active movements. CONCLUSIONS Many individuals with chronic stroke may have impairments matching positions in both their paretic and non-paretic arm if their arm is moved for them, yet not within either arm if these individuals control their own movements. SIGNIFICANCE The neural mechanisms governing arm location perception in the stroke population may differ depending on whether arm movements are made passively versus actively.
Collapse
Affiliation(s)
- Netta Gurari
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL 60611, United States.
| | - Justin M Drogos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL 60611, United States.
| | - Julius P A Dewald
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL 60611, United States; Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, United States; Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL 60611, United States; Department of Biomechanical Engineering, Faculty of Engineering Technology, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
40
|
Miller LC, Thompson CK, Negro F, Heckman CJ, Farina D, Dewald JPA. High-density surface EMG decomposition allows for recording of motor unit discharge from proximal and distal flexion synergy muscles simultaneously in individuals with stroke. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:5340-4. [PMID: 25571200 DOI: 10.1109/embc.2014.6944832] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Analysis of motor unit discharge can provide insight into the neural control of movement in healthy and pathological states, but it is typically completed in one muscle at a time. For some research investigations, it would be advantageous to study motor unit discharge from multiple muscles simultaneously. One such example is investigation of the flexion synergy, an abnormal muscle co-activation pattern in post-stroke individuals in which activation of shoulder abductors is involuntarily coupled with that of elbow and finger flexors. However, limitations in available technology have hindered the ability to efficiently extract motor unit discharge from multiple muscles simultaneously. In this study, we propose the use of high-density surface EMG decomposition from proximal and distal flexion synergy muscles (deltoid, biceps, wrist/finger flexors) in combination with an isometric joint torque recording device in individuals with chronic stroke. This innovative approach provides the ability to efficiently analyze both motor units and joint torques that have been simultaneously recorded from the shoulder, elbow, and fingers. In preliminary experiments, 3 stroke and 5 control participants generated shoulder abduction, elbow flexion, and finger flexion torques at 10, 20, 30 and 40% of maximum torque. Motor unit spike trains could be extracted from all muscles at each torque level. Mean motor unit firing rates were significantly lower in the stroke group than in the control group for all three muscles. Within the stroke group, wrist/finger flexor motor units had the lowest coefficient of variation. Additionally, modulation of mean firing rates across torque levels was significantly impaired in all three paretic muscles. The implications of these findings and overall impact of this approach are discussed.
Collapse
|
41
|
Neyroud D, Armand S, De Coulon G, Da Silva SRD, Wegrzyk J, Gondin J, Kayser B, Place N. Wide-pulse-high-frequency neuromuscular electrical stimulation in cerebral palsy. Clin Neurophysiol 2015; 127:1530-1539. [PMID: 26232132 DOI: 10.1016/j.clinph.2015.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 06/30/2015] [Accepted: 07/08/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The present study assesses whether wide-pulse-high-frequency (WPHF) neuromuscular electrical stimulation (NMES) could result in extra-force production in cerebral palsy (CP) patients as previously observed in healthy individuals. METHODS Ten CP and 10 age- and sex-matched control participants underwent plantar flexors NMES. Two to three 10-s WPHF (frequency: 100 Hz, pulse duration: 1 ms) and conventional (CONV, frequency 25 Hz, pulse duration: 50 μs) trains as well as two to three burst-like stimulation trains (2s at 25 Hz, 2s at 100 Hz, 2s at 25 Hz; pulse duration: 1 ms) were evoked. Resting soleus and gastrocnemii maximal H-reflex amplitude (Hmax) was normalized by maximal M-wave amplitude (Mmax) to quantify α-motoneuron modulation. RESULTS Similar Hmax/Mmax ratio was found in CP and control participants. Extra-force generation was observed both in CP (+18 ± 74%) and control individuals (+94 ± 124%) during WPHF (p<0.05). Similar extra-forces were found during burst-like stimulations in both groups (+108 ± 110% in CP and +65 ± 85% in controls, p>0.05). CONCLUSION Although the mechanisms underlying extra-force production may differ between WPHF and burst-like NMES, similar increases were observed in patients with CP and healthy controls. SIGNIFICANCE Development of extra-forces in response to WPHF NMES evoked at low stimulation intensity might open new possibilities in neuromuscular rehabilitation.
Collapse
Affiliation(s)
- D Neyroud
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland; Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland; Institute of Movement Sciences and Sports Medicine, University of Geneva, Geneva, Switzerland
| | - S Armand
- Willy Taillard Laboratory of Kinesiology, Geneva University Hospitals and Geneva University, Switzerland
| | - G De Coulon
- Service of Pediatric Orthopaedics, Department of Child and Adolescent Health, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - S R D Da Silva
- Institute of Movement Sciences and Sports Medicine, University of Geneva, Geneva, Switzerland; School of Physical Education and Sport, University of São Paulo, Ribeirão Preto, Brazil
| | - J Wegrzyk
- Aix Marseille Université, CNRS, CRMBM UMR 7339, Marseille, France
| | - J Gondin
- Aix Marseille Université, CNRS, CRMBM UMR 7339, Marseille, France
| | - B Kayser
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland; Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland; Institute of Movement Sciences and Sports Medicine, University of Geneva, Geneva, Switzerland
| | - N Place
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland; Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
42
|
Wilson JM, Thompson CK, Miller LC, Heckman CJ. Intrinsic excitability of human motoneurons in biceps brachii versus triceps brachii. J Neurophysiol 2015; 113:3692-9. [PMID: 25787957 DOI: 10.1152/jn.00960.2014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/17/2015] [Indexed: 11/22/2022] Open
Abstract
The intrinsic excitability of spinal motoneurons is mediated in part by the presence of persistent inward currents (PICs), which amplify synaptic input and promote self-sustained firing. Studies using animal models have shown that PICs are greater in extensor motoneurons over flexor motoneurons, but this difference has not yet been demonstrated in humans. The primary objective of this study was to determine whether a similar difference exists in humans by recording from motor units in biceps and triceps brachii during isometric contractions. We compared firing rate profiles of pairs of motor units, in which the firing rate of the lower-threshold "control" unit was used as an indicator of common drive to the higher-threshold "test" unit. The estimated contribution of the PIC was calculated as the difference in firing rate of the control unit at recruitment versus derecruitment of the test unit, a value known as the delta-F (ΔF). We found that ΔF values were significantly higher in triceps brachii (5.4 ± 0.9 imp/s) compared with biceps brachii (3.0 ± 1.4 imp/s; P < 0.001). This difference was still present even after controlling for saturation in firing rate of the control unit, rate modulation of the control unit, and differences in recruitment time between test and control units, which are known to contribute to ΔF variability. We conclude that human elbow flexor and extensor motor units exhibit differences in intrinsic excitability, contributing to different neural motor control strategies between muscle groups.
Collapse
Affiliation(s)
- Jessica M Wilson
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois;
| | | | - Laura C Miller
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois; Department of Biomedical Engineering, Northwestern University, Evanston, Illinois; and
| | - Charles J Heckman
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois; Department of Physiology, Northwestern University, Chicago, Illinois; Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois
| |
Collapse
|
43
|
Spasticity and its contribution to hypertonia in cerebral palsy. BIOMED RESEARCH INTERNATIONAL 2015; 2015:317047. [PMID: 25649546 PMCID: PMC4306250 DOI: 10.1155/2015/317047] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 12/15/2014] [Indexed: 11/23/2022]
Abstract
Spasticity is considered an important neural contributor to muscle hypertonia in children with cerebral palsy (CP). It is most often treated with antispasticity medication, such as Botulinum Toxin-A. However, treatment response is highly variable. Part of this variability may be due to the inability of clinical tests to differentiate between the neural (e.g., spasticity) and nonneural (e.g., soft tissue properties) contributions to hypertonia, leading to the terms “spasticity” and “hypertonia” often being used interchangeably. Recent advancements in instrumented spasticity assessments offer objective measurement methods for distinction and quantification of hypertonia components. These methods can be applied in clinical settings and their results used to fine-tune and improve treatment. We reviewed current advancements and new insights with respect to quantifying spasticity and its contribution to muscle hypertonia in children with CP. First, we revisit what is known about spasticity in children with CP, including the various definitions and its pathophysiology. Second, we summarize the state of the art on instrumented spasticity assessment in CP and review the parameters developed to quantify the neural and nonneural components of hypertonia. Lastly, the impact these quantitative parameters have on clinical decision-making is considered and recommendations for future clinical and research investigations are discussed.
Collapse
|
44
|
Toda T, Ishida K, Kiyama H, Yamashita T, Lee S. Down-regulation of KCC2 expression and phosphorylation in motoneurons, and increases the number of in primary afferent projections to motoneurons in mice with post-stroke spasticity. PLoS One 2014; 9:e114328. [PMID: 25546454 PMCID: PMC4278744 DOI: 10.1371/journal.pone.0114328] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/06/2014] [Indexed: 12/31/2022] Open
Abstract
Spasticity obstructs motor function recovery post-stroke, and has been reported to occur in spinal cord injury and electrophysiological studies. The purpose of the present study was to assess spinal cord circuit spasticity in post-stroke mice. At 3, 7, 21, and 42 d after photothrombotic ischemic cortical injury in C57BL/6J mice, we observed decreased rate-dependent depression (RDD) of the Hoffmann reflex (H reflex) in the affected forelimb of mice compared with the limbs of sham mice and the non-affected forelimb. This finding suggests a hyper-excitable stretch reflex in the affected forelimb. We then performed immunohistochemical and western blot analyses to examine the expression of the potassium-chloride cotransporter 2 (KCC2) and phosphorylation of the KCC2 serine residue, 940 (S940), since this is the main chloride extruder that affects neuronal excitability. We also performed immunohistochemical analyses on the number of vesicular glutamate transporter 1 (vGluT1)-positive boutons to count the number of Ia afferent fibers that connect to motoneurons. Western bolts revealed that, compared with sham mice, experimental mice had significantly reduced KCC2 expression at 7 d post-stroke, and dephosphorylated S940 at 3 and 7 d post-stroke in motoneuron plasma membranes. We also observed a lower density of KCC2-positive areas in the plasma membrane of motoneurons at 3 and 7 d post-stroke. However, western blot and immunohistochemical analyses revealed that there were no differences between groups 21 and 42 d post-stroke, respectively. In addition, at 7 and 42 d post-stroke, experimental mice exhibited a significant increase in vGluT1 boutons compared with sham mice. Our findings suggest that both the down-regulation of KCC2 and increases in Ia afferent fibers are involved in post-stroke spasticity.
Collapse
Affiliation(s)
- Takuya Toda
- Department of Physical and Occupational Therapy, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Kazuto Ishida
- Department of Physical and Occupational Therapy, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Hiroshi Kiyama
- Department of Functional Anatomy and Neuroscience, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Sachiko Lee
- Department of Physical and Occupational Therapy, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| |
Collapse
|
45
|
Trajano GS, Seitz LB, Nosaka K, Blazevich AJ. Can passive stretch inhibit motoneuron facilitation in the human plantar flexors? J Appl Physiol (1985) 2014; 117:1486-92. [PMID: 25342705 DOI: 10.1152/japplphysiol.00809.2014] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of the present study was to examine the possible inhibitory effect of passive plantar flexor muscle stretching on the motoneuron facilitatory system. Achilles tendon vibration (70 Hz) and triceps surae electrical stimulation (20 Hz) were imposed simultaneously in 11 subjects to elicit contraction through reflexive pathways in two experiments. In experiment 1, a vibration-stimulation protocol was implemented with the ankle joint plantar flexed (+10°), neutral (0°), and dorsiflexed (-10°). In experiment 2, the vibration-stimulation protocol was performed twice before (control), then immediately, 5, 10, and 15 min after a 5-min intermittent muscle stretch protocol. Plantar flexor torque and medial and lateral gastrocnemius and soleus (EMGSol) EMG amplitudes measured during and after (i.e., self-sustained motor unit firing) the vibration protocol were used as an indicator of this facilitatory pathway. In experiment 1, vibration torque, self-sustained torque and EMGSol were higher with the ankle at -10° compared with 0° and +10°, suggesting that this method is valid to assess motoneuronal facilitation. In experiment 2, torque during vibration was reduced by ∼ 60% immediately after stretch and remained depressed by ∼ 35% at 5 min after stretch (P < 0.05). Self-sustained torque was also reduced by ∼ 65% immediately after stretch (P < 0.05) but recovered by 5 min. Similarly, medial gastrocnemius EMG during vibration was reduced by ∼ 40% immediately after stretch (P < 0.05), and EMGSol during the self-sustained torque period was reduced by 44% immediately after stretch (P < 0.05). In conclusion, passive stretch negatively affected the motoneuronal amplification for at least 5 min, suggesting that motoneuron disfacilitation is a possible mechanism influencing the stretch-induced torque loss.
Collapse
Affiliation(s)
- Gabriel S Trajano
- Centre for Exercise and Sports Science Research, School of Exercise and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Laurent B Seitz
- Centre for Exercise and Sports Science Research, School of Exercise and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Kazunori Nosaka
- Centre for Exercise and Sports Science Research, School of Exercise and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Anthony J Blazevich
- Centre for Exercise and Sports Science Research, School of Exercise and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
46
|
Hyngstrom AS, Kuhnen HR, Kirking KM, Hunter SK. Functional implications of impaired control of submaximal hip flexion following stroke. Muscle Nerve 2014; 49:225-32. [PMID: 23625534 DOI: 10.1002/mus.23886] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 04/15/2013] [Accepted: 04/17/2013] [Indexed: 11/09/2022]
Abstract
INTRODUCTION We quantified submaximal torque regulation during low to moderate intensity isometric hip flexion contractions in individuals with stroke and the associations with leg function. METHODS Ten participants with chronic stroke and 10 controls performed isometric hip flexion contractions at 5%, 10%, 15%, 20%, and 40% of maximal voluntary contraction (MVC) in paretic, nonparetic, and control legs. RESULTS Participants with stroke had larger torque fluctuations (coefficient of variation, CV), for both the paretic and nonparetic legs, than controls (P < 0.05) with the largest CV at 5% MVC in the paretic leg (P < 0.05). The paretic CV correlated with walking speed (r2 = 0.54) and Berg Balance Score (r2 = 0.40). At 5% MVC, there were larger torque fluctuations in the contralateral leg during paretic contractions compared with the control leg. CONCLUSIONS Impaired low-force regulation of paretic leg hip flexion can be functionally relevant and related to control versus strength deficits poststroke.
Collapse
|
47
|
Bar-On L, Aertbeliën E, Molenaers G, Desloovere K. Muscle activation patterns when passively stretching spastic lower limb muscles of children with cerebral palsy. PLoS One 2014; 9:e91759. [PMID: 24651860 PMCID: PMC3961272 DOI: 10.1371/journal.pone.0091759] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/13/2014] [Indexed: 11/25/2022] Open
Abstract
The definition of spasticity as a velocity-dependent activation of the tonic stretch reflex during a stretch to a passive muscle is the most widely accepted. However, other mechanisms are also thought to contribute to pathological muscle activity and, in patients post-stroke and spinal cord injury can result in different activation patterns. In the lower-limbs of children with spastic cerebral palsy (CP) these distinct activation patterns have not yet been thoroughly explored. The aim of the study was to apply an instrumented assessment to quantify different muscle activation patterns in four lower-limb muscles of children with CP. Fifty-four children with CP were included (males/females n = 35/19; 10.8±3.8 yrs; bilateral/unilateral involvement n = 32/22; Gross Motor Functional Classification Score I–IV) of whom ten were retested to evaluate intra-rater reliability. With the subject relaxed, single-joint, sagittal-plane movements of the hip, knee, and ankle were performed to stretch the lower-limb muscles at three increasing velocities. Muscle activity and joint motion were synchronously recorded using inertial sensors and electromyography (EMG) from the adductors, medial hamstrings, rectus femoris, and gastrocnemius. Muscles were visually categorised into activation patterns using average, normalized root mean square EMG (RMS-EMG) compared across increasing position zones and velocities. Based on the visual categorisation, quantitative parameters were defined using stretch-reflex thresholds and normalized RMS-EMG. These parameters were compared between muscles with different activation patterns. All patterns were dominated by high velocity-dependent muscle activation, but in more than half, low velocity-dependent activation was also observed. Muscle activation patterns were found to be both muscle- and subject-specific (p<0.01). The intra-rater reliability of all quantitative parameters was moderate to good. Comparing RMS-EMG between incremental position zones during low velocity stretches was found to be the most sensitive in categorizing muscles into activation patterns (p<0.01). Future studies should investigate whether muscles with different patterns react differently to treatment.
Collapse
Affiliation(s)
- Lynn Bar-On
- Clinical Motion Analysis Laboratory, University Hospital Leuven, Leuven, Belgium
- KU Leuven Department of Rehabilitation Sciences, Leuven, Belgium
- * E-mail:
| | | | - Guy Molenaers
- Clinical Motion Analysis Laboratory, University Hospital Leuven, Leuven, Belgium
- KU Leuven Department of Development and Regeneration, Leuven, Belgium
- Department of Orthopaedics, University Hospital Leuven, Leuven, Belgium
| | - Kaat Desloovere
- Clinical Motion Analysis Laboratory, University Hospital Leuven, Leuven, Belgium
- KU Leuven Department of Rehabilitation Sciences, Leuven, Belgium
| |
Collapse
|
48
|
Lee S, Toda T, Kiyama H, Yamashita T. Weakened rate-dependent depression of Hoffmann's reflex and increased motoneuron hyperactivity after motor cortical infarction in mice. Cell Death Dis 2014; 5:e1007. [PMID: 24434515 PMCID: PMC4040693 DOI: 10.1038/cddis.2013.544] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 12/04/2013] [Accepted: 12/09/2013] [Indexed: 12/02/2022]
Abstract
Abnormal reflexes associated with spasticity are considered a major determinant of motor impairments occurring after stroke; however, the mechanisms underlying post-stroke spasticity remain unclear. This may be because of the lack of suitable rodent models for studying spasticity after cortical injuries. Thus, the purpose of the present study was to establish an appropriate post-stroke spasticity mouse model. We induced photothrombotic injury in the rostral and caudal forelimb motor areas of mice and used the rate-dependent depression (RDD) of Hoffmann's reflex (H-reflex) as an indicator of spastic symptoms. To detect motoneuron excitability, we examined c-fos mRNA levels and c-Fos immunoreactivity in affected motoneurons using quantitative real-time reverse transcription PCR and immunohistochemical analysis, respectively. To confirm the validity of our model, we confirmed the effect of the anti-spasticity drug baclofen on H-reflex RDDs 1 week post stroke. We found that 3 days after stroke, the RDD was significantly weakened in the affected muscles of stroke mice compared with sham-operated mice, and this was observed for 8 weeks. The c-fos mRNA levels in affected motoneurons were significantly increased in stroke mice compared with sham-operated mice. Immunohistochemical analysis revealed a significant increase in the number of c-Fos-positive motoneurons in stroke mice compared with sham-operated mice at 1, 2, 4, and 8 weeks after stroke; however, the number of c-Fos-positive motoneurons on both sides of the brain gradually decreased over time. Baclofen treatment resulted in recovery of the weakened RDD at 1 week post stroke. Our findings suggest that this is a viable animal model of post-stroke spasticity.
Collapse
Affiliation(s)
- S Lee
- Department of Rehabilitation Sciences, Graduate School of Medicine, Nagoya University, 1-1-20 Daiko-minami Higashi-ku, Nagoya-shi, Aichi, Japan
| | - T Toda
- Department of Rehabilitation Sciences, Graduate School of Medicine, Nagoya University, 1-1-20 Daiko-minami Higashi-ku, Nagoya-shi, Aichi, Japan
| | - H Kiyama
- Department of Functional Anatomy and Neuroscience, Graduate School of Medicine, Nagoya University, 65 Tsurumai-tyou Shouwa-ku, Nagoya-shi, Aichi, Japan
| | - T Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita-shi, Osaka, Japan
| |
Collapse
|
49
|
Levin MF. Deficits in spatial threshold control of muscle activation as a window for rehabilitation after brain injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 826:229-49. [PMID: 25330894 DOI: 10.1007/978-1-4939-1338-1_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Mindy F Levin
- School of Physical and Occupational Therapy, McGill University, 3654 Promenade SirWilliam Osler, Montreal, QC, H3G 1Y5, Canada,
| |
Collapse
|
50
|
McNulty PA, Burke D. Self-sustained motor activity triggered by interlimb reflexes in chronic spinal cord injury, evidence of functional ascending propriospinal pathways. PLoS One 2013; 8:e72725. [PMID: 23936543 PMCID: PMC3732223 DOI: 10.1371/journal.pone.0072725] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 07/12/2013] [Indexed: 11/25/2022] Open
Abstract
The loss or reduction of supraspinal inputs after spinal cord injury provides a unique opportunity to examine the plasticity of neural pathways within the spinal cord. In a series of nine experiments on a patient, quadriplegic due to spinal cord injury, we investigated interlimb reflexes and self-sustained activity in completely paralyzed and paretic muscles due to a disinhibited propriospinal pathway. Electrical stimuli were delivered over the left common peroneal nerve at the fibular head as single stimuli or in trains at 2–100 Hz lasting 1 s. Single stimuli produced a robust interlimb reflex twitch in the contralateral thumb at a mean latency 69 ms, but no activity in other muscles. With stimulus trains the thumb twitch occurred at variable subharmonics of the stimulus rate, and strong self-sustained activity developed in the contralateral wrist extensors, outlasting both the stimuli and the thumb reflex by up to 20 s. Similar behavior was recorded in the ipsilateral wrist extensors and quadriceps femoris of both legs, but not in the contralateral thenar or peroneal muscles. The patient could not terminate the self-sustained activity voluntarily, but it was abolished on the left by attempted contractions of the paralyzed thumb muscles of the right hand. These responses depend on the functional integrity of an ascending propriospinal pathway, and highlight the plasticity of spinal circuitry following spinal cord injury. They emphasize the potential for pathways below the level of injury to generate movement, and the role of self-sustained reflex activity in the sequelae of spinal cord injury.
Collapse
Affiliation(s)
- Penelope A McNulty
- Neuroscience Research Australia and University of New South Wales, Sydney, Australia.
| | | |
Collapse
|