1
|
Schachner ER, Moore AJ. Unidirectional airflow, air sacs or the horizontal septum: what does it take to make a bird lung? Philos Trans R Soc Lond B Biol Sci 2025; 380:20230418. [PMID: 40010391 PMCID: PMC11864838 DOI: 10.1098/rstb.2023.0418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/21/2024] [Accepted: 12/17/2024] [Indexed: 02/28/2025] Open
Abstract
In this review, we evaluate the differences between the pulmonary anatomy of birds and other sauropsids, specifically those traits that make the avian respiratory system distinct: a fully decoupled and immobilized, isovolumetric gas-exchanging lung separated from compliant ventilatory air sacs by a horizontal septum. Imaging data, three-dimensional digital anatomical models and dissection images from a red-tailed hawk (Buteo jamaicensis), common ostrich (Struthio camelus), barred owl (Strix varia), African grey parrot (Psittacus erithacus) and zebra finch (Taeniopygia castanotis) are used to demonstrate the anatomical variation seen in the pulmonary air sacs, diverticula and the horizontal septum. We address the current state of knowledge regarding the avian respiratory system and the myriad areas that require further study, including the comparative and quantitative ecomorphology of the bronchial tree and air sacs, the non-ventilatory functions of the sacs and diverticula, the fluid dynamics and anatomical mechanisms underlying unidirectional airflow, post-cranial skeletal pneumaticity, and how all of these factors impact reconstructions of respiratory tissues in extinct archosaurs, particularly ornithodirans (i.e. pterosaurs + non-avian dinosaurs). Specifically, we argue that without evidence for the horizontal septum, a fully avian lung should not be reconstructed in non-avian ornithodirans, despite the presence of post-cranial skeletal pneumaticity.This article is part of the theme issue 'The biology of the avian respiratory system'.
Collapse
Affiliation(s)
- Emma R. Schachner
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL32603, USA
| | - Andrew J. Moore
- Department of Anatomical Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY11794, USA
| |
Collapse
|
2
|
Klein W, Pereira Ribeiro V, Bueno de Souza RB. Avian air sacs and neopulmo: their evolution, form and function. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230421. [PMID: 40010386 PMCID: PMC11864834 DOI: 10.1098/rstb.2023.0421] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/01/2024] [Accepted: 12/14/2024] [Indexed: 02/28/2025] Open
Abstract
The avian respiratory system is composed of an exchange structure (parabronchi) and a pump (air sacs) to perform gas exchange. While there are many studies dealing with the morphology and function of the palaeopulmonic parabronchi, the air sacs and the neopulmo have been somewhat neglected from a comparative and functional point of view, not always receiving a closer examination that they deserve. While a decent amount of data are available regarding air sac and neopulmo morphology on a family level or for domestic species, several orders of birds have yet to be investigated. Owing to the lack of detailed specific data, we did not perform a comparative phylogenetic analysis but compiled data regarding air sac and neopulmo morphology and analysed them from the viewpoint of current phylogenetic relations while also discussing aspects of these structures regarding avian physiology.This article is part of the theme issue 'The biology of the avian respiratory system'.
Collapse
Affiliation(s)
- Wilfried Klein
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP14040-901, Brazil
| | - Vinícius Pereira Ribeiro
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP14040-901, Brazil
| | - Ray Brasil Bueno de Souza
- Programa de Pós-graduação em Biologia Comparada, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP14040-901, Brazil
| |
Collapse
|
3
|
Faure‐Brac MG. Pseudosuchian thermometabolism: A review of the past two decades. Anat Rec (Hoboken) 2025; 308:315-341. [PMID: 39682064 PMCID: PMC11725720 DOI: 10.1002/ar.25609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/23/2024] [Accepted: 11/16/2024] [Indexed: 12/18/2024]
Abstract
Pseudosuchia, one of the two main clades of Archosauria, is today only represented by some 20 extant species, the crocodilians, representing only a fraction of its extinct diversity. Extant crocodilians are ectotherms but present morphological and anatomical features usually associated with endothermy. In 2004, it was proposed that pseudosuchians were ancestrally endothermic and the features observed in extant crocodilians are the remains of this lost legacy. This contribution has two parts: the first part covers 20 years of studies on this subject, first exploring the evidence for a loss of endothermy in extant crocodilians, before covering the variety of proxies used to infer the thermophymetabolic regime of extinct pseudosuchians. In the second part, the quantitative results of these previous studies are integrated into a comprehensive ancestral state reconstruction to discuss a potential scenario for the evolution of thermometabolism. Pseudosuchian endothermy would then have been lost close to the node Crocodylomorpha. The end-Triassic mass extinction is proposed to have played the role of a filter, leading to the extinction of endothermic pseudosuchians and the survival of ectothermic ones. This difference in survival in Pseudosuchia is compared to those of dinosaurs, and difference in their metabolism is also considered. Pseudosuchian endothermy might have been of a different level than the dinosaurian one and more studies are expected to clarify this question.
Collapse
|
4
|
Leonetti S, Ravignani A, Pouw W. A cross-species framework for classifying sound-movement couplings. Neurosci Biobehav Rev 2024; 167:105911. [PMID: 39362418 DOI: 10.1016/j.neubiorev.2024.105911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 09/12/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
Sound and movement are entangled in animal communication. This is obviously true in the case of sound-constituting vibratory movements of biological structures which generate acoustic waves. A little less obvious is that other moving structures produce the energy required to sustain these vibrations. In many species, the respiratory system moves to generate the expiratory flow which powers the sound-constituting movements (sound-powering movements). The sound may acquire additional structure via upper tract movements, such as articulatory movements or head raising (sound-filtering movements). Some movements are not necessary for sound production, but when produced, impinge on the sound-producing process due to weak biomechanical coupling with body parts (e.g., respiratory system) that are necessary for sound production (sound-impinging movements). Animals also produce sounds contingent with movement, requiring neuro-physiological control regimes allowing to flexibly couple movements to a produced sound, or coupling movements to a perceived external sound (sound-contingent movement). Here, we compare and classify the variety of ways sound and movements are coupled in animal communication; our proposed framework should help structure previous and future studies on this topic.
Collapse
Affiliation(s)
- Silvia Leonetti
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, Turin 10123, Italy; Department of Human Neurosciences, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy; Comparative Bioacoustics Research Group, Max Planck Institute for Psycholinguistics, Wundtlaan 1, Nijmegen 6525 XD, the Netherlands.
| | - Andrea Ravignani
- Department of Human Neurosciences, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy; Comparative Bioacoustics Research Group, Max Planck Institute for Psycholinguistics, Wundtlaan 1, Nijmegen 6525 XD, the Netherlands; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus C 8000, Denmark
| | - Wim Pouw
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Houtlaan 4, Nijmegen 6525 XZ, the Netherlands.
| |
Collapse
|
5
|
Banavar SP, Fowler EW, Nelson CM. Biophysics of morphogenesis in the vertebrate lung. Curr Top Dev Biol 2024; 160:65-86. [PMID: 38937031 DOI: 10.1016/bs.ctdb.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Morphogenesis is a physical process that sculpts the final functional forms of tissues and organs. Remarkably, the lungs of terrestrial vertebrates vary dramatically in form across species, despite providing the same function of transporting oxygen and carbon dioxide. These divergent forms arise from distinct physical processes through which the epithelium of the embryonic lung responds to the mechanical properties of its surrounding mesenchymal microenvironment. Here we compare the physical processes that guide folding of the lung epithelium in mammals, birds, and reptiles, and suggest a conceptual framework that reconciles how conserved molecular signaling generates divergent mechanical forces across these species.
Collapse
Affiliation(s)
- Samhita P Banavar
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ, United States
| | - Eric W Fowler
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ, United States
| | - Celeste M Nelson
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ, United States; Department of Molecular Biology, Princeton University, Princeton, NJ, United States.
| |
Collapse
|
6
|
Notley SR, Mitchell D, Taylor NAS. A century of exercise physiology: concepts that ignited the study of human thermoregulation. Part 4: evolution, thermal adaptation and unsupported theories of thermoregulation. Eur J Appl Physiol 2024; 124:147-218. [PMID: 37796290 DOI: 10.1007/s00421-023-05262-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/13/2023] [Indexed: 10/06/2023]
Abstract
This review is the final contribution to a four-part, historical series on human exercise physiology in thermally stressful conditions. The series opened with reminders of the principles governing heat exchange and an overview of our contemporary understanding of thermoregulation (Part 1). We then reviewed the development of physiological measurements (Part 2) used to reveal the autonomic processes at work during heat and cold stresses. Next, we re-examined thermal-stress tolerance and intolerance, and critiqued the indices of thermal stress and strain (Part 3). Herein, we describe the evolutionary steps that endowed humans with a unique potential to tolerate endurance activity in the heat, and we examine how those attributes can be enhanced during thermal adaptation. The first of our ancestors to qualify as an athlete was Homo erectus, who were hairless, sweating specialists with eccrine sweat glands covering almost their entire body surface. Homo sapiens were skilful behavioural thermoregulators, which preserved their resource-wasteful, autonomic thermoeffectors (shivering and sweating) for more stressful encounters. Following emigration, they regularly experienced heat and cold stress, to which they acclimatised and developed less powerful (habituated) effector responses when those stresses were re-encountered. We critique hypotheses that linked thermoregulatory differences to ancestry. By exploring short-term heat and cold acclimation, we reveal sweat hypersecretion and powerful shivering to be protective, transitional stages en route to more complete thermal adaptation (habituation). To conclude this historical series, we examine some of the concepts and hypotheses of thermoregulation during exercise that did not withstand the tests of time.
Collapse
Affiliation(s)
- Sean R Notley
- Defence Science and Technology Group, Department of Defence, Melbourne, Australia
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Duncan Mitchell
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Nigel A S Taylor
- Research Institute of Human Ecology, College of Human Ecology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Notley SR, Mitchell D, Taylor NAS. A century of exercise physiology: concepts that ignited the study of human thermoregulation. Part 2: physiological measurements. Eur J Appl Physiol 2023; 123:2587-2685. [PMID: 37796291 DOI: 10.1007/s00421-023-05284-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/14/2023] [Indexed: 10/06/2023]
Abstract
In this, the second of four historical reviews on human thermoregulation during exercise, we examine the research techniques developed by our forebears. We emphasise calorimetry and thermometry, and measurements of vasomotor and sudomotor function. Since its first human use (1899), direct calorimetry has provided the foundation for modern respirometric methods for quantifying metabolic rate, and remains the most precise index of whole-body heat exchange and storage. Its alternative, biophysical modelling, relies upon many, often dubious assumptions. Thermometry, used for >300 y to assess deep-body temperatures, provides only an instantaneous snapshot of the thermal status of tissues in contact with any thermometer. Seemingly unbeknownst to some, thermal time delays at some surrogate sites preclude valid measurements during non-steady state conditions. To assess cutaneous blood flow, immersion plethysmography was introduced (1875), followed by strain-gauge plethysmography (1949) and then laser-Doppler velocimetry (1964). Those techniques allow only local flow measurements, which may not reflect whole-body blood flows. Sudomotor function has been estimated from body-mass losses since the 1600s, but using mass losses to assess evaporation rates requires precise measures of non-evaporated sweat, which are rarely obtained. Hygrometric methods provide data for local sweat rates, but not local evaporation rates, and most local sweat rates cannot be extrapolated to reflect whole-body sweating. The objective of these methodological overviews and critiques is to provide a deeper understanding of how modern measurement techniques were developed, their underlying assumptions, and the strengths and weaknesses of the measurements used for humans exercising and working in thermally challenging conditions.
Collapse
Affiliation(s)
- Sean R Notley
- Defence Science and Technology Group, Department of Defence, Melbourne, Australia
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Duncan Mitchell
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Nigel A S Taylor
- College of Human Ecology, Research Institute of Human Ecology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Wei J, Pan F, Ping H, Yang K, Wang Y, Wang Q, Fu Z. Bioinspired Additive Manufacturing of Hierarchical Materials: From Biostructures to Functions. RESEARCH (WASHINGTON, D.C.) 2023; 6:0164. [PMID: 37303599 PMCID: PMC10254471 DOI: 10.34133/research.0164] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/17/2023] [Indexed: 06/13/2023]
Abstract
Throughout billions of years, biological systems have evolved sophisticated, multiscale hierarchical structures to adapt to changing environments. Biomaterials are synthesized under mild conditions through a bottom-up self-assembly process, utilizing substances from the surrounding environment, and meanwhile are regulated by genes and proteins. Additive manufacturing, which mimics this natural process, provides a promising approach to developing new materials with advantageous properties similar to natural biological materials. This review presents an overview of natural biomaterials, emphasizing their chemical and structural compositions at various scales, from the nanoscale to the macroscale, and the key mechanisms underlying their properties. Additionally, this review describes the designs, preparations, and applications of bioinspired multifunctional materials produced through additive manufacturing at different scales, including nano, micro, micro-macro, and macro levels. The review highlights the potential of bioinspired additive manufacturing to develop new functional materials and insights into future directions and prospects in this field. By summarizing the characteristics of natural biomaterials and their synthetic counterparts, this review inspires the development of new materials that can be utilized in various applications.
Collapse
Affiliation(s)
- Jingjiang Wei
- Institute for Advanced Materials Deformation and Damage from Multi-Scale, Institute for Advanced Study,
Chengdu University, Chengdu 610106, P. R. China
| | - Fei Pan
- Department of Chemistry,
University of Basel, Basel 4058, Switzerland
| | - Hang Ping
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,
Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Kun Yang
- Institute for Advanced Materials Deformation and Damage from Multi-Scale, Institute for Advanced Study,
Chengdu University, Chengdu 610106, P. R. China
| | - Yanqing Wang
- College of Polymer Science and Engineering,
Sichuan University, Chengdu 610065, P. R. China
| | - Qingyuan Wang
- Institute for Advanced Materials Deformation and Damage from Multi-Scale, Institute for Advanced Study,
Chengdu University, Chengdu 610106, P. R. China
| | - Zhengyi Fu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,
Wuhan University of Technology, Wuhan 430070, P. R. China
| |
Collapse
|
9
|
Kunchala SR, van Dijk A, Veldhuizen EJA, Donnellan SC, Haagsman HP, Orgeig S. Avian surfactant protein (SP)-A2 first arose in an early tetrapod before the divergence of amphibians and gradually lost the collagen domain. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104582. [PMID: 36306971 DOI: 10.1016/j.dci.2022.104582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The air-liquid interface of the mammalian lung is lined with pulmonary surfactants, a mixture of specific proteins and lipids that serve a dual purpose-enabling air-breathing and protection against pathogens. In mammals, surfactant proteins A (SP-A) and D (SP -D) are involved in innate defence of the lung. Birds seem to lack the SP-D gene, but possess SP-A2, an additional SP-A-like gene. Here we investigated the evolution of the SP-A and SP-D genes using computational gene prediction, homology, simulation modelling and phylogeny with published avian and other vertebrate genomes. PCR was used to confirm the identity and expression of SP-A analogues in various tissue homogenates of zebra finch and turkey. In silico analysis confirmed the absence of SP-D-like genes in all 47 published avian genomes. Zebra finch and turkey SP-A1 and SP-A2 sequences, confirmed by PCR of lung homogenates, were compared with sequenced and in silico predicted vertebrate homologs to construct a phylogenetic tree. The collagen domain of avian SP-A1, especially that of zebra finch, was dramatically shorter than that of mammalian SP-A. Amphibian and reptilian genomes also contain avian-like SP-A2 protein sequences with a collagen domain. NCBI Gnomon-predicted avian and alligator SP-A2 proteins all lacked the collagen domain completely. Both avian SP-A1 and SP-A2 sequences form separate clades, which are most closely related to their closest relatives, the alligators. The C-terminal carbohydrate recognition domain (CRD) of zebra finch SP-A1 was structurally almost identical to that of rat SP-A. In fact, the CRD of SP-A is highly conserved among all the vertebrates. Birds retained a truncated version of mammalian type SP-A1 as well as a non-collagenous C-type lectin, designated SP-A2, while losing the large collagenous SP-D lectin, reflecting their evolutionary trajectory towards a unidirectional respiratory system. In the context of zoonotic infections, how these evolutionary changes affect avian pulmonary surface protection is not clear.
Collapse
Affiliation(s)
- Srinivasa Reddy Kunchala
- Centre for Cancer Diagnostics and Therapeutics, UniSA Cancer Research Institute, UniSA Clinical and Health Sciences, University of South Australia, SA, 5001, Australia
| | - Albert van Dijk
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Edwin J A Veldhuizen
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| | | | - Henk P Haagsman
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Sandra Orgeig
- Centre for Cancer Diagnostics and Therapeutics, UniSA Cancer Research Institute, UniSA Clinical and Health Sciences, University of South Australia, SA, 5001, Australia.
| |
Collapse
|
10
|
Maina JN. Perspectives on the Structure and Function of the Avian Respiratory System: Functional Efficiency Built on Structural Complexity. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.851574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Among the air-breathing vertebrates, regarding respiratory efficiency, the avian respiratory system rests at the evolutionary zenith. Structurally, it is separated into a lung that serves as a gas exchanger and air sacs that mechanically ventilate the lung continuously and unidirectionally in a caudocranial direction. Largely avascular, the air sacs are delicate, transparent, compliant and capacious air-filled spaces that are not meaningfully involved in gas exchange. The avian lungs are deeply and firmly attached to the vertebrae and the ribs on the dorsolateral aspects, rendering them practically rigid and inflexible. The attachment of the lung to the body wall allowed extreme subdivision of the exchange tissue into minuscule and stable terminal respiratory units, the air capillaries. The process generated a large respiratory surface area in small lungs with low volume density of gas exchange tissue. For the respiratory structures, invariably, thin blood-gas barrier, large respiratory surface area and large pulmonary capillary blood volume are the foremost adaptive structural features that confer large total pulmonary morphometric diffusing capacities of O2. At parabronchial level, the construction and the arrangement of the airway- and the vascular components of the avian lung determine the delivery, the presentation and the exposure of inspired air to capillary blood across the blood-gas barrier. In the avian lung, crosscurrent-, countercurrent- and multicapillary serial arterialization systems that stem from the organization of the structural parts of the lung promote gas exchange. The exceptional respiratory efficiency of the avian respiratory system stems from synergy of morphological properties and physiological processes, means by which O2 uptake is optimized and high metabolic states and capacities supported. Given that among the extant animal taxa insects, birds and bats (which accomplished volancy chronologically in that order) possess structurally much different respiratory systems, the avian respiratory system was by no means a prerequisite for evolution of powered flight but was but one of the adaptive solutions to realization of an exceptionally efficient mode of locomotion.
Collapse
|
11
|
Schachner ER, Diaz RE, Coke R, Echols S, Osborn ML, Hedrick BP. Architecture of the bronchial tree in Cuvier's dwarf caiman (Paleosuchus palpebrosus). Anat Rec (Hoboken) 2022; 305:3037-3054. [PMID: 35377558 DOI: 10.1002/ar.24919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/25/2022] [Accepted: 03/09/2022] [Indexed: 01/16/2023]
Abstract
We imaged the lungs of five Cuvier's dwarf caiman (Paleosuchus palpebrosus) via computed tomography (CT) and micro-computed tomography (μCT) and compared these data to the lungs of the American alligator (Alligator mississippiensis). These data demonstrate anatomical commonalities between the lungs of P. palpebrosus and A. mississippiensis, and a few notable differences. The structural similarities are (a) a proximally narrow, distally widened, hook-shaped primary bronchus; (b) a cervical ventral bronchus that branches of the primary bronchus and immediately makes a hairpin turn toward the apex of the lung; (c) a sequential series of dorsobronchi arising from the primary bronchus caudal to the cervical ventral bronchus; (d) intraspecifically highly variable medial sequence of secondary airways; (e) sac-like laterobronchi; and (f) grossly dead-ended caudal group bronchi in the caudal and ventral aspects of the lung. The primary differences between the two taxa are in the overall number of large bronchi (fewer in P. palpebrosus), and the number of branches that contribute to the cardiac regions. Imaging data of both a live and deceased specimen under varying states (postprandial, fasting, total lung capacity, open to atmosphere) indicate that the caudal margin and position of the lungs shift craniocaudally relative to the vertebral column. These imaging data suggest that the smooth thoracic ceiling may be correlated to visceral movement during ventilation, but this hypothesis warrants validation. These results provide the scaffolding for future comparisons between crocodilians, for generating preliminary reconstructions of the ancestral crocodilian bronchial tree, and establishing new hypotheses of bronchial homology across Archosauria.
Collapse
Affiliation(s)
- Emma R Schachner
- Department of Cell Biology and Anatomy, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Raul E Diaz
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, USA
| | - Rob Coke
- San Antonio Zoo, San Antonio, Texas, USA
| | - Scott Echols
- The Medical Center for Birds, Oakley, California, USA
| | - Michelle L Osborn
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Brandon P Hedrick
- Department of Cell Biology and Anatomy, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
12
|
Zwart P, Samour J. The avian respiratory system and its noninfectious ailments: A review. J Exot Pet Med 2021. [DOI: 10.1053/j.jepm.2021.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Chatterjee K, Graybill PM, Socha JJ, Davalos RV, Staples AE. Frequency-specific, valveless flow control in insect-mimetic microfluidic devices. BIOINSPIRATION & BIOMIMETICS 2021; 16:036004. [PMID: 33561847 DOI: 10.1088/1748-3190/abe4bc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Inexpensive, portable lab-on-a-chip devices would revolutionize fields like environmental monitoring and global health, but current microfluidic chips are tethered to extensive off-chip hardware. Insects, however, are self-contained and expertly manipulate fluids at the microscale using largely unexplored methods. We fabricated a series of microfluidic devices that mimic key features of insect respiratory kinematics observed by synchrotron-radiation imaging, including the collapse of portions of multiple respiratory tracts in response to a single fluctuating pressure signal. In one single-channel device, the flow rate and direction could be controlled by the actuation frequency alone, without the use of internal valves. Additionally, we fabricated multichannel chips whose individual channels responded selectively (on with a variable, frequency-dependent flow rate, or off) to a single, global actuation frequency. Our results demonstrate that insect-mimetic designs have the potential to drastically reduce the actuation overhead for microfluidic chips, and that insect respiratory systems may share features with impedance-mismatch pumps.
Collapse
Affiliation(s)
- Krishnashis Chatterjee
- Laboratory for Fluid Dynamics in Nature, Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States of America
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States of America
| | - Philip M Graybill
- Bioelectromechanical Systems Laboratory, Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States of America
- Mechanical Engineering, Virginia Tech, Blacksburg, VA, United States of America
| | - John J Socha
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States of America
| | - Rafael V Davalos
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States of America
- Bioelectromechanical Systems Laboratory, Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States of America
| | - Anne E Staples
- Laboratory for Fluid Dynamics in Nature, Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States of America
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States of America
| |
Collapse
|
14
|
Li S, Wang F. Vertebrate Evolution Conserves Hindbrain Circuits despite Diverse Feeding and Breathing Modes. eNeuro 2021; 8:ENEURO.0435-20.2021. [PMID: 33707205 PMCID: PMC8174041 DOI: 10.1523/eneuro.0435-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/21/2022] Open
Abstract
Feeding and breathing are two functions vital to the survival of all vertebrate species. Throughout the evolution, vertebrates living in different environments have evolved drastically different modes of feeding and breathing through using diversified orofacial and pharyngeal (oropharyngeal) muscles. The oropharyngeal structures are controlled by hindbrain neural circuits. The developing hindbrain shares strikingly conserved organizations and gene expression patterns across vertebrates, thus begs the question of how a highly conserved hindbrain generates circuits subserving diverse feeding/breathing patterns. In this review, we summarize major modes of feeding and breathing and principles underlying their coordination in many vertebrate species. We provide a hypothesis for the existence of a common hindbrain circuit at the phylotypic embryonic stage controlling oropharyngeal movements that is shared across vertebrate species; and reconfiguration and repurposing of this conserved circuit give rise to more complex behaviors in adult higher vertebrates.
Collapse
Affiliation(s)
- Shun Li
- Department of Neurobiology, Duke University, Durham, NC 27710
| | - Fan Wang
- Department of Neurobiology, Duke University, Durham, NC 27710
| |
Collapse
|
15
|
Smith DK, Sanders RK, Wolfe DG. Vertebral pneumaticity of the North American therizinosaur Nothronychus. J Anat 2021; 238:598-614. [PMID: 33044012 PMCID: PMC7855063 DOI: 10.1111/joa.13327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 09/01/2020] [Accepted: 09/10/2020] [Indexed: 11/26/2022] Open
Abstract
Nothronychus was a large, derived therizinosaur from the Upper Cretaceous of Utah and New Mexico. The genus is known from elements that have been referred to single individuals. Therizinosaurs were unusual maniraptoran theropods close to the origin of birds. The axial skeleton is extensively pneumatized, but CT scans reveal an apneumatic synsacrum. Inferred air sacs invade the basicranium, the presacral vertebrae, and the proximal caudal vertebrae, but bypassed the sacrum resulting in a caudosacral hiatus similar to some sauropods and reflecting the development of multiple diverticula from the abdominal air sac. The vertebral pneumatic chambers are described here and compared with those observed in the theropod Allosaurus and the recent avian Dinornis. The vertebrae of Nothronychus are intermediate between those two theropods. It is inferred to have possessed avian-like abdominal air sacs. This theropod would have had unidirectional lungs, as in birds, but this character cannot be related to endothermy.
Collapse
Affiliation(s)
- David K. Smith
- Biology DepartmentNorthland Pioneer CollegeHolbrookAZUSA
| | | | | |
Collapse
|
16
|
Schachner ER, Hedrick BP, Richbourg HA, Hutchinson JR, Farmer CG. Anatomy, ontogeny, and evolution of the archosaurian respiratory system: A case study on Alligator mississippiensis and Struthio camelus. J Anat 2020; 238:845-873. [PMID: 33345301 DOI: 10.1111/joa.13358] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/13/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
The avian lung is highly specialized and is both functionally and morphologically distinct from that of their closest extant relatives, the crocodilians. It is highly partitioned, with a unidirectionally ventilated and immobilized gas-exchanging lung, and functionally decoupled, compliant, poorly vascularized ventilatory air-sacs. To understand the evolutionary history of the archosaurian respiratory system, it is essential to determine which anatomical characteristics are shared between birds and crocodilians and the role these shared traits play in their respective respiratory biology. To begin to address this larger question, we examined the anatomy of the lung and bronchial tree of 10 American alligators (Alligator mississippiensis) and 11 ostriches (Struthio camelus) across an ontogenetic series using traditional and micro-computed tomography (µCT), three-dimensional (3D) digital models, and morphometry. Intraspecific variation and left to right asymmetry were present in certain aspects of the bronchial tree of both taxa but was particularly evident in the cardiac (medial) region of the lungs of alligators and the caudal aspect of the bronchial tree in both species. The cross-sectional area of the primary bronchus at the level of the major secondary airways and cross-sectional area of ostia scaled either isometrically or negatively allometrically in alligators and isometrically or positively allometrically in ostriches with respect to body mass. Of 15 lung metrics, five were significantly different between the alligator and ostrich, suggesting that these aspects of the lung are more interspecifically plastic in archosaurs. One metric, the distances between the carina and each of the major secondary airways, had minimal intraspecific or ontogenetic variation in both alligators and ostriches, and thus may be a conserved trait in both taxa. In contrast to previous descriptions, the 3D digital models and CT scan data demonstrate that the pulmonary diverticula pneumatize the axial skeleton of the ostrich directly from the gas-exchanging pulmonary tissues instead of the air sacs. Global and specific comparisons between the bronchial topography of the alligator and ostrich reveal multiple possible homologies, suggesting that certain structural aspects of the bronchial tree are likely conserved across Archosauria, and may have been present in the ancestral archosaurian lung.
Collapse
Affiliation(s)
- Emma R Schachner
- Department of Cell Biology & Anatomy, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Brandon P Hedrick
- Department of Cell Biology & Anatomy, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Heather A Richbourg
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, USA
| | - John R Hutchinson
- Department of Comparative Biomedical Sciences, Structure & Motion Laboratory, Royal Veterinary College, University of London, Hatfield, UK
| | - C G Farmer
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
17
|
Palmer MA, Nelson CM. Fusion of airways during avian lung development constitutes a novel mechanism for the formation of continuous lumena in multicellular epithelia. Dev Dyn 2020; 249:1318-1333. [DOI: 10.1002/dvdy.215] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/01/2020] [Accepted: 05/28/2020] [Indexed: 12/16/2022] Open
Affiliation(s)
- Michael A. Palmer
- Department of Chemical & Biological Engineering Princeton University Princeton New Jersey USA
| | - Celeste M. Nelson
- Department of Chemical & Biological Engineering Princeton University Princeton New Jersey USA
- Department of Molecular Biology Princeton University Princeton New Jersey USA
| |
Collapse
|
18
|
Evans AM, Hardie DG. AMPK and the Need to Breathe and Feed: What's the Matter with Oxygen? Int J Mol Sci 2020; 21:ijms21103518. [PMID: 32429235 PMCID: PMC7279029 DOI: 10.3390/ijms21103518] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022] Open
Abstract
We live and to do so we must breathe and eat, so are we a combination of what we eat and breathe? Here, we will consider this question, and the role in this respect of the AMP-activated protein kinase (AMPK). Emerging evidence suggests that AMPK facilitates central and peripheral reflexes that coordinate breathing and oxygen supply, and contributes to the central regulation of feeding and food choice. We propose, therefore, that oxygen supply to the body is aligned with not only the quantity we eat, but also nutrient-based diet selection, and that the cell-specific expression pattern of AMPK subunit isoforms is critical to appropriate system alignment in this respect. Currently available information on how oxygen supply may be aligned with feeding and food choice, or vice versa, through our motivation to breathe and select particular nutrients is sparse, fragmented and lacks any integrated understanding. By addressing this, we aim to provide the foundations for a clinical perspective that reveals untapped potential, by highlighting how aberrant cell-specific changes in the expression of AMPK subunit isoforms could give rise, in part, to known associations between metabolic disease, such as obesity and type 2 diabetes, sleep-disordered breathing, pulmonary hypertension and acute respiratory distress syndrome.
Collapse
Affiliation(s)
- A. Mark Evans
- Centre for Discovery Brain Sciences and Cardiovascular Science, Edinburgh Medical School, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK
- Correspondence:
| | - D. Grahame Hardie
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK;
| |
Collapse
|
19
|
Legendre LJ, Davesne D. The evolution of mechanisms involved in vertebrate endothermy. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190136. [PMID: 31928191 DOI: 10.1098/rstb.2019.0136] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Endothermy, i.e. the endogenous production of metabolic heat, has evolved multiple times among vertebrates, and several strategies of heat production have been studied extensively by physiologists over the course of the twentieth century. The independent acquisition of endothermy by mammals and birds has been the subject of many hypotheses regarding their origin and associated evolutionary constraints. Many groups of vertebrates, however, are thought to possess other mechanisms of heat production, and alternative ways to regulate thermogenesis that are not always considered in the palaeontological literature. Here, we perform a review of the mechanisms involved in heat production, with a focus on cellular and molecular mechanisms, in a phylogenetic context encompassing the entire vertebrate diversity. We show that endothermy in mammals and birds is not as well defined as commonly assumed by evolutionary biologists and consists of a vast array of physiological strategies, many of which are currently unknown. We also describe strategies found in other vertebrates, which may not always be considered endothermy, but nonetheless correspond to a process of active thermogenesis. We conclude that endothermy is a highly plastic character in vertebrates and provides a guideline on terminology and occurrences of the different types of heat production in vertebrate evolution. This article is part of the theme issue 'Vertebrate palaeophysiology'.
Collapse
Affiliation(s)
- Lucas J Legendre
- Jackson School of Geosciences, University of Texas at Austin, Austin, TX, USA
| | - Donald Davesne
- Department of Earth Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
20
|
The origin, significance and plasticity of the thermoeffector thresholds: Extrapolation between humans and laboratory rodents. J Therm Biol 2019; 85:102397. [DOI: 10.1016/j.jtherbio.2019.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 01/07/2023]
|
21
|
Grigoryan B, Paulsen SJ, Corbett DC, Sazer DW, Fortin CL, Zaita AJ, Greenfield PT, Calafat NJ, Gounley JP, Ta AH, Johansson F, Randles A, Rosenkrantz JE, Louis-Rosenberg JD, Galie PA, Stevens KR, Miller JS. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science 2019; 364:458-464. [PMID: 31048486 PMCID: PMC7769170 DOI: 10.1126/science.aav9750] [Citation(s) in RCA: 785] [Impact Index Per Article: 130.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/09/2019] [Indexed: 12/21/2022]
Abstract
Solid organs transport fluids through distinct vascular networks that are biophysically and biochemically entangled, creating complex three-dimensional (3D) transport regimes that have remained difficult to produce and study. We establish intravascular and multivascular design freedoms with photopolymerizable hydrogels by using food dye additives as biocompatible yet potent photoabsorbers for projection stereolithography. We demonstrate monolithic transparent hydrogels, produced in minutes, comprising efficient intravascular 3D fluid mixers and functional bicuspid valves. We further elaborate entangled vascular networks from space-filling mathematical topologies and explore the oxygenation and flow of human red blood cells during tidal ventilation and distension of a proximate airway. In addition, we deploy structured biodegradable hydrogel carriers in a rodent model of chronic liver injury to highlight the potential translational utility of this materials innovation.
Collapse
Affiliation(s)
- Bagrat Grigoryan
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | | | - Daniel C Corbett
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Daniel W Sazer
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Chelsea L Fortin
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Alexander J Zaita
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Paul T Greenfield
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | | | - John P Gounley
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Anderson H Ta
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Fredrik Johansson
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Amanda Randles
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | | | | - Peter A Galie
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Kelly R Stevens
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Jordan S Miller
- Department of Bioengineering, Rice University, Houston, TX 77005, USA.
| |
Collapse
|
22
|
Fogarty MJ, Sieck GC. Evolution and Functional Differentiation of the Diaphragm Muscle of Mammals. Compr Physiol 2019; 9:715-766. [PMID: 30873594 PMCID: PMC7082849 DOI: 10.1002/cphy.c180012] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Symmorphosis is a concept of economy of biological design, whereby structural properties are matched to functional demands. According to symmorphosis, biological structures are never over designed to exceed functional demands. Based on this concept, the evolution of the diaphragm muscle (DIAm) in mammals is a tale of two structures, a membrane that separates and partitions the primitive coelomic cavity into separate abdominal and thoracic cavities and a muscle that serves as a pump to generate intra-abdominal (Pab ) and intrathoracic (Pth ) pressures. The DIAm partition evolved in reptiles from folds of the pleural and peritoneal membranes that was driven by the biological advantage of separating organs in the larger coelomic cavity into separate thoracic and abdominal cavities, especially with the evolution of aspiration breathing. The DIAm pump evolved from the advantage afforded by more effective generation of both a negative Pth for ventilation of the lungs and a positive Pab for venous return of blood to the heart and expulsive behaviors such as airway clearance, defecation, micturition, and child birth. © 2019 American Physiological Society. Compr Physiol 9:715-766, 2019.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Mayo Clinic, Department of Physiology & Biomedical Engineering, Rochester, Minnesota, USA
| | - Gary C Sieck
- Mayo Clinic, Department of Physiology & Biomedical Engineering, Rochester, Minnesota, USA
| |
Collapse
|
23
|
Reichert MN, de Oliveira PRC, Souza GMPR, Moranza HG, Restan WAZ, Abe AS, Klein W, Milsom WK. The respiratory mechanics of the yacare caiman ( Caiman yacare). ACTA ACUST UNITED AC 2019; 222:jeb.193037. [PMID: 30498079 DOI: 10.1242/jeb.193037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/20/2018] [Indexed: 01/30/2023]
Abstract
The structure and function of crocodilian lungs are unique compared with those of other reptiles. We examined the extent to which this and the semi-aquatic lifestyle of crocodilians affect their respiratory mechanics. We measured changes in intratracheal pressure in adult and juvenile caiman (Caiman yacare) during static and dynamic lung volume changes. The respiratory mechanics of juvenile caiman were additionally measured while the animals were floating in water and submerged at 30, 60 and 90 deg to the water's surface. The static compliance of the juvenile pulmonary system (2.89±0.22 ml cmH2O-1 100 g-1) was greater than that of adults (1.2±0.41 ml cmH2O-1 100 g-1), suggesting that the system stiffens as the body wall becomes more muscular and keratinized in adults. For both age groups, the lungs were much more compliant than the body wall, offering little resistance to air flow (15.35 and 4.25 ml cmH2O-1 100 g-1 for lungs, versus 3.39 and 1.67 ml cmH2O-1 100 g-1 for body wall, in juveniles and adults, respectively). Whole-system dynamic mechanics decreased with increasing ventilation frequency (f R), but was unaffected by changes in tidal volume (V T). The vast majority of the work of breathing was required to overcome elastic forces; however, work to overcome resistive forces increased proportionally with f R Work of breathing was higher in juvenile caiman submerged in water at 90 deg because of an increase in work to overcome both elastic and flow resistive forces. The lowest power of breathing was found to occur at high f R and low V T for any given minute ventilation (V̇ E) in caiman of all ages.
Collapse
Affiliation(s)
| | - Paulo R C de Oliveira
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14049-900, Brazil.,Instituto Federal do Paraná- Câmpus Avançado Goioerê, Goioerê, PR, 87360-000, Brazil
| | - George M P R Souza
- School of Medicine of Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Henriette G Moranza
- Clinica Médica Veterinária, Universidade Estadual Paulista, Jaboticabal, SP, 14884-900, Brazil
| | - Wilmer A Z Restan
- Clinica Médica Veterinária, Universidade Estadual Paulista, Jaboticabal, SP, 14884-900, Brazil
| | - Augusto S Abe
- Departamento de Zoologia, Universidade Estadual Paulista, Rio Claro, SP, 13506-692, Brazil
| | - Wilfried Klein
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - William K Milsom
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| |
Collapse
|
24
|
Cieri RL, Moritz S, Capano JG, Brainerd EL. Breathing with floating ribs: XROMM analysis of lung ventilation in savannah monitor lizards. ACTA ACUST UNITED AC 2018; 221:jeb.189449. [PMID: 30257921 DOI: 10.1242/jeb.189449] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/20/2018] [Indexed: 11/20/2022]
Abstract
The structures and functions of the vertebrate lung and trunk are linked through the act of ventilation, but the connections between these structures and functions are poorly understood. We used X-ray reconstruction of moving morphology (XROMM) to measure rib kinematics during lung ventilation in three savannah monitor lizards (Varanus exanthematicus). All of the dorsal ribs, including the floating ribs, contributed to ventilation; the magnitude and kinematic pattern showed no detectable cranial-to-caudal gradient. The true ribs acted as two rigid bodies connected by flexible cartilage, with the vertebral rib and ventromedial shaft of each sternal rib remaining rigid and the cartilage between them forming a flexible intracostal joint. Rib rotations can be decomposed into bucket handle rotation around a dorsoventral axis, pump handle rotation around a mediolateral axis and caliper motion around a craniocaudal axis. Dorsal rib motion was dominated by roughly equal contributions of bucket and pump rotation in two individuals and by bucket rotation in the third individual. The recruitment of floating ribs during ventilation in monitor lizards is strikingly different from the situation in iguanas, where only the first few true ribs contribute to breathing. This difference may be related to the design of the pulmonary system and life history traits in these two species. Motion of the floating ribs may maximize ventilation of the caudally and ventrolaterally positioned compliant saccular chambers in the lungs of varanids, while restriction of ventilation to a few true ribs may maximize crypsis in iguanas.
Collapse
Affiliation(s)
- Robert L Cieri
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Sabine Moritz
- Department of Biology, Community College of Rhode Island, Warwick, RI 02886, USA
| | - John G Capano
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Elizabeth L Brainerd
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
25
|
Wrenn SM, Griswold ED, Uhl FE, Uriarte JJ, Park HE, Coffey AL, Dearborn JS, Ahlers BA, Deng B, Lam YW, Huston DR, Lee PC, Wagner DE, Weiss DJ. Avian lungs: A novel scaffold for lung bioengineering. PLoS One 2018; 13:e0198956. [PMID: 29949597 PMCID: PMC6021073 DOI: 10.1371/journal.pone.0198956] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/28/2018] [Indexed: 02/07/2023] Open
Abstract
Allogeneic lung transplant is limited both by the shortage of available donor lungs and by the lack of suitable long-term lung assist devices to bridge patients to lung transplantation. Avian lungs have different structure and mechanics resulting in more efficient gas exchange than mammalian lungs. Decellularized avian lungs, recellularized with human lung cells, could therefore provide a powerful novel gas exchange unit for potential use in pulmonary therapeutics. To initially assess this in both small and large avian lung models, chicken (Gallus gallus domesticus) and emu (Dromaius novaehollandiae) lungs were decellularized using modifications of a detergent-based protocol, previously utilized with mammalian lungs. Light and electron microscopy, vascular and airway resistance, quantitation and gel analyses of residual DNA, and immunohistochemical and mass spectrometric analyses of remaining extracellular matrix (ECM) proteins demonstrated maintenance of lung structure, minimal residual DNA, and retention of major ECM proteins in the decellularized scaffolds. Seeding with human bronchial epithelial cells, human pulmonary vascular endothelial cells, human mesenchymal stromal cells, and human lung fibroblasts demonstrated initial cell attachment on decellularized avian lungs and growth over a 7-day period. These initial studies demonstrate that decellularized avian lungs may be a feasible approach for generating functional lung tissue for clinical therapeutics.
Collapse
Affiliation(s)
- Sean M. Wrenn
- Department of Surgery, University of Vermont, Burlington, VT, United States of America
- Department of Medicine, University of Vermont, Burlington, VT, United States of America
| | - Ethan D. Griswold
- Department of Medicine, University of Vermont, Burlington, VT, United States of America
- Rochester Institute of Technology, Rochester, NY, United States of America
| | - Franziska E. Uhl
- Department of Medicine, University of Vermont, Burlington, VT, United States of America
| | - Juan J. Uriarte
- Department of Medicine, University of Vermont, Burlington, VT, United States of America
| | - Heon E. Park
- Department of Medicine, University of Vermont, Burlington, VT, United States of America
- Department of Mechanical Engineering, University of Vermont, Burlington, VT, United States of America
| | - Amy L. Coffey
- Department of Medicine, University of Vermont, Burlington, VT, United States of America
| | - Jacob S. Dearborn
- Department of Medicine, University of Vermont, Burlington, VT, United States of America
| | - Bethany A. Ahlers
- Department of Biology, University of Vermont, Burlington, VT, United States of America
| | - Bin Deng
- Department of Biology, University of Vermont, Burlington, VT, United States of America
| | - Ying-Wai Lam
- Department of Biology, University of Vermont, Burlington, VT, United States of America
| | - Dryver R. Huston
- Department of Mechanical Engineering, University of Vermont, Burlington, VT, United States of America
| | - Patrick C. Lee
- Department of Mechanical Engineering, University of Vermont, Burlington, VT, United States of America
| | - Darcy E. Wagner
- Comprehensive Pneumology Center, Ludwig Maximilians University Munich, Munich, Germany
- Department of Experimental Medical Science, Lung Bioengineering and Regeneration, Lund University, Lund, Sweden
| | - Daniel J. Weiss
- Department of Medicine, University of Vermont, Burlington, VT, United States of America
- * E-mail:
| |
Collapse
|
26
|
Hyndman TH, Shilton CM, Stenglein MD, Wellehan JFX. Divergent bornaviruses from Australian carpet pythons with neurological disease date the origin of extant Bornaviridae prior to the end-Cretaceous extinction. PLoS Pathog 2018; 14:e1006881. [PMID: 29462190 PMCID: PMC5834213 DOI: 10.1371/journal.ppat.1006881] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 03/02/2018] [Accepted: 01/17/2018] [Indexed: 12/19/2022] Open
Abstract
Tissue samples from Australian carpet pythons (Morelia spilota) with neurological disease were screened for viruses using next-generation sequencing. Coding complete genomes of two bornaviruses were identified with the gene order 3'-N-X-P-G-M-L, representing a transposition of the G and M genes compared to other bornaviruses and most mononegaviruses. Use of these viruses to search available vertebrate genomes enabled recognition of further endogenous bornavirus-like elements (EBLs) in diverse placental mammals, including humans. Codivergence patterns and shared integration sites revealed an ancestral laurasiatherian EBLG integration (77 million years ago [MYA]) and a previously identified afrotherian EBLG integration (83 MYA). The novel python bornaviruses clustered more closely with these EBLs than with other exogenous bornaviruses, suggesting that these viruses diverged from previously known bornaviruses prior to the end-Cretaceous (K-Pg) extinction, 66 MYA. It is possible that EBLs protected mammals from ancient bornaviral disease, providing a selective advantage in the recovery from the K-Pg extinction. A degenerate PCR primer set was developed to detect a highly conserved region of the bornaviral polymerase gene. It was used to detect 15 more genetically distinct bornaviruses from Australian pythons that represent a group that is likely to contain a number of novel species.
Collapse
Affiliation(s)
- Timothy H. Hyndman
- College of Veterinary Medicine, School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Catherine M. Shilton
- Berrimah Veterinary Laboratories, Department of Primary Industry and Resources, Northern Territory Government, Berrimah, Northern Territory, Australia
| | - Mark D. Stenglein
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - James F. X. Wellehan
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
27
|
Vieira LG, Lima FC, Mendonôa SHST, Menezes LT, Hirano LQL, Santos ALQ. Ontogeny of the Postcranial Axial Skeleton of Melanosuchus niger (Crocodylia, Alligatoridae). Anat Rec (Hoboken) 2017; 301:607-623. [PMID: 29150983 DOI: 10.1002/ar.23722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 07/11/2017] [Accepted: 07/24/2017] [Indexed: 11/07/2022]
Abstract
This study proposes the description of the development of the postcranial axial skeleton, including vertebrae, gastralium, ribs, sternum, and interclavicle, in Melanosuchus niger. Six nests were marked and two eggs removed from each nest at 24-hr intervals until hatching. For posthatching evaluation, 30 hatchlings were kept in captivity and one exemplar was euthanized at three-day intervals. Samples were diaphanized using potassium hydroxide (KOH), alizarin red S, and Alcian blue. A routinely generally used method was applied for histological evaluation. It was difficult to define in which vertebrae the development of cartilaginous centers began, but it was possible to observe that this condensation advanced in the craniocaudal direction. The condensation started in the vertebral arches and was visibly stronger in the cervical and dorsal regions, advancing to the lumbar, sacral and, last, to the caudal region. The atlas showed a highly different morphology compared with the other cervical vertebrae, with a short intercenter, two neural arches, and a proatlas. The ossification process began in the body of cervical vertebrae III to VIII and alizarin retention decreased in the last vertebrae, indicating a craniocaudal direction in bone development, similar to cartilage formation. In the histological sections of gastralium and interclavicles of M. niger at several development stages, it was possible to observe that these elements showed intramembranous development. Anat Rec, 301:607-623, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- LucéLia Gonçalves Vieira
- Institute of Biomedical Sciences, Federal University of Uberlândia, Av. Pará 1720, Bloco 2B, Uberlândia, Minas Gerais CEP 38400-902 - CP 592, Brazil
| | - Fabiano Campos Lima
- Federal University of Goiás, Rodovia BR 364, Km 192. Setor Industrial, Jataí, Goiás CEP 75801615, Brazil
| | | | - Lorena Tannús Menezes
- Institute of Biomedical Sciences, Federal University of Uberlândia, Av. Pará 1720, Bloco 2B, Uberlândia, Minas Gerais CEP 38400-902 - CP 592, Brazil
| | - Líria Queiroz Luz Hirano
- University Center of Triângulo, Av. Raulino Cotta Pacheco, 70, apto 201, Osvaldo Resende, Uberlândia, Minas Gerais CEP 38400-370, Brazil
| | - André Luiz Quagliatto Santos
- Laboratory for Teaching and Research on Wild Animals, Federal University of Uberlândia, Rua Piauí, s/n, 4S, Uberlândia, MG, 38400-902, Brazil
| |
Collapse
|
28
|
Abstract
Cardiovascular function in dinosaurs can be inferred from fossil evidence with knowledge of how metabolic rate, blood flow rate, blood pressure, and heart size are related to body size in living animals. Skeletal stature and nutrient foramen size in fossil femora provide direct evidence of a high arterial blood pressure, a large four-chambered heart, a high aerobic metabolic rate, and intense locomotion. But was the heart of a huge, long-necked sauropod dinosaur able to pump blood up 9 m to its head?
Collapse
Affiliation(s)
- Roger S. Seymour
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
29
|
Unidirectional pulmonary airflow in vertebrates: a review of structure, function, and evolution. J Comp Physiol B 2016; 186:541-52. [DOI: 10.1007/s00360-016-0983-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 03/15/2016] [Accepted: 03/21/2016] [Indexed: 01/23/2023]
|
30
|
|
31
|
Skovgaard N, Crossley DA, Wang T. Low cost of pulmonary ventilation in American alligators (Alligator mississippiensis) stimulated with doxapram. J Exp Biol 2016; 219:933-6. [DOI: 10.1242/jeb.135871] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 01/27/2016] [Indexed: 11/20/2022]
Abstract
To determine the costs of pulmonary ventilation without imposing severe oxygen limitations or acidosis that normally accompany exposures to hypoxia or hypercapnia, we opted to pharmacologically stimulate ventilation with doxapram (5 and 10 mg kg−1) in alligators. Doxapram is used clinically to alleviate ventilatory depression in response to anaesthesia and acts primarily on the peripheral oxygen sensitive chemoreceptors. Using this approach, we investigate the hypothesis that pulmonary ventilation is relatively modest in comparison to resting metabolic rate in crocodilians and equipped seven juvenile alligators with masks for concurrent determination of ventilation and oxygen uptake. Doxapram elicited a dose-dependent and up to four-fold rise in ventilation, primarily by increasing ventilatory frequency. The attending rise in oxygen uptake was very small; ventilation in resting animals constitutes no more than 5 % of resting metabolic rate. The conclusion that pulmonary ventilation is energetically cheap is consistent with earlier studies on alligators where ventilation has been stimulated by hypoxia, hypercapnia.
Collapse
Affiliation(s)
- Nini Skovgaard
- Zoophysiology, Department of Bioscience, Aarhus University, Denmark
| | - Dane A. Crossley
- Developmental Integrative Biology Cluster, Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
| | - Tobias Wang
- Zoophysiology, Department of Bioscience, Aarhus University, Denmark
| |
Collapse
|
32
|
Farmer CG. Unidirectional flow in lizard lungs: a paradigm shift in our understanding of lung evolution in Diapsida. ZOOLOGY 2015; 118:299-301. [DOI: 10.1016/j.zool.2015.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 06/09/2015] [Indexed: 01/15/2023]
|
33
|
Farmer CG. Similarity of Crocodilian and Avian Lungs Indicates Unidirectional Flow Is Ancestral for Archosaurs. Integr Comp Biol 2015; 55:962-71. [PMID: 26141868 DOI: 10.1093/icb/icv078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Patterns of airflow and pulmonary anatomy were studied in the American alligator (Alligator mississippiensis), the black caiman (Melanosuchus niger), the spectacled caiman (Caiman crocodilus), the dwarf crocodile (Osteolaemus tetraspis), the saltwater crocodile (Crocodylus porosus), the Nile crocodile (Crocodylus niloticus), and Morelet's crocodile (Crocodylus moreletii). In addition, anatomy was studied in the Orinoco crocodile (Crocodylus intermedius). Airflow was measured using heated thermistor flow meters and visualized by endoscopy during insufflation of aerosolized propolene glycol and glycerol. Computed tomography and gross dissection were used to visualize the anatomy. In all species studied a bird-like pattern of unidirectional flow was present, in which air flowed caudad in the cervical ventral bronchus and its branches during both lung inflation and deflation and craniad in dorsobronchi and their branches. Tubular pathways connected the secondary bronchi to each other and allowed air to flow from the dorsobronchi into the ventrobronchi. No evidence for anatomical valves was found, suggesting that aerodynamic valves cause the unidirectional flow. In vivo data from the American alligator showed that unidirectional flow is present during periods of breath-holding (apnea) and is powered by the beating heart, suggesting that this pattern of flow harnesses the heart as a pump for air. Unidirectional flow may also facilitate washout of stale gases from the lung, reducing the cost of breathing, respiratory evaporative water loss, heat loss through the heat of vaporization, and facilitating crypsis. The similarity in structure and function of the bird lung with pulmonary anatomy of this broad range of crocodilian species indicates that a similar morphology and pattern of unidirectional flow were present in the lungs of the common ancestor of crocodilians and birds. These data suggest a paradigm shift is needed in our understanding of the evolution of this character. Although conventional wisdom is that unidirectional flow is important for the high activity and basal metabolic rates for which birds are renowned, the widespread occurrence of this pattern of flow in crocodilians indicates otherwise. Furthermore, these results show that air sacs are not requisite for unidirectional flow, and therefore raise questions about the function of avian air sacs.
Collapse
Affiliation(s)
- C G Farmer
- 257 S 1400 E, Salt Lake City, UT 84112, USA
| |
Collapse
|